Как рассчитать количество батарей отопления на комнату: Как произвести расчет секций радиаторов отопления

Содержание

Как рассчитать количество секций радиатора на комнату

Чтобы поддерживать комфортную температуру в помещении, нужно правильно подобрать радиаторы. В этой статье мы рассмотрим один из аспектов выбора секционного радиатора.

Особенности секционных радиаторов

Радиаторы подразделяются на два вида: секционные и панельные. Последние различаются по типам в зависимости от количества пластин и оребрения (тип 22 – 2 пластины, 2 оребрения). Их размеры (толщина, ширина и высота) могут быть практически любыми. Совсем другое дело с секционными приборами – они в большинстве случаев имеют стандартную высоту и ширину, а наращивание мощности происходит за счет добавления секций.

Секционный радиатор

Эффективность работы радиатора напрямую связана с его размерами, поэтому такое оборудование всегда полезно приобретать с запасом.

Упрощенные способы расчета мощности радиатора.

Если попытаться точно определить необходимое количество энергии на прогрев помещения или целого дома, то потребуется выполнить немало сложных вычислений. При этом такая точность не очень и нужна конечному потребителю, поэтому рассмотрим более простые приемы.

Панельный радиатор

Выбор радиаторов по окнам

Считается, что через окна дом покидает наибольшее количество тепла, поэтому под ними в большинстве случаев ставят радиаторы. Если в помещении два окна, то желательно под каждым из них поставить по батарее. Если под проемом нет места, то прибор размещают рядом или на противоположной стене.

При выборе радиатора специалисты обычно советуют ориентироваться на внешний вид. С точки зрения мощности считается оптимальным размер не меньше 50 – 70% ширины светового проема, но чтобы не прогадать лучше брать 100%.

При этом нежелательно, чтобы радиатор вылезал за пределы линии окна, так как это плохо смотрится с точки зрения дизайна.

Если рама имеет световой проем шириной 640 мм, а одна секция батареи 80 мм, то на такое окно потребуется 8-секционный прибор.

Если в помещении есть теплый пол и два окна, то можно обойтись одним радиатором.

Такой метод достаточно условный, к тому же он не помогает в расчете секций в помещениях без окон (ванная, коридор).

Расчет секций по метражу

Этот расчет тоже не отличается точностью, обычно за основу берут приблизительные показатели теплопотерь и соотносят их с метражом помещения.

Теплопотери – это комплексная характеристика. Она отражает количество энергии, которое теряет здание. Например, если теплопотери помещения составляют 1500 Вт, мощность обогревателя должна быть выше этой цифры, чтобы их покрыть.

  • Расчет с запасом200 Вт на 1 м.кв. В этом случае метраж надо умножить на 200, в результате для комнаты 15 м.кв потребуется радиатор 3 кВт. Если одна секция будет иметь теплоотдачу 196 Вт, то потребуется 2 батареи по 8. Этот способ расчета очень приблизительный, так как он не учитывает климатическую зону, конструкцию здания и расположение помещения. Целесообразность такой прикидки рассмотрим ниже в отдельном разделе.
  • Расчет по количеству стен – тут учитывается количество стен, которые выходят на улицу. В комнате с одной наружной стеной и окном нужно закладывать 100 Вт/м.кв., с двумя стенами и одним окном – 120 Вт/м.кв., с двумя стенами и двумя окнами 130 Вт/м.кв.
  • Расчет через оконный коэффициент – учитывает качество остекления в комнате. Вычисление количества секций производим по формуле:

S (комнаты) х H (высота комнаты) х оконный коэффициент (40 – обычные окна – 35 – стеклопакеты)/теплоотдача одной секции

Почему лучше ставить более мощный радиатор?

На практике недооценка теплопотерь хуже, чем переоценка, поэтому такие способы расчета, как 200 Вт на м.кв., оправдывают себя. Мощный радиатор дает преимущества, именно по этой причине не стоит высчитывать теплоотдачу приборов без запаса.

  • Работа на низкой температуре теплоносителя – мощному радиатору достаточно прогреть жидкость до небольшой температуры (30 – 40 градусов), чтобы в помещении стало тепло. Маленькому прибору придется работать на температурах до 90 градусов. Соприкосновение с такой раскаленной батареей неприятно и некомфортно.
  • Меньше расход газа в частном доме – если для отопления используется котел, то работа на небольших температурах повышает КПД – газ расходуется более экономично. Что позволяет уже через несколько лет использования полностью компенсировать затраты на покупку более широкой батареи.
  • Высокая температура теплоносителя быстро изнашивает трубы, так как при нагреве материал сильно расширяется. При крупном радиаторе можно снижать температуру теплоносителя.

Из этого следует, что в радиаторе с большим количеством секций больше плюсов, чем минусов.

Как рассчитать теплопотери?

Чтобы полностью просчитать тепловые потери комнаты или всего дома потребуется собрать большое количество информации о строении. Сами вычисления можно выполнить вручную по СП 50.13330.2012 или в любом онлайн-калькуляторе.

  • Считаем площадь окон, берем площадь с рамой. Если в комнате два окна, то складываем общую площадь.
  • Измеряем общую длину наружных стен, а затем умножаем полученную величину на высоту потолка.
  • Отнимаем от площади стен площадь окон.
  • Считаем площадь полов для определения тепловых потерь через инфильтрацию (продувание через технологические отверстия).
  • Нужно знать тип окон: например, двухкамерный стеклопакет, обычное окно с двойной рамой и т.д.
  • Определяем материал наружных стены. Например, кирпич с утеплением минеральной ватой.

Тепловые потери через внутренние стены и перегородки обычно не учитывают.

  • Для определение тепловых потерь через пол нужно знать конструкцию перекрытия первого этажа: полы по грунту, пол над техническим подпольем или подвалом и т.д.
  • Для расчета потерь через потолок нужно знать структуру перекрытия и его периметр.

Если над первым этажом есть «теплый» чердак, отапливаемый этаж, то при расчете для первого этажа не учитывают потери для потолка. Утечки энергии через пол учитывают только на первом этаже. Если рассчитывают теплопотери для мансарды, то вместо потолка добавляют убыль энергии через кровлю.

В частных домах наибольшие потери тепла приходятся на мансардные этажи, так как он соприкасается с крышей. Наименьшая мощность требуется для прогрева комнат на втором этаже, если над ними располагается «теплый» чердак. На первом этаже обычно холоднее из-за входной двери и потерь через полы.

Как правильно определить мощность радиатора

Мощность прибора зависит от дельты T – среднего значения температуры в радиаторе с вычетом температуры помещения.

Дельта T = (Тп+То)/2 – Т помещения

  • Тп – температура подачи, с которой теплоноситель поступает в радиатор.
  • То – температура обратки, с которой жидкость покидает прибор.

В паспорте любого радиатора мощность должна быть указана для какого-то определенного параметра дельта Т (обычно 70). В реальности при таких значениях прибор работать не будет и изначальная температура теплоносителя окажется ниже. Некоторые производители включают переводные таблицы для других значений (для дельта T 50, 40 и т.д.).

Более реалистичные значения: 80 – 60 – 22, где 80 – подача, 60 – обратка, а 22 – температура в комнате. Подставим эти значения в формулу.

(80+60)/2 – 22 = 48

Паспортная мощность одной секции при дельта Т 70 = 196 ВТ, теперь узнаем поправочный коэффициент. Для этого паспортную мощность разделим на дельта Т.

196/70 = 2,8

Теперь с помощью поправочного коэффициента мы сможем получить реальную мощность при конкретной температуре теплоносителя.

48*2,8 = 134,4 Вт

Если обратиться к предыдущему расчету, где мы использовали паспортную мощность, то оказывается, что двух 8 – секционных радиаторов будет недостаточно при теплопотерях в 200 Вт с 1 м.кв. Фактически на помещение потребуется не меньше 23 секций.

способы и схемы, что влияет на теплопотери

Для расчёта количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.

Содержание

  • 1 Способы расчёта радиаторов отопления

    • 1.1 По площади

    • 1.2 По объёму помещения

    • 1.3 Корректировка результатов

  • 2 Как количество секций зависит от величины потерь тепла

    • 2.1 Окна

    • 2.2 Стены и кровля

    • 2.3 Наличие наружных стен

  • 3 Климатические факторы

  • 4 Расчёт разных типов радиаторов

    • 4.1 Корректировка в зависимости от режима отопительной системы

  • 5 Зависимость мощности батарей от подключения и места расположения

    • 5.1 Для однотрубных систем

Способы расчёта радиаторов отопления

Сделать расчёт радиаторов можно двумя способами: по площади или объёму помещения

Методы расчёта есть разные. Самые простые дают приблизительные результаты. Тем не менее их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т. п.). Есть более сложный расчёт по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.

Есть ещё один метод. Он определяет фактические потери. Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем ещё хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т. д. Так что заодно можно выправить положение.

По площади

Самый простой способ. Посчитать требуемое на обогрев количество тепла исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:

  • для средней климатической полосы на отопление 1 кв. м жилого помещения требуется 60-100 Вт;
  • для областей выше 60ºC требуется 150-200 Вт.

Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находится в средней климатической полосе, для отопления площади 16 кв. м, потребуется 1 600 Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100 Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60 Вт.

Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключён к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?».

Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определённое количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.

Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1 600 Вт. Пусть мощность одной секции 170 Вт. Получается 1 600/170=9,411 шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.

Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и ещё ряд факторов не учитывается. Так что расчёт количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.

По объёму помещения

При таком расчёте учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан.

И в этом случае методика аналогична. Определяем объём помещения, а затем по нормам узнаём, сколько нужно тепла на его обогрев:

  • в панельном доме на обогрев кубометра воздуха требуется 41 Вт;
  • в кирпичном доме на 1 куб. м — 34 Вт.

Обогревать нужно весь объем воздуха в помещении потому правильнее считать количество радиаторов по объёму.

Рассчитаем все для того же помещения площадью 16 кв. м и сравним результаты. Пусть высота потолков 2,7 м. Объём: 16*2,7=43,2 куб. м.

Дальше посчитаем для вариантов в панельном и кирпичном доме:

  • В панельном доме. Требуемое на отопление тепло 43,2 куб м*41В=1 771,2 Вт. Если брать все те же секции мощностью 170 Вт, получаем: 1 771 Вт/170 Вт=10,418 шт. (11 шт.).
  • В кирпичном доме. Тепла нужно 43,2 куб. м*34 Вт=1 468,8 Вт. Считаем радиаторы: 1 468,8 Вт/170 Вт=8,64 шт. (9 шт.).

Как видно, разница получается довольно большая: 11 и 9 шт. Причём при расчёте по площади получили среднее значение (если округлять в ту же сторону) — 10 шт.

Корректировка результатов

Для того чтобы получить более точный расчёт нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего сделаны стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т. п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.

Как количество секций зависит от величины потерь тепла

Теплопотери зависят от нескольких факторов: размещения окон, стен

Окна

На окна приходится от 15 до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:

Соотношение площади окна к площади пола:

  • 10% — 0,8;
  • 20% — 0,9;
  • 30% — 1,0;
  • 40% — 1,1;
  • 50% — 1,2;

Остекление:

  • трёхмерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85;
  • обычный двухкамерный стеклопакет — 1,0;
  • обычные двойные рамы — 1,27.

Стены и кровля

Для учёта потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.

Степень теплоизоляции:

  • кирпичные стены толщиной в два кирпича считаются нормой — 1,0;
  • недостаточная (отсутствует) — 1,27;
  • хорошая — 0,8;

Наличие наружных стен

  • внутреннее помещение — без потерь, коэффициент 1,0;
  • одна — 1,1;
  • две — 1,2;
  • три — 1,3.

На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т. п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).

Если расчёт проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7 м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента.

Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7 м. Получаете искомый коэффициент.

Посчитаем для примера: пусть высота потолков 3,0 м. Получаем: 3,0 м/2,7 м=1,1. Значит количество секций радиатора, которое рассчитали по площади для этого помещения нужно умножить на 1,1.

Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.

Климатические факторы

Можно внести корректировки в зависимости от средних температур зимой:

  • 10ºC и выше — 0,7;
  • 15ºC — 0,9;
  • 20ºC — 1,1;
  • 25ºC — 1,3;
  • 30ºC — 1,5 .

Учитывая все требуемые корректировки, получаяте более точное количество требуемых на обогрев комнаты радиаторов с учётом параметров помещений. Но это ещё не все критерии, которые оказывают влияние на мощность теплового излучения. Есть ещё технические тонкости, о которых расскажем ниже.

Расчёт разных типов радиаторов

Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50 см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчётом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1 л/минуту примерно равен мощности в 1 кВт (1 000 Вт).

Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя. Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчёт секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.

Осевое расстояние определяют между центрами отверстий для теплоносителя. Но если просто пока прикидываете возможные варианты, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчёта количества секций биметаллических радиаторов от расчёта алюминиевых, стальных или чугунных ничем не отличается. Разной может быть только тепловая мощность одной секции.

Чтобы считать было проще, есть усреднённые данные, по которым можно ориентироваться. Для одной секции радиатора с осевым расстоянием 50 см приняты такие значения мощностей:

  • алюминиевые — 190 Вт;
  • биметаллические — 185 Вт;
  • чугунные — 145 Вт.

Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведём самый простой расчёт секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.

При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50 см) принимается, что одна секция может обогреть 1,8 кв. м площади. Тогда на помещение 16 кв. м нужно: 16 кв. м/1,8 кв. м=8,88 шт. Округляем — нужны 9 секций.

Аналогично считаем чугунные или стальные баратареи. Нужны только нормы:

  • биметаллический радиатор — 1,8 кв. м;
  • алюминиевый — 1,9-2,0 кв. м;
  • чугунный — 1,4-1,5 кв. м.

Это данные для секций с межосевым расстоянием 50 см. Сегодня же в продаже есть модели с самой разной высоты: от 60 до 20 см и даже ещё ниже. Модели 20 см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придётся вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.

Расчёт чугунных радиаторов отопления. Считать может по площади или объёму помещения. Для наглядности сделаем расчёт алюминиевых радиаторов по площади. Помещение то же: 16 кв. м. Считаем количество секций стандартного размера: 16 кв. м/2 кв. м=8 шт. Но использовать хотим маломерные секции высотой 40 см. Находим отношение радиаторов выбранного размера к стандартным: 50/40 см=1,25. И теперь корректируем количество: 8 шт.*1,25=10 шт.

Корректировка в зависимости от режима отопительной системы

Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90ºC, в обратке — 70ºC (обозначается 90/70) в помещении при этом должно быть 20ºC. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчёт откорректировать.

Для учёта режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.

Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора. Чтобы было понятнее произведём расчёт чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50 см). Помещение то же: 16 кв. м. Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5 кв. м. Потому нам потребуется 16 кв. м/1,5 кв. м=10,6 шт. Округляем — 11 шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдём температурный напор для каждой из систем:

  • высокотемпературная 90/70/20 — (90+70)/2-20=60ºC;
  • низкотемпературный 55/45/20 — (55+45)/2-20=30ºC.

То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16 кв. м требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.

При таком расчёте можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20ºC а, например, 25ºC просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчёт все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55ºC. Теперь находим соотношение 60/55ºC=1,1. Чтобы обеспечить температуру в 25ºC нужно 11 шт*1,1=12,1 шт.

Зависимость мощности батарей от подключения и места расположения

 

Кроме всех описанных выше параметров, теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.

Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.

Для однотрубных систем

Есть ещё один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления, когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.

Поясним на примере: на схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остаётся по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8 шт., будет на 20% больше — 9 или 10 шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую. Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую.

В однотрубных системах нужно в расположенных дальше по ветке радиаторах добавлять секции. Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают  радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.

Приблизительный расчёт количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.

  • Автор: Ольга