Теплопроводность базальтовой ваты: Базальтовый утеплитель: Характеристики, теплопроводность и свойства

Содержание

Теплопроводность базальтовой ваты, коэффициент теплопроводности

admin | 18.09.2017 | Базальтовая вата, Утепление дома | Комментариев нет

Базальтовая вата имеет довольно разноплановые характеристики, среди которых следует выделить отличные противопожарные свойства, высокие тепло- и шумоизоляционные характеристики.

Содержание статьи о теплопроводности базальтовой ваты

    • Свойства базальтового утеплителя
    • Коэффициент теплопроводности базальтовой ваты
    • Теплопроводность базальтовой ваты ведущих производителей

Свойства базальтового утеплителя

1. Негорючесть. 

Базальтовая вата подвергалась проверкам во многих странах по различным методикам, в результате чего ее признали абсолютно негорючей, что позволяет использовать ее для теплоизоляции дымоходов. Это очень важный параметр в строительстве. На сегодняшний день множество материалов характеризируются как негорючие, но на самом деле многие оказываются не такими. Естественно, чтобы базальтовая вата была противопожарной, нужно приобретать ее у проверенных производителей.

2. Высокие водоотталкивающие свойства.

Кроме этого следует отметить отличные гидрофобные свойства материала. Базальтовая вата имеет в своем составе волокна, которые уже сами по себе водоотталкивающие. Кроме этого хорошие производители при производстве применяют особые добавки, увеличивающие свойства отталкивать влагу. В сравнении с другими разновидностями утеплителей базальтовая вата хорошо пропускает пар, а главное, что при этом она остается сухой. Это свойство незаменимое в строительстве.

3. Высокая устойчивость к нагрузкам.

Что касается устойчивости к нагрузкам, базальтовая вата хорошо справляется со всеми нагрузками, которыми она подвергается. Ее устойчивость напрямую зависит от того, где именно она применяется. Вата выдерживает нагрузки на сжатие 5-80 кПа при 10% деформации. Это свойство является особо важным физико-механическим показателем строительных материалов, подвергаемым нагрузкам. Изделия из каменной ваты могут быть разными. В основном это зависит от положения волокон, плотности, размеров и количества связывающего вещества в определенном элементе.

4. Небольшая плотность.

Базальтовая вата – это материал, состоящий из очень тонких волокон (3-5 мкм), которые переплетены между собой в хаотическом порядке, образовывая ячейки. Именно ячейки обеспечивают отличительные теплоизоляционные свойства материала, так как в них содержится воздух. Утеплитель имеет небольшую плотность, особенно в сравнении с другими материалами, применяемыми в строительстве. Это значит, что в нем содержится много воздуха. Когда базальтовый утеплитель находится в сухом состоянии, его теплопроводность превышает теплопроводность воздуха, находящегося в неподвижном состоянии. Рассмотрим данную характеристику более подробно.

Коэффициент теплопроводности базальтовой ваты

Сегодня теплоизоляция базальтовой ватой широко распространена. И это не удивительно, ведь за невысокую цену вы покупаете негорючий материал с низкой теплопроводностью. В свое время минеральная вата появилась в качестве замены асбестового полотна, которое убрали из рынка из-за небезопасности для здоровья человека.

Одно из самых существенных преимуществ, которое отличает базальтовую вату от других материалов – это стоимость. Заменители на основе пенопласта, пенополистерола и полиуретана или стоят на порядок больше, или не обеспечивают такой же уровень безопасности, теплоизоляции и негорючести. Среди проверенных производителей базальтовой ваты, выпускающих качественные изделия, следует выделить такие компании, как Лайнрок, Роквул, Теплит и Технониколь.

Выбор продукции определенного производителя зависит от назначения или характеристик продукта. Свойства базальтового утеплителя зависят от того, для чего она предназначена. Например, для утепления кровли характеристики будут одними, а для стен – совершенно другими. Плиты производятся с разной плотностью и ориентировкой под разные нагрузки. Естественно, на строительном рынке вы можете найти более дешевую минеральную вату неизвестных производителей за низкую цену. Но здесь нужно быть предельно осторожным, так как непроверенные компании часто предоставляют некачественную продукцию с вредными добавками.

Что касается теплопроводности базальтовой ваты, то значение колеблется в пределах 0.032-0.048 Вт/мК. Такую же теплопроводность имеет пенопласт, пенополистерол, пробки и вспененный каучук. Минеральная вата обладает высокой паропроницаемостью. Это способствует хорошему влагообмену с окружающей средой, при этом вы навсегда избавитесь от проблемы возникновения конденсата, образования на стенах грибка и плесени.

Для обеспечения качественной пароизоляции можно использовать фольгированную вату. Часто это незаменимо для изоляции труб, трубопроводов, стен бань и саун. Фольга осуществляет высокую защиту от ветра, что очень важно для утепления мансард. В наше время базальтовая минеральная вата используется для строительства загородных домов, вентилируемых и «мокрых» фасадов, утепления для воздуховодов и оборудования. Сейчас практически не найти материала, способного составить конкуренцию вате, произведенной на основе минеральных горных пород. Это высококачественный материал, поэтому смело отдавайте предпочтение именно этому утеплителю.

Теплопроводность базальтовой ваты ведущих производителей

На рынке базальтовых утеплителей хорошо зарекомендовали себя такие производители, как Изовер, Роквул и Кнауф. Какие же характеристики имеют материалы этих производителей?

Теплопроводность базальтовой ваты ISOVER

Для теплоизоляции кровель используется базальтовая вата Изовер Руф, Руф Н и Руф Н Оптимал теплопроводностью 0.036- 0.042 Вт/(м*K). Теплопроводность 0.035-0.039 Вт/(м*K) имеют материалы ISOVER Стандарт и Венти соответственно для утепления скатных кровель, мансард, каркасных стен и изоляции вентилируемых фасадов.

МатериалИспользованиеКоэффициент теплопроводности, Вт/(м*K) ?10, ?А, ?Б
ISOVER Фасадутепление штукатурных фасадов0.037, 0.041, 0.042
ISOVER Стандартутепление скатных кровель, мансард, каркасных стен0. 035, 0.038, 0.039
ISOVER Лайттеплоизоляция внешних каркасных стен0.036, 0.039, 0.040
ISOVER Вентитеплоизоляция вентилируемых фасадов0.035, 0.038, 0.039
ISOVER Акустиктепло- и звукоизоляция стен0.035, 0.039, 0.041
ISOVER Флортеплоизоляция пола, звукоизоляция от ударного шума0.04, — , —
ISOVER Оптимализоляция всех видов поверхностей0.04, — , —
ISOVER Руфтеплоизоляция кровель, однослойная изоляция0.037, 0.041, 0.042
ISOVER Руф Н Оптималтеплоизоляция кровель0.036, 0.040, 0.041
ISOVER Руф Нтеплоизоляция кровель0.036, 0.040, 0.042

Теплопроводность базальтовой ваты ROCKWOOL

Самый низкий коэффициент теплопроводности (0.035 и 0.037 Вт/(м*K) для ?10°C, ?25°C имеют материалы КАВИТИ БАТТС, ВЕНТИ БАТТС, ВЕНТИ БАТТС Д для теплоизоляции внешних стен. Более высокий коэффициент имеют плиты РУФ БАТТС (0.040) для утепления кровли.

МатериалИспользованиеКоэффициент теплопроводности, Вт/(м*K) ?10°C, ?25°C
ЛАЙТ БАТТСтеплоизоляция легких покрытий, мансардных помещений, междуэтажных перекрытий, перегородок0.036, 0.038
КАВИТИ БАТТСсредний слоя в трехслойных наружных стенах0.035, 0.037
ВЕНТИ БАТТС, ВЕНТИ БАТТС Дтеплоизоляция фасадных систем с вентилируемым воздушным зазором0.035, 0.037
РУФ БАТТСтеплоизоляция кровель0.038, 0.040
ФАСАД БАТТСтеплоизоляция фасадов0.037, 0.039
ФАСАД БАТТС Дтеплоизоляция фасадов0.036, 0.038
ФЛОР БАТТСтепловая изоляция полов по грунту, устройство акустических плавающих полов0.037, 0.038

Теплопроводность базальтовой ваты Knauf

Как известно, чем низшую теплопроводность имеет утеплитель, тем высший уровень теплоизоляции он обеспечивает.

Самый низкий коэффициент теплопроводности (0.035 Вт/м*K) имеет материал Knauf Insulation WM 640 GG/WM 660 GG, предназначенный для теплоизоляции оборудования и трубопроводов.

МатериалИспользованиеКоэффициент теплопроводности, Вт/(м*K) ?10
Knauf Insulation FKD-Sутепление стен снаружи0.036
Knauf Insulation FKDутепление стен снаружи0.039
Knauf Insulation LMF AluRтеплоизоляция наружных поверхностей, трубопроводов, воздуховодов,оборудования0.04
Knauf Insulation WM 640 GG/WM 660 GGтеплоизоляция оборудования и трубопроводов0.035
Knauf Insulation HTBтеплоизоляция оборудования и трубопроводов0,035-0,039
Knauf Insulation DDP-Kтеплоизоляция плоской кровли и перекрытий0.037

Каталоги продукции и инструкции по монтажу ведущих производителей

Изовер

Каталог ISOVER ВентФасад

Каталог ISOVER Классик Плюс

Каталог ISOVER Классик

Каталог продукции ISOVER для Сауны

Каталог продукции ISOVER СкатнаяКровля

Каталог продукции ISOVER ШтукатурныйФасад

Инструкция по монтажу фасадной теплоизоляции

Каталог продукции ISOVER на основе каменного волокна

Каталог продукции ISOVER на основе стекловолокна

Утепление скатных кровель и мансард

Кнауф

Инструкция по монтажу теплоизоляции «Вентилируемый фасад»

Инструкция по монтажу системы теплоизоляции «Скатная кровля»

Каталог профессиональных решений по тепловой, пожарной и звуковой защите зданий

Натуральный утеплитель для частного домостроения, каталог продукции

Новое поколение натуральных безопасных утеплителей от Кнауф

Ursa

URSA теплоизоляция из минерального волокна

Каталог утеплителей Урса – Скатные крыши

Каталог утеплителей Урса – Плоские крыши

Каталог утеплителей Урса – Навесные вентилируемые фасады

Каталог утеплителей Урса – Полы и перекрытия

Каталог утеплителей Урса – Перегородки

Каталог утеплителей Урса – Штукатурные фасады

Каталог утеплителей Урса – Трехслойные наружные стены из камней, блоков и жел

Каталог утеплителей Урса – Каркасные стены и стены из сэндвич-панелей

Каталог утеплителей Урса – Стены подвалов и фундаменты

Об авторе
admin

Adblock
detector

Теплопроводность и размеры базальтового утеплителя

Статьи


Эффективные и качественные теплоизоляционные материалы стали обязательным требованием для современного строительства. Один из них — базальтовый.

Какими характеристиками обладает?

Коэффициент теплопроводности — важный показатель при выборе подходящего материала. Чем ниже цифры, тем лучше основание выполняет свои функции. Размер базальтового утеплителя тоже бывает разным.

Но утеплители должны соответствовать и ряду других требований. Примеры: экологичность, способность изделия выделять опасные соединения или частицы пыли. Базальтовая вата по экологичности смогла стать одним из лидеров на рынке. Это природная разновидность состава с маленькой долей содержания синтетических смол.

Главное — выбирать проверенных производителей, которые предпочитают не рисковать собственной репутацией, применяя дешевые аналоги клеящих смол в производстве. Тогда покупатели не получают качественный базальтовый утеплитель размеры толщина тоже остаются неудовлетворительными.

Информация о теплопроводности

Вид и толщина влияют на то, что  теплопроводность базальтового утеплителя находится в пределах 0,30-0,48 Вт/ (м * К). Такие характеристики сохраняются за счет волокнистой структуры у материала. В качестве теплоизолятора работают маленькие воздушные прослойки, которые формируются между слоями.

Но надо учитывать, что показатель может отличаться. Чем выше цифры, тем толще нужно основание, в обратную сторону правило тоже работает. 10 см толщины у базальтовых уплотнителей сопоставимы с кирпичными кладками на 1,5 метра или ячеистым бетоном на 2 м. 30 сантиметров деревянного сруба обладают такими же показателями, как и указанный размер базальтового утеплителя.

О размерах и некоторых других нюансах выбора

Современные компании делают упор на холсты и маты. Хотя есть и другие разновидности. Размеры могут достигать 4750 на 1000 на 200 мм, но всегда можно оформить индивидуальный заказ, параметры в котором отличаются от стандартных размеров.

Плотность и вес выбирают не только в зависимости от необходимых технических параметров, но и с учетом места будущей установки.

Для разных поверхностей плотность тоже бывает разной:

  1. 25-30 кг/куб.
    м.
  2. 35.
  3. 40-50.
  4. 50-60.
  5. 70-80.
  6. 120-140.
  7. 150-200.

В большинстве случаев вес находится в пределах 37-45 килограмм. Толщина базальтового утеплителя для стен тоже подбирается индивидуально.

Об особенностях производства базальтовых утеплителей

Для базальтовых утеплителей также применяют общее видовое наименование «минеральной ваты». Стекло- и шлаковата тоже представители данной категории. Указанные материалы отличаются друг от друга применением исходного сырья.

Например, именно у базальтовой или каменной ваты основа — расплавленная горная порода габбро-базальта. В этот состав также включают специальные тонкие волокна, которые допускают расположение по горизонтали или вертикали, в хаотичном порядке.

Плавление при температурах до 1500 градусов позволяет получать волокна с минимальной толщиной. Нити с толщиной на 7 мкм получают в результате дальнейшего вытягивания на барабанах. Их длина составит до 50 мм.

БТВ — такое обозначение применяют в случае с самыми тонкими нитями.

Арболо-карбамидные смолы выбирают, когда требуется соединить волокна друг с другом. Изделия абсолютно безопасны для здоровья, поскольку у них в составе отсутствуют формальдегиды. На последнем этапе изделия формируются окончательно, их выпускают в виде цилиндров или матов, плит.

При выборе утеплителя надо ориентироваться на то, о теплоизоляции каких именно конструктивных элементов идет речь.

Армирующий слой или фольга, либо их отсутствие — дополнительное отличие между разными изделиями. От них может зависеть толщина базальтового утеплителя.

О сферах, способах применения базальтовых утеплителей

Это по-настоящему универсальный теплоизоляционный материал. Монтаж выполняется в равной степени сухим и влажным способом.

При первой технологии ширина базальтового утеплителя допускает применение для:

  1. Общественных зданий.
  2. Перекрытий в частных домах.
  3. Напольных покрытий.
  4. Пирогов для кровли.
  5. Навесных вентилируемых фасадов, и так далее.

Материалы подходят не только для внутренних, но и для наружных работ. По технологии мокрый фасад базальтовые утеплители тоже укладываются. В этом случае для внешней защиты поверхность оштукатуривают.

Утеплитель отличается повышенной огнестойкостью, поэтому он часто становится элементом пассивной пожарной защиты, отсекателем огня.

В жилом строительстве можно заметить такие способы применения материалов:

  1. Разработка сэндвич-панелей, применяемых в каркасном строительстве.
  2. Монтаж отопительного оборудования и других видов техники, осуществляющих обогрев.
  3. Обустройство каминов внутри дома.
  4. Навесные виды фасадов с вентиляцией и стены дома с наружной стороны.
  5. Работы по дымоходам, их утеплению и теплоизоляции.
  6. Утепление внутри или снаружи у наклонных и вертикальных поверхностей, которые не испытывают слишком большую нагрузку.
  7. Межэтажные перекрытия, основания пола.
  8. Кровельный пирог плоских крыш, стропильные конструкции.

Преимущества и некоторые другие нюансы

Это однокомпонентная разновидность материала. Есть варианты с добавлением примесей, но их на рынке не так много. При этом все можно использовать для стен снаружи и внутри в равной степени.

  • Звуко- и теплоизоляция точно не вызовут у покупателей никаких сомнений, будут только радовать. Благодаря волокнистой структуре это изделие отлично справляется со всеми своими функциями, даже вибрационные и звуковые волны превращаются в тепловую энергию.
  • При этом сохраняется небольшой вес вне зависимости от того, что указано в индивидуальном заказе. Между волокнами находится только воздух. С материалами не только просто работать, они не доставляют никаких хлопот во время транспортировки. Даже сип панели часто изготавливаются именно из базальтового утеплителя.
  • Согласно словам производителей и специалистов, срок службы утеплителей составляет до 30-40 лет при правильной технологии монтажа. Эти цифры на практике занижены, конструкции сохраняют свои первоначальные характеристики на более долгие сроки.
  • При этом даже агрессивные химические вещества не наносят вреда основанию, включая кислоты и растворители, органические масла и щелочь.
  • Монтаж в любом случае остается простым, насколько это возможно. Изделия выпускаются в идеальных размерах, чтобы можно было обшить любые поверхности.
  • О грибковых микроорганизмах и плесени тоже можно не волноваться.
  • Порадует и способность противостоять негативным воздействиям со стороны окружающей среды. Со временем у базальтовых утеплителей сохраняется не только внешний вид, но и все основные характеристики. Даже влажность и температурные колебания этого не меняют. Поэтому материал и подходит для обработки стен снаружи.

Стоит присмотреться к упаковке, приобретая материал. Производители часто применяют термоусадочные пленки, предотвращающие попадание влаги внутрь. если упаковка нарушена хотя бы частично, от такой покупки точно стоит отказаться. Ведь это увеличивает вероятность того, что часть жидкости уже находится внутри. Это негативно сказывается на теплоизоляционных характеристиках.

Для наружных конструкций и скатных кровель, каркасных стен и мансард, чердаков незаменимы самые легкие плиты. Самые плотные разновидности отлично подходят, чтобы организовать звукоизоляцию полов под стяжку.

При меньшей плотности теплоизолирующие характеристики более высокие. Значит, эффективность утеплителей тоже повышается. С другой стороны, плотные плиты — синоним теплопроводности. Выбор делает индивидуально каждый покупатель, в зависимости от конкретных условий эксплуатации.

Перед покупкой дополнительно рекомендуется узнать о нормативном показателе теплового сопротивления для покрытий, перекрытий и стен в конкретном регионе. Далее считают коэффициент сопротивления теплопередаче. Обычно об этом пишут сами производители. Ими же указываются размеры базальтового утеплителя в плитах для стен.

Некоторые советы по монтажу

В случае с жилыми помещениями не обойтись без теплотехнического расчета. Утепление жилых зданий предпочитают проводить снаружи, если отсутствуют дополнительные указания. При монтаже не стоит забывать о гидро- и пароизоляции. Материал может намокать, из-за чего первоначальные свойства теряются.

При изоляции снаружи необходимость в пароизоляционном слое отпадает. Гидроизоляцией обязательно закрывают ту сторону утеплителя, которая обращена на улицу. Лучше брать специальную мембрану.

Для крепления на вертикальные поверхности берут отдельную разновидность клей. Это разновидность цементно-полимерной смеси. К ней добавляют пластификаторы и другие виды добавок.

Заключение

Стоимость и эксплуатационные характеристики материала — не единственные параметры, которые рассчитывают при выборе. Обязательно смотреть на технические особенности самой конструкции, для которой используют теплоизоляцию. То же самое касается климата в регионе монтажа.


Eщё статьи

Все статьи

Эксплуатационные испытания и анализ теплоизоляционного эффекта базальтофибробетона

. 2022 21 ноября; 15 (22): 8236.

дои: 10.3390/ma15228236.

Сяо Чжан 1 2 , Шуо Чжан 1 2 , Сун Синь 1 2 3

Принадлежности

  • 1 Колледж техники безопасности и защиты окружающей среды Шаньдунского университета науки и технологий, Циндао 266590, Китай.
  • 2 Государственная ключевая лаборатория по предотвращению и ликвидации последствий горнорудных катастроф, основанная совместно провинцией Шаньдун и Министерством науки и технологий Шаньдунского университета науки и технологий, Циндао 266590, Китай.
  • 3 Колледж транспорта Шаньдунского университета науки и технологий, Циндао 266590, Китай.
  • PMID: 36431731
  • PMCID: PMC9696830
  • DOI: 10.3390/ma15228236

Бесплатная статья ЧВК

Сяо Чжан и др. Материалы (Базель). .

Бесплатная статья ЧВК

. 2022 21 ноября; 15 (22): 8236.

дои: 10. 3390/ma15228236.

Авторы

Сяо Чжан 1 2 , Шуо Чжан 1 2 , Сун Синь 1 2 3

Принадлежности

  • 1 Колледж техники безопасности и защиты окружающей среды Шаньдунского университета науки и технологий, Циндао 266590, Китай.
  • 2 Государственная ключевая лаборатория по предотвращению и контролю аварий на горных предприятиях, основанная совместно провинцией Шаньдун и Министерством науки и технологий Шаньдунского университета науки и технологий, Циндао 266590, Китай.
  • 3 Колледж транспорта Шаньдунского университета науки и технологий, Циндао 266590, Китай.
  • PMID: 36431731
  • PMCID: PMC9696830
  • DOI: 10.3390/ma15228236

Абстрактный

В данной статье рассматривается возможность применения неорганического теплоизоляционного бетона в высоких геотермальных выработках в подземных угольных шахтах. Этот инновационный материал создан на основе смеси керамзита, полых глазурованных шариков, цемента и природного песка, обогащенных базальтовыми волокнами различной степени. В качестве частичного заменителя в смеси использовали волокна в следующих объемах: 0 % (контрольный образец), 5 %, 10 %, 15 % и 20 %. Исследованы их прочность на сжатие, сопротивление проницаемости и теплопроводность. Высокое содержание волокон имеет тенденцию спутываться в комки во время смешивания, что приводит к значительному снижению механических свойств прочности на сжатие. Соответствующее количество волокна может улучшить непроницаемость, а высота проницаемости 5% фибробетона была снижена на 22,5%. Эксперименты по термическому поведению показали, что увеличение количества базальтовых волокон приводит к значительному снижению теплопроводности. Для бетона, содержащего 20 % фибры, теплопроводность эталонного образца (0 %) во влажном состоянии снизилась с 0,385 Вт/(м∙°C) до 0,09.8 Вт/(м∙°С). Наблюдалось небольшое увеличение теплопроводности при повышении температуры от 30°С до 60°С. Несмотря на пониженную механическую прочность, полученный бетон хорошо подходит для использования при утеплении подземных выработок, так как численное моделирование показало, что утепляющий бетон с оптимальным содержанием фибры (15 %) позволяет снизить среднюю температуру ветрового потока в условиях высокогорья. температура выработки длиной 100 м в шахте на 0,3 °С. Окончательный анализ затрат и выгод показал, что изоляционный бетон имеет больше экономических преимуществ и широкие перспективы развития при применении в проектах по охлаждению дорог с высокой геотермальной энергией.

Ключевые слова: СЭМ-изображения; базальтовое волокно; прочность на сжатие; анализ выгоды и затрат; высокая геотермальная дорога; непроницаемость; Численное моделирование; теплоизоляция.

Заявление о конфликте интересов

Авторы заявляют об отсутствии конфликта интересов.

Цифры

Рисунок 1

( a ) Керамзит; (…

Рисунок 1

( a ) Керамзит; ( b ) глазурованные полые бусины; ( с )…

Рисунок 1

( a ) Керамзит; ( b ) глазурованные полые бусины; ( c ) базальтовое волокно.

Рисунок 2

Процесс производства образцов.

Рисунок 2

Процесс производства образцов.

фигура 2

Процесс производства образцов.

Рисунок 3

Измерение теплопроводности…

Рисунок 3

Измерение теплопроводности образца. Подрисунок слева: Теплопроводность ДРПЛ-И…

Рисунок 3

Измерение теплопроводности образца. Слева: тестер теплопроводности ДРПЛ-И; правый подрисунок: тестовая система DRPL.

Рисунок 4

Кажущаяся плотность образцов с…

Рисунок 4

Кажущаяся плотность образцов с различным содержанием волокон.

Рисунок 4

Кажущаяся плотность образцов с разным содержанием волокон.

Рисунок 5

Влияние содержания клетчатки на…

Рисунок 5

Влияние содержания фибры на прочность теплоизоляционного бетона.

Рисунок 5

Влияние содержания фибры на прочность теплоизоляционного бетона.

Рисунок 6

Диаграмма повреждений 20% волокна…

Рисунок 6

Диаграмма повреждений образца 20% фибробетона.

Рисунок 6

Диаграмма повреждений образца 20% фибробетона.

Рисунок 7

Влияние содержания клетчатки на…

Рисунок 7

Влияние содержания фибры на непроницаемость теплоизоляционного бетона.

Рисунок 7

Влияние содержания фибры на водонепроницаемость теплоизоляционного бетона.

Рисунок 8

SEM изображение эталона…

Рисунок 8

СЭМ-изображение эталонного образца.

Рисунок 8

СЭМ-изображение эталонного образца.

Рисунок 9

СЭМ-изображение теплоизоляционного бетона…

Рисунок 9

СЭМ-изображение теплоизоляционного бетона с 5% волокна.

Рисунок 9

СЭМ-изображение теплоизоляционного бетона с 5% фибры.

Рисунок 10

СЭМ-изображение теплоизоляционного бетона…

Рисунок 10

СЭМ-изображение теплоизоляционного бетона с 20% волокна.

Рисунок 10

СЭМ-изображение теплоизоляционного бетона с 20% волокна.

Рисунок 11

Влияние содержания клетчатки на…

Рисунок 11

Влияние содержания фибры на теплопроводность изоляционного бетона.

Рисунок 11

Влияние содержания фибры на теплопроводность изоляционного бетона.

Рисунок 12

Влияние температуры на…

Рисунок 12

Влияние температуры на теплопроводность изоляционного бетона.

Рисунок 12

Влияние температуры на теплопроводность изоляционного бетона.

Рисунок 13

Трехмерная геометрическая модель: ( а…

Рисунок 13

Трехмерная геометрическая модель: ( a ) стереовид; ( b ) поперечное сечение.

Рисунок 13

Трехмерная геометрическая модель: ( a ) стереовид; ( b ) поперечное сечение.

Рисунок 14

Продольный разрез температуры ветрового потока…

Рисунок 14

Продольный разрез поля температуры ветрового потока: ( a ) Поле температуры ветрового потока…

Рисунок 14

Продольный разрез поля температуры ветрового потока: ( a ) Поле температуры ветрового потока проезжей части под нормальной бетонной опорой; ( b ) Поле температуры ветрового потока проезжей части под утепленной бетонной опорой.

Рисунок 15

Поле температуры окружающих горных пород: ( a…

Рисунок 15

Температурное поле окружающих пород: ( a ) Температурное поле окружающих пород…

Рисунок 15

Поле температуры окружающей породы: ( а ) Температурное поле окружающих горных пород проезжей части под плоской бетонной опорой; ( b ) Температурное поле окружающей породы проезжей части под утепленной бетонной опорой.

Рисунок 16

Схема теплопередачи.

Рисунок 16

Схема теплопередачи.

Рисунок 16

Схема теплопередачи.

Рисунок 17

Распределение температуры по стене…

Рисунок 17

Распределение температуры на стене проезжей части: ( a ) Распределение температуры…

Рисунок 17

Распределение температуры на стене проезжей части: ( a ) Распределение температуры на стене проезжей части под плоской бетонной опорой; ( b ) Распределение температуры на стене проезжей части под утепленной бетонной опорой.

Рисунок 18

Распределение температуры стены…

Рисунок 18

Распределение температуры поверхности стенки окружающей породы: ( a )…

Рисунок 18

Распределение температуры поверхности стены окружающей породы: ( a ) Распределение температуры поверхности стены окружающей породы в проезжей части под простой бетонной опорой; ( b ) Распределение температуры на поверхности стены окружающей породы в проезжей части под утепленной бетонной опорой.

Рисунок 19

Распределение коэффициентов конвективной теплоотдачи между…

Рисунок 19

Распределение коэффициентов конвективной теплоотдачи между стеной проезжей части и ветром…

Рисунок 19

Распределение коэффициентов конвективной теплоотдачи между стенкой проезжей части и ветровым потоком: ( а ) Распределение коэффициентов конвективной теплопередачи дорожного полотна под простой бетонной опорой; ( b ) Распределение коэффициентов конвективной теплопередачи дорожного полотна под утепленной бетонной опорой.

Рисунок 20

Поле температуры ветрового потока на…

Рисунок 20

Поле температуры ветрового потока на выезде с проезжей части: ( a ) Ветер…

Рисунок 20

Поле температуры ветрового потока на выходе из проезжей части: ( a ) Поле температуры ветрового потока на выходе из проезжей части под плоской бетонной опорой; ( b ) Поле температуры ветрового потока на выходе из проезжей части под утепленной бетонной опорой.

См. это изображение и информацию об авторских правах в PMC

Похожие статьи

  • Реактивный порошковый бетон, содержащий базальтовые волокна: прочность, истираемость и пористость.

    Гжещик С., Матушек-Чмуровска А., Веймелкова Е., Черный Р. Гжещик С. и соавт. Материалы (Базель). 2020 1 июля; 13 (13): 2948. дои: 10.3390/ma13132948. Материалы (Базель). 2020. PMID: 32630228 Бесплатная статья ЧВК.

  • Эксплуатационные характеристики теплоизоляционных материалов, легированных базальтовыми волокнами, для применения в шахтах.

    Цзян И, Синь С, Ли Х, Чжан Л, Хоу С, Чжан З, Го Дж. Цзян И и др. Полимеры (Базель). 2020 10 сентября; 12 (9): 2057. doi: 10. 3390/polym12092057. Полимеры (Базель). 2020. PMID: 32927654 Бесплатная статья ЧВК.

  • Прочность, микроструктура и теплопроводность изоляционных стеновых панелей, изготовленных из волокна рисовой шелухи и заполнителей из переработанного бетона.

    Ю Х, Сун Л. Ю Х и др. ПЛОС Один. 19 сентября 2018 г .; 13 (9): e0203527. doi: 10.1371/journal.pone.0203527. Электронная коллекция 2018. ПЛОС Один. 2018. PMID: 30231053 Бесплатная статья ЧВК.

  • Исследование механических и физических свойств водопроницаемого бетона, армированного базальтовым волокном.

    Ву Дж., Панг К., Лв. Ю., Чжан Дж., Гао С. Ву Дж и др. Материалы (Базель). 2022 сен 20;15(19)):6527. дои: 10.3390/ma15196527. Материалы (Базель). 2022. PMID: 36233869 Бесплатная статья ЧВК.

  • Влияние многокомпонентности на трещиностойкость высокопрочного бетона на полу станции метрополитена.

    Сюй С., Гао П., Хуан Л., Чен Л., Цен Ф., Чжао З., Тянь Ю. Сюй С. и др. Материалы (Базель). 2022 25 августа; 15 (17): 5868. дои: 10.3390/ma15175868. Материалы (Базель). 2022. PMID: 36079249 Бесплатная статья ЧВК.

Посмотреть все похожие статьи

Рекомендации

    1. Ван Т., Ван К.В. Текущее состояние исследований в области угольной геологии в Китае. Акта Геол. Грех. 2016;90:1284–1297.
    1. Ху Ю. П., Ван М.Н. Полевые испытания тепловой среды и температурной адаптации рабочих в высотном геотермальном туннеле. Строить. Окружающая среда. 2019;160:160174.
    1. Уехио К.К., Морано Л.Х. Профессиональное воздействие жары на муниципальных служащих. Междунар. Арка Занять. Окружающая среда. Здоровье. 2018;91:705–715. doi: 10.1007/s00420-018-1318-3. – DOI – пабмед
    1. Лю С.Х., Фу Дж.Ю. Численное моделирование влияния температуры на механическое поведение железнодорожного тоннеля в Тибете. KSCE J. Civ. англ. 2020;24:3875–3883. doi: 10.1007/s12205-020-1893-1. – DOI
    1. Ли Дж.Л., Ю С.Л. Исследование передвижной холодильной установки высокотемпературного забоя подземной шахты. Энергии. 2022;15:4035. doi: 10.3390/en15114035. – DOI

Грантовая поддержка

Эта работа финансировалась Национальным фондом естественных наук Китая, номер гранта 51774197.

Rock Wool

Что такое CelluBOR Rockwool?

CelluBOR Rockwool производится путем плавления минералов из вулканических пород при очень высоких температурах и превращения их в волокна. Каменная вата обеспечивает тепло-, звуко- и противопожарную изоляцию в зданиях, где она применяется. Минеральную вату получают из вулканических пород, встречающихся в природе, которые обладают превосходными свойствами по сравнению с другими камнями с точки зрения минералов и химических свойств. Это наиболее предпочтительный материал из-за его качества, долговечности и широкого спектра областей применения в изоляции.

Как производится каменная вата?

Сегодня каменная вата образуется в результате плавления базальтового камня, представляющего собой вулканическую породу, при температуре 1350°C-1400°C и превращения его в волокно. Базальт, который превращается в волокно, может выпускаться в виде матрацев, плит, труб методом прессования различных размеров. Каменная вата обеспечивает пожаробезопасность наряду с теплоизоляцией, звукоизоляцией и звукоизоляцией в зданиях, где она применяется.

Очень низкий показатель теплопроводности каменной ваты делает ее хорошим теплоизоляционным материалом. Величина теплопроводности варьируется в пределах примерно 0,035 – 0,040 Вт/мК. Температура использования составляет от -50 до +650°C.

В дополнение ко всем этим свойствам каменная вата обеспечивает комфорт с точки зрения звукоизоляции и теплоизоляции. Повышает комфорт проживания или работы в здании, поглощая звуки, исходящие снаружи или с других этажей.

Каковы его основные характеристики и преимущества?

Минеральная вата, сырьем для которой является природный камень, обладает естественной прочностью и долговечностью. Каменная вата сохраняет свою форму и твердость благодаря своей физической структуре; На него не влияют изменения температуры и влажности, и он показывает стабильность размеров. Его эксплуатационные характеристики не меняются в течение многих лет, и он выполняет изоляционную функцию. Каменная вата является успешным продуктом с точки зрения тепловых характеристик. Тепловые свойства, которые удерживают тепло снаружи в жарком климате и внутри в холодных регионах, обеспечиваются небольшими воздушными мешочками, запертыми в физической структуре минеральной ваты.

Каковы области использования?

Теплоизоляция: Поскольку заявленное значение теплопроводности каменной ваты (10 0С) ниже 0,035 ≤ λ ≤ 0,040 Вт/мК, она обеспечивает теплоизоляцию до 90%.

Противопожарная изоляция: Минеральная вата, температура использования от -50 до +750°C. Согласно TS EN 13501-1, он относится к классу A1, то есть к негорючим материалам. Звукоизоляция: каменная вата, которая является одним из изоляционных материалов, лучше всего поглощающих звук, используется в основном в акустических устройствах. Обеспечивает звукоизоляцию от 40 до 90% в соответствии со стандартами EN ISO.

Влагоизоляция: Поскольку каменная вата не подвергается коррозии и ржавчине, она долговечна в течение многих лет, не гниет, не плесневеет и не портится. Сопротивление диффузии водяного пара составляет µ=1, что совпадает со значением сопротивления воздуха.

Каковы размеры минеральной ваты?

Стандартные размеры минеральной ваты: 1200 мм x 600 мм.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *