Защита от перенапряжения сети 220в – как реле обеспечивает защиту электроприборов, как защитить сеть 380 В

Содержание

как реле обеспечивает защиту электроприборов, как защитить сеть 380 В

Электрические приборы сегодня присутствуют в каждом доме. Удобство их использования и срок службы напрямую зависит от подаваемого напряжения. Зачастую в бытовых сетях происходят скачки, из-за которых современная электроника выходит из строя. Уберечь её от поломок помогут специальные приборы, такие как реле защиты от перенапряжения, устройство защитного отключения и другие.

Причины и последствия перенапряжения

Сетевое перенапряжение может быть чревато поломкой дорогостоящих приборов. Есть несколько факторов, по которым величина напряжения в сети резко меняется:

  • Неверное соединение проводов в щите. Случается это чаще всего из-за банальной невнимательности. Если подлежащие соединению провода были перепутаны, это приведёт к возникновению скачка.
  • Разрыв нулевого провода. Именно он отвечает за то, чтобы в сети было правильное ровное напряжение без перепадов. Его разрыв непременно повлечёт за собой сбой, при котором один участок электрической цепи получит 220 В, а другой — 380 В.
  • Просчёт операторов. В процессе работы на подстанциях иногда специалисты производят несогласованное регулирование подаваемого тока.
  • Электропитание от одной линии. Такие линии обладают заводом очень большой величины. Когда всё оборудование, подключённое к ней, одномоментно запускается, внутри сети происходит резкий подъём тока.
  • Природные факторы. В первую очередь к таким факторам относится гроза. Разряд молнии, попадающий в линию электропередач, провоцирует импульсное напряжение, достигающее десятков тысяч вольт. Чтобы не нарушить работу электрических приборов в такой ситуации следует в обязательном порядке обесточивать их во время грозы либо заранее позаботиться об установке молниезащиты.

Современные приборы, работающие от электросети, создаются с учётом возникновения небольшого перенапряжения. Если его величина не превосходит 1000 В, то благодаря встроенной защите поломки не случаются. Но в случаях когда перепад превышает установленную норму, наступает короткое замыкание, проявляющееся в перегреве проводов, пробоях изоляционной оболочки, появлению искр. Подобная ситуация весьма опасна для человека.

Стабилизатор тока

Опасность короткого замыкания заключается в том, что оно может вызвать возгорание оборудования и пожар. Именно поэтому защита от перенапряжения сети 220 В, применяемого в быту, чрезвычайно важна. Для этих целей потребители часто используют стабилизатор напряжения. При его выборе необходимо учитывать следующие характеристики:

  • Тип сети. По числу проводов они делятся на однофазные (с двумя проводами) и трехфазные (с четырьмя проводами).
  • Мощность. Перед приобретением стабилизатора следует посчитать суммарную нагрузку всех устройств, которые планируется защитить. Показатель мощности защитного прибора должен на ступень превосходить полученное число.
  • Пусковой ток. Этот параметр необходимо брать во внимание при защите устройств с асинхронными двигателями (насосов, холодильников). Для их бесперебойной работы требуется стабилизирующее устройство с запасом до 25%.

Что касается необходимого числа стабилизирующих приборов, то оно зависит от того, сколько электрических устройств работает в одной сети. Система, состоящая из 2−3 маломощных электроустройств, будет эффективно работать при наличии одного стабилизатора, встроенного в неё на входе.

Если в электросистему входит много мощных постоянно функционирующих дорогостоящих устройств, каждое из них придётся защищать отдельным стабилизатором.

Защитное реле и УЗО

Уменьшенным вариантом стабилизатора является реле защиты от перенапряжения. В зависимости от модификации оно может иметь вид:

  • Удлинителя. Имеет несколько розеток, защищённых одним предохранителем.
  • Электрической вилки (модель «Зубр»). Присоединяется к квартирной розетке, имеет цифровое табло, на котором высвечивается уровень напряжения в данный момент.
  • Отдельного модуля, устанавливающегося на DIN-рейку в электрощитке (модель «Барьер»). Способен обезопасить всю технику в пределах одной квартиры (дома). Для этого его потребуется установить внутри распределительной коробки.

Все модели защитных реле имеют схожую схему работы и могут обезопасить как отдельное устройство (компьютера, телевизора и др.), так и несколько приборов. Преимущество реле перед стабилизатором заключается в быстроте его действия. Скорость срабатывания однофазного прибора в случае перенапряжения в сети 220 В составляет несколько наносекунд.

С помощью трехфазного реле может быть обеспечена защита от перенапряжения в сети 380 вольт, которое используется для работы городского транспорта (метро, трамваев, троллейбусов).

Ещё одна возможность обезопасить домашнюю электросеть — приобрести устройство защитного отключения (УЗО), отличающееся высоким качеством при достаточно невысокой стоимости. В процессе его работы происходит сравнение величины тока в фазном и нулевом проводнике. При наличии высокой разницы между показателями срабатывает автоотключение. Для полноценной защиты от опасных скачков тока УЗО должно дополняться специальным датчиком, сигнализирующим о перенапряжении и отключающим электропитание приборов.

Стабилизация сетей 380 вольт

Электросетям, работающим под напряжением в 380 В, отводится важная роль. С их помощью обеспечивается работа общественного транспорта (троллейбусов, электричек, метро), работают уличные фонари, электрифицируются частные дома в посёлках. Защита высоковольтных линий имеет свои особенности:

  • Должно постоянно отслеживаться распределение электричества по фазам.
  • Для предохранения от перепадов лучше использовать несколько однофазных приборов, чем один трехфазный. Таким образом удастся сохранить электропитание в сети при выходе из строя одного стабилизирующего прибора. Ремонт такого прибора обойдётся дешевле.
  • Работа электродвигателей в высоковольтной системе должна быть защищена трехфазными стабилизирующими устройствами.

При выборе стабилизирующих агрегатов, обеспечивающих защиту высоковольтных систем, следует обращать внимание на их основные характеристики. Как и в случае с сетями 220 вольт, основными параметрами считаются мощность, скорость срабатывания, срок службы, удобный интерфейс, регулировка настроек, стоимость.

220v.guru

Защита от перенапряжения в сети 220 и 380 Вольт

Защита от перенапряжения в сети – очень важное мероприятие, которое позволит не только продлить срок службы электропроводки, но и обеспечит безопасность ее эксплуатации при скачках напряжения. При возникновении перенапряжения в электросети и отсутствии соответствующей защиты выходит из строя бытовая техника, а это, в свою очередь, чревато возгоранием. Далее мы рассмотрим основные причины возникновения перенапряжения, а также устройства, которые позволят уберечь электропроводку от губительных последствий данного явления.

Основные причины возникновения

Чаще всего перенапряжение в сети 220 и 380 Вольт возникает по следующим причинам:

  1. Обрыв нулевого провода на питающей линии. Нулевой проводник обеспечивает симметричность напряжения по фазам питающей сети, при различной величине нагрузки по фазам. В случае обрыва нуля напряжение по каждой из фаз изменяется в зависимости от разницы нагрузок по фазам: на менее нагруженной фазе оно резко возрастает вплоть до 300 и более Вольт, а на более загруженной фазе резко падает до значений ниже 200 В. Поэтому без защиты от перенапряжений при высоком напряжении бытовая техника может выйти из строя практически сразу, а при низком напряжении электроприборы будут работать некорректно. При этом высока вероятность выхода из строя электроприборов, в конструкции которых есть электродвигатели (компрессоры).
  2. Ошибка при подключении в электрощите. Если в доме выполнен трехфазный ввод и при подключении однофазной линии проводки 220 В ошибочно был подключен вместо нуля проводник второй фазы, то в розетке вместо 220 В появится 380 В.
  3. Возникло импульсное напряжение вследствие попадания грозы в ЛЭП (именно поэтому рекомендуют отключать всю бытовую технику во время грозы, а также делать молниезащиту на участке).
  4. Коммутационные перенапряжения. В случае возникновения аварийных ситуаций в электрической сети: короткого замыкания на смежных линиях, скачкообразного изменения нагрузки из-за отключения (подключения) участка электрической сети, аварий на электростанциях, могут наблюдаться перепады напряжения, которые, в зависимости от величины, могут негативно повлиять на работу домашних электроприборов.

Наглядный видео пример действия перенапряжения

Как Вы видите, на перегрузку в однофазной и трехфазной сети влияет множество факторов, в том числе и природные. Поэтому домашнюю проводку нужно обязательно защитить, чтобы не стать жертвой несчастного случая.

Устройства для защиты от перенапряжения

В современном мире существует множество различных устройств для защиты от перенапряжения в сети, которые несложно подключить своими руками. Рассмотрим устройства, которые применяют для защиты от нежелательных перепадов напряжения.

Среди наиболее полезных для применения в доме и квартире выделяют:

  1. Стабилизатор. Данное устройство осуществляет преобразование (стабилизацию) входного напряжения в напряжение заданной величины. Стабилизатор актуально ставить в том случае, если в сети наблюдаются постоянные перепады напряжения. Следует учитывать, что стабилизатор работает только при напряжении, которое не выходит за пределы допустимых значений, которые указываются в его технических характеристиках. В случае возникновения скачков напряжения выше допустимых границ, стабилизатор может выйти из строя. Поэтому необходимо выбирать стабилизатор напряжения со встроенной защитой от перенапряжения, а при отсутствии такой функции устанавливать для защиты реле напряжения. О том, как подключить стабилизатор напряжения, мы рассказывали в соответствующей статье!
  2. Реле напряжения. Данное защитное устройство, в отличие от СН, не осуществляет преобразование входного напряжения. Реле напряжения предназначено для отключения домашней проводки от электрической сети в случае возникновения нежелательных перепадов напряжения (ГОСТ 3699-82). На реле устанавливают границы минимального и максимального напряжения, и в случае возникновения скачка выше установленных пределов, реле обесточивает домашнюю электропроводку, тем самым защищая домашние электроприборы. РН может быть выполнено в виде модульного аппарата для установки в распределительный щиток (всем известный Барьер), встроенное в удлинитель (сетевой фильтр с соответствующей функцией), а также в виде электрической вилки (к примеру, ЗУБР). О том, как выбрать реле напряжения мы рассказывали в отдельной статье.
  3. Устройство защиты многофункциональное (УЗМ). Данное устройство может быть установлено в распределительный щиток вместо реле напряжения. УЗМ выполняет несколько функций, одной из которых является защита электрической сети от перепадов напряжения. О том, как работает УЗМ-51М и как его подключить, мы рассказали в отдельной статье.
  4. Источник бесперебойного питания. Опять-таки, на своем опыте подтвержу его эффективность. Более десяти раз ИБП спасал мой компьютер от резкого выключения при срабатывании реле напряжения в электрощите. «Бесперебойник» имеет небольшую стоимость, поэтому купить такой вариант защиты от перенапряжения при наличии ПК крайне необходимо. К тому же большинство современных источников бесперебойного питания имеют встроенный стабилизатор, что особенно актуально для компьютерной техники, которая больше из всей бытовой техники подвержена негативному воздействию перепадов. О том, как выбрать ИБП, читайте в нашей статье: https://samelectrik.ru/sovety-po-vyboru-besperebojnika.html.
  5. УЗИП. От импульсных напряжений (возникают во время грозы и могут вывести технику из строя) можно защититься, установив в доме УЗИП. Данный аппарат является достаточно популярным на сегодняшний день и широко применяется как в быту, так и на производстве. Более подробно о том, что такое УЗИП и как он работает, мы рассказали в отдельной статье, с которой настоятельно рекомендуем ознакомиться. Следует отметить, что УЗИП могут также называть модульными ограничителями перенапряжения (ОПН).
  6. Обращение в энергоснабжающую службу. Энергоснабжающая организация в соответствии с договором по электроснабжению обязана обеспечивать нормальный (в пределах допустимых норм) уровень напряжения электрической сети в соответствии с ГОСТ 29322-2014 (IEC 60038:2009). Поэтому если у вас постоянно чрезмерно низкое или, наоборот, повышенное напряжение, то нужно обращаться в снабжающую организацию с соответствующей жалобой. Наиболее эффективно обращаться с коллективной жалобой, так как одиночные обращения, как правило, игнорируют. Обращение в снабжающую организацию — единственный способ решения проблемы в том случае, если у вас наблюдаются сильные перепады напряжения, так как в таком режиме любой СН быстро выйдет из строя.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

После установки необходимых устройств может быть обеспечена защита от перенапряжения в сети 220 и 380 Вольт, после чего можно не беспокоиться о том, что пострадает бытовая техника, электропроводка и главное – Ваша жизнь в опасной ситуации.

Рекомендуем прочитать:

samelectrik.ru

Устройство защиты от перенапряжения своими руками, схема

В статье мы расскажем как собрать самодельное устройство защиты от перенапряжения, объясним принцип работы и покажем схему данного устройства.

Сетевое перенапряжение

Скачок напряжения сети переменного тока может быть определен как мгновенное повышение напряжения, которое обычно может происходить из-за колебаний напряжения. Такие пики напряжения могут сохраняться в течение очень короткого промежутка времени, но все же могут быть смертельно опасными для бытового электрического и электронного оборудования.

Повышение напряжения в соответствии с законом Ома вынудит устройство или подключенную нагрузку потреблять эквивалентную избыточную величину тока за пределами диапазона допуска конкретного гаджета. Таким образом, всплеск, вызванный скачком напряжения, может мгновенно и навсегда повредить ценные приборы.

Обычно электронные устройства, такие как телевизоры, музыкальные системы и т. Д., Как правило, подвержены опасности таких скачков напряжения. Несмотря на то, что они в основном оснащены встроенными системами защиты, такими как стабилизатор / регулятор напряжения SMPS, предохранители и т. Д., Внезапный толчок, вызванный всплеском, возникающим из-за скачка напряжения, может привести к сгоранию критических частей. Также весьма тревожно, что дорогие электромеханические устройства, такие как холодильники, кондиционеры, водяные насосы и т. Д., Подвергаются еще большему риску при таких нарушениях питания. Эти устройства могут быть весьма уязвимы к сбоям напряжения и обычно «не любят» резких изменений входных напряжений и токов. Скачок напряжения не только вызывает ухудшение состояния компонентов машины, но иногда может даже мгновенно обжечь обмотки соответствующего двигателя. Более того, ремонт такого оборудования довольно дорогостоящий, и можно даже предпочесть покупку нового, чем ремонт при высоких затратах. Короче говоря, последствия могут привести к ненужным потерям денег и времени.

На рынке может быть несколько сложных сетевых устройств защиты от перенапряжений; однако вышеупомянутая ситуация может быть эффективно решена даже с помощью очень простой концепции.

Описание цепи

ВНИМАНИЕ: ЦЕПЬ, ПРЕДСТАВЛЕННАЯ ЗДЕСЬ, НАХОДИТСЯ НА ПОТЕНЦИАЛЕ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ЧРЕЗВЫЧАЙНО ОПАСНО ДОТРАГИВАТЬСЯ К ПЕРЕКЛЮЧЕННОЙ ПОЗИЦИИ. РЕКОМЕНДУЕТСЯ ИСПОЛЬЗОВАТЬ ДЕРЕВЯННУЮ ПЛАНКУ ПОД ВАШИМИ НОГАМИ. Новички, пожалуйста, держитесь подальше.

Мы знаем, что свойство металлического железа проводить электричество не очень хорошее по сравнению с некоторыми другими электрическими проводниками, такими как алюминий и медь.

Теперь, если мы пойдем по закону Ома, мы обнаружим, что сопротивление проводника и тока, проходящего через него, прямо пропорционально приложенному напряжению, подразумевается, что по мере увеличения напряжения ток также увеличивается, а в случае железа в качестве проводника — увеличение тока через это заставило бы его действовать пропорциональное количество растущего сопротивления против него. Это противоположное сопротивление железа поможет устранить опасные всплески внезапных колебаний напряжения.

Давайте подробно разберемся в схеме и в ее деталях.

Обращаясь к схеме, C1, R1, D1, D2 и D3 вместе образуют твердотельный источник питания без трансформатора. D1 и D2 эффективно удаляют переходные напряжения входного напряжения, создавая безопасное напряжение для предыдущих электронных компонентов. C2 делает все остальное, отфильтровывая любые остаточные помехи переменного тока.

Вышеупомянутое напряжение подается в цепь, в основном включающую транзисторы T1, T2 и симистор TR1 в качестве активных компонентов.

Предварительная установка P1 регулируется таким образом, что T1 просто начинает проводить с пороговым значением напряжения (DC), которое может быть эквивалентным приложенному сетевому переменному току. Например, предположим, что при нормальном напряжении вход постоянного тока в Т1 составляет около 9 вольт, увеличение на 25% сети переменного тока приведет к увеличению потенциала постоянного тока пропорционально примерно до 11,25. Таким образом, здесь P1 можно установить так, чтобы T1 просто проводил на этом пороге.

Обычно, пока T1 выключен, T2 остается включенным и подает требуемое напряжение затвора на симистор TR1. В течение этого времени сетевое напряжение к приборам подается через TR1, и оно получает полное нормальное входное напряжение без каких-либо ограничений, R5 остается неактивным.

Если случайно входной сигнал выходит за пределы установленного порога, как объяснено выше, T1 проводит, T2 выключается и симистор так же выключается, отключая нормальное неограниченное электропитание переменного тока для нагрузки или приборов. Однако в этот момент происходит интересная вещь: нагрузку начинает получать переменный ток через R5, который является резистором низкого значения, состоящим из железной катушки.

Внедрение R5 мгновенно устраняет опасно растущее напряжение, гарантируя, что приборы не будут повреждены. Также переход плавный, безопасный и без перерывов.

В соответствии с максимальной нагрузкой на дом, R5 должен иметь соответствующие размеры.

Эта простая и недорогая конструкция цепи сетевого фильтра очень эффективна, безопасна, проста в сборке и поэтому должна быть встроена в каждый дом.

meanders.ru

УЗИП для частного дома - защита от перенапряжения при ударе молнии

Импульсным перенапряжением называется кратковременное резкое возрастание напряжения в электрической сети. Несмотря на то, что длится этот скачок совсем недолго (доли секунды), он чрезвычайно опасен как для линии, так и для подключенных к ней потребителей энергии. Чтобы не допустить повреждения кабеля и электрических приборов, используют устройства защиты от импульсных перенапряжений. В этом материале мы поговорим о том, что представляют собой эти приборы, каких видов они бывают, а также рассмотрим, как подключаются УЗИП для частного дома.

Причины возникновения импульсного перенапряжения

ИП может происходить как по технологическим, так и по природным причинам. В первом случае резкий перепад разности потенциалов происходит, когда на трансформаторной подстанции, откуда идет питание конкретной линии, возникает коммутационная перегрузка. Импульсное перенапряжение, вызванное природными причинами, случается, когда во время грозы мощный разряд бьет в молниезащиту сооружения или линию электрической передачи. Независимо от того, чем вызван скачок напряжения, он может быть очень опасен для домашней электросети, поэтому для эффективной защиты от него требуется подключить УЗИП.

Для чего нужно подключение УЗИП?

Для того чтобы защитить электрическую сеть и подключаемые к ней приборы от мощных импульсов тока и резких перепадов напряжения, устанавливается устройство для защиты линии и оборудования от импульсных напряжений (сокращенное обозначение – УЗИП). Оно включает в себя один или несколько нелинейных элементов. Подключение внутренних компонентов защитного устройства может производиться как в определенной комбинации, так и различными способами (фаза-фаза, фаза-земля, фаза-ноль, ноль-земля). В соответствии с требованиями ПУЭ установка УЗИП для защиты сети частного дома или другого отдельного здания производится только после вводного автомата.

Наглядно про УЗИП на видео:

Разновидности УЗИП

Эти аппараты могут иметь один или два ввода. Включение как одновводных, как и двухвводных устройств всегда производится параллельно цепи, защиту которой они обеспечивают. В соответствии с типом нелинейного элемента УЗИП подразделяются на:

  • Коммутирующие.
  • Ограничивающие (ограничитель сетевого напряжения).
  • Комбинированные.

Коммутирующие защитные аппараты

Для коммутирующих устройств, находящихся в обычном рабочем режиме, характерно высокое сопротивление. Когда происходит резкое увеличение напряжения в электрической сети, сопротивление прибора мгновенно падает до минимального значения. Основой коммутирующих аппаратов защиты сети являются разрядники.

Ограничители сетевого перенапряжения (ОПН)

Ограничитель импульсных перенапряжений также характеризуется высоким сопротивлением, плавно снижающимся по ходу возрастания напряжения и повышения силы электротока. Постепенное снижение сопротивления – это отличительная черта ограничивающих УЗИП. Ограничитель сетевого перенапряжения (ОПН) имеет в своей конструкции варистор (так называется резистор, величина сопротивления которого находится в нелинейной зависимости от воздействующего на него напряжения). Когда параметр напряжения становится больше порогового значения, происходит резкое увеличение силы тока, проходящего через варистор. После сглаживания электрического импульса, вызванного коммутационной перегрузкой или ударом молнии, ограничитель сетевого напряжения (ОПН) возвращается в обычное состояние.

Комбинированные УЗИП

Устройства комбинированного типа сочетают в себе возможности коммутационных и ограничивающих аппаратов. Они могут как коммутировать разность потенциалов, так и ограничивать ее возрастание. При необходимости комбинированные приборы могут выполнять одновременно обе этих задачи.

Классы устройств защиты от ИП

Существует 3 класса аппаратов защиты линии от перенапряжения:

Устройства I класса устанавливаются в распределительном щите или вводном шкафу и позволяют обеспечить защиту сети от импульсного перенапряжения, когда электрический разряд во время грозы попадает в ЛЭП или молниезащиту.

Приборы II класса обеспечивают дополнительную защиту электрической линии от повреждений в результате удара молнии. Устанавливают их и в том случае, когда необходимо защитить сеть от импульсных скачков напряжения, вызванных коммутацией. Их монтируют после устройств I класса.

Рассказ про УЗИП от специалистов компании ABB на видео:

Аппараты класса I+II обеспечивают защиту отдельных жилых домов. Монтаж этих приборов производится неподалеку от электрического оборудования. Они играют роль последнего барьера, сглаживающего остаточное перенапряжение, которое, как правило, имеет незначительную величину. Устройства этого класса выпускаются в виде специализированных электророзеток или вилок.

Одновременная установка устройств I, II и III класса гарантирует трехступенчатую защиту электрической линии от импульсных скачков напряжения.

Как подключить УЗИП в частном доме?

Защитные устройства могут включаться в бытовые электрические сети (с одной фазой и рабочим напряжением 220В) и в токоведущие линии промышленных объектов (три фазы, 380В). Исходя из этого, полная схема подключения УЗИП предусматривает воздействие соответствующего показателя напряжения.

Если роль заземления и нулевого проводника играет общий кабель, то в такой схеме устанавливается простейшее одноблоковое УЗИП. Подключается он следующим образом: фазная жила, подключенная ко входу защитного устройства – выходной кабель, соединенный с общим защитным проводником – защищаемые электроприборы и оборудование.

В соответствии с требованиями современной электротехнической документации нулевой и заземляющий проводники объединяться не должны. Исходя из этого, в новых домах для защиты цепи от скачков напряжения применяется двухмодульный аппарат, имеющий три отдельных клеммы: фаза, нейтраль и заземление.

В таком случае включение устройства в схему производится по другому принципу: фаза и нулевой кабель идут на соответствующие клеммы УЗИП, а затем шлейфом на подсоединенное к линии оборудование. Заземляющий проводник также подключается к своей клемме защитного прибора.

В каждом из описанных случаев чрезмерный ток, возникающий при перенапряжении, уходит в землю по кабелю заземления или общему защитному проводу, не оказывая воздействия на линию и подсоединенное к ней оборудование.

Ответы на вопросы про УЗИП на видео:

Заключение

В этой статье мы рассказали о том, что же такое УЗИП, каких типов бывают эти устройства и как они классифицируются, а также разобрались с тем, как производится их подключение к защищаемой цепи. Напоследок нужно сказать, что использование этого прибора, в отличие от УЗО, в линии электропитания частного дома обязательным не является. Включение его в сеть в каждом отдельно взятом случае требует учета индивидуальной заземляющей схемы, а также размещения ГЗШ и вводного автомата. Поэтому перед покупкой и установкой УЗИП настоятельно рекомендуем воспользоваться консультацией опытного электрика.

yaelectrik.ru

Схема подключения УЗИП - 3 ошибки и правила монтажа. Защита от импульсных перенапряжений.

Для всех нас стало нормой, что в распределительных щитках жилых домов, обязательна установка вводных автоматических выключателей, модульных автоматов отходящих цепей, УЗО или дифф.автоматов на помещения и оборудование, где критичны возможные утечки токов (ванные комнаты, варочная панель, стиральная машинка, бойлер).

Помимо этих обязательных коммутационных аппаратов, практически никому не требуется объяснять, зачем еще нужно реле контроля напряжения.

УЗИП или реле напряжения

Устанавливать их начали все и везде. Грубо говоря оно защищает вас от того, чтобы в дом не пошло 380В вместо 220В. При этом не нужно думать, что повышенное напряжение попадает в проводку по причине недобросовестного электрика.

Вполне возможны природные явления, не зависящие от квалификации электромонтеров. Банально упало дерево и оборвало нулевой провод.

Также не забывайте, что любая ВЛ устаревает. И даже то, что к вашему дому подвели новую линию СИПом, а в доме у вас смонтировано все по правилам, не дает гарантии что все хорошо на самой питающей трансформаторной подстанции – КТП.

Там также может окислиться ноль на шинке или отгореть контакт на шпильке трансформатора. Никто от этого не застрахован.

Именно поэтому все новые электрощитки уже не собираются без УЗМ или РН различных модификаций.

Что же касается устройств для защиты от импульсных перенапряжений, или сокращенно УЗИП, то у большинства здесь появляются сомнения в необходимости их приобретения. А действительно ли они так нужны, и можно ли обойтись без них?

Подобные устройства появились достаточно давно, но до сих пор массово их устанавливать никто не спешит. Мало кто из рядовых потребителей понимает зачем они вообще нужны.

Первый вопрос, который у них возникает: ”Я же поставил реле напряжения от скачков, зачем мне еще какой-то УЗИП?”

Запомните, что УЗИП в первую очередь защищает от импульсов вызванных грозой. Здесь речь идет не о банальном повышении напряжения до 380В, а о мгновенном импульсе в несколько киловольт!

Никакое реле напряжения от этого не спасет, а скорее всего сгорит вместе со всем другим оборудованием. В то же самое время и УЗИП не защищает от малых перепадов в десятки вольт и даже в сотню.

Например устройства для монтажа в домашних щитках, собранные на варисторах, могут сработать только при достижении переменки до значений свыше 430 вольт.

Поэтому оба устройства РН и УЗИП дополняют друг друга.

Защита дома от грозы

Гроза это стихийное явление и просчитать его до сих пор не особо получается. При этом молнии вовсе не обязательно попадать прямо в линию электропередач. Достаточно ударить рядышком с ней.

Даже такой грозовой разряд вызывает повышение напряжения в сети до нескольких киловольт. Кроме выхода из строя оборудования это еще чревато и развитием пожара.

Даже когда молния ударяет относительно далеко от ВЛ, в сетях возникают импульсные скачки, которые выводят из строя электронные компоненты домашней техники. Современный электронный счетчик с его начинкой, тоже может пострадать от этого импульса.

Общая длина проводов и кабелей в частном доме или коттедже достигает нескольких километров.

Сюда входят как силовые цепи так и слаботочка:

  • интернет 
  • TV 
  • видеонаблюдение 
  • охранная сигнализация 

Все эти провода принимают на себя последствия грозового удара. То есть, все ваши километры проводки получают гигантскую наводку, от которой не спасет никакое реле напряжения.

Единственное что поможет и защитит всю аппаратуру, стоимостью несколько сотен тысяч, это маленькая коробочка называемая УЗИП.

Монтируют их преимущественно в коттеджах, а не в квартирах многоэтажек, где подводка в дом выполнена подземным кабелем. Однако не забывайте, что если ваше ТП питается не по кабельной линии 6-10кв, а воздушной ВЛ или ВЛЗ (СИП-3), то влияние грозы на среднем напряжении, также может отразиться и на стороне 0,4кв.

Поэтому не удивляйтесь, когда в грозу в вашей многоэтажке, у многих соседей одновременно выходят из строя WiFi роутеры, радиотелефоны, телевизоры и другая электронная аппаратура.

Молния может ударить в ЛЭП за несколько километров от вашего дома, а импульс все равно прилетит к вам в розетку. Поэтому не смотря на их стоимость, задуматься о покупке УЗИП нужно всем потребителям электричества.

Цена качественных моделей от Шнайдер Электрик или ABB составляет примерно 2-5% от общей стоимости черновой электрики и средней комплектации распредщитка. В общей сумме это вовсе не такие огромные деньги.

На сегодняшний день все устройства от импульсных перенапряжений делятся на три класса. И каждый из них выполняет свою роль.

Модуль первого класса гасит основной импульс, он устанавливается на главном вводном щите.

После погашения самого большого перенапряжения, остаточный импульс принимает на себя УЗИП 2 класса. Он монтируется в распределительном щитке дома.

Если у вас не будет устройства I класса, высока вероятность что весь удар воспримет на себя модуль II. А это может для него весьма печально закончится.

Поэтому некоторые электрики даже отговаривают заказчиков ставить импульсную защиту. Мотивируя это тем, что раз вы не можете обеспечить первый уровень, то не стоит вообще на это тратить денег. Толку не будет.

Однако давайте посмотрим, что говорит об этом не знакомый электрик, а ведущая фирма по системам грозозащиты Citel:

То есть в тексте прямо сказано, класс II монтируется либо после класса 1, либо КАК САМОСТОЯТЕЛЬНОЕ УСТРОЙСТВО.

Третий модуль защищает уже непосредственно конкретного потребителя.

Если у вас нет желания выстраивать всю эту трехступенчатую защиту, приобретайте УЗИП, которые изначально идут с расчетом работы в трех зонах 1+2+3 или 2+3.

Такие модели тоже выпускаются. И будут наиболее универсальным решением для применения в частных домах. Однако стоимость их конечно отпугнет многих.

Схема электрощита с УЗИП

Схема качественно укомплектованного с точки зрения защиты от всех скачков и перепадов напряжения распределительного щита, должна выглядеть примерно следующим образом.

На вводе перед счетчиком - вводной автоматический выключатель, защищающий прибор учета и цепи внутри самого щитка. Далее счетчик.

Между счетчиком и вводным автоматом - УЗИП со своей защитой. Электроснабжающая организация конечно может запретить такой монтаж. Но вы можете обосновать это необходимостью защиты от перенапряжения и самого счетчика.

В этом случае потребуется смонтировать всю схемку с аппаратами в отдельном боксе под пломбой, дабы предотвратить свободный доступ к оголенным токоведущим частям до прибора учета.

Однако здесь остро встанет вопрос замены сработавшего модуля и срыва пломб. Поэтому согласовывайте все эти моменты заранее.

После прибора учета находятся:

  • реле напряжения УЗМ-51 или аналог 
  • УЗО 100-300мА – защита от пожара
  • УЗО или дифф.автоматы 10-30мА – защита человека от токов утечки
  • простые модульные автоматы

Если с привычными компонентами при комплектации такого щитка вопросов не возникает, то на что же нужно обратить внимание при выборе УЗИП?

На температуру эксплуатации. Большинство электронных видов рассчитано на работу при окружающей температуре до -25С. Поэтому монтировать их в уличных щитках не рекомендуется.

Второй важный момент это схемы подключения. Производители могут выпускать разные модели для применения в различных системах заземления.

Например, использовать одни и те же УЗИП для систем TN-C или TT и TN-S уже не получится. Корректной работы от таких устройств вы не добьетесь.

Схемы подключения

Вот основные схемы подключения УЗИП в зависимости от исполнения систем заземления на примере моделей от Schneider Electric. Схема подключения однофазного УЗИП в системе TT или TN-S:

Здесь самое главное не перепутать место подключения вставного картриджа N-PE. Если воткнете его на фазу, создадите короткое замыкание.

Схема трехфазного УЗИП в системе TT или TN-S:

Схема подключения 3-х фазного устройства в системе TN-C:

На что нужно обратить внимание? Помимо правильного подключения нулевого и фазного проводников немаловажную роль играет длина этих самых проводов.

От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!

А вот подобные схемы для УЗИП от ABB OVR. Однофазный вариант:

Трехфазная схема:

Давайте пройдемся по некоторым схемкам отдельно. В схеме TN-C, где мы имеем совмещенные защитный и нулевой проводники, наиболее распространенный вариант решения защиты – установка УЗИП между фазой и землей.

Каждая фаза подключается через самостоятельное устройство и срабатывает независимо от других.

В варианте сети TN-S, где уже произошло разделение нейтрального и защитного проводника, схема похожа, однако здесь монтируется еще дополнительный модуль между нулем и землей. Фактически на него и сваливается весь основной удар.

Именно поэтому при выборе и подключении варианта УЗИП N-PE, указываются отдельные характеристики по импульсному току. И они обычно больше, чем значения по фазному.
Помимо этого не забывайте, что защита от грозы это не только правильно подобранный УЗИП. Это целый комплекс мероприятий.

Их можно использовать как с применением молниезащиты на крыше дома, так и без нее.

Особое внимание стоит уделить качественному контуру заземления. Одного уголка или штыря забитого в землю на глубину 2 метра здесь будет явно не достаточно. Хорошее сопротивление заземления должно составлять 4 Ом.

Принцип действия

Принцип действия УЗИП основан на ослаблении скачка напряжения до значения, которое выдерживают подключенные к сети приборы. Другими словами, данное устройство еще на вводе в дом сбрасывает излишки напряжения на контур заземления, тем самым спасая от губительного импульса дорогостоящее оборудование.

Определить состояние устройства защиты достаточно просто:

  • зеленый индикатор – модуль рабочий
  • красный – модуль нужно заменить

При этом не включайте в работу модуль с красным флажком. Если нет запасного, то лучше его вообще демонтировать.

УЗИП это не всегда одноразовое устройство, как некоторым кажется. В отдельных случаях модели 2,3 класса могут срабатывать до 20 раз!

Автоматы или предохранители перед УЗИП

Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.

Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.

В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.

Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.

Запомните, что этот автомат защищает в первую очередь не разрядник, а именно вашу сеть.

При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.

Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.

Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.



Поэтому устанавливать УЗИП после автомата, гораздо хуже, чем после предохранителей.

Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.

Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.

Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.

Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.

Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.

Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.

Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:

Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.

И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.

Ошибки при подключении

1Самая распространенная ошибка - это установка УЗИП в электрощитовую с плохим контуром заземления.

Толку от такой защиты не будет никакого. И первое же “удачное” попадание молнии, сожгет вам как все приборы, так и саму защиту.

2Не правильное подключение исходя из системы заземления.

Проверяйте техдокументацию УЗИП и проконсультируйтесь с опытным электриком ответственным за электрохозяйство, который должен быть в курсе какая система заземления используется в вашем доме.

3Использование УЗИП не соответствующего класса.

Как уже говорилось выше, есть 3 класса импульсных защитных устройств и все они должны применяться и устанавливаться в своих щитовых.

Статьи по теме

domikelectrica.ru

Защита от перенапряжения в сети 220 и 380

Автор Исхаков Максим На чтение 4 мин. Просмотров 31 Опубликовано

Излишнему напряжению, появляющемуся в электрической сети, обычно сопутствует поломка бытовой электротехники. Помимо прочего слишком большое напряжение способно вызвать такие отрицательные последствия как возгорание, поражение потребителей электрическим током, вплоть до летального исхода. В этой статье будет дана характеристика приспособлениям, использующимся для защиты от перенапряжения в электросети 220 и 380 вольт.

Достаточно часто в жилищах частного сектора и многоэтажных домов есть возможность увидеть, что напряжение в электрических розетках немного не совпадает с нормальной величиной в 220 Вольт. На это оказывают влияние разнообразные причины и степень подобных несовпадений в величине напряжения способна изменяться от 170 – 380 Вольт до нескольких тысяч Вольт.

Очень легко понять, что подобные скачки напряжения нередко являются причиной поломки домашних электрических приборов. Очевидно, что чересчур низкое напряжение способно вызвать нестабильное функционирование электрической техники, а чрезмерно высокое напряжение – к ее поломке. В первую очередь здесь речь идет о таком оборудовании как ноутбуки и стационарные компьютеры, холодильники, стиральные машины, пылесосы и проч.

Излишним напряжением считается такая величина создавшегося напряжения, которая превосходит максимальный показатель разрешенного напряжения.


Федеральным нормативом качества электроэнергии закреплены нормальные величины изменения напряжения в месте присоединения пользователей электросети. Имеются термины разрешенного и максимально разрешенного показателя напряжения. Данные характеристики эквивалентны плюс/минус 5% и плюс/минус 10% от стандартной величины напряжения соответственно и в местах общего подключения пользователей.

Иными словами, нормальным принято считать напряжение:

• для электросети с одной фазой – в промежутке от 198 до 242 Вольт;
• для электросети с 3 фазами – от 342 до 418 Вольт.

Причины появления перенапряжения в сети

1. Наиболее часто встречающейся причиной возникновения излишнего напряжения для домашних приборов становится повреждение нулевого провода (обозначается буквой «N»).
Нулевое соединение при неравномерных нагрузках уравновешивает напряжения фаз у пользователя электрической энергией. При разрыве или перегорании нулевого соединения электричество станет перемещаться между фазами. В результате кому-то из пользователей, подключенных к электросети, достанется очень большое напряжение (до 380 Вольт включительно), а у кого-то, наоборот, напряжения будет не хватать.


 2. Неверное либо ошибочное присоединение в электрической щитовой. Речь идет о ситуации, когда взамен нулевого соединения, было присоединено фазное, причем в жилище поступает не 220 Вольт, а 380 Вольт.
3. В период сильного природного ненастья, при грозе, разряд молнии, попавший в линию электропередач способен вызвать скачкообразные изменения в напряжении, которые по размеру способны составлять величину до нескольких тысяч Вольт.


4. Перераспределение напряжения на подстанциях энергетических систем.

Защита от перенапряжения в сети

Использование приспособлений по выравниванию напряжения защищает электросеть потребителя от скачков напряжения, исключая опасность поражения электрическим током при использовании электрических бытовых приборов. Львиная доля стабилизаторов обладают экраном, где визуально отражается напряжение электросети, изменения в перепадах напряжения и проч. Устройства включают опцию управления напряжением, в случае, если величина напряжения нарушает границы диапазона управления приспособления. В частности, если показатель величины окажется меньше 150 Вольт или больше 260 Вольт, то устройство прекращает работу и отключает пользователя от электросети. После того как напряжение электросети вернется в установленный диапазон, приспособление опять запускается.

Переключатель напряжения ограждает и выключает домашние электроприборы при появлении ненормальных скачков напряжения и самостоятельно подключает пользователей после возвращения к нормальным показателям. Переключатель активно применяется для обеспечения сохранности бытовой техники от негативных последствий излишнего напряжения. Вполне разумно применять устройство в жилых помещениях многоэтажных домов, поскольку в подобных сетях зачастую появляются серьезные скачки напряжения по причине повреждения нулевого соединения. Переключатель по своей технической конструкции пригоден для осуществления защиты как одного определенного пользователя, так и для защиты всего многоэтажного строения или частного дома. При ограждении 1 или нескольких пользователей, переключатель присоединяется в порядке прибор – переключатель – розетка. Иными словами, техника присоединяется к переключателю, а потом уже сам переключатель вставляется в электрическую розетку. Для сохранения от чрезмерного напряжения всего коттеджа, избы или жилого помещения в многоэтажном доме, переключатель монтируется на DIN-рейку в щитке распределения электрической энергии.

Совместное применение сенсора очень большого напряжения и устройства защитного отключения. Подобный метод противодействия чересчур высокому напряжению стал весьма популярен за счет доступной стоимости. Суть функционирования достаточно легка: датчик повышенного напряжения управляет существованием напряжения электросети, устройство защитного отключения обесточивает сеть при появлении излишнего напряжения.

На видео: Как защить свой дом от обрыва нуля и перенапряжения в сети

bezopasnik.info

Защита от перенапряжения - 90 фото бытовых приборов стабилизации и защиты

Современные бытовые приборы оснащены крайне чувствительной электроникой, поэтому перепады напряжения могут легко вывести их из строя. Полностью устранить перепады невозможно, защиту от перенапряжений сети обеспечивают специальные устройства, выбор которых огромен.

Необходимо разобраться с причинами появления перепадов напряжения, последствиями сбоев, уяснить принцип работы защитных устройств.

Природа перепадов напряжения

Перепады представляют собой непродолжительные изменения амплитуды напряжения, которое затем восстанавливается до значений, близких к изначальному.  Продолжительность такого изменения составляет доли секунды, однако его достаточно, чтобы произошел сбой в работе.

Выделяют следующие причины возникновения перепадов:

  • Грозовые разряды, дающие высокое перенапряжение, могут стать причиной пожара. Многоэтажные дома в плане защиты от подобных явлений защищены благодаря поставщикам электроэнергии. В частном доме систему защиты необходимо будет продумать самостоятельно, выполнив все работы своими руками или вызвав специалистов.
  • Скачки, вызванные коммутационными процессами при запуске/отключении потребителей с большой мощностью.
  • Электростатическая индукция.
  • Подключение мощного оборудования определенного типа (сварочный аппарат, электродвигатель коллекторного типа).

Существуют явления долгосрочного повышения или понижения напряжения. Первое возникает при аварии, когда по какой-либо причине обрывается нулевой провод, повышая напряжение до 380 В. При такой аварии ни один прибор справиться со сбоем не сумеет, придется ждать завершения восстановительных работ.

Долгосрочное понижение характерно для сельской местности или на дачных участках. Объясняется это явление маломощным трансформатором, установленным на подстанции.

В чем заключается опасность перепадов?

Существующие нормы говорят о возможных отклонениях в большую и меньшую стороны на 10% от номинального напряжения. Однако скачки могут дать более существенные расхождения.

Блоки питания, которыми оснащена некоторая бытовая техника, перегружаются, что может вывести их из строя или значительно сократить срок службы. Существует и вероятность возникновения пожара. Поэтому установка устройства для защиты от перенапряжения будет разумным шагом.

Когда напряжение понижается, это также сулит неприятности. Чувствительными являются холодильные компрессоры, блоки питания импульсного типа.

Защитные устройства

Можно выделить несколько разновидностей устройств защиты. Отличаются они выполнением разных функций и разной стоимостью.

Сетевой фильтр является самым простым и недорогим средством защиты бытовой техники с небольшой мощностью. Он превосходно справляется с бросками, достигающими 450 В.

Основным элементом защиты сетевика является варистор – полупроводник, способный менять сопротивление в зависимости от возникающего напряжения. Именно этот элемент фильтра возьмет на себя удар при серьезном скачке.

Кроме того, фильтр способен защитить технику от помех высокой частоты. Помимо указанных защитных узлов фильтр оснащен плавким предохранителем, который сработает при коротком замыкании.

В качестве защиты электросети на разных ее уровнях – от перехода с воздушной линии на кабельную до конкретных приборов внутри дома – используют модульные ограничители перенапряжения. Являясь по сути разрядником для защиты от перенапряжений, ограничитель в качестве главного рабочего органа имеет все тот же варистор.

Когда значения напряжения выходят за допустимые пределы срабатывает варистор; модуль, в котором он расположен, можно заменить после выхода его из строя.

Стабилизатор способен выровнять скачущее напряжение в соответствии с номинальным. Если установить рамки, к примеру, в диапазоне от 200 до 250 В, то качественное устройство будет выдавать необходимые 220 В до тех пор, пока напряжение не выйдет за пределы указанного диапазона. Прибор отключит подачу питания до тех пор, пока напряжение не вернется в заданные границы.

Для сельской местности монтаж стабилизатора иногда является единственным средством повышения напряжения до необходимых значений. Стабилизаторы бывают двух видов:

  • линейные – к ним можно подключить несколько бытовых приборов;
  • магистральные – монтируются на входе электрической сети в дом или квартиру.

Источники бесперебойного питания продолжают подачу напряжения к подключенным приборам даже после срабатывания защитной системы или отключения электроэнергии. Время работы будет зависеть от аккумулятора и мощности потребителей.

Зачастую к ним подключают компьютеры с целью избежать потери данных во время внезапного сбоя. Среди современных устройств зарекомендовали себя модели, способные через USB-порт контролировать редактор текстов (например, сохранить файл) в случае возникновения внештатной ситуации.

Устройства защиты от импульсных перенапряжений в отличие от вышеперечисленных средств превосходно справляются с высоким напряжением. На основе таких устройств можно организовать защиту всех внутренних линий электропередачи частного дома.

Защитное реле позволяет бытовым приборам уцелеть при коммутационных импульсах, пониженном напряжении.

Импульсы, которые могут возникнуть из-за грозы, превосходят способности этого устройства. Поэтому сфера применения реле защиты от перенапряжения – электрическая сеть внутри дома.

Для защиты частного дома от скачков напряжения устанавливаются специальные устройства, выбор которых велик. Будет лучше, если работу выполнят профессионалы, поскольку в домашних условиях вряд ли позволят настроить разработанную схему подключения защиты от перенапряжения и тем более провести ее тест в режиме критической ситуации.

Следует также помнить, что все операции с щитком, проводкой и приборами нужно проводить строго при выключенном электропитании.

Фото защити от перенапряжения

Также рекомендуем посетить:

strojka-gid.ru

Вам может понравится

Отправить ответ

avatar
  Подписаться  
Уведомление о