Генератор из асинхронного двигателя своими руками
В этой статье вы узнаете как переделать асинхронный двигатель в генератор. Все этапы переделки двигателя подробно описаны и если вы соберётесь повторить данный проект, пользуясь инструкцией в статье, проблем возникнуть не должно. Генератор из асинхронного двигателя можно применить по назначению, немного доработав его конструкцию.
За основу был взят промышленный асинхронный двигатель переменного тока, мощностью 1,5 кВт с частотой вращения вала 960 об/мин. Сам по себе такой мотор изначально не может работать как генератор. Ему необходима доработка, а именно замена или доработка ротора.
Табличка с маркировкой двигателя:
Двигатель хорош тем, что у него везде где нужно стоят уплотнения, особенно у подшипников. Это существенно увеличивает интервал между периодическим техническим обслуживанием, так как пыль и грязь никуда просто так попасть и проникнуть не могут.
Ламы у этого электродвигателя можно поставить на любую сторону, что очень удобно.
Переделка асинхронного двигателя в генератор
Снимаем крышки, извлекаем ротор.
Обмотки статора остаются родные, двигатель не перематывается, все остается как есть, без изменений.
Ротор дорабатывался на заказ. Было решено сделать его не цельнометаллическим, а сборным.
То есть, родной ротор стачивается до определенного размера.
Вытачивается стальной стакан и запрессовывается на ротор. Толщина стакана в данном случае составляет 5 мм.
Разметка мест для приклеивания магнитов была одной из самых сложных операций. В итоге методом проб и ошибок было решено распечатать шаблон на бумаге, вырезать в нем кружочки под неодимовые магниты – они круглые. И приклеить магниты по шаблону на ротор. Основная загвоздка возникла в вырезании множественных кружочков в бумаге.
Все размеры подбираются сугубо индивидуально под каждый двигатель. Каких-то общих размеров размещения магнитов дать нельзя.
Неодимовые магниты приклеены на супер клей.
Была сделана сетка из капроновой нити для укрепления.
Далее обматывается все скотчем, снизу делается герметичная опалубка, герметизированная пластилином, а сверху заливная воронка из того же скотча. Заливается все эпоксидной смолой.
Смола потихоньку стекает сверху вниз.
После застывания эпоксидной смолы, снимаем скотч.
Теперь все готов к сборке генератора.
Загоняем ротор в статор. Делать это нужно особо осторожно, так как неодимовые магниты обладают огромной силой и ротор буквально залетает в статор.
Собираем, закрываем крышки.
Магниты не задевают. Залипания почти нет, крутится относительно легко.
Проверка работы. Вращаем генератор от дрели, с частотой вращения 1300 об/мин.
Двигатель подключен звездой, треугольником генераторы такого типа подключать нельзя, не будут работать. Снимается напряжение для проверки между фазами.
Генератор из асинхронного двигателя работает отлично.
Смотрите видео
Более подробную информацию смотрите в этом видеоролике.
Автор публикации
миф или реальность, устройство, виды
Идея разработки вечного бестопливного двигателя не нова, за разработку такого агрегата во все времена брались именитые ученые своего времени. Однако ни технических средств для реализации задумки, не возможностей того времени не хватало. В некоторых случаях дело доходило только до теоретического обоснования, но существуют примеры реально разработанных альтернативных двигателей, которые призваны создать конкуренцию классическим электрическим машинам. Одним из таких вариантов является магнитный двигатель.
Миф или реальность?
Вечный двигатель знаком практически каждому еще со школьной скамьи, только на уроках физики четко утверждалось, что добиться практической реализации невозможно из-за сил трения в движущихся элементах. Среди современных разработок магнитных моторов представлены самоподдерживающие модели, в которых магнитный поток самостоятельно создает вращательное усилие и продолжает себя поддерживать в течении всего процесса работы. Но основным камнем преткновения является КПД любого двигателя, включая магнитный, так как он никогда не достигает 100%. Со временем мотор все равно остановится.
Поэтому все практические модели требуют повторного вмешательства через определенное время или каких-либо сторонних элементов, работающих от независимого источника питания. Наиболее вероятным вариантом бестопливных двигателей и генераторов выступает магнитная машина. В которой основной движущей силой будет магнитное взаимодействие между постоянными магнитами, электромагнитными полями или ферромагнитными материалами.
Актуальным примером реализации являются декоративные украшения, выполненные в виде постоянно двигающихся шаров, рамочек или других конструкций. Но для их работы необходимо использовать батарейки, которые питают постоянным током электромагниты. Поэтому далее рассмотрим тот принцип действия, который подает самые обнадеживающие ожидания.
Устройство и принцип работы
Сегодня существует достаточно большое количество магнитных двигателей, некоторые из них схожи, другие имеют принципиально отличительную конструкцию.
Для примера мы рассмотрим наиболее наглядный вариант:
Принцип действия магнитного двигателяКак видите на рисунке, мотор состоит из следующих компонентов:
- Магнит статора здесь только один и расположен он на пружинном маятнике, но такое размещение требуется только в экспериментальных целях. Если вес ротора окажется достаточным, то инерции движения хватит для преодоления самого малого расстояния между магнитами и статор может иметь стационарный магнит без маятника.
- Ротор дискового типа из немагнитного материала.
- Постоянные магниты, установленные на роторе в форме улитки в одинаковое положение.
- Балласт — любой увесистый предмет,
который даст нужную инерционность (в рабочих моделях эту функцию может
выполнять нагрузка).
Все, что нужно для работы такого агрегата — это придвинуть магнит статора на достаточное расстояние к ротору в точке самого наибольшего удаления, как показано на рисунке. После этого магниты начнут притягиваться по мере приближения формы улитки по кругу, и начнется вращение ротора. Чем меньше размер магнитов и чем более плавная форма получится, тем легче произойдет движение. В месте максимального сближения на диске установлена «собачка», которая сместит маятник от нормального положения, чтобы магниты не притянулись в статическое положение.
Разновидности магнитных двигателей и их схемы
Сегодня существует много моделей бестопливных генераторов, электрических машин и моторов, чей принцип действия основан на природных свойствах постоянных магнитов. Некоторые варианты были спроектированы именитыми ученными, достижения которых стали основополагающим камнем в фундаменте науки. Поэтому далее мы рассмотрим самые популярные из них.
Николы Тесла
В данном примере мы рассмотрим одну из разработок известного ученого, конструкция которой приведена на рисунке ниже:
Магнитный двигатель ТеслаКонструктивно магнитный двигатель Тесла состоит из таких элементов:
- электрического генератора, который представлен двумя дисками из проводника, помещенными в униполярной магнитной среде;
- гибкого ремня, изготовленного из проводящего материала, расположенного по периферии дисков;
- независимых магнитов, сохраняющих униполярность полей при вращении дисков.
Такой двигатель, по словам изобретателя, может функционировать и в качестве генератора, вырабатывая электрическую энергию при вращении дисков.
Минато
Этот пример нельзя назвать самовращающимся двигателем, так как для его работы требуется постоянная подпитка электрической энергией. Но такой электромагнитный мотор позволяет получать значительную выгоду, затрачивая минимум электричества для выполнения физической работы.
Схема двигателя МинатоКак видите на схеме, особенностью этого вида является необычный подход к расположению магнитов на роторе. Для взаимодействия с ним на статоре возникают магнитные импульсы за счет кратковременной подачи электроэнергии через реле или полупроводниковый прибор.
При этом ротор будет вращаться, пока его элементы не размагнитятся. Сегодня все еще ведутся разработки по улучшению и повышению эффективности устройства, поэтому назвать его полностью завершенным нельзя.
Николая Лазарева
Это не только простейший гравитационный двигатель, но и одна из реально работающих моделей вечного двигателя. Пример приведен на рисунке ниже:
Двигатель ЛазареваКак видите, для изготовления такого двигателя или генератора вам потребуется:
- колба;
- жидкость;
- трубка;
- прокладка из пористого материала;
- крыльчатка и нагрузка на вал.
Принцип действия заключается в том, что вода по тонкой трубке из-за избытка давления будет подниматься вверх и скапывать на прокладку и вращать крыльчатку. Далее вода будет просачиваться сквозь губку и под воздействием магнитного поля Земли дальше стекать в нижний резервуар. Цикл будет повторяться до тех пор, пока жидкость не исчезнет, что в идеально герметичном контуре не произойдет никогда. Для усиления момента на вращаемый вал добавляют магнитные усилители.
Говарда Джонсона
В своих исследованиях Джонсон руководствовался теорией потока непарных электронов, действующих в любом магните. В его двигателе обмотки статора формируются из магнитных дорожек. На практике эти агрегаты получили реализацию в конструкции роторного и линейного двигателя. Пример такого устройства приведен на рисунке ниже:
Двигатель ДжонсонаКак видите, на оси вращения в двигателе устанавливаются сразу и статор и ротор, поэтому классически вал вращаться здесь не будет. На статоре магниты повернуты одноименным полюсом к роторным, поэтому они взаимодействуют на силах отталкивания. Особенность работы ученого заключалась в длительном вычислении расстояний и зазоров между основными элементами мотора.
Перендева
Данный вид двигателя, как и предыдущий, представляет собой еще одну модель магнитного взаимодействия между статором и ротором, где обе части содержат постоянные магниты. Схема конструкции обоих представляет собой диск или кольцо, в котором точечно устанавливаются вектолиты.
Магниты статора и ротора в двигателе ПередневаКак видите на рисунке, положение активных элементов имеет угол смещения, который и определяет эффективность вращения машины. Взаимодействие магнитных потоков в двигателе происходит при задании начального крутящего момента. Точность положения и угла наклона можно отстроить только в лабораторных или заводских условиях.
Василия Шкондина
Получить вечный генератор Василию Шкодину не удалось, КПД такого магнитного двигателя и сегодня не превышает 83%. Но и этого более чем достаточно, чтобы его повсеместно применяли для велосипедов, байков и самокатов. Он может эксплуатироваться как в режиме тяги, так и для рекуперации электроэнергии.
Двигатель ШкондинаНа рисунке приведена конструкция магнитного двигателя Шкодина. Как видите, и ротор и статор представляют собой кольца. Из магнитных деталей он содержит 11 пар неодимовых магнитов. Ротор устройства содержит 6 электромагнитов, смещенных на одинаковое расстояние друг относительно друга.
Свинтицкого
Еще в конце 90-х украинский конструктор предложит модель самовращающегося магнитного двигателя, который стал настоящим прорывом в технике. За основу им был взят асинхронный двигатель Ванкеля, которому не удалось решить проблему с преодолением 360° оборота.
Игорь Свинтицкий эту проблему решил и получил патент, обратился в ряд компаний, однако асинхронное магнитное чудо техники никого не заинтересовало, поэтому проект был закрыт и за его масштабное тестирование ни одна компания не взялась.
Джона Серла
От электрического мотора такой магнитный двигатель отличает взаимодействие исключительно магнитного поля статора и ротора. Но последний выполняется наборными цилиндрами с таблетками из специального сплава, которые создают магнитные силовые линии в противоположном направлении. Его можно считать синхронным двигателем, так как разница частот в нем отсутствует.
Двигатель СерлаПолюса постоянных магнитов расположены так, что один толкает следующий и т.д. Начинается цепная реакция, приводящая в движение всю систему магнитного двигателя, до тех пор, пока магнитной силы будет хватать хотя бы для одного цилиндра.
Алексеенко
Интересный вариант магнитного двигателя представил ученый Алексеенко, который создал устройство с роторными магнитами необычной формы.
Двигатель АлексеенкоКак видите на рисунке, магниты имеют необычную изогнутую форму, которая максимально сближает противоположные полюса. Что делает магнитные потоки в месте сближения значительно сильнее. При начале вращения отталкивание полюсов получается значительно большим, что и должно обеспечить непрерывное движение по кругу.
Видео в помощь
Строительство своего собственного мини -генератора энергии с магнитами
DIY
DIY
IE Originals
Инновации
IE Originals
IE Originals
IE Originals
IE Originals
IE Originals
9000 3. видеоплеер не работает, вы можете посмотреть видео по этой альтернативной ссылке.Играть с магнитами невероятно весело. Но разве не было бы здорово одновременно играть с магнитами и делать с ними что-то полезное?
Как насчет того, чтобы выработать достаточно энергии, чтобы, например, зажечь лампочку? Следуйте этому руководству, чтобы узнать, как это сделать.
Источник: NewsflareКак вы понимаете, вам понадобятся некоторые инструменты и материалы, прежде чем вы начнете.
Необходимые материалы и приспособления
- Картон/дерево/пластиковый лист
- Щелчковый переключатель
- Неодимовые магниты
- Двигатель постоянного тока
- Пистолет для горячего клея
- Малый пластиковый шкив
- Патрон для лампочки
- Лампочка
- Батарея 9 В и разъем для батареи
- Набор для пайки
- Электрические провода, резисторы и паяльник
Со всем снаряжением в руках пришло время приступить к этой замечательной маленькой постройке.
Шаг 1. Изготовьте катушку динамо-машины и осветительный прибор
Первый шаг – возьмите медный провод некоторой длины (или снимите изоляцию с обычной проводки) и кольцевой магнит. Намотайте проволоку вокруг кольцевого магнита, чтобы получилась динамо-катушка, как показано на видео.
Это займет немного времени, так что наслаждайтесь процессом — на самом деле он довольно катарсический.
Источник: NewsflareСделав это, возьмите осветительную арматуру и при необходимости ослабьте провода, соединяющие клеммы. Возьмите свободные концы провода от катушки, которую вы сделали ранее, и подключите их к клеммам светильника.
Плотно привинтите клеммы, чтобы при необходимости надежно зафиксировать провода.
Источник: NewsflareШаг 2: Сделайте основу
Сделав это, возьмите лист картона, деревянную или пластиковую карту. Если лист слишком велик для ваших целей, обрежьте лист по размеру, чтобы поместиться в светильник, двигатель и аккумулятор по мере необходимости.
Сделав это, возьмите клеевой пистолет и приклейте светильник к одной стороне листа по мере необходимости. При желании вы можете сначала прорезать небольшое отверстие для проводов, но это не обязательно.
Самые популярные
Источник: NewsflareЗатем приклейте катушку вертикально на место с другой стороны основания.
Шаг 3: Соберите устройство
Затем возьмите аккумулятор и двигатель постоянного тока. Приклейте двигатель к верхней части батареи так, чтобы ротор был направлен наружу в одну сторону.
Сделав это, при необходимости добавьте небольшой пластиковый шкив к ротору двигателя. Затем добавьте каплю горячего клея на конец шкива и приклейте на место еще один магнит-пончик, как показано ниже.
Источник: NewsflareСделав это, добавьте еще немного клея на основание устройства и приклейте аккумулятор/двигатель на место напротив светильника.
Убедитесь, что два магнитных кольца достаточно близко друг к другу, но не соприкасаются, чтобы магнит двигателя мог свободно вращаться, но при этом индуцировать ток в катушке.
Источник: NewsflareПосле этого добавьте немного припоя на каждую клемму двигателя. Затем возьмите разъем аккумулятора и припаяйте провода к каждой из клемм двигателя по мере необходимости.
После этого вы можете подключить держатель батареи к клеммам 9-вольтовой батареи. На этом этапе ваш самодельный магнитный генератор энергии в основном готов.
Теперь вы можете проверить это, вставив лампочку по вашему выбору в светильник. Затем подключите разъем аккумулятора к клеммам аккумулятора.
Источник: NewsflareЭто должно привести к вращению ротора двигателя благодаря его магниту. Это, в свою очередь, должно индуцировать ток в катушке, чтобы зажечь лампочку!
Если это не так, проверьте проводку, чтобы убедиться, что ничего не отсоединено. Вы также можете протестировать каждую часть устройства, чтобы убедиться, что двигатель работает или аккумулятор действительно заряжен.
Если вам понравилась эта простая сборка, возможно, вам будет интересно сделать еще один проект на основе магнита? Как насчет, например, вашей собственной машины для перемешивания напитков с магнитным приводом?
Для вас
Инновации
Спрашивайте не о том, что вы можете сделать для ИИ, а о том, что ИИ может сделать для вас
Элис Кук | 27. 02.2023
наукаКитай и Россия только что объявили о совместном плане строительства лунной базы. Вот что нужно знать
Мэтью С. Уильямс | 26.08.2022
InnovationLIFTbuild: новая революционная система строительства небоскребов
Christopher McFadden| 05.02.2023
More Stories
diy
Бывший инженер НАСА отомстил ворам с помощью блестящих бомб
Лукия Пападопулос| 29.01.2023
сделай сам
Как фотограф дикой природы создал процветающую экосистему на своем заднем дворе
Лукия Пападопулос| 24.12.2022
т.е. оригиналы
Легендарные произведения, созданные на станках для резьбы по дереву
Интересное машиностроение| 14.03.2023
Двигатель PMSM, Глоссарий терминологии электродвигателя, Электрогенератор, Турбодвигатель, Турбокомпрессор, Магнитное поле, Постоянный магнит, Электродвигатель, Структура материала, Магнитный поток, Магнит, Потери в сердечнике, Прямой привод, Вихревой ток, Плотность потока, магнитная проницаемость, удельная мощность, магнитный поток, постоянная момента, обратная ЭДС, БЭМП, самариевый магнит, неодимовый магнит, температура Кюри, КПД двигателя, ток размагничивания
PMSM двигатель : Бесщеточный электродвигатель переменного тока, аналогичный бесщеточному электродвигателю постоянного тока, в котором магнитное поле ротора создается постоянными магнитами, а не электромагнитами. Однако обмотки статора бесщеточных двигателей переменного тока представляют собой обмотки с синусоидальным распределением, а обмотки бесщеточного двигателя постоянного тока представляют собой катушки с явным возбуждением.
Прямой привод : Приводы, передающие мощность напрямую без зубчатых передач или других средств передачи мощности.
КПД (двигатель) : отношение выхода к входу (эффективность преобразования энергии).
КПД (система): общий КПД двигателя, органов управления, электрических кабелей, трансмиссии и приводимого оборудования. Это определяется путем перемножения эффективности отдельных компонентов.
Удельная мощность: отношение мощности к массе двигателя.
Константа крутящего момента : Скорость, с которой крутящий момент увеличивается по отношению к току.
Обратная ЭДС (BEMF) : напряжение, возникающее при вращении двигателя с постоянными магнитами. Это пропорционально скорости двигателя и присутствует всякий раз, когда ротор вращается.
Неодимовый магнит : Тип постоянного магнита с неодимом в структуре материала (NdB Fe).
Магнит из самария : тип постоянного магнита с самариевым кобальтом (SmCo) в структуре материала.
Температура Кюри : Характерное свойство ферромагнитного материала, часто используемое в качестве точки отсчета для оценки свойств магнита.
Ток размагничивания : Ток, при котором магниты двигателя начнут размагничиваться.
Потери в сердечнике : Потери в гистерезисе материала сердечника и потери на вихревые токи. Сердечник представляет собой магнитную сталь, вокруг которой построены обмотки двигателя.
Вихревой ток : Локализованные циркулирующие токи, индуцируемые в любом материале переменным магнитным потоком, вызывающие потери и нагрев.