Защита от напряжения: Защита от перепадов напряжения

Содержание

Защита от скачков напряжения: как выбрать и установить

Оглавление статьи:
Защита от скачков напряжения: реле-прерыватель
Устройство защиты от перепадов напряжения: стабилизатор
Как подключить устройства от скачков напряжения

Ни для кого не секрет, что случающиеся время от времени перепады напряжения в нашей энергетической сети способны в считанные секунды вывести из строя практически всю бытовую технику. Тонкая электроника не рассчитана на работу с высоким или низким напряжением, и если с последним она еще хоть как-то готова мириться, то скачки напряжения в большую сторону убивают ее в прямом смысле слова. Как же бороться с перепадами напряжения и как уберечь дорогостоящую домашнюю технику от их пагубного влияния? Именно на эти вопросы мы и постараемся найти ответ на этой странице сайта stroisovety.org.

Приборов, способных обеспечить качественную защиту домашних потребителей от перепадов напряжения, не так уж и много – по сути, их всего два. Это реле-прерыватель и стабилизатор напряжения.

Так или иначе, а с возложенными на них обязанностями они однозначно справляются. Но обо всем по порядку, и для начала рассмотрим вопрос, что представляет собой реле защиты от скачков напряжения.

Защита от скачков напряжения фото

Защита от скачков напряжения: реле-прерыватель

Принцип работы данного устройства достаточно простой – при повышении или снижении напряжения в бытовой сети электроэнергии срабатывает реле и полностью обесточивает проводку. После вынужденного отключения электроника реле-прерывателя каждые несколько секунд проверят сеть на стабильность напряжения и, если оно в допуске, прибор автоматически возобновляет подачу электричества.

Такой принцип работы характеризует и основной недостаток этого прибора. Как правило, перепады напряжения в нашей сети могут происходить довольно длительное время – как результат, потребитель либо долгое время остается без источника энергии, либо работает с частыми перерывами, что тоже не очень хорошо отражается на его работоспособности.

Такое устройство защиты от перепадов напряжения можно назвать грубым решением данной проблемы – хотя вы и спасаете, к примеру, тот же котел отопления от сиюминутной «смерти», вы значительно сокращаете его срок эксплуатации.

Реле защиты от скачков напряжения фото

В использовании реле-прерыватель довольно прост – на лицевой панели он имеет всего две кнопки управления, с помощью которых регулируется верхний и нижний предел допустимого напряжения, а также небольшой экран для вывода информации о состоянии электрической сети. Процесс настройки данного прибора тоже не является сложным – длительное нажатие кнопок позволяет прибору переключиться в режим настройки, а последующее короткое нажатие на них обеспечивает установку пределов напряжения.

Современная промышленность производит два таких типа устройств для защиты от скачков напряжения – одно предназначено для местного использования и включается в розетку, а второе применяется для глобальной защиты всех домашних потребителей электроэнергии и устанавливается непосредственно в электрический щиток. Преимущества последнего переоценить сложно, ровно, как и его недостатки. В случае нестабильной работы энергетической сети без источника питания остается сразу вся квартира или дом. В этом отношении намного привлекательнее выглядит работа стабилизатора напряжения.

Устройство защиты от перепадов напряжения

Устройство защиты от перепадов напряжения: стабилизатор

Если говорить о принципе работы этого устройства, то такой сложный и напичканный электроникой прибор, как автоматический стабилизатор напряжения, выгодно отличается от вышеописанной защиты. Он не отключает подачу энергии, а так сказать, выравнивает напряжение, превращая его из очень высокого или низкого напряжения в пригодный для работы домашних электроприборов ток.

Настенный стабилизатор напряжения фото

Современная промышленность производит несколько типов стабилизаторов напряжения – основное их различие заключается в мощности. Одни (простые стабилизаторы напряжения) позволяют использовать их для одного или нескольких потребителей, а другие (более сложные) предназначены для защиты всех квартирных или домашних потребителей электроэнергии.

Автоматический стабилизатор напряжения

При выборе стабилизатора для дома или квартиры следует обратить внимание на следующие параметры работы:

  • Количество фаз – применяется при больших нагрузках в домах с огромным количеством потребителей. С его помощью производится подключение электроприборов к двум разным фазам (к примеру, освещение на одну фазу, а розетки на другую).
  • Выходная мощность – здесь все зависит от нагрузки на электрическую цепь.
  • Диапазон входного напряжения – чем больше перепады, тем соответственно должен быть шире входной диапазон рабочего напряжения.
  • Точность стабилизации – стабильное напряжение всегда благоприятно сказывается на работе большинства электрических приборов.
  • Быстродействие – как правило, практически у всех современных стабилизаторов напряжения эта характеристика на высоте.
  • Масса и габариты – тут уж нужно исходить из места установки стабилизатора. Если смотреть на этот показатель с технической стороны, то, как правило, большие и массивные стабилизаторы оказываются намного лучше.

Устройство защиты от скачков напряжения фото

Как подключить устройства от скачков напряжения

И реле-прерыватель, и стабилизатор любой мощности подключается к электрической сети практически одинаково. Для подсоединения кабелей они оборудованы специальными клеммами. В зависимости от модели, они могут иметь либо четыре, либо шесть клемм – две или три из них предназначены для входного напряжения и столько же для выходного стабилизированного электрического тока.

Подключение устройств от скачков напряжения

При подключении этих устройств защиты от перепадов напряжения следует понимать, что они должны быть включены в домашнюю или квартирную цепь сразу же после входного автоматического выключателя и защищены дифференцированным реле (УЗО).

Как и все электрические приборы, большинство мощных стабилизаторов напряжения предусматривают свое подключение к системе защитного заземления, посредством которого эти приборы сбрасывают излишки напряжения без всевозможных серьезных последствий. Вообще роль защитного заземления в борьбе с перепадами напряжения переоценить сложно – так уж получилось, что эти два устройства связаны с друг с другом и выполняют практически идентичную функцию.

Как подключить стабилизатор напряжения фото

В общем, защита от скачков напряжения на сегодняшний день является проблемой, причем, очень актуальной, и решать ее необходимо. Установить защиту лучше на стадии ремонта – в этом случае без особых повреждений и всяких переделок электрической проводки можно качественно противостоять практически всем перепадам электрической сети.

Автор статьи Дмитрий Ворохов

Как защититься от перепадов напряжения

Напряжение в электросетях редко составляет стабильное значение в 220 Вольт, чаще всего оно гуляет с допустимым значением в плюс или минус 10%. Бытовая и компьютерная техника справляется со значением 200 или 240 Вольт, но в случае возникновения, пусть даже и кратковременного скачка – техника с большой долей вероятности выйдет из строя.

Оглавление

  1. Какие основные средства доступны для защиты техники от перепадов напряжения
  2. Защитное реле
  3. Понижающий и повышающий трансформатор
  4. Стабилизатор напряжения
  5. Устройство защиты многофункциональное
  6. Автоматические выключатели
  7. Сетевые фильтры
  8. Источники бесперебойного питания

Что представляют из себя перепады напряжения и чем они опасны

В первую очередь перепады напряжения возникают в типовых многоквартирных домах. Питание подводится через три фазы и с помощью распределительного щитка ток попадает в каждую квартиру через одну рабочую фазу и нулевой провод. Важно отметить, что «ноль» испытывает наибольшую нагрузку и что плохо – он у всех общий. Соответственно, когда жильцы включают много бытовых приборов одновременно – электросеть испытывает перегрузку. Частое явление – это перегорание нулевого провода у основания в щитке. Более того, в этот момент соседние квартиры становятся подключенными по фазе и напряжение способно подскочить до отметки в 380 Вольт, что неминуемо приведет к выходу из строя тех приборов, которые не имею достаточной защиты.

 

Причин, способных привести к такой ситуации много, но что характерно – они имеют общий источник. Подстанции, которые распределяют электроэнергию, зачастую давно морально и технически устарели, причем хоть оборудование и поддерживают в рабочем состоянии, но часто вопрос о его смене не стоял на протяжении десятилетий. Неизменно растет количестве бытовых электроприборов, и соответственно, возрастает нагрузка на подстанции. Учитывая тот факт, что и в момент их сооружения запас рассчитывался на норму 4,5 кВт – энергопотребление на то время и сейчас составляет существенную разницу.

Состояние электропроводки тоже оставляет желать лучшего. Кроме того, известны ситуация с горе-ремонтниками, способными подключить к общей системе работающую электросварку, чем значительно повысят нагрузку на электросеть, отчего у других людей возникнет ситуация с перегрузкой на щитке. Хорошо, если в этом случае установлены защитные средства, но если их нет и была надежда на извечное «авось» – то ситуация с заменой сгоревшей бытовой техники и заметной брешью в бюджете крайне высока.

К счастью, на рынке представлено большое количество самого разнообразного оборудования, призванного по возможности уберечь технику от перепадов напряжения.

Какие основные средства доступны для защиты техники от перепадов напряжения

Неподготовленному человеку сложно разобраться в типах устройств и их назначениях, поэтому перед покупкой важно изучить теорию, чтобы иметь представление о том, что же именно необходимо приобрести. Современные устройства делятся на несколько типов:

  • защитные реле,
  • понижающие трансформаторы,
  • повышающие трансформаторы,
  • стабилизаторы напряжения,
  • многофункциональные устройства защиты,
  • автоматические выключатели,
  • сетевые фильтры.

Стоит подробнее рассмотреть назначение и возможности каждого устройства, чтобы хорошо представлять себе общую картину обеспечения защиты от перепадов напряжения.  

Защитное реле

Представляет собой автоматическое устройство, срабатывающее при воздействии на него перепадов напряжения в сети. Оно отключает электрическую цепь от сети в том случае, когда управляющий микроконтроллер регистрирует повышение показателей напряжения по сравнению с установленными нормированными. Нагрузка автоматически подключается обратно в цепь, когда показатели напряжения приходят в норму.

Ее значение пользователь устанавливает самостоятельно, с помощью системы управления и в дальнейшем контроллер ориентируется именно на это значение. Поскольку реле не способно выдерживать нагрузки свыше 8 кВт, в то время как показатели для квартир порой достигают и 25 кВт, защитное реле используют в паре с автоматическим выключателем, который и служит основной защитой.

Хорошим примером такого устройства является реле VP-16AN от производителя DigiTop, которое по сути, представляет собой индивидуальный переходник, способный предохранить напрямую подключенный к нему электроприбор от короткого замыкания и перегрузки. Стоимость такого устройства находится на уровне $12

Понижающий и повышающий трансформатор

Основное назначение трансформаторов, представляющих собой статические преобразователи электрической энергии, состоит в изменении напряжения переменного тока. Данные устройства работают при условии переменного напряжения и имеют несколько индуктивных обмоток, связанных друг с другом. В зависимости от соотношения напряжения тока трансформаторы делят на повышающие и понижающие:

  • В повышающем первичная обмотка характеризуется низким напряжением и меньшим количеством витков, а вторичная наоборот, высоким. Как соответствует из названия, данный прибор повышает напряжение и применяется для передачи электроэнергии на значительные расстояния.
  • В понижающем наоборот, первичная обмотка демонстрирует высокое напряжение и большее количество витков, а вторичная низкое. Трансформаторы такого типа служат для распределения поступающей электроэнергии потребителям.

Что характерно, трансформатор любого типа используют как понижающий, так и повышающий, когда их запускают, подав напряжение в обратную сторону. В таком случае понижающий станет повышающим, и наоборот.

По своей конструкции трансформаторы делятся на два типа:

  • масляные,
  • сухие.

Первая разновидность располагает баком, в котором находится трансформаторное масло. Оно служит хорошим изолятором и одновременно охлаждающим веществом для магнитопровода с обмотками. Как правило, именно такие типы чаще используют на подстанциях.

Сухие трансформаторы имеют пассивное воздушное охлаждение и устанавливаются в жилых помещениях и на промышленных объектах. Охлаждение воздухом позволяет избежать проблемы, связанной с нарушением герметичности масляного бака, но этот способ менее эффективен.

Если говорить грубо, то понижающий трансформатор необходим для того, чтобы в дом приходило 220 Вольт, с учетом погрешности. Недопустимо подавать потребителю сразу высокое напряжение от подстанции, и поэтому для этих целей и служит трансформатор.

Понижающие трансформаторы для бытовых целей не отличаются высокой ценой. Стоимость модели ЯТП-025, способной понижать входное значение с 220 до 12 вольт составляет $30, модель, способная понизить входящие 380 до 220 обойдется дороже, в среднем от $130

Стабилизатор напряжения

Это устройство предназначено поддерживать определенный уровень напряжения на выходе. Работа стабилизатора позволяет защитить оборудование от нестабильной подачи электроэнергии и помех, а также сбоев в сети.

Подобное оборудование применяют, когда есть смысл защитить бытовые электроприборы и компьютерную технику от перепадов и скачков напряжения. В случае их возникновения стабилизатор отключит внутреннюю сеть и подключенные к ней приборы до тех пор, пока значение напряжения не придет в норму.

Применение стабилизаторов позволяет получить определенные преимущества:

  • защита от скачков и перепадов напряжения,
  • устранение электромагнитных помех,
  • защита от короткого замыкания,
  • защита телефонных линий от разрывов и шумов на линии,
  • более низкая цена по сравнению с другим защитным оборудованием.

Современные стабилизаторы переменного напряжения, которые применяются в быту, условно делятся на следующие разновидности:

  • механические с сервоприводом,
  • электронные,
  • релейные,
  • гибридные,
  • компенсационные,

Модели производят в двух вариантах исполнения: однофазные и трехфазные, мощность самая разнообразная – от сотни ватт до нескольких мегаватт. Важной отличительной чертой качественного стабилизатора станет его быстродействие на изменение уровня напряжения. Как правило, реагирование происходит в течении нескольких милисекунд. Второй немаловажный фактор работы стабилизатора – это его точность выходного напряжение. Значение не должно колебаться в пределах более, чем 10% от номинального значения.

Оптимальны в выборе модели стабилизаторов, способные выдерживать десятикратные перегрузки, и для которых нет нужды рассчитывать запас мощности.

Устройство защиты многофункциональное

В первую очередь это устройство предназначено для отключения оборудования в том случае, когда сетевое напряжение вышло за допустимые значения минимального показателя в 160 В или максимального в 280. Устройство состоит из объединенных между собой магнитного реле и контроля напряжения. К ним подключен и защитный варистор, который при возникновении высоковольтных импульсов в сети шунтирует их до установленного безопасного значения. Особенностью этого устройства является режим работы и действия, которые производит прибор:

  • В случае повышения напряжения и выхода за допустимые пределы происходит отключение от питания. Одновременно с этим запускается таймер, который отсчитывает время повторного включения. В том случае, если во время ожидания произойдет еще один скачок – то таймер обнуляется и отсчет начинается заново.
  • В случае наличия пониженного питания устройство защиты начинает отсчет задержки отключения. В том случае, если по истечению срока времени уровень напряжения не вернется в норму – произойдет отключение, если же снижение было кратковременным – то устройство продолжит контролировать уровень нагрузки.

Подобное решение позволяет обеспечивать хорошую защиту от воздействия импульсов, а также контролировать качество напряжения, которое подается на подключенное оборудование.

Важно помнить о том, что УЗМ не способно заменить собой другие средства защиты, поэтому его чаще используют в качестве комплексного решения проблемы.

Автоматические выключатели

Это одни из самых распространенных типов решений для обеспечения защиты квартиры или офисного помещения от перепадов напряжения. Выключатель, который еще называют «автоматом», контролирует силу тока в цепи, не допуская при этом появления сверхтоков, сила которых превышает допустимое для проводки значение. Как правило срабатывают при подключении превышающей норму нагрузки на сеть, либо же при коротком замыкании.

Устройство срабатывает благодаря используемому в его конструкции расцепителей, которые бывают двух видов:

  • тепловые,
  • электромагнитные.

Тепловые состоят из биметаллической пластины, четко реагирующая на изменение протекающего по ней тока. При излишнем нагреве пластина освобождает специальную пружину, которая и отключает автомат.

Электромагнитная имеет такой же принцип действия, с той лишь разницей, что используется катушка с магнитным сердечником, который при превышении нагрузки освобождает пружину.

Оптимальнее всего использовать автоматы в комбинации с устройством защитного отключения, контролирующие при этом и ток утечки. УЗО так же находится под защитой автомата и всегда устанавливается после защитного выключателя. Подобный сочетание носит название дифференциального автомата. Выгода от установки устройства состоит в более простой схеме монтажа и экономии места в распределительном щитке.

Сетевые фильтры

Эти устройства представляет собой удлинитель с большим количеством розеток и кнопкой включения. По сути, чаще используется как удлинитель и место для подключения персонального компьютера. Благодаря наличию варистора сетевой фильтр способен обеспечить защиту включенного в него электрооборудования и подавляет высокочастотные помехи.

В случае появления высокочастотного импульса сопротивление варистора падает, благодаря чему излишки электрического импульса преобразуются в тепловые. Подобное решение позволит обеспечить дополнительную защиту для оборудования, но не стоит слишком полагаться на сетевой фильтр. Его приобретение целесообразно в первую очередь как удлинителя, для обеспечение безопасности оборудования необходимо обратить внимание на полноценные устройства защиты.

Источники бесперебойного питания

Подобные приборы используются в первую очередь для тех устройств, внезапное отключения питания на которых, способно нанести вред выполняемым операциям, то есть, к компьютерам. Это оборудование призвано обеспечить бесперебойное питание, в то время как благодаря встроенному аккумулятору они способны обеспечить работы компьютера от одной минуту до нескольких часов.

В первую очередь их приобретают для того, чтобы «выиграть время» при внезапном отключении электроэнергии, что позволит успеть сохранить все необходимые данные и выполняемые операции на компьютере. Внутреннее устройство бесперебойников аналогично стабилизаторам, разница видна лишь в наличии свинцового аккумулятора.   

Тем не менее, специалисты рекомендуют покупку ИБП в случае необходимости сохранения данных, во всем остальном они уступают стабилизаторам. Главным недостатком большинства ИПБ является включение при пониженном напряжении и недостаточная чувствительность при повышенном. К тому же, устройство нельзя оставлять без присмотра, поэтому при прекращении работы за компьютером его тоже необходимо отключать. При этом цена на стабилизатор и бесперебойник одинаковой мощности имеет разницу в несколько раз в пользу первого – поэтому выбор очевиден. Для сохранения информации и безопасного отключения компьютера хватит и бюджетных моделей ценой от $45, время работы которых в среднем оценивается в 15 минут – что вполне достаточно для корректного завершения работы.

Защита техники от скачков напряжения

Скачки напряжения и другие нарушения нормальной работы однофазных и трехфазных электрических сетей приводят к выходу из строя дорогостоящего промышленного оборудования, угрожают здоровью и даже жизни персонала предприятий и рядовых жителей. Для предотвращения опасных ситуаций применяют устройства защиты электросети, которые значительно повышают безопасность эксплуатации техники и сохраняют ее рабочие характеристики.

Основные причины возникновения перепадов напряжения в сети

Скачки параметров электросети различаются величиной отклонения от номинального значения и продолжительностью, что зависит от причины их возникновения. Самые распространенные:

  • Высокая нагрузка на электросеть, включение слишком мощного потребителя электроэнергии, при котором происходит резкое проседание сетевого тока. При его выключении происходит обратная картина – наблюдается резкий скачок параметров.
  • Обрыв нулевого провода, выравнивающего параметры напряжения. При его обрыве одни потребители получают электропитание с заниженными характеристиками, другие – с завышенными, что может повредить технику, не оснащенную устройствами защиты от скачков напряжения.
  • Применение некачественных комплектующих при прокладке электрической проводки, ее сильный износ, нарушение правил монтажа (перепутывание проводов ноля и фазы), акты умышленного вандализма.
  • Удар молнии. Это очень опасный фактор, способный вызвать внезапное перенапряжение до тысяч вольт. Реакция защитных устройств может запоздать.

Вероятные последствия нестабильности параметров электрической сети

Производители электрооборудования в технической документации указывают допустимый интервал напряжений, в котором оно сохраняет рабочие характеристики. Но длительная работа техники при параметрах сети, близких к верхней и нижней границам допустимого интервала, приводит к ее быстрому износу и резкому сокращению эксплуатационного периода.

Резкие скачки параметров сети приводят к серьезным поломкам или полному выходу оборудования из строя. В этом случае договоры о гарантийном обслуживании не действуют. Владелец техники может выбрать один из двух вариантов: нести все расходы по ремонту или замене электрооборудования самостоятельно или предъявить претензии поставщику электроэнергии, доказывать вину которого очень сложно и долго. Более рациональный способ, как защитить сеть или отдельную технику от скачков напряжения, – установка устройств защиты.

Ассортимент защитных устройств

Рациональный способ защиты оборудования и электроприборов от скачков напряжения в сети выбирают в зависимости от характера проблемы и причины ее возникновения.

Сетевые фильтры

Производители предлагают несколько типов сетевых фильтров для защиты питания от скачков напряжения:

  • Магистральные. Защищают от индустриальных импульсных помех значительной мощности. Эффективны для защиты техники от грозовых разрядов.
  • Заземления. Разделяют линии заземления и защищают определенную группу электронного оборудования.
  • Трансформаторные. Защищают от индустриальных помех. Обеспечивают гальваническую развязку входной цепи питания и выходной цепи нагрузки.
  • Помехоподавляющие. Защищают электронное оборудование от атмосферных и индустриальных помех, которые распространяются по электросети.

Реле защиты

К устройствам защиты от перепадов параметров сети относится реле контроля напряжения РКН, которое состоит из двух блоков – измерительного и исполнительного. Первый блок непрерывно контролирует параметры сети и генерирует сигнал при выходе значений за установленный интервал. Второй блок отключает электропотребителей. При восстановлении нормальных параметров электросети измерительный блок РКН генерирует команду на включение электрооборудования с установленной временной выдержкой, которая длится от нескольких секунд до 15 минут. Но такие приборы не могут защитить потребителей от импульсных скачков сетевых параметров и обеспечить их стабильность.

Стабилизаторы напряжения

Эти защитные устройства позволяют обезопасить электроприборы и технику от скачков напряжения путем поддержания выходных параметров тока на требуемом уровне. Производители предлагают стабилизаторы, адаптированные к применению в быту или определенной отрасли н/х. Тип стабилизатора выбирают в зависимости от типа сети (однофазная или трехфазная), мощности подключаемого электрооборудования.

По принципу действия наиболее популярны электромеханические и электронные стабилизаторы. Приборы первого типа рекомендуются для применения в промышленных сетях благодаря устойчивости к помехам. Они могут использоваться для высокочувствительного оборудования – медицинского, дорогого промышленного, банковского, аудио- и видеотехники. Электронные стабилизаторы чаще имеют бытовое применение.

Источники бесперебойного питания

Эти приборы решают проблему некачественного централизованного электропитания или полного его исчезновения. В аварийном режиме работы ИБП для питания защищаемого оборудования используют энергию аккумуляторных батарей. Устройства эффективны при слишком высоком или низком напряжении, пульсациях амплитуды, колебаниях частоты, переходных процессах.

Какую систему защиты электрооборудования от перенапряжения и других проблем в сети лучше выбрать

Подходящее защитное устройство выбирают в соответствии с проблемой, которую необходимо решить:

  • Сетевой фильтр. Устраняет сетевые помехи и перенапряжения. Неэффективен при скачках напряжения, прекращении электропитания.
  • РКН. Защитное реле эффективно при выходе сетевых параметров за установленные пределы. Неспособно компенсировать скачки внутри установленного интервала, устранить сетевые помехи. Не выполняет защитные функции при исчезновении электропитания.
  • Стабилизатор. Помогает при сетевых помехах, скачках внутри установленных пределов и за пределами. Не работает при обрыве электропитания.
  • ИБП. Эффективен практически при всех проблемах электросети – скачках параметров тока, помехах, обрыве питания. Минус – период работы в аварийном режиме ограничен ресурсом аккумуляторной батареи.

Защита от скачков напряжения и источники бесперебойного питания

Мы предлагаем высококачественную продукцию от ведущих производителей  России и Германии, Украины,  которая полностью отвечает всем европейским и Российским стандартам качества, надежности и безопасности эксплуатации в жилых, коммерческих и многоцелевых помещениях. Соответственно на всю нашу продукцию действует полноценная гарантия заводов изготовителей.

 

Наиболее важными преимуществами наших защит от скачков напряжения и источников бесперебойного питания являются:

Простота в монтаже и управлении;

Долговечность и износостойкость подверженных динамическим и термическим нагрузкам деталей;

Доступная цена.

Наличие на складе

 

Вы всегда можете оформить заказ на сайте нажав на кнопку “в корзину” или позвонив нам по телефону, а кроме этого получить бесплатную консультацию по любым вопросам. Наши менеджеры помогут вам рассчитать нужное количество требуемых материалов, а опытный инженер, составить индивидуальный проект

 

Если на нашем сайте не представлены товары из группыЗащита от скачков напряжения и источники бесперебойного питания , или информация интересующая вас, мы обязательно поможем и закажем любую позицию у основных поставщиков, и несомненно выполним ваши заявки в максимально сжатые сроки и организуем доставку в любой уголок нашей страны.  При этом мы постоянно развиваемся и добавляем на сайт современные модели, новые виды продукции, актуальные цены и корректную техническую информацию.

А так же бесплатно проконсультируем по любым, интересующим вас, вопросам.

Проведем расчеты любых систем отопления, водоснабжения, канализации.

Оплатить товар вы можете: наличными в офисе, наличными при получении, по расчетному счету, при помощи специального штрих-кода, в банкоматах, в кассах, или через мобильное приложение ( если оно поддерживает данную функцию, достаточно просто навести его на счет)., Банковской картой в офисе компании, а так же при получении товара ( обязательно сообщив менеджеру, что планируете оплачивать картой). А так же прямо в корзине, на сайте компании, предварительно оформив заказ.

Доставка осуществляется собственным транспортном и транспортными компаниями. По Екатеринбургу, Свердловской области, а так же всех регионов России, где есть терминалы транспортных компаний.  Доставка может быть как бесплатная, так и платная, в зависимости от размера заявки. Так же осуществляем доставку любых ваших товаров собственным транспортом ( универсалы, каблуки, газели, 3-х тониками)

Подробную информацию уточняйте у менеджеров интернет-магазина “СанТерм” тел.201-05-00. 8-919-399-05-00.

 

 

 

 

 

 

 

 

 

 

Защита от скачков напряжения – выбор и установка устройств защиты . Электропара

С проблемами перепадов напряжения знакомы и жители квартир, и обитатели загородных домов. Основные неприятности связаны с поломкой бытовой и электронной техники, не рассчитанной на отечественные условия электросетей. Чувствительные интеллектуальные платы, надежные электромоторы могут в один миг выйти из строя. Причем на состояние техники влияет не только изменение напряжения в сторону увеличения, но и пониженное напряжение. Чтобы обеспечить оптимальные условия сети, можно использовать современные устройства защиты от скачков напряжения.

Можно выделить три группы приборов для защиты потребителей тока от скачков напряжения:

  • Реле-прерыватели
  • Стабилизаторы напряжения
  • ИБП (источники бесперебойного питания)

Реле-прерыватель для защиты от скачков напряжения

Реле контроля напряжения (прерыватель) подходит в том случае, если в целом условия сети удовлетворительные, и частых перепадов напряжения нет. Реле выступает в роли контроллера – этот прибор не стабилизирует напряжение, а лишь отключает технику во время скачка напряжения, предварительно считав данные о текущем рабочем напряжении. Как только напряжение вновь вернется в рамки нормы, реле включает технику.

Розеточное реле контроля – защита от скачков напряжения

Данный способ можно назвать условно-эффективным, поскольку риски для работы техники все-таки есть. Частые включения и выключения напряжения негативно отражаются на общем состоянии электроприборов, значительно сокращая срок их службы. Вот почему реле не подходит для регулярного использования, его можно назвать, скорее, «средством скорой помощи».

Реле – блок защиты от перепадов напряжения

Прибор может быть выполнен в двух видах, в зависимости от места монтажа. Первое реле устанавливается в общий электрощиток и обеспечивает защиту всех потребителей тока в помещении. Второй вариант предназначен для одного или нескольких приборов, представляет собой устройство с гнездами для розеток. Определить достоинства и недостатки обоих моделей достаточно сложно – первый вариант при скачках напряжения приведет к обесточиванию всей квартиры или дома, а второй неспособен защитить все электроприборы. Вот почему покупка стабилизатора напряжения является более предпочтительной.

Стабилизатор напряжения для защиты от скачков напряжения

Стабилизатор напряжения подходит для защиты от перепадов напряжения в любых помещениях. Основным достоинством прибора является возможность пользоваться электроприборами, бытовой и электронной техникой даже во время скачков напряжения.

Стабилизатор защита от скачков напряжения

Стабилизатор не отключает технику, в отличие от реле. Его основная задача – нормализация рабочего напряжения вне зависимости от его значений. Стабилизаторы незаменимы в условиях постоянных перепадов напряжения. Чаще всего это дачи, загородные дома и пр.

Выбор стабилизатора следует производить в соответствии с техническими параметрами и характеристиками устройства. Основные виды стабилизаторов по принципу действия:

  • Релейные
  • Электромеханические
  • Электронные
  • Электронные двойного преобразования

Также при выборе следует изучить следующие технические показатели устройства:

  • Количество фаз (однофазные, трехфазные) – в частных сетях обычно используются однофазные стабилизаторы напряжения
  • Мощность – следует предварительно получить данные о суммарной мощности всех электроприборов
  • Диапазон входного напряжения – этот показатель напрямую зависит от значений напряжения во время скачков

Источник бесперебойного питания (ИБП)

Данный прибор также входит в группу устройств для защиты от скачков напряжения. Принцип устройства состоит в обеспечении определенного резерва времени для правильно  отключения техники, особенно электронной. Как известно, постоянные отключения негативно влияют на ее состояние, поэтому в некоторых случаях самым важным является сохранение информации и правильное завершение работы. В конструкцию ИБП входят аккумуляторные батареи, которые и дают столь необходимый запас электроэнергии. Выделяют три типа источников бесперебойного питания:

  • Устройство резервной схемы – при отключении электричества включается резервное питание
  • Устройство интерактивной схемы – имеет встроенный стабилизатор и может использоваться при незначительных  отклонениях значений напряжения от нормы
  • Устройство с режимом двойного преобразования – обеспечивает выравнивание напряжения на выходе

Источник бесперебойного питания

При выборе ИБП следует обратить внимание на следующие параметры:

  • Мощность
  • Емкость аккумуляторов (от этого параметра зависит время автономной работы)
  • Срок службы аккумуляторов

Выбирать приборы защиты от скачков напряжения достаточно непросто, поэтому многие предпочитают  обращаться к специалистам для проектирования и выполнения работ. Стабилизаторы напряжения хороши, но их стоимость довольно высока. Реле слабоваты и подходят только в случае редких скачков напряжения. Источники бесперебойного питания обеспечивают запас электроэнергии. При выборе следует руководствоваться индивидуальными данными сети и назначение прибора. 

УЗМ – защита от скачков напряжения

Многофункциональное устройство УЗМ-16 (К9808 в прайс-листе МПО Электромонтаж) предназначено для защиты подключенного к нему оборудования (на производстве, в квартире, офисе) от мощных импульсных скачков напряжения, вызванных грозовыми разрядами или срабатыванием близкорасположенных и подключенных к этой же сети электродвигателей и аппаратов с большим пусковым током, а также для отключения оборудования при выходе сетевого напряжения за допустимые пределы в однофазных сетях. Тем самым предотвращается выход оборудования из строя и возможное возгорание с последующим пожаром.

Поясним, для самих себя. Ну, грозовые импульсы случаются не так часто (как правило, летом), а вот то, что постоянные проблемы со скачками напряжения мы создаём себе сами – это факт. Мы устанавливаем у себя (дома и на производстве) всё более мощное электромоторное и осветительное оборудование и информационные системы, на питание которых сети электроснабжения и трансформаторные подстанции, которыми мы пользуемся сегодня, при их создании не были рассчитаны – вот и не справляются с нагрузками в разы большими. Возникают скачки и провалы напряжения, перекос фаз из-за неравномерной их загрузки (на перегруженной будет ниже номинала, на незагруженной — выше). А если ещё обрыв нейтрали, или короткое замыкание!..

То есть получается, что угрозу нашему электрооборудованию создаёт наше оборудование – самим фактом своей работы!

Вот Санкт-Петербургское предприятие Меандр – производитель промышленной автоматики – и разработало для защиты от этих бед серию своих УЗМ.

Устройство УЗМ-50М (К9811) служит для защиты оборудования общей мощностью до 13,8 кВт от мощных импульсных скачков напряжения, для отключения при выходе сетевого напряжения за пределы 170–270 В. Номинальный ток нагрузки 63 А, макс. 80 А, макс. ток шунтирования импульсов 8 кА. Повторное включение при восстановлении питания после аварийного отключения — автоматическое.

Принципиально оно представляет собой реле контроля напряжения с поляризованным электромагнитным реле на выходе и дополненной энергоёмкой варисторной защитой.

На лицевой панели расположены переключатель ручного управления и два светодиода (при включении питания светится желтый, при включении реле — вручную или автоматически — зеленый). Кнопка управления позволяет восстановить питание, не дожидаясь окончания времени задержки включения или выключить, если требуется обесточить потребители. Исполнение на DIN-рейку, габариты 833567 мм — два модуля.

Устройство УЗМ-51М (К9812) – аналог УЗМ-50М по характеристикам, порядку работы и габаритам. Существенное отличие – регулируемые (двумя барашками) границы отключения по продолжительному превышению напряжения питания с шагом 5 В: от 160 до 219 В и от 230 до 280 В.

УЗМ-16, наша новинка (К9808) – такое же многофункциональное (перечитайте первый абзац) защитное устройство с регулируемыми порогами напряжений срабатывания двумя дискретными переключателями на 10 положений – но!

Номинальная мощность нагрузки – 3,5 кВт, ток коммутации – 16 А, макс. ток шунтирования импульсов – 1,75 кА.

Верхние границы отключения от 230 до 280 В, нижние от 210 до 160 В – с интервалом 5 В. Габариты 906617,5 мм – 1 модуль.

После подачи питания, либо послеаварийного отключения, включение происходит автоматически, при восстановлении сетевого напряжения до нормального через 10сек.

На лицевой панели – два индикатора: зелёный/красный – норма/авария, и жёлтый – включения контакта реле, кнопка ТЕСТ ручного управления, два переключателя порогов.

Устройства УЗМ можно применять в сетях с любой конфигурацией заземления.

Заметим ещё раз: УЗМ предназначены для защиты подключенной аппаратуры от разрушающего воздействия напряжения — импульсных скачков и выходов за допустимые пределы. А от пиковых и продолжительных перегрузок по току – автоматические и дифференциальные выключатели.

Так что, применяя УЗМ, автоматы и УЗО, бороться с проблемами в сетях можно – и с теми, которые существуют практически постоянно вследствие подключения к ним нашей нагрузки, и с теми, которые вызваны электромагнитными импульсами близких грозовых разрядов.

Как уберечь технику от скачков напряжения. Статьи компании «ООО “Витокс”»

Задумываясь о том, как защитить технику от внезапных скачков напряжения, стоит изучить разные варианты и с помощью наших советов подобрать правильное решение.

 

Современный дом максимально насыщен различной цифровой техникой, дорогостоящим оборудованием, гаджетами и устройствами, зависящими от электрического питания. Все это оказывает значительную нагрузку на электросеть и требует непрерывной бесперебойной подачи электроэнергии. При этом система ее подачи в нашей стране достаточно устаревшая и непредвиденная. В любой момент может случиться падение или повышение напряжения, которое выводит из строя дорогостоящее оборудование. От перепадов напряжения в электрической сети очень часто сгорают кондиционеры, холодильники, котлы отопления, бойлеры, компьютеры, телевизоры и другие приборы.

 

Защита от перепадов напряжения в частном доме

Современные производители электротехнических приборов позаботились о защите техники от перепадов напряжения в частном доме или коттедже. Специально для этой цели созданы реле перенапряжения – устройства, позволяющие контролировать подачу электричества и автоматически  отсекать высокое и низкое напряжение. Во время непредвиденных скачков и кратковременных перепадов напряжения прибор в автоматическом режиме отключает все приборы от электрической сети, сохраняя их работоспособность.

 

Конструктивно реле перенапряжения представляет собой небольшой прибор модульного типа с интерфейсами для подключения фаз входа/выхода и нуля, светодиодным цифровым дисплеем и псевдо-сенсорными кнопками управления. Стационарная модель реле контроля  монтируется в главном электрическом щите объекта, после вводного автоматического выключателя и средств учета электроэнергии.

 

Также реле контроля напряжения бывают встроенными в электрические удлинители, совмещая функции переноски и разветвителя и переносными (подключаемыми в обычную электрическую розетку). Как правило, используются в местах, где нет возможности установить стационарную модель прибора (а также во время командировок, путешествий, на даче) для защиты персональных компьютеров, планшетов смартфонов, прочих гаджетов и техники.

 

 

Как защитить квартиру от перепадов напряжения

Защита электроприборов в квартире осуществляется аналогичным способом. Блок реле контроля монтируется в вводной щиток, который размещен непосредственно внутри жилого помещения, защищая всю технику, которая находится  в квартире.

 

Чем хорош прибор защиты от перенапряжения в виде реле контроля:
  • Время отклика при отклонении от установленных параметров составляет примерно 0. 05 секунды при превышении напряжения, и 1.2 секунды при понижении соответственно.
  • Дополнительным плюсом реле перенапряжения является возможность настройки диапазона допустимого напряжения от 120 до 280В и времени задержки включения от 3 до 600 секунд. Например, холодильнику нежелательны кратковременные интервалы времени с момента отключения и до момента включения, а требуется некоторое время (порядка 30 или более секунд) для предотвращения преждевременного выхода из строя компрессора.
  • Реле имеет систему автоматического контроля, отключающую нагрузку при перегрузке или нарушения целостности контактов, клеммных соединений устройства.
  • Есть встроенная защита от перегрева.
  • Доступна корректировка  индикации напряжения.

 

Как защитить компьютер от перепадов напряжения

Решив защитить компьютер от перебоев электроэнергии, стоит задуматься о покупке ИПБ (бесперебойнника). Реле контроля будет полезным для защиты процессора от скачков, но не позаботится о сохранении данных.

 

Спасет ли сетевой фильтр от скачков напряжения?

На этот вопрос ответ однозначный – нет. Сетевой фильтр предназначен для сглаживания небольших, кратковременных, импульсных помех. Некоторые модели фильтров оснащены дополнительно защитой от короткого замыкания, но не более того. В удлинителях, снабженных сетевым фильтром, отсутствует микро-процессор контроля, индикации напряжения и управления коммутационным блоком. Если бы сетевой фильтр мог выполнять функцию защиты от перепадов напряжения, то не возникло бы необходимости производить отдельные приборы для защиты от перепадов напряжения. Следует отметить, что производитель  ZUBR специально выпускает удлинители со встроенной индикацией и защитой от скачков напряжения.

 

Как обезопасить телевизор от скачков напряжения

Современные телевизоры рассчитаны на колебательный диапазон напряжения 200-250В и колебательный порог частоты 50-60Гц. Даже если в телевизоре предусмотрена встроенная защита от колебаний, она не всегда способна справиться с большими и резкими скачками. При повышенном пороге сгорает блок питания и центральная плата прибора, также могут выгорать пиксели экрана. Ремонт данных деталей очень дорогой и не всегда возможен. Реле защиты предотвратят проблему с минимальными затратами.

 

Защита от перепадов напряжения для холодильника и кондиционера

Компрессорное оборудование особенно восприимчиво к колебаниям напряжения сети. Повышенный ток нежелателен в любом случае. Решение проблемы – отсекатель  отключает холодильник, пока напряжение не нормализуется до допустимых границ. Дополнительный плюс – на реле контроля настраивается задержка повторного пуска, что убережет компрессор от поломки.

 

Стабилизаторы напряжения

С целью стабилизации напряжения реле контроля перенапряжения не подходят. Для этих целей используются более серьезные устройства – стабилизаторы напряжения, которые стоят в разы дороже. Если основная задача –  уберечь домашнюю технику от скачков напряжения, то компактные и сравнительно недорогие реле защиты от перенапряжения вполне справятся с этим без значительных затрат.

 

На сайте Vitox можно купить лучшие модели автоматического реле контроля и защиты от перепадов напряжения ZUBR. Это проверенный временем украинский производитель, который производит качественный товар и дает гарантию работы 5 лет.  Можно выбрать необходимые опции приборов, ручное или сенсорное управление, переносной или стационарный вариант корпуса.

 

Мы можем гарантировать своим покупателям качество и надежность представленной группы товаров. Если у вас возникают сомнения при выборе модели – всегда готовы помочь советом.

        ZUBR R116y                         ZUBR SR red                          ZUBR SR                              ZUBR D25t

Что такое защита от перенапряжения?

Что такое защита от перенапряжения?

Защита от перенапряжения – это функция источника питания, которая отключает источник питания или ограничивает выход, когда напряжение превышает заданный уровень.

В большинстве источников питания используется схема защиты от перенапряжения для предотвращения повреждения электронных компонентов. Воздействие условий перенапряжения варьируется от одной цепи к другой и варьируется от повреждения компонентов до их ухудшения и возникновения неисправностей в цепи или возгорания.

Состояние перенапряжения может возникнуть в источнике питания из-за неисправностей внутри источника или из-за внешних причин, например, в распределительных линиях.

Величина и продолжительность перенапряжения являются одними из основных факторов, которые необходимо учитывать при разработке эффективной защиты. Защита включает установку порогового напряжения, выше которого схема управления отключает питание или перенаправляет дополнительное напряжение на другие части схемы, такие как конденсатор.

Идеальные характеристики схемы защиты от перенапряжения

  1. Не допускайте приложения повышенного напряжения к компонентам.
  2. Схема защиты не должна мешать нормальному функционированию системы или цепи. Схема защиты не должна нагружать источник питания и вызывать связанные с этим падения напряжения.
  3. Схема защиты должна отличать нормальные колебания напряжения от опасного перенапряжения.
  4. Быть достаточно быстрым, чтобы реагировать на переходные события, которые могут повредить источник питания и компоненты, расположенные ниже по потоку.
  5. Метод OVP не должен иметь ложных срабатываний или необнаруженных условий реального перенапряжения.Это может быть неудобно в случае ложных срабатываний, а также опасно, если невозможно увидеть реальные условия перенапряжения.

Схема защиты от перенапряжения может быть сконструирована с использованием дискретных компонентов, интегральных схем, механических устройств, таких как реле и т. Д. Они могут подключаться либо внутри, либо снаружи, в зависимости от задействованных схем.

Существуют различные конструкции схем защиты, каждая со своими достоинствами, режимом работы, чувствительностью, возможностями и надежностью.Защита может либо отсечь повышенное напряжение, либо полностью отключить источник питания.

Схема защиты от перенапряжения лома

Схема с ломом обеспечивает один из самых простых, дешевых и эффективных методов защиты от перенапряжения. Обычно он подключается между регулируемым выходом и защищаемой цепью или нагрузкой. Последовательный регулирующий транзистор контролирует выходной ток и напряжение, а ломик защищает нагрузку, когда напряжение превышает заданное значение.Базовая схема состоит из:

  • Кремниевый выпрямитель (SCR)
  • Стабилитрон
  • Резистор
  • Конденсатор

Схема лома защиты от перенапряжения

При нормальной работе стабилитрон имеет обратное смещение и не проводит, весь ток через последовательный транзистор появляется на выходе. Как только напряжение возрастает и выходит за пределы напряжения пробоя стабилитрона, диод выходит из строя и начинает проводить.Ток развивает напряжение на резисторе, которое затем запускает SCR. Это приводит к короткому замыканию на выходе, и весь ток уходит в землю. Это привело к размыканию предохранителя и снятию напряжения с последовательного транзистора и защищаемой цепи.

Выбранный стабилитрон должен быть немного выше выходного напряжения. Конденсатор предотвращает срабатывание SCR короткими всплесками.

Простая схема широко используется благодаря своей эффективности; однако он имеет некоторые ограничения, такие как стабилитрон, который нельзя регулировать, в то время как наилучший допуск для диода составляет 5%.

Напряжение срабатывания тринистора также должно быть спроектировано так, чтобы оно было намного выше выходного напряжения источника питания, чтобы предотвратить ошибочное срабатывание из-за коротких всплесков, например, возникающих при питании ВЧ цепей.

Как стабилитрон выполняет защиту от перенапряжения в цепи?

Защита от перенапряжения необходима для предотвращения повреждений в результате электрических переходных процессов. Это функция источника питания, которая отключает источник питания или ограничивает выход, когда напряжение превышает заданный уровень. В большинстве источников питания используется схема защиты от перенапряжения для предотвращения повреждения электронных компонентов. Они предлагают некоторую форму схемы защиты от перенапряжения (OVP) для обнаружения, а затем быстрого снижения перенапряжения. Здесь представлена ​​наиболее распространенная защита стабилитроном.

1. Предпосылки перенапряжения

Каждая конструкция схемы работает с различными уровнями напряжения, при этом наиболее распространенными уровнями напряжения для цифровой схемы являются 3,3 В, 5 В и 12 В. Но каждая конструкция уникальна, и наличие более одного рабочего напряжения также является нормальным для схемы.Например, стандартная компьютерная система SMPS будет работать на шести различных уровнях напряжения, а именно ± 3,3 В, ± 5 В и ± 12 В. В этих случаях, если устройство с низким энергопотреблением работает от высокого напряжения, компонент будет постоянно поврежден, если для питания различных типов компонентов используются различные уровни напряжения. Поэтому, чтобы избежать вреда от перенапряжения, разработчик всегда должен концентрироваться на реализации схемы защиты от перенапряжения в своих проектах.
Для любой части или цепи будет три различных номинальных напряжения, а именно минимальное рабочее напряжение, рекомендуемое или нормальное рабочее напряжение и максимальное рабочее напряжение.Для любых цепей или деталей любое значение, превышающее максимальное рабочее напряжение, может быть фатальным. Использование схемы защиты от перенапряжения на стабилитронах – очень распространенное и экономичное решение.

2. Основы защиты входа стабилитрона

Для защиты схемы от условий перенапряжения стабилитроны часто являются первым вариантом. Стабилитрон следует той же теории диодов, которая блокирует ток в обратном направлении. Однако есть недостаток, заключающийся в том, что стабилитрон блокирует прохождение тока в обратном направлении только для ограниченного напряжения, определяемого номинальным напряжением стабилитрона. Стабилитрон на 5,1 В блокирует протекание тока в обратном направлении вплоть до 5,1 В. Если напряжение через стабилитрон больше 5,1 В, он позволяет току проходить через него. Эта функция стабилитрона делает его отличным компонентом защиты от перенапряжения.

3. Простая схема защиты от перенапряжения с использованием стабилитрона

Рассмотрим схему, в которой требуется защита микроконтроллера от перенапряжения. Все, что имеет максимальное напряжение 5 В на выводах ввода-вывода микроконтроллера. Таким образом, напряжение более 5В приведет к повреждению микроконтроллера.

Рисунок 1. Защита от перенапряжения для микроконтроллера

В приведенной выше схеме используется стабилитрон с напряжением 5,1 В. В случае перенапряжения он будет работать отлично. Он может передавать ток и регулировать напряжение до 5,1 В, если напряжение превышает 5,1 В. На практике, однако, он будет вести себя как обычный диод и блокировать менее 5,1 В.
Изображение ниже представляет собой симуляцию специальной схемы защиты стабилитрона. Полное описание симуляции вы можете сделать исходя из ваших потребностей.

Рисунок 2. Моделирование схемы защиты от перенапряжения

На приведенной выше схеме присутствует входное напряжение, которое является источником постоянного тока. R1 и D1 – это два компонента, которые защищают выход от защиты от перенапряжения. D1, 1N4099, в данном случае – стабилитрон. Когда V1 достигает 6,8 В, выход будет защищен. Максимальное выходное напряжение – 6,8 В в качестве опорного напряжения 1N4099.
Давайте посмотрим, как вышеуказанная схема работает как схема защиты входа стабилитрона и защищает выход более чем от 6.Напряжение 8 В.

С помощью каденции PSpice смоделирована приведенная выше схема. Выходной сигнал остается постоянным на уровне 5,999 В при входном напряжении 6 В на V1 (что составляет 6,0 В).

Входное напряжение в приведенном выше моделировании составляет 6,8 В. Таким образом, производительность составляет 6,785 В, что аналогично 6,8 В. Давайте дальше поднимем входное напряжение и создадим ситуацию перенапряжения.

Теперь входное напряжение составляет 7,5 В, что больше 6,8 В. Спектакль сейчас на 6.883V. Вот как стабилитрон успешно спасает подключенную схему от ситуации перенапряжения, даже когда напряжение возвращается ниже 6,8 В, как показано на предыдущем этапе, схема снова будет нормально работать. Другими словами, стабилитрон не перегорает даже при перенапряжении, в отличие от предохранителя.
Для выбора различных пределов перенапряжения в приведенной выше схеме можно использовать любые другие стабилитроны с другими значениями, такими как 3,3 В, 5,1 В, 9,1 В, 10,2 В.

4.Как выбрать стабилитрон для защиты цепи?

Следующей важной частью является выбор значения стабилитрона. Приведенные ниже пункты помогут вам выбрать правильное значение стабилитрона и номер детали.
1) Сначала выберите напряжение стабилитрона. Это значение напряжения, которое будет служить замыканием для стабилитрона и защищать нагрузку от перенапряжения. Напряжение стабилитрона в Pspice для вышеприведенного примера составляет 6,8 В.
В некоторых случаях целевое напряжение стабилитрона отсутствует.В таких случаях можно выбрать значение, близкое к значению стабилитрона. Например, для защиты от перенапряжения до 7 В ближайшим значением является стабилитрон 6,8 В.
2) Рассчитайте ток нагрузки, подключенный к цепи защиты от перенапряжения. Для нашего примера, описанного выше, это 50 мА. Помимо тока нагрузки, стабилитроны требуют тока смещения. Следовательно, полный ток плюс ток смещения стабилитрона должен быть равен току нагрузки. Для вышеупомянутого примера это может быть общий ток = 50 мА + 10 мА = 60 мА.
3) Стабилитроны имеют рейтинг мощности. Следовательно, для надлежащего отвода тепла требуется правильная номинальная мощность стабилитрона. На основании измеренного полного тока в фазе – 2, который составляет 60 мА, можно рассчитать номинальную мощность. Следовательно, номинальная мощность стабилитрона будет равна напряжению стабилитрона, который соединяет полный ток, протекающий через диод.
4) Рассчитайте номинал резистора, дифференцируя напряжение источника и общее напряжение.Предел, который может быть применен к схеме, будет исходным напряжением. Например, оно может составлять 13 В для максимального возможного перенапряжения или может быть добавлено в качестве напряжения питания.
Падение напряжения на резисторе будет = 13В-6,8В = 6,2В. По закону сопротивления сопротивление резистора будет = 6,2В / 0,060А = 103R. Можно выбрать резистор 100R стандартного номинала.
5) Типичные значения стабилитрона: 5,1 В, 5,6 В, 6,2 В, 12 В и 15 В – самые общие значения; у них также есть 3В, 5В, 12В, 18В, 24В.

5. Обзор защиты от перенапряжения на стабилитронах

Самым простым и простым способом защиты устройств от перенапряжения является схема защиты от перенапряжения с использованием стабилитронов. В этом методе напряжение остается регулируемым, а стоимость этой схемы намного ниже по сравнению с другими методами.
Хотя, конечно, у такой схемы есть недостатки. Рассеивание мощности – главный недостаток схемы такого типа. Он по-прежнему рассеивает тепло из-за подключенного последовательного резистора и приводит к потерям энергии.

Расцепитель низкого напряжения

в сравнении с защитой от низкого напряжения – базовое управление двигателем

Нажмите кнопку воспроизведения на следующем аудиоплеере, чтобы послушать, как вы читаете этот раздел.

Два из первых терминов, которые мы рассмотрим, – это расцепитель низкого напряжения (LVR) и защита от низкого напряжения (LVP).

Иногда называемый расцепителем минимального напряжения, расцепитель низкого напряжения (LVR) – это свойство, которое цепи имеют, когда при возврате напряжения после отключения электроэнергии нагрузки автоматически включаются снова.

Иногда называется защитой от пониженного напряжения, защита от низкого напряжения (LVP) – это свойство, которое цепи имеют, когда при восстановлении напряжения после отключения электроэнергии нагрузка не включается автоматически и требует дополнительных действий со стороны оператора.

Простым примером расцепителя низкого напряжения (LVR) и защиты от низкого напряжения (LVP) является простая схема освещения и бытовая микроволновая печь. Представьте, что вы дома, нагреваете что-то в микроволновой печи (например, буррито), когда внезапно весь свет гаснет.Но не только свет, но и микроволновая печь, и все электрические устройства, не работающие от батареи, вышли из строя.

Может, дерево упало на какие-то линии электропередач? Независимо от причины, следствие одно и то же: отключено электричество. Это обычное и раздражающее событие для всех нас, и часто остается только зажечь свечи, почитать книгу и подождать.

Как мы узнаем, что электричество было восстановлено? Внезапно все огни снова включаются, и раздается звуковой сигнал из микроволновой печи, сообщающий о необходимости перезагрузки часов.

Фонари являются примером расцепителя низкого напряжения (LVR). Переключатели , которые управляют освещением, были закрыты при отключении электроэнергии, оставались закрытыми во время отключения электроэнергии (период «низкого напряжения»), а когда питание было восстановлено, все переключатели все еще находились в положении «ВКЛ». . Нагрузка была «освобождена» после периода «низкого напряжения».

Расцепитель низкого напряжения (LVR) очень полезен для цепей, где повторное включение после кратковременного или временного отключения питания безопасно и желательно.Некоторые примеры включают в себя цепи освещения, отстойники, холодильные и вентиляционные контуры. Это примеры цепей, в которых невозможность повторного включения после сбоя питания может привести к повреждению имущества (отстойный насос) или угрозе безопасности (вентиляция парковки).

Микроволновая печь была примером защиты от низкого напряжения (LVP). Таймер, управляющий микроволновой печью, отключался, когда питание отключалось, и когда питание возобновлялось, схема управления микроволновой печью, , ждала дальнейшего ввода от человека-оператора.

Защита от низкого напряжения (LVP) желательна, когда внезапное включение машины или другой электрической нагрузки может вызвать повреждение или травму. Некоторые примеры включают любое вращающееся оборудование (настольные пилы, токарные станки) или движущиеся конвейерные ленты. Это примеры цепей, в которых внезапное повторное включение может удивить или травмировать человека, работающего поблизости.

Существует множество способов оснащения схем расцепителем низкого напряжения (LVR) или защитой от низкого напряжения (LVP), но два из самых простых – это двухпроводные схемы и трехпроводные схемы соответственно.

Как правило, если в цепи используются магнитный контактор и удерживающий контакт, она обеспечивает защиту от низкого напряжения (LVP).

Если в нем используются поддерживаемые контакты, то он, скорее всего, обеспечивает расцепитель низкого напряжения (LVR).

Простая схема защиты от перенапряжения с использованием стабилитрона

Как сделать схему защиты от перенапряжения с использованием стабилитрона?

Электрические цепи и компоненты, которые используются в наши дни, отдают предпочтение и время, чтобы сделать их максимально безопасными.Современные блоки питания в наши дни очень надежны, но всегда есть шанс выйти из строя. Источник питания может выйти из строя по-разному, но одна особенно тревожная возможность заключается в том, что элемент последовательного регулятора, то есть транзистор или полевой транзистор, может выйти из строя, что приведет к короткому замыканию. Это короткое замыкание элементов вызывает очень большое напряжение в цепи, на которую подается питание, что приводит к ужасным повреждениям всего оборудования. Повреждение компонента и схемы в целом можно свести к минимуму или полностью исключить, обеспечив схему защиты в виде защиты от перенапряжения .

Защита от короткого замыкания, защита от обратной полярности и защита от повышенного / пониженного напряжения – это некоторые из схем защиты, которые используются для защиты любого электронного устройства или схемы от любых неожиданных сбоев. Как правило, для защиты от перенапряжения используются предохранители или автоматические выключатели, однако в этом проекте наша цель – создать схему, которая будет работать лучше, чем предохранитель или автоматический выключатель, и преодолеть ограничения большинства основных устройств безопасности, упомянутых выше.

Защита от перенапряжения – это характеристика системы электропитания, которая каким-то образом работает с напряжением на стороне нагрузки, когда входное напряжение превышает предварительно установленное значение.В некоторых ситуациях, когда входное напряжение выше ожидаемого, мы всегда используем защиту от перенапряжения или схему защиты от лома. Схема защиты ломом – одна из наиболее часто используемых схем защиты от перенапряжения.

Блок питания может выйти из строя по разным причинам; Точно так же может быть много способов защитить цепь от перенапряжения. Самый простой способ – подключить предохранитель со стороны входа питания. Но недостатком использования предохранителя является то, что он является одноразовой защитой, потому что, когда напряжение превышает предварительно установленное значение, плавкий провод сгорает, вызывая размыкание цепи.Тогда единственный способ заставить цепь снова начать работать – это заменить предохранитель на новый и переделать всю цепь, относящуюся к предохранителю.

Случаи отказа источника питания обычно наблюдаются, когда источник питания перестает работать и нет выхода. Однако бывают редкие случаи выхода из строя, когда происходит короткое замыкание и на выходе может появиться очень высокое напряжение. В качестве линейного регулятора мы можем взять пример очень простого стабилизатора на основе стабилитрона.Мы можем создать более сложную схему для достижения лучших результатов, в этих схемах используется та же идея прохождения тока через транзистор.

Основное отличие заключается в способе подачи напряжения регулятора на базу транзистора. Обычно напряжение на входе таково, что на последовательном регулирующем элементе падает несколько вольт. Следовательно, это позволяет последовательному транзистору соответствующим образом регулировать выходное напряжение. Обычно такой транзистор попадает в состояние разомкнутой цепи, но при некоторых обстоятельствах в транзисторе может возникнуть короткое замыкание между коллектором и эмиттером.Если это произойдет, то на выходе появится полное нерегулируемое входное напряжение.

Если на выходе появится полное напряжение, это может привести к повреждению многих микросхем, которые находятся в цепи и на которые подается питание. В этом случае ремонт схемы может оказаться нецелесообразным. Принцип работы импульсных регуляторов сильно различается, но бывают ситуации, когда полный выходной сигнал может появиться на выходе блока питания.

Мы можем сделать схему защиты от перенапряжения с помощью стабилитрона и биполярного транзистора двумя способами.

Цепь стабилизатора напряжения :

В этой схеме используется стабилитрон для обеспечения регулируемого выхода на стороне нагрузки, защищая цепь. Но соединения таковы, что поток мощности на сторону нагрузки не прерывается, даже когда напряжение превышает пределы безопасности. На выходе всегда будет напряжение, зависящее от номинала стабилитрона.

Схема защиты от перенапряжения с использованием стабилитрона:

Этот метод является более простым, в котором схема предназначена для отключения питания на стороне нагрузки, когда напряжение превышает заданные значения.

Необходимые материалы
  • 1N4740A Стабилитрон
  • FMMT718 Транзистор PNP
  • Резисторы – 1 кОм, 2,2 кОм и 6 кОм
  • 2N2222 Транзистор NPN

Связанное сообщение: Автоматическая дверь с обнаружением объектов от Ardu14dellio

902

Стабилитрон – это тип диода, который позволяет току течь через него в обоих направлениях, в отличие от обычного диода, который позволяет току течь только в одном направлении, а именно от анода к катоду.Этот поток тока в обратном направлении происходит только тогда, когда напряжение на клеммах превышает пороговое напряжение, называемое напряжением Зенера. Это напряжение стабилитрона является характеристикой устройства, которое управляет эффектом стабилитрона, который, в свою очередь, определяет работу диода.

Принципиальная схема стабилитрона, обычно используемого в схемах, приведена ниже.

Стабилитроны имеют высоколегированный p-n переход, что позволяет устройству нормально функционировать даже при подаче через него обратного напряжения. Однако многие стабилитроны вместо этого полагаются на лавинный пробой. Оба типа пробоя происходят в устройстве, с той лишь разницей, что эффект Зенера преобладает при более низких напряжениях, тогда как лавинный пробой происходит при более высоких напряжениях. Они используются для создания маломощных стабилизированных источников питания. Они также используются для защиты цепей от перенапряжения и электростатического разряда.

2N2222 NPN-транзистор

2N2222 – очень распространенный биполярный NPN-транзистор, который в основном используется для усиления или переключения малой мощности общего назначения.2Н222 предназначен для умеренной работы на высоких оборотах. Это очень распространенный транзистор, который используется как образец транзистора NPN.

Принципиальная схема транзистора приведена ниже.

Распиновка транзистора 2N2222 NPN приведена ниже.

это наиболее часто используемый транзистор. Одна из его ключевых особенностей – способность выдерживать большие токи по сравнению с другими подобными небольшими транзисторами. Он состоит из кремния или германия и легирован положительно или отрицательно заряженным материалом. При выполнении приложений усиления он получает аналоговый сигнал через коллекторы, а другой сигнал подается на его базу. Аналоговым сигналом может быть голосовой сигнал с аналоговой частотой почти 4 кГц (человеческий голос).

FMMT718 PNP-транзистор

FMMT718 является PNP-транзистором, поэтому коллектор и эмиттер будут закрыты (смещены в прямом направлении), когда базовый вывод удерживается на земле, и будут разомкнуты (с обратным смещением), когда сигнал подается на базовый вывод. .Этим транзистор PNP отличается от транзистора NPN; логический вентиль используется для переключения между напряжениями сигналов заземления.

Принципиальная схема транзистора PNP приведена ниже.

Распиновка FMMT718 представлена ​​в табличной форме ниже.

2N2222
1 Излучатель
2 База
3 Коллектор, подключенный к корпусу 9
сток выход через эмиттер
FMMT718
1 Коллектор Ток протекает через коллектор
2 База Управляет смещением транзистора

Цепь стабилитрона

Это одна из двух конфигураций схем защиты от перенапряжения, использующих стабилитрон.Эта схема не только защищает цепь на стороне нагрузки, но также регулирует входное напряжение питания для поддержания постоянного напряжения. Принципиальная схема защиты от перенапряжения с использованием цепи стабилитрона приведена ниже.

Пороговое напряжение, выше которого схема отключает питание со стороны нагрузки, называется предварительно установленным значением напряжения схемы. Конструкция схемы такова, что предварительно установленное значение схемы является номиналом стабилитрона. Таким образом, пороговое значение, при превышении которого схема не проводит ток, составляет примерно 5. 1В.

Проводимость транзистора Q1 зависит от напряжения база-эмиттер транзистора. Когда выходное напряжение схемы начинает расти, это увеличивает Vbe транзистора, и он проводит меньше. Это, в свою очередь, снижает выходное напряжение, сохраняя выходное напряжение почти постоянным.

Принципиальная схема защиты от перенапряжения с использованием стабилитрона

Принципиальная схема цепи защиты от перенапряжения приведена ниже.

Сначала рассмотрим работу схемы при исправной работе блока питания.В правильном рабочем состоянии на клемме базы транзистора Q2 находится высокий уровень, что приводит к выключению этого транзистора. Когда Q2 выключен, на клемме базы транзистора Q1 низкий уровень, и он начинает проводить. Таким образом, нагрузка подключается к источнику питания, когда напряжение питания ниже установленного порогового напряжения.

Теперь, когда напряжение питания выше порогового значения, происходит пробой стабилитрона и стабилитрон D2 начинает проводить. Это делает базовую клемму Q2, которая раньше была заземлена.Теперь, когда базовый вывод Q2 подключен к земле, он начинает проводить. База транзистора Q1, который подключен к выходу Q2, теперь имеет высокий уровень и перестает проводить. Это изолирует нагрузку от источника питания, сохраняя ее от любого потенциального повреждения, которое могло быть вызвано скачком напряжения.

Работа приведенных выше схем также зависит от падения напряжения на каждом транзисторе. В идеале он должен быть низким, чтобы схема соответствовала теоретическому аналогу.Чтобы свести к минимуму падение напряжения на транзисторе, мы использовали PNP-транзистор FMMT718, который имеет очень низкое значение насыщения коллектор-эмиттер. Это низкое значение Vce позволяет снизить падение напряжения на транзисторах.

Похожие сообщения:

Низковольтное защитное оборудование (HS: 8536) Торговля продуктами, экспортеры и импортеры | OEC

Обзор Эта страница содержит последние торговые данные по низковольтному защитному оборудованию. В 2019 году Низковольтное защитное оборудование было 25-м наиболее продаваемым продуктом в мире с общим объемом продаж 96 долларов США.7Б. В период с 2018 по 2019 год экспорт оборудования для защиты от низкого напряжения снизился на -4,18%, с 101 млрд долларов США до 96,7 млрд долларов США. Торговля Низковольтное оборудование защиты составляет 0,53% от общего объема мировой торговли.

Экспорт В 2019 году крупнейшими экспортерами низковольтного оборудования защиты были Китай (17,8 млрд долларов), Германия (14,4 млрд долларов), США (9,01 млрд долларов), Япония (7,87 млрд долларов) и Франция (4,67 долларов). Б).

Импорт В 2019 году крупнейшими импортерами низковольтного оборудования защиты были США (11 долларов США.6B), Германии (7,98 млрд долларов), Китая (7,54 млрд долларов), Гонконга (6,93 млрд долларов) и Мексики (5,17 млрд долларов).

Тарифы В 2018 году средний тариф на Низковольтное оборудование защиты составил 8,9%, что сделало его 485-м наименьшим тарифом по классификации продуктов HS4.

Страны с самыми высокими импортными тарифами на Низковольтное защитное оборудование – Багамы (40,2%), Иран (30,6%), Мальдивы (28,9%), Алжир (25,6%) и Бермудские острова (25%). .Страны с самыми низкими тарифами – Маврикий (0%), Гонконг (0%), Япония (0%), Сингапур (0%) и Швейцария (0%).

Рейтинг Низковольтное оборудование защиты занимает 259-е место в Индексе сложности продукта (PCI).

Описание Электрическое оборудование для переключения или защиты электрических цепей или для подключения к электрическим цепям или в них, например переключатели, реле, предохранители, ограничители перенапряжения, вилки, розетки, патроны для ламп и распределительные коробки, используемые для управления потоком. электричества через электрическую цепь.Они могут быть изготовлены из самых разных материалов, включая пластик и металл.

защита от перенапряжения SICK

защита от перенапряжения SICK
  • Дом
  • защита от перенапряжения
  • Дом
  • защита от перенапряжения

Тип: защита от перенапряжения

Деталь нет.: 6028890

Обратите внимание: При замене запасных частей всегда соблюдайте инструкции в руководствах к конкретному устройству. Это особенно касается указаний по электробезопасности и взрывозащите. В противном случае существует опасность для жизни и здоровья.

  • Технические детали

  • Таможенные данные

    • Технические характеристики

      Описание Защита от перенапряжения, 24 В постоянного тока, соединительный элемент, подходит для базового элемента 6028881
      Требуемое количество 1 шт.
      Тип Запасная часть
      Запасная часть для
      VISIC620 Блок датчика, соединительный блок