Как рассчитать мощность батареи отопления: как рассчитать мощность батарей и их количество

Содержание

как рассчитать мощность самостоятельно, фото и видео подсказки

Содержание:

Каждого владельца квартиры или дома интересует, какое минимальное количество секций радиатора требуется для полноценного обогрева жилых и подсобных помещений, исходя из их площади. Чтобы получить ответ на данный вопрос, необходимо знать, как рассчитать мощность батареи отопления. Существуют как простые варианты вычислений, так и сложные формулы расчетов. 


Особенности самостоятельного расчета мощности батарей отопления

Нижеприведенные способы, как рассчитать мощность радиаторов отопления, предназначаются для хозяев частных домовладений и жильцов квартир, а не для специалистов в сфере теплотехники. Поэтому инструкция будет по возможности простой и понятной, чтобы в ней мог разобраться каждый человек, который планирует монтировать отопительную конструкцию своими руками. 

Чем проще расчет мощности батарей, тем большей будет величина погрешности.

Но с другой стороны для потребителей главной целью является обеспечение достаточной тепловой мощности. Ничего нет плохого в том, что в сильнейший зимний мороз данный параметр окажется больше, чем требуется. 

В квартирах, жильцы которых платят за отопление в зависимости от площади, тепло не бывает лишним. А в домах, где имеются счетчики потребляемой тепловой энергии, несложно установить регулировочные дроссели и регуляторы температурного режима, приобрести которые можно в любой момент. Читайте также: “Счетчики тепловой энергии для квартиры”.
Что касается частных домов, то при наличии собственного котла излишняя мощность не приведет к финансовым потерям, поскольку все современные газовые и электрические теплоагрегаты оснащены термостатами, регулирующими теплоотдачу в соответствии с температурой в помещении (подробнее: “Тепловой расчет помещения и здания целиком, формула тепловых потерь”). 

Даже в том случае, когда при проведении самостоятельных расчетов будет допущена серьезная ошибка, но в большую сторону, владельцу жилья она будет стоить нескольких излишне купленных секций батареи. Согласно последним данным, раз в несколько лет на отечественных просторах зимой сотрудники гидрометцентров фиксируют экстремально низкие температуры. По мнению специалистов, подобные явления в связи с изменением климата на планете будут происходить все чаще. По этой причине, делая расчет мощности батарей отопления, не следует опасаться ошибок в большую сторону. 

Порядок расчета мощности радиаторов

Способ выполнения вычислений, как правило, зависит от того, какое оборудование планируется использовать. Если это электрические отопительные приборы, то у них имеются сопроводительные документы, в которых производители указывают их эффективную тепловую мощность. 

При отсутствии паспорта на продукцию соответствующая информация имеется на сайте изготовителя. Нередко там же может находиться калькулятор, с помощью которого можно сделать расчет батарей отопления для конкретного объема помещения, а также определить основные параметры будущей отопительной конструкции.

Но при этом следует учитывать такой нюанс: практически всегда производители закладывают в компьютерную программу по вычислению величины теплоотдачи радиатора (конвектора или батареи) определенную разницу температур между помещением и теплоносителем – обычно на уровне 70 градусов Цельсия. К сожалению, для российских систем теплообеспечения такой параметр пока является недосягаемым. 


В конце концов, потребители могут воспользоваться простым, правда, не очень точным расчетом, позволяющим узнать мощность батарей отопления с учетом количества секций. 

 

Биметаллические отопительные радиаторы

В качестве примера взяты данные, имеющиеся на сайте завода «Большевик»: 

  • для секций, у которых межосевое расстояние составляет 500 миллиметров, теплоотдача находится на уровне 165 ватт;
  • для 400-миллиметровых секций – 143 ватта;
  • для 300-миллиметровых секций – 120 ватт;
  • для 250-миллиметровых секций – 102 ватта.  

Алюминиевые отопительные радиаторы

Чтобы ознакомиться с величиной мощности алюминиевых отопительных радиаторов, взяты данные для изделий ТМ Calidor и Solar от итальянских производителей:

  • секция, имеющая межосевое расстояние 500 миллиметров, отдает максимум 182 ватта;
  • 350-миллиметровые секции имеют теплоотдачу 145-150 ватт. 

Стальные пластинчатые отопительные радиаторы

Как узнать мощность батареи отопления, если это стальные радиаторы пластинчатого типа, ведь у них отсутствуют секции? В данном случае при проведении расчетов учитывают длину стального пластинчатого радиатора отопления и межосевое расстояние. Помимо этого, производители рекомендуют обращать внимание на способ подключения батареи. Дело в том, что вариант врезки в отопительную систему влияет на тепловую мощность в процессе эксплуатации радиатора. 

Все, кого интересует величина теплоотдачи стальных пластинчатых батарей, могут посмотреть таблицу модельного ряда продукции ТМ Korad, изображенную на фото.

Чугунные отопительные радиаторы

С данными отопительными приборами все гораздо проще, поскольку у всех отечественных (российских) чугунных радиаторов межосевое расстояние подводок стандартно и составляет 500 миллиметров. Мощность чугунных радиаторов отопления при стандартной разнице температур, равной 70 градусам, равна 180 ватт на одну секцию. 

 

Порядок расчета тепловой мощности

Знание тепловой мощности одной секции позволит узнать необходимое их количество, но как вычислить этот параметр.

В данной статье будут рассмотрено несколько вариантов, как сделать необходимые расчеты в зависимости от разных переменных:

Расчет мощности по площади

В его основе лежат санитарные нормы, согласно которым на 10 «квадратов» помещения должен приходиться 1 киловатт тепловой энергии (100 ватт на м²). При проведении расчета необходимо учитывать поправочный коэффициент, соответствующий определенному региону России.
Например, для Якутии и Чукотки он равен 2, для Дальнего Востока составляет 1,6, а для южных областей и республик находится в пределе от 0,7 до 0,9 (прочитайте также: “Как рассчитать батареи отопления – количество и размер”). 

Разумеется, что подобный метод не может обеспечить абсолютную точность, поскольку:

  • панорамный способ остекления в одну нитку значительно увеличивает потерю тепла по сравнению с тем, когда стена сплошная;
  • несмотря на то, что расположение квартир внутри здания не учитывают, при наличии теплых стен при одинаковом количестве батарей в них будет намного теплее, чем в угловом помещении, имеющем стену, соприкасающуюся с улицей;
  • расчет верен только в том случае, когда высота потолков не превышает 2,5 – 2,7 метра (стандартный параметр для квартир, построенных в советское время). Уточненных вычислений требуют помещения в сталинках, у которых трехметровые потолки. Кроме этого, в начале 20-го века во многих строящихся домах высота потолков достигала 4 – 4,5 метра.
     

В качестве примера будет приведен расчет количества секций чугунных батарей для комнаты размером 3 на 5 метров, которая расположена в доме, находящемся в Краснодарском крае.

Порядок действий следующий:

  • сначала определяют площадь 3х5=15м²;
  • потом вычисляют требуемую тепловую мощность отопления – 15м² х100Вт х0,7= 1050 ватт. 0,7 – региональный коэффициент;
  • если мощность каждой секции составляет 180 ватт, тогда потребуется 1050: 180 = 5,83 секции. После округления до целых значений получается 6 секций. 

Простые вычисления мощности по объему

Поскольку расчет мощности батареи отопления в зависимости от объема воздуха в помещении учитывает высоту потолка, он является более точным. На один кубометр требуется 40 ватт мощности отопительного оборудования.

Расчет производится для той же комнаты в Краснодарском крае при том, что ее построили с высотой потолков, равной 3,1 метра:

  • прежде всего, вычисляют объем помещения 3х5х 3,1 = 46,5 кубометра;
  • радиаторы должны обладать мощностью 46,5х 40 = 1860 ватт, а с учетом регионального коэффициента 1860х0,7 = 1302 ватта или 8 чугунных секций (1302: 180 =7,23).  

 

Уточненные вычисления мощности по объему

Более точный расчет мощности батарей отопления производят c учетом разных переменных:

  • количества окон и дверей. В среднем теплопотери по причине наличия одного окна стандартного размера составляют 100 ватт, а одной двери – 200 ватт;
  • если помещение располагается в углу здания или в его торце, используют коэффициент 1,1 – 1,3, который зависит от толщины стен и материала их изготовления;
  • для частных домовладений применяют коэффициент 1,5, так как в них отмечаются повышенные теплопотери через крышу и пол, поскольку снизу и сверху нет теплых квартир. 

Теперь расчет мощности тепла для радиаторов отопления будет выполнен для помещения аналогичного по площади (как в Краснодарском крае), но находящегося в углу частного домовладения в Оймяконе, где средняя температура в январе опускается до – 54 градусов, а температурный минимум за все время наблюдений достигал 82 градусов мороза.

Особо неприятный момент заключается в том, что дверь выходит на улицу и имеется окно.

Последовательность вычислений такая:

  • поскольку известна базовая мощность, равная 1860 ватт, к ней прибавляют 300 ватт (окно плюс дверь) и получают 2160 ватт;
  • так как дом частный, происходит потеря тепла за счет холодного пола и крыши – 2160х1,5 = 3240 ватт;
  • угол дома вынуждает использовать коэффициент 1,3 и в итоге получится – 3240х1,3 = 4212 ватт;
  • Оймяконский климат требует применения регионального коэффициента, равного 2 – 4212х2 = 8424 ватта. 

Если радиаторы будут чугунными, то количество секций должно быть равным 8424: 180 = 46,8, а с округлением – 47. Поскольку длина секции составляет 93 миллиметра, то батарея растянется на 4,4 метра.

Видео о стандартах расчетов мощности батарей отопления:


как рассчитать тепловой потенциал батарей

На стартовом этапе проектирования нового здания или проведения с нуля ремонта в помещении обязательно требуется рассчитать необходимую мощность батарей.

В соответствии с полученным результатом определяется точное число радиаторов для полноценного обеспечения теплом дома или квартиры даже при максимальных зимних колебаниях температуры.

Существует несколько методов расчета.

Прямая взаимосвязь типа радиатора отопления и метода расчёта

При монтаже стандартных источников обогрева секционного типа не возникает сложностей, так как их мощность заранее указана среди остальных технических параметров.

При положении, когда фирма-изготовитель прописывает в характеристиках значение расхода теплоносителя, принято считать, что трата 1 литра этой жидкости в минуту равна 1 кВт мощности.

Важно! При рассмотрении различных вариантов батарей стоит помнить, что при одинаковых габаритах они имеют несовпадающие показатели мощности, так как исходный материал, варьируется от биметаллического до чугунного.

Для расчёта каждого типа радиаторов существует свой средний показатель мощности. Секция источника обогрева с расстоянием оси в 0,5 м выделяет тепло:

  • Чугун —145 Вт.
  • Биметалл —185 Вт.
  • Алюминий — 190 Вт.

Зачастую этот показатель отличается от вышеуказанных в силу того, что по высоте батареи отопления встречаются от 0,2 м до 0,6 м.

При нестандартных параметрах радиаторов отопления в методы расчёта теплового излучения вносятся корректировки.

Фото 1. Стальной радиатор для отопления модели Tesi 2 , дина секции 45 мм, производитель – «Irsap», Италия.

Чем ниже значение высоты источника обогрева (и, соответственно, его площадь), тем меньше показатель излучения тепла.

Внести корректировку в результат можно с помощью установленного коэффициента, полученного из пропорции существующей высоты радиатора к стандартному значению.

Как рассчитать тепловую мощность батарей

В зависимости от количества учтённых показателей они подразделяются на 2 типа.

Упрощённый метод

Он является обобщённым и широко применяется для самостоятельных непрофессиональных подсчётов.

Главный критерий, принимаемый во внимание при упрощенном способе расчета — это площадь. Устанавливается, что 100 Вт излучаемой энергии хватает на 1 кв. м.

Для полноценного обогрева всего помещения требуется произвести подсчёт по формуле: Q=S*100, где Q — искомая тепловая мощность, S — площадь комнаты (м2).

Подробная формула

Это обобщённый метод расчёта отопления для помещения, но уже с учётом всех возможных факторов, оказывающих влияние на окончательный результат. Вид итоговой формулы такой:

Q=(S*100)*a*b*c*d*e*f*g*h*i*j, где дополнительные составляющие элементы — это коэффициенты, определяемые в соответствии с точной степенью отдельного фактора:

  • a — число внешних стен в интересующем помещении.
  • b — ориентация комнаты относительно сторон света.
  • c —условия климата.
  • d —уровень утепления внешних стен.

  • e —высота потолков в помещении.
  • f —конструкционные особенности потолка и пола.
  • h —качество рам.
  • i —размер окон.
  • j —степень закрытости источника обогрева.
  • k —схема подключения батарей.

Факторы, влияющие на расчёт

На расчет мощности радиаторов отопления влияют следующие факторы.

Ориентация комнат по сторонам света

Принято считать, что если окна помещения выходят на юг или запад, то оно в достаточном количестве имеет солнечный свет, поэтому в эти двух случаях коэффициент «b» будет равен 1,0.

Добавление к нему в 10% требуется, если окна комнаты ориентированы на восток или север, так как солнце здесь практически не успевает обогреть помещение.

Справка! Для северных районов такой показатель берётся в размере 1,15.

Если комната выходит на наветренную сторону, то коэффициент для расчета увеличивается до b=1,20, при параллельном расположении относительно потоков ветра — 1,10.

Вам также будет интересно:

Влияние внешних стен

Их число напрямую определяется показателем «а». Так, если помещение имеет одну внешнюю стену, то он принимается равным 1,0, две — 1,2. Добавление каждой следующей стены ведёт к увеличению коэффициента тепловой отдачи на 10%.

Зависимость радиаторов от теплоизоляции

Сократить расходы на обогрев квартиры или дома позволит проведение грамотного утепления стен. Значение коэффициента «d» способствует увеличению или снижению тепловой мощности батарей отопления.

В зависимости от степени утепления внешней стены показатель бывает следующий:

  • Стандартное, d=1,0. Они нормальной или малой толщины и либо оштукатурены снаружи, либо имеют небольшой слой теплоизоляции.
  • При особом способе утепления d=0,85.
  • При недостаточной устойчивости к холодам —1,27.

При позволяющем пространстве допускается фиксировать слой теплоизоляции к внешней стене изнутри.

Климатические зоны

Этот фактор определяется низкими уровнями температур для различных регионов. Так c=1,0 при погоде до —20 °C.

Для областей с холодным климатом показатель будет следующим:

  • с=1,1 при температурном режиме до —25 °C.
  • с=1,3: до —35 °C.
  • с=1,5: ниже 35 °C.

Своя градация показателей и для тёплых регионов:

  • с=0,7: температура до —10 °C.
  • с=0,9: лёгкий мороз до —15 °C.

Высота помещения

Чем выше в строении уровень перекрытия, тем больше этой комнате требуется тепла.

В зависимости от показателя расстояния от потолка до пола определяется поправочный коэффициент:

  • е=1,0 при высоте до 2,7 м.
  • е=1,05 от 2,7 м до 3 м.
  • е=1,1 от 3 м до 3,5 м.
  • е=1,15 от 3,5 м до 4 м.
  • е=1,2 свыше 4 м.

Роль потолка и пола

Сохранению тепла в помещении также способствует его соприкосновение с потолочным перекрытием:

  • Коэффициент f=1,0 если есть чердак без утепления и отопления.
  • f=0,9 для чердака без обогрева, но с теплоизоляционным слоем.
  • f=0,8, если комната выше отапливаемая.

Пол без утепления определяет показатель f=1,4, с утеплением f=1,2.

Качество рам

Для расчёта мощности отопительных приборов важно учесть и этот фактор. Для оконной рамы с однокамерным стеклопакетом h=1,0, соответственно для двух— и трёхкамерного — h=0,85. Для старой рамы из дерева в расчёт принято брать h=1,27.

Размер окон

Показатель определяется соотношением площади оконных проёмов с квадратными метрами помещения. Обычно он равен от 0,2 до 0,3. Так коэффициент i= 1,0.

При полученном результате от 0,1 до 0,2 i=0,9 до 0,1 i=0,8.

Если размер окон выше стандарта (соотношение от 0,3 до 0,4), то i=1,1, а от 0,4 до 0,5 i=1,2.

Если окна панорамные, то целесообразно при каждом увеличении соотношения на 0,1 повышать i на 10%.

Для комнаты, в которой зимой регулярно используется балконная дверь, автоматически повышает i ещё на 30%.

Закрытость батареи

Минимальное ограждение радиатора отопления способствует более быстрому прогреву комнаты.

В стандартном случае, когда батарея отопления расположена под подоконником, коэффициент j=1,0.

В других случаях:

  • Полностью открытый прибор обогрева, j=0,9.
  • Источник отопления прикрыт настенным выступом горизонтального типа, j=1,07.
  • Батарея отопления закрыта кожухом, j=1,12.
  • Полностью закрытый радиатор отопления, j=1,2.

Способ подключения

Способов подключения радиаторов отопления несколько и каждый из них определяется показателем k:

  • Метод подключения радиаторов «по диагонали». Является стандартным, и k=1,0.
  • Подключение «с боковой стороны». Способ популярен из-за небольшой длины подводки, k=1,03.
  • Использование пластиковых труб по методу «снизу с двух сторон», k=1,13.
  • Решение «снизу, с одной стороны» является готовым, происходит подключение к 1 точке подающей трубы и обратки, k=1,28.

Важно! Иногда для повышения точности результатов применяют дополнительные поправочные коэффициенты.

Полезное видео

Ознакомьтесь с видео, в котором рассказывается, как рассчитать мощность радиатора отопления.

Важность учёта всех факторов

Сокращённая формула расчёта отопительной мощности проста в применении, но не учитывает определённые особенности помещения. Для получения точного результата при расчете мощности радиаторов отопления важно принимать во внимание все имеющиеся факторы.

Как рассчитать мощность радиатора отопления

На чтение 4 мин. Просмотров 388 Опубликовано Обновлено

Современные квартиры, дома и коттеджи могут отапливаться любым способом, но без радиаторов отопления не обойтись ни в одном случае. Радиаторы производятся из чугуна, стали, алюминия или сплавов биметаллов. Покупая отопительный прибор, пользователи исходят из разных характеристик: это и технические параметры системы отопления, и характеристики теплоносителя, и предпочтения хозяина. При этом почти никто не знает, как рассчитать мощность радиатора отопления, а этот показатель – самый важный.

Но главная характеристика, которую необходимо учитывать – мощность радиатора отопления и количество секций, потому что основная функция радиатора – поддержание комфортной температуры (21-24°С) в квартире.

Дизайн и конструкция при расчете мощности радиатора не играют роли, из какого бы металла он не изготавливался. Поэтому выбор внешнего вида отопительного прибора зависит только от вкуса покупателя. А вот тепловая мощность – параметр первостепенный, поэтому проблема, как рассчитать мощность радиатора отопления, для покупателя всегда остается актуальной.

На упаковке прибора все компании по производству обозначают этот параметр. Поэтому главное – даже не мощность, а количество секций.

Расчет количества секций радиаторов и их мощности

Иногда недобросовестные производители намеренно завышают номинальную мощность – не забудьте об этом при покупке. Для правильного расчета мощности радиатора следует предварительно просчитать площадь комнаты, которая будет отапливаться. Вычисления производятся не для всей квартиры, а для каждого помещения отдельно.

Формула расчета мощности радиатора

Формула, которой чаще всего пользуются для вычисления мощности отопительного прибора, несложная, поэтому обращаться к специалистам нет смысла – вычисления можно сделать и самостоятельно. Согласно СНиП 2.04.05-91 для металлических и СНиП 3.05.01-85, СНиП 2.04.05-91 для алюминиевых радиаторов на 1 м2 отапливаемой площади при высоте потолков 2,5 м расходуется 100 Вт тепла. Для остальных отопительных приборов применяются СНиП 2.04.05-91, СНиП 3.05.01-85 и ГОСТ 8690-94. Поэтому упрощенная, но точная формула для расчета мощности выглядит так:

K= S х 100/P, где:

  1. K – количество секций в радиаторе.
  2. S – общая площадь теплообменника.
  3. Р – мощность прибора (указывается в инструкции).

В качестве примера рассчитаем мощность (количество секций) радиатора для помещения 30 м2 при стандартной высоте потолков 2,5 м. допустим, одна секция рассчитана на мощность 180 вт. решение такое

  1. K= 30 х 100/180.
  2. K= 16,6 секций.

Нужно округлить результат в большую сторону, а значит, потребуется 17 секций. Данная формула с большой точностью применима к секционным и чугунным конструкциям.

Совет: число радиаторов прямо пропорционально числу окон в комнате. Если помещение угловое, находится в торце здания или существуют постоянные перебои с подачей горячего теплоносителя в центральном отоплении и снижение его температуры, то рекомендуется к полученному результату мощности прибавить еще 20%

Как рассчитать мощность панельного радиатора

Если помещение нестандартное (высота потолков заметно отличается от 2,5 м в любую сторону), то при расчете мощности отопительных радиаторов рекомендуется применять такую формулу:

P (мощность)=V х 41, где:

  1. Р – мощность отопительного прибора.
  2. V – объем отапливаемой комнаты.
  3. 41 (Ватт) — тепловая мощность, которая расходуется при обогреве 1 м3 здания, построенного без использования энергосберегающих технологий (пластиковые окна, утепление стен, потолка и пола, и т. д.). Этот коэффициент можно применять только для европейской части России, Белоруссии, Украины и Молдовы.

Для примера рассчитаем мощность радиатора для помещения 5 х 5 м (высота потолка – 3 м):

V=5 х 5 х 3=75 м3.

P (мощность прибора)= 75 х 41 = 3075 Ватт.

Немного больше 3-х кВт понадобится выработать котлу для радиатора, который доведет комнатную температуру до комфортного значения. Эту мощность можно разделить между несколькими отопительными приборами, если формат комнаты не позволяет установить один радиатор. Еще один способ, как узнать необходимое количество секций – нужно разделить общую мощность прибора на мощность одной секции (если она известна).

Как самостоятельно рассчитать количество радиаторов отопления?

Допустим у Вас помещение   площадью 18 кв.метров (длина – 6 метров, ширина – 3метра, высота 2.6 метра /стандартная комната в пятиэтажном доме построенном в советские времена/)

Первое. Рассчитываем объем комнаты ( 6м. х3м.х2,6м=46,8м.куб.)
Второе. Для обогрева одного куб.м. в климатических условиях средней полосы России  необходима тепловая мощность 41 ватт. Умножаем объем V на 41 ( 46.8х41=1918,8 вт.). Округляем полученный результат до 1900 вт.

Как определить необходимое количество?

Очень просто. У любого радиатора отопления непосредственно на упаковке или в документации имеется техническая информация о тепловой мощности радиатора. Например, на нашем сайте в каждом типе радиаторов имеется таблица с указанием тепловой мощности определенного радиатора, его геометрических размеров и цены.

Что такое тепловая мощность радиатора

отопления? Это то количество тепловой энергии, которую способен он отдать со своей поверхности во внешнюю среду в определенных температурных интервалах, которые указываются в его технических характеристиках. Производители радиаторов обычно завышают на свои изделия тепловую мощность. Поэтому, для надежности лучше прибавить к расчетной мощности радиатора 20%. Получаем конечную тепловую мощность для квартиры указанных размеров с одним окном 1900 Вт.+20%.=2280 Вт или 2,3 Киловатта.
Внимание! Как быть, если ваша квартира очень «холодная». Например, она находится на северной стороне дома, у нее несколько окон или не застекленный балкон, стены недостаточно утеплены и она находится на последнем этаже и т.д.

В этом случае вместо 41Вт на 1куб.м необходимо сделать поправку на повышенный коэффициент 47 Квт. Получаем следующие расчеты. Умножаем объем (вместо 41Вт применяем 47Вт),  46.8 м.куб х47 Вт= 2200вт.)

Поэтому Вам необходим радиатор отопления с более большой теплоотдачей, которая равна 2,2 Киловатта. Рекомендуем опять же для надежности прибавить 20% к полученному результату 2,2Квт +20%=2.64Квт. В этом случае  Вы уже точно не замерзнете. Поверьте, лучше купить радиаторы с запасом мощности, чтобы в дальнейшем не жалеть не о чем – это факт проверенный временем. Погода  в последнее время становится абсолютно непредсказуемой.


Еще один, упрощенный способ расчета тепловой мощности. Тепло, которое отдают радиаторы отопления  помещению, в среднем равны 1Квт. мощности на 10кв. метров помещения. К этому показателю необходимо прибавить еще 15%.Этот метод предполагает  более завышенный  метод расчета по тепловым показателям, зато в этом случае можно уменьшить тепловой режим радиаторов  различными методами. В наших климатических условиях расчет с запасом  просто необходим. Лучше перестраховаться лишний раз. Как говориться, легче убавить, чем прибавить. Переделывать и добавлять всегда дороже.

Для первоначальной оценки этих методов вполне достаточно. Каким образом можно регулировать теплоотдачу  радиаторов отопления? Регулировка может быть автоматической и ручной. Для автоматической – устанавливаются специальные приборы,  контролирующие установленный диапазон желаемой температуры. При ручной регулировке применяются термостатические вентили, устанавливаемые непосредственно на сам радиатор. Они регулируют поток теплоносителя (вода, антифриз)  в заданной температуре с тем расчетом, чтобы  был достигнут наилучший показатель теплообмена на всех участках радиатора.

 

Существуют другие, более точные методы расчета, которыми пользуются специалисты, где учитывается следующее:

1. Температурные показатели региона

2. Общие тепловые потери поверхностей отапливаемого помещения

3. Схема подключения радиаторов отопления.

4. Количество окон в помещении, их размер и количество камер.

5. Кратность воздухообмена  отапливаемого помещения с улицей и другими смежными помещениями в доме.

6. Расчётную температуру подачи  теплоносителя и  ее обратные показатели.

7. Скорость циркуляции теплоносителя.

8. Тепловая мощность  радиатора и его температурный режим  указанные производителем.

9. Давление в системе отопления.

10. Другие показатели, которые необходимо учесть при индивидуальном  или многоэтажном строительстве.

Что необходимо учесть перед покупкой радиаторов отопления?

Отдача тепла в помещение зависит от того, в каком месте расположены радиаторы и способ их подключения к системе теплоснабжения. В первую очередь радиаторы отопления необходимо установить под окнами, именно в этом месте  будут самые большие тепловые потери, которые необходимо учитывать. Нагретый  воздух, поднимаясь вверх, создает вертикальную тепловую завесу и препятствует распространению холода от окна внутрь помещения.  Смешиваясь с холодным воздухом, конвекция становится гораздо сильнее, что способствует очень быстрому прогреванию всего помещения.


Учтите, что  расстояние от пола до радиатора и от радиатора до подоконника  должно быть  в пределах 100мм. Самый лучший вариант, когда  радиатор будет на всю ширину проема, меньше можно, но  не менее 50% от ширины. Подоконник  лучше делать не широким, для того чтобы теплый воздух поднимался  ближе к стеклу.

В комнатах, которые находятся в углу дома, вдоль наружных «глухих» стен желательно разместить дополнительные радиаторы, как можно ближе к углу. Стояки  отопления необходимо размещать по углам помещения, где наиболее холодные места. Этим самым, внутренние стороны углов  не будут промерзать и отсыревать.

Надеемся, что эта информация  поможет Вам самостоятельно подсчитать необходимое количество радиаторов (секций) для вашего дома. Удачи.

Как рассчитать количество секций батареи отопления для помещения

Чугунная батарея.

Открытые источники в Интернете (СС0)

Устройство биметаллической батареи

Первый слог названия подсказывает, что радиатор состоит из двух металлов. Стальной трубопровод и алюминиевые внешние пластины (или ребра), передающие тепло в пространство комнаты благодаря его высокой теплопроводности, отлично обогревают помещение. Теплоноситель — вода, циркулирует по цельнотянутым трубам, сваренным между собой таким методом, который не разрушает структуру металла — это препятствует коррозии стальной части. Алюминий же, обладает высокой теплопроводностью и внешние пластины (или ребра) прекрасно передают тепло в помещение, принимая его от стального сердечника. Получается, что биметаллический отопительный прибор соединил лучшие свойства стальных и алюминиевых приборов обогрева.

Достоинства биметаллических радиаторов:

  • Высокое рабочее давление — до 35 атмосфер, устойчивость к перепадам давления.
  • Стойкость к коррозии при любом качестве теплоносителя.
  • Возможность быстро снизить или повысить температуру в комнате, регулируя подачу теплоносителя, так как благодаря малой инерционности радиаторы быстро нагреваются и быстро остывают.
  • Малый вес, легкость монтажа.
  • Секционная конструкция, позволяющая выбрать нужное количество ребер.

К недостаткам можно отнести, разве что, более высокую цену биметаллических радиаторов. Что с лихвой компенсируется их надежностью и длительным сроком службы.

При установке или замене радиаторов отопления обычно встает вопрос: как правильно рассчитать количество секций радиаторов отопления, чтобы не испытывать дискомфорта от недостатка или избытка тепла. Сделать расчет несложно, когда известны параметры помещения и мощность батарей выбранного типа.

Расчет количества секций для помещения со стандартной высотой потолков

Для начала надо вычислить площадь комнаты, умножив длину комнаты на ее ширину. Для обогрева 1 квадратного метра требуется 100 Вт мощности отопительного прибора, и чтобы вычислить общую мощность, необходимо умножить площадь на 100 Вт. Полученное значение означает общую мощность отопительного прибора. В документации на радиатор обычно указана тепловая мощность одной секции. Чтобы определить количество секций, нужно разделить общую мощность на это значение и округлить результат в большую сторону.

Пример. Типичная комната шириной 3,5 метра и длиной 4 метра, с обычной высотой потолков. Мощность радиатора 160 Вт.

  1. Определяем площадь комнаты: 3,5×4 = 14 м2.
  2. Считаем общую мощность отопительных приборов 14×100 = 1400 Вт. Требуемого тепла
  3. Вычисляем количество секций: 1400:160 = 8,75. Округляем в сторону большего значения, получается 9 секций.

Если комната расположена в торце здания, количество радиаторов необходимо увеличить на 20%.

Расчет количества секций для помещения с высотой потолков более 3-х метров

Здесь другой принцип расчета, он ведется от объема помещения. Объем — это площадь, умноженная на высоту потолков. Для обогрева 1 кубического метра помещения требуется 40 Вт тепловой мощности отопительного прибора. Чтобы вычислить его общую мощность, нужно умножить объем комнаты на 40 Вт, а для определения количества секций это значение разделить на мощность одной секции по паспорту.

Пример. Комната шириной 3,5 метра и длиной 4 метра, с высотой потолков 3,5 м. Мощность одной секции радиатора — 160 Вт.

  1. Определяем площадь комнаты: 3,5×4 = 14 м2.
  2. Определяем объем комнаты: 14×3,5 = 49 м3.
  3. Считаем общую мощность радиаторов отопления: 49×40 = 1960 Вт. Нужного тепла
  4. Вычисляем количество секций: 1960:160 = 12,25. Округляем в большую сторону, получается 13 секций.

Для угловой комнаты этот показатель нужно умножить на коэффициент 1,2. Увеличить количество секций необходимо, если комната находится в панельном доме, на первом или последнем этаже, а также если в ней больше одного окна. Имеет значение и расположение рядом с неотапливаемыми помещениями. В таких случаях полученное значение необходимо умножить на коэффициент 1,1 за каждый из факторов.

При расчетах следует обращать внимание на то, что различные типы радиаторов отопления имеют разную тепловую мощность. Для того чтобы теплоотдача от радиаторов была максимальной, необходимо устанавливать их в соответствии с рекомендациями производителя, соблюдая все оговоренные в паспорте условия. Скажем, расстояние до стены, пола и подоконника должно быть не менее 4 см.

Биметаллические батареи могут прослужить около 20 лет.

Как посчитать необходимое количество секций радиатора?

Радиаторы отопления — это самый распространенный отопительный прибор, который устанавливается в жилых помещениях. При выборе радиаторов необходимо в первую очередь обращать внимание на технические показатели. Грамотно выполненный расчет количества секций радиаторов позволяет установить наиболее комфортный микроклимат в помещении любого типа. Именно поэтому следует отнестись к проектированию отопления с особенным вниманием.

Как посчитать, необходимое количество секций радиатора?
Самые простые методики расчета дают примерный результат. Их можно использовать, если помещение стандартного типа.
Существует несколько вариантов расчета:
1.По объему
2.По площади помещения

Расчет количества секций радиаторов отопления по объему:
Чаще всего используется значение, рекомендованное СНиП, для домов панельного типа на 1 м3 объема требуется 41 Вт тепловой мощности.
Если у Вас квартира в современном доме, со стеклопакетами, утепленными наружными стенами и откосами из гипсокартона, то для расчета уже используется значение тепловой мощности 34вт на 1куб.метр объема.
Пример расчета количества секций:
Комната 4*5м, высота потолка 2,65м
Объем комнаты 4*5*2,65=53 м3 умножаем на 41вт. Итого, требуемая тепловая мощность для обогрева: 2173Вт.
Исходя из полученных данных, не трудно рассчитать количество секций радиаторов. Для этого необходимо знать теплоотдачу одной секции, выбранного Вами радиатора.
Допустим:
Биметаллический радиатор AS-500C BiMetal мощность теплоотдачи секции 170 ВТ.
Итого: 2173 Вт делим на теплоотдачу одной секции 170Вт, получаем 2173Вт/170Вт=12,78 секций. Округляем в сторону целого числа, и получаем 12 или 14 секций.
В ассортименте ТМ I-TECH представлены радиаторы с уже подготовленным количеством секций от 5 до 14. Некоторые продавцы предлагают услугу по сборке радиаторов с необходимым числом секций, то есть для нашего примера – 13. Но это уже будет не заводская сборка и гарантия на такое соединение от производителя теряется.
Этот метод, как и следующий является приблизительным.

Расчет количества секций радиаторов отопления по площади помещения
Является актуальным для высоты потолков помещения 2,45-2,6 метра. Принимается равным, что для обогрева 1кв.метра площади достаточно 100Вт.
То есть для комнаты 18 кв. метров, требуется 18кв.м*100Вт=1800Вт тепловой мощности.
Делим на теплоотдачу одной секции: 1800Вт/170Вт=10,59, то есть 11 секций.
В какую сторону лучше округлить результаты расчетов?
Комната угловая или с балконом, то к расчетам добавляем 20%
Если батарея будет устанавливаться за экраном или в нишу, то потери тепла могут достигать 15-20%
Но в то же время, для кухни, можно смело округлить в меньшую сторону, до 10 секций.
Кроме того, на кухне, очень часто монтируется электрический теплый пол. А это минимум 120 Вт с одного квадратного метра, обогреваемого теплым полом.
Если же помещение обладает «нестандартными» характеристиками (чрезмерно большие окна, выход на чердак или в подвал, угловое помещение), то при расчетах стоит использовать коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия.


Точный расчет количества секций радиаторов
Определяем требуемую тепловую мощность радиатора по формуле:
Qт= 100ватт/м2 х S(помещения)м2 х q1 х q2 х q3 х q4 х q5 х q6 х q7;
если рассчитывать количество радиаторов для комнаты с теми же размерами но учетом корректирующих коэффициентов (к примеру комната имеет тройной стеклопакет, качественную теплоизоляцию, мин. температура снаружи не ниже -15 С, сверху отапливаемое помещение)

Qт= 100/м2 х 18м2 х 0,85 х 0,85 х 0,9 х 0,8 ,
Итого потребуется с учетом всех коэффициентов тепловая мощность для обогрева помещения 936,36 ВТ
делим на мощность секции 170 Вт , и получим 6 секций.

Как корректно рассчитывается отопление в квартире?

Для многих жильцов вопрос, как рассчитывается отопление в квартире, является весьма актуальным. Ведь жалобы на недостаточное отопление и холод в помещении поступают очень часто. От обогрева зависят комфортные условия проживания в доме. Поэтому, о том, как рассчитать параметры радиатора для создания оптимального микроклимата, и пойдет речь в статье.

Типы радиаторов

Сегодня на рынке отопительного оборудования представлено множество разных моделей. Выбрать батарею для обогрева жилища нетрудно. Главное понимать, как посчитать отопление в квартире, частном доме. Радиаторы выпускаются разного типа и уровня мощности. И эти параметры важно учитывать при проведении расчета, чтобы в итоге получить эффективный и качественный обогрев с минимальными затратами.

В зависимости от используемого материала изготовления радиаторы могут быть стальными и чугунными, алюминиевыми и биметаллическими.

Модели различаются по уровню мощности, внешнему исполнению. Стоимость изделия зависит и от производителя. Покупать батареи отопления самые дешевые лучше не надо. Наверняка качество такого оборудования будет желать лучшего. А ведь радиатор покупается не на один год и от его качества зависит то, насколько эффективно и исправно будет работать вся система теплоснабжения.

Мощность батареи отопления

Важно знать, как рассчитать мощность радиатора отопления, чтобы система теплоснабжения функционировала эффективно. При вычислении данного параметра, тип обогревательного прибора значения не имеет. Неважно, стальная это либо алюминиевая батарея, биметаллическая либо чугунная. Главный показатель – мощность устройства. Данный параметр производитель указывает в обязательном порядке в паспорте к оборудованию.

Для того чтобы рассчитать мощность батареи отопления, надо знать:

  1. площадь помещения;
  2. мощность радиатора;
  3. количество секций.

Производится расчет не для общей площади квартиры, а для каждой отдельно взятой комнаты. По данным СНиП, на 1 кв.м. помещения с потолком средней высоты требуется 100 Вт тепловой мощности. Исходя из этого, можно легко определить необходимое количество секций радиатора: для этого площадь помещения следует умножить на 100 и разделить на значение мощности отопительного агрегата.

Рассмотрим, как рассчитать мощность батареи отопления для нестандартного помещений, высота потолка которого может существенно превышать 2,5 м либо быть заметно ниже данной отметки. В этом случае нужно знать объем комнаты, которую планируется обогреть. Мощность определяется путем умножения объема помещения на 41 (Ватт). Значение 41 – это тепловая мощность, расходуемая при обогреве кубического метра здания.

Объем теплоносителя в контуре

Чтобы обогрев в квартире или доме был равномерным, поддерживался оптимальный температурный режим в помещении, и не возникало аварийных ситуаций, важно знать, как рассчитать объем воды в системе отопления дома. Это не сложно. Но данная величина зависит от ряда факторов.

На расчет объема теплоносителя влияют:

  • объем теплового котла;
  • производительность насосного оборудования;
  • объем трубопроводной системы;
  • общий объем батарей.

Рассмотрим, как рассчитать объем системы отопления тремя наиболее популярными способами.

Расчет теплоносителя при помощи счетчика

Первый метод один из самых простых. Но тут необходим водяной счетчик. Нужно посмотреть показания водомера перед и после ее заполнения системы теплоносителем. Разница этих показателей и будет равняться объему системы теплоснабжения.

Расчет теплоносителя при помощи ведра

Для второго способа потребуется ведро. Емкость нужно подставить под кран слива теплоносителя батареи. Слив всю воду из системы, подсчитать объем воды очень просто. Нужно количество ведер умножить на литраж емкости.

Расчет теплоносителя при помощи калькулятора

Третий метод более сложный. Потребуется калькулятор. Зная тип батареи отопления как рассчитать объем теплоносителя? На самом деле совсем несложно. Например, секция радиатора из алюминия вмещает около 0,45 литров воды, а секция чугунной батареи имеет объем 1 литр. Одно ребро биметаллического радиатора вмещает 0,25 литра теплоносителя. Суммируя объем батареи, объем трубопровода и теплового котла можно вычислить объем воды в системе.

Особенности расчета платы за отопление

Рассмотрим, как рассчитывается плата за отопление без приборов учета. Для этого необходимо знать норматив удельного расхода тепла на квадратный метр жилой площади. Данный показатель утверждается местными органами. Выражается в Гкал/кв.м. Также нужно будет знать площадь и тариф на услуги отопления. Тариф тоже утверждается местным самоуправлением. Расчет производится путем умножения расхода тепла на площадь квартиры и на тариф.

Как правило, все расчеты отопления приведены в официальной документации коммунальных служб. Таких документов несколько. И именно они помогают узнать, как рассчитать Гкал на отопление дома. Расчет Гкал проводится перед началом сезона отопления. Это позволяет избежать ряда проблем и задержек включения тепла. Если в квартире установлен индивидуальный счетчик, рассчитать стоимость отопления очень просто: достаточно умножить показания учетного прибора на тариф.

Рассмотрим, как рассчитать стоимость отопления в квартире, если установлен общедомовой счетчик. В этом случае подсчитывается суммарный расход тепловой энергии всем домом и определяется часть, которая приходится на отдельную квартиру. Полученная величина умножается на тариф.

Таким образом, зная, как рассчитать систему отопления, можно избежать многих проблем, связанных с неисправной работой обогревательных приборов, с поддержанием необходимого уровня температуры в помещении.

Рассчитать мощность радиатора и объем теплоносителя нетрудно.

Для этого существуют разные способы. Конечно, они дают приблизительные значения. Для получения более точных данных лучше обращаться за помощью к специалистам в данной сфере.

Как оценить время работы от аккумулятора моего нагретого устройства?

Обзор

Один из наиболее часто задаваемых сегодня вопросов новаторов и предпринимателей, стремящихся разработать идеальный продукт, обеспечивающий комфорт потребителя, – это: могу ли я питать свой гаджет от аккумулятора? Этот пост поможет вам понять требования и проблемы использования батареи для работы нагретого устройства. Все сводится к вопросам, насколько большой, насколько горячий и какой длины? Поскольку выбор аккумуляторов практически безграничен, цель этого поста – предоставить вам основную информацию, которую должен иметь , чтобы проконсультироваться со специалистом по батареям, который поможет вам с выбором.

Давайте рассмотрим основы. Тепловыделение зависит от удельной мощности ватт, условий окружающей среды и тепловых потерь (или прироста). Плотность ватт – это количество произведенной мощности, деленное на площадь, производящую мощность, которую чаще всего называют ваттами на квадратный дюйм.

Пример из реальной жизни: я разработал мобильный лоток для подогрева и теперь хочу продать его фанатам из Мичигана для футбольных матчей. Размер лотка составляет 8 дюймов на 8 дюймов, в нем используется технология толстопленочного полимерного нагревателя.Я хочу, чтобы нагреватель разогревался примерно до 165 ° F и мог работать около двух с половиной часов. Он будет изолирован, снабжен термостатом и должен работать от батареи. Что теперь?

ШАГ 1 – Установите целевую температуру

Когда все сказано и сделано, установление максимальной рабочей температуры элемента, который вы проектируете, является основным фактором при оценке ваших вариантов. Не обязательно зацикливаться на этом, но чем больше переменных вы учтете, тем точнее вы сможете предсказать результат.Будут ли тепловые воздействия, такие как изоляция, воздушный поток или большие тепловые массы, увеличивающие или уменьшающие возможности обогревателя?

Для нашего примера выберем комфортную рабочую температуру 60 градусов

ШАГ 2 – Оцените мощность

После того, как вы определили температуру, которую хотите достичь в своем устройстве, вы можете определить требуемую мощность в ваттах на квадратный дюйм, выполнив несколько простых тестов (см. Сообщение в нашем блоге « Как определить требуемую плотность мощности в приложение »для получения инструкций по проведению для этого простого теста).

Другой способ получить общее представление о том, какая мощность может вам понадобиться, – это посмотреть на таблицу ниже, выбрать желаемую рабочую температуру и отметить соответствующую плотность ватт. Обратите внимание, что диаграмма отображает тепловую мощность на открытом воздухе на алюминии, поэтому учитывайте окружающую среду и отрегулируйте ее соответствующим образом.

Наша подушка сиденья с подогревом будет изолирована подушкой снизу (предполагая, что более низкая плотность ватт может быть приемлемой) и контролироваться термостатом (предполагая, что более высокая плотность ватт может быть приемлемой для быстрого нагрева), поэтому мы разделим разницу и начнем наше тестирование со стандартной базовой линией для 60 градусов F.Глядя на диаграмму ниже, 60F соответствует примерно 0,5 Вт на квадратный дюйм.

Расчет мощности

8 дюймов x 8 дюймов = 81 квадратный дюйм

64 SQ IN x 0,75 WPSI = 48 Вт (расчетное значение для достижения 165 градусов F в приложении).

ШАГ 3 – Ампер-часы

Определение постоянной нагрузки или мощности, которая требуется, – это большая часть битвы, поэтому теперь, когда у нас есть процесс для этого, мы можем перейти к подготовке к разговору со специалистом по аккумуляторным батареям.Подобно тому, как термин « ватт-плотность » используется разработчиками нагревателей, термин, используемый в мире аккумуляторов, – « ампер-часов ». Ампер-час – это единица измерения, используемая для выражения емкости аккумулятора с течением времени. Он рассчитывается путем умножения силы тока (в амперах) на время разряда (в часах).

Чтобы можно было рассчитать силу тока для нашей батареи, вам будет предложено установить напряжение. Хорошие новости! Нагреватели могут быть рассчитаны на очень широкий диапазон напряжений с.

В нашем примере мы укажем аккумулятор на 12 В в качестве отправной точки. Помня, что мощность (P) равна напряжению (В), умноженному на ток (I)

P = V x I или I = P / V

I = 48 Вт / 12 В

I = 4 А

Логика предполагает, что аккумулятор на 12 В с номиналом 10 Ач будет работать около 2,5 часов, когда нагрузка потребляет 4 А, верно? Что ж, вроде как правда. Есть вещи, называемые температурными колебаниями и законом Пойкерта, который говорит, что это не совсем так, но мы оставим детали этого вопроса специалистам по батареям.Достаточно сказать, что вы всегда можете рассчитывать на то, что батарея прослужит меньше, чем вы ожидаете…

ШАГ 4. Проконсультируйтесь со специалистом по аккумуляторным батареям

Здесь процесс становится интересным, и вам нужно будет проконсультироваться со специалистом по батареям, чтобы определить наилучшее сочетание размера, напряжения и срока службы для вашего приложения. Будьте готовы обсудить:

  • Размер доступного места для аккумулятора
  • Рассчитанная вами мощность
  • Варианты напряжения, которые подходят вам и вашим управляющим устройствам (при необходимости)
  • Минимальный ресурс (в часах), необходимый для работы аккумулятора.

Доступны тысячи комбинаций и технологий, поэтому теперь, когда вы вооружены информацией, которую необходимо предоставить специалисту по аккумуляторным батареям, выбор правильной батареи должен быть намного проще. Если вы хотите дополнительно обсудить требования к вашему приложению, позвоните, чтобы поговорить с одним из наших инженеров по приложениям по телефону 864-295-4811.

Управление температурным режимом батареи

Температурные эффекты

Пределы рабочих температур

Все батареи зависят от своего действия в электрохимическом процессе, будь то зарядка или разрядка, и мы знаем, что эти химические реакции в некоторой степени зависят от температуры.Номинальная производительность батареи обычно указывается для рабочих температур где-то в диапазоне от + 20 ° C до + 30 ° C, однако фактическая производительность может существенно отличаться от этого, если батарея работает при более высоких или более низких температурах. См. Температурные характеристики для получения типичных графиков производительности.

Закон Аррениуса говорит нам, что скорость, с которой протекает химическая реакция, экспоненциально увеличивается с повышением температуры (см. Срок службы батареи).Это позволяет получать больше мгновенной энергии от батареи при более высоких температурах. В то же время более высокие температуры улучшают подвижность электронов или ионов, уменьшая внутренний импеданс ячейки и увеличивая ее емкость.

В верхней части шкалы высокие температуры могут также вызвать нежелательные или необратимые химические реакции и / или потерю электролита, что может привести к необратимому повреждению или полному выходу батареи из строя. Это, в свою очередь, устанавливает верхний предел рабочей температуры для аккумулятора.

В нижней части шкалы электролит может замерзнуть, что ограничит низкотемпературные характеристики. Но значительно выше точки замерзания электролита производительность батареи начинает ухудшаться, поскольку скорость химической реакции снижается. Даже если батарея может работать при температурах до -20 ° C или -30 ° C, производительность при 0 ° C и ниже может серьезно ухудшиться.

Обратите также внимание на то, что нижний рабочий предел температуры батареи может зависеть от ее состояния заряда.Например, в свинцово-кислотной батарее по мере разряда батареи сернокислый электролит становится все более разбавленным водой, и его точка замерзания соответственно увеличивается.

Таким образом, аккумулятор должен находиться в ограниченном диапазоне рабочих температур, чтобы можно было оптимизировать как емкость заряда, так и срок службы. Поэтому для практической системы может потребоваться как нагрев, так и охлаждение, чтобы поддерживать ее не только в рабочих пределах, указанных производителем батареи, но и в более ограниченном диапазоне для достижения оптимальной производительности.

Управление температурным режимом заключается не только в соблюдении этих ограничений. Батарея подвержена нескольким одновременным внутренним и внешним тепловым воздействиям, которые необходимо контролировать.

Источники тепла и приемники

Электрический нагрев (Джоулев нагрев)

При работе любой батареи выделяется тепло из-за потерь I 2 R, поскольку ток течет через внутреннее сопротивление батареи, независимо от того, заряжается она или разряжается.Это также известно как Джоулев нагрев. В случае разряда общая энергия в системе фиксирована, а повышение температуры будет ограничено доступной энергией. Однако это все еще может вызвать очень высокие локальные температуры даже в батареях с низким энергопотреблением. Во время зарядки такое автоматическое ограничение не применяется, поскольку нет ничего, что могло бы помешать пользователю продолжать перекачивать электрическую энергию в аккумулятор после того, как он полностью зарядился. Это может быть очень рискованная ситуация.

Разработчики аккумуляторов стремятся поддерживать внутреннее сопротивление ячеек как можно более низким, чтобы минимизировать тепловые потери или тепловыделение внутри батареи, но даже при сопротивлении ячеек всего 1 миллиОм нагрев может быть значительным.См. Примеры в разделе «Влияние внутреннего сопротивления».

Термохимический нагрев и охлаждение

Помимо джоулева нагрева, химические реакции, происходящие в ячейках, могут быть экзотермическими, добавляясь к выделяемому теплу, или они могут быть эндотермическими, поглощая тепло в процессе химического воздействия. Таким образом, перегрев с большей вероятностью будет проблемой при экзотермических реакциях, в которых химическая реакция усиливает тепло, выделяемое током, а не эндотермическими реакциями, в которых ему противодействует химическое воздействие. В аккумуляторных батареях, поскольку химические реакции обратимы, химические вещества, являющиеся экзотермическими во время зарядки, будут эндотермическими во время разряда и наоборот. Так что от проблемы никуда не деться. В большинстве случаев джоулев нагрев будет превышать эффект эндотермического охлаждения, поэтому все же необходимо принять меры предосторожности.

Свинцово-кислотные батареи экзотермичны во время зарядки, а батареи VRLA склонны к тепловому разгоне (см. Ниже). NiMH-элементы также экзотермичны во время зарядки, и по мере приближения к полной зарядке температура элемента может резко повыситься.Следовательно, зарядные устройства для никель-металлгидридных элементов должны быть спроектированы так, чтобы определять это повышение температуры и отключать зарядное устройство, чтобы предотвратить повреждение элементов. Напротив, никелевые батареи с щелочными электролитами (NiCad) и литиевые батареи эндотермичны во время зарядки. Тем не менее, при зарядке этих аккумуляторов возможен тепловой разгон, если они подвержены перезарядке.

Термохимия литиевых элементов немного сложнее, в зависимости от степени внедрения ионов лития в кристаллическую решетку.Во время зарядки реакция сначала является эндотермической, а затем переходит в слегка экзотермическую в течение большей части цикла зарядки. Во время разряда реакция обратная, сначала экзотермическая, затем переходящая в слегка эндотермическую на протяжении большей части цикла разряда. Как и в случае с другими химическими реакциями, эффект джоулева нагрева больше, чем термохимический эффект, пока ячейки остаются в пределах своих проектных ограничений.

Внешнее тепловое воздействие

Тепловое состояние аккумулятора также зависит от окружающей среды.Если его температура выше температуры окружающей среды, он будет терять тепло за счет теплопроводности, конвекции и излучения. Если окружающая температура выше, аккумулятор будет нагреваться от окружающей среды. Когда температура окружающей среды очень высока, система терморегулирования должна очень усердно работать, чтобы поддерживать температуру под контролем. Одиночный элемент может очень хорошо работать при комнатной температуре сам по себе, но если он является частью аккумуляторной батареи, окруженной одинаковыми ячейками, выделяющими тепло, даже если он несет ту же нагрузку, он может значительно превысить свои температурные пределы.

Температура – ускоритель

Конечным результатом термоэлектрических и термохимических эффектов, возможно усиленных условиями окружающей среды, обычно является повышение температуры, и, как мы отметили выше, это вызывает экспоненциальное увеличение скорости протекания химической реакции. Мы также знаем, что при чрезмерном повышении температуры может произойти много неприятностей

    • Активные химические вещества расширяются, вызывая набухание клетки
    • Механическая деформация компонентов ячейки может привести к короткому замыканию или разрыву цепи
    • Могут происходить необратимые химические реакции, вызывающие необратимое снижение количества активных химикатов и, следовательно, емкости ячейки
    • Продолжительная работа при высоких температурах может привести к растрескиванию пластиковых деталей ячейки
    • Повышение температуры вызывает ускорение химической реакции, повышение температуры еще больше и может привести к тепловому разгоне
    • Газы могут выделяться
    • Давление внутри ячейки
    • Ячейка может разорваться или взорваться
    • Могут выделяться токсичные или легковоспламеняющиеся химические вещества
    • Судебные иски последуют за

Тепловая мощность – конфликт

По иронии судьбы, поскольку инженеры по аккумуляторным батареям стремятся втиснуть все больше и больше энергии во все меньшие объемы, разработчику приложений становится все труднее получить ее снова. К сожалению, большая сила батарей с новыми технологиями также является источником их самой слабой стороны.

Теплоемкость объекта определяет его способность поглощать тепло. Проще говоря, для данного количества тепла, чем больше и тяжелее объект, тем меньше будет повышение температуры, вызванное теплом.

На протяжении многих лет свинцово-кислотные батареи были одними из немногих источников питания, доступных для приложений с большой мощностью.Из-за их большого размера и веса повышение температуры во время работы не было большой проблемой. Но в поисках меньших и легких батарей с большей мощностью и плотностью энергии неизбежным следствием является уменьшение тепловой емкости батареи. Это, в свою очередь, означает, что при данной выходной мощности повышение температуры будет выше.

(Это предполагает аналогичный внутренний импеданс и аналогичные термохимические свойства, что не обязательно так. В результате отвод тепла является серьезной инженерной проблемой для батарей с высокой плотностью энергии, используемых в приложениях с высокой мощностью. Разработчики ячеек разработали инновационные методы строительства ячеек, чтобы отводить тепло от ячейки. Разработчики аккумуляторных блоков должны найти столь же инновационные решения, чтобы избавить аккумулятор от тепла.

Температурные характеристики аккумуляторных батарей EV и HEV

Подобные конфликты возникают с батареями EV и HEV.Аккумулятор электромобиля большой, с хорошей способностью рассеивания тепла за счет конвекции и теплопроводности и подвержен небольшому повышению температуры из-за своей высокой теплоемкости. С другой стороны, батарея HEV с меньшим количеством ячеек, но каждая из которых имеет более высокий ток, должна выдерживать ту же мощность, что и батарея EV, менее чем на одну десятую размера. Благодаря более низкой теплоемкости и более низким характеристикам рассеивания тепла это означает, что батарея HEV будет подвергаться гораздо более высокому повышению температуры.

Принимая во внимание необходимость поддерживать работу элементов в допустимом температурном диапазоне (см. Срок службы в разделе «Отказы литиевой батареи»), у батареи электромобиля с большей вероятностью возникнут проблемы, связанные с поддержанием ее тепла в нижнем диапазоне температур, пока аккумулятор HEV с большей вероятностью будет иметь проблемы с перегревом в условиях высокой температуры, даже если они оба рассеивают одинаковое количество тепла.

В случае электромобиля при очень низких температурах окружающей среды самонагрев (нагрев I 2 R) за счет протекания тока во время работы, скорее всего, будет недостаточным для повышения температуры до желаемых рабочих уровней из-за большого размера батареи и для повышения температуры могут потребоваться внешние нагреватели. Это может быть обеспечено за счет отвода части емкости батареи на обогрев. С другой стороны, такое же тепловыделение I 2 R в аккумуляторной батарее HEV, работающей в высокотемпературных средах, может привести к тепловому разгоном, и необходимо обеспечить принудительное охлаждение.

См. Также Технические характеристики EV, HEV и PHEV в разделе

«Тяговые батареи».

Термический побег

Рабочая температура, достигаемая в аккумуляторе, является результатом повышения температуры окружающей среды за счет тепла, выделяемого аккумулятором. Если батарея подвержена чрезмерному току, возникает возможность теплового разгона, что приводит к катастрофическому разрушению батареи.Это происходит, когда скорость выделения тепла внутри батареи превышает ее способность рассеивания тепла. Это может произойти при нескольких условиях:

  • Первоначально тепловые потери I 2 R зарядного тока, протекающего через элемент, нагревают электролит, но сопротивление электролита уменьшается с температурой, так что это, в свою очередь, приведет к более высокому току, вызывающему еще более высокую температуру, усиление реакции до достижения состояния разгона.
  • Во время зарядки зарядный ток вызывает экзотермическую химическую реакцию химических веществ в элементе, которая усиливает тепло, выделяемое зарядным током.
  • Или во время отвода тепла, выделяемого экзотермическим химическим действием, генерирующим ток, усиливается резистивный нагрев из-за протекания тока внутри элемента.
  • Слишком высокая температура окружающей среды.
  • Недостаточное охлаждение

Если не будут приняты какие-либо защитные меры, последствия теплового разгона могут привести к расплавлению элемента или повышению давления, что приведет к взрыву или пожару в зависимости от химического состава и конструкции элемента. См. Более подробную информацию в разделе «Неисправности литиевых батарей».

Система терморегулирования должна держать все эти факторы под контролем.

Примечание

Температурный разгон может произойти во время зарядки свинцово-кислотных аккумуляторных батарей с регулируемым клапаном, когда выделение газа запрещено, а рекомбинация способствует повышению температуры. Это не относится к залитым свинцово-кислотным аккумуляторам, поскольку электролит выкипает.

Регуляторы температуры

Отопление

Относительно легко справиться с низкотемпературными условиями эксплуатации. В простейшем случае в батарее обычно достаточно энергии для питания самонагревательных элементов, которые постепенно доводят батарею до более эффективной рабочей температуры, когда нагреватели могут быть отключены. В некоторых случаях достаточно, чтобы аккумулятор не перезаряжался, когда он не используется. В более сложных случаях, например, с высокотемпературными батареями, такими как батарея Zebra, работающая при температурах, значительно превышающих нормальные температуры окружающей среды, может потребоваться внешний обогрев, чтобы довести батарею до рабочей температуры при запуске, а также может потребоваться специальная теплоизоляция для поддержания температура как можно дольше после выключения.

Охлаждение

Для маломощных батарей достаточно обычных схем защиты, чтобы поддерживать батарею в рекомендуемых пределах рабочей температуры. Однако цепи большой мощности требуют особого внимания к управлению температурным режимом.

Проектные цели

  • Защита от перегрева –
    В большинстве случаев это просто включает в себя мониторинг температуры и прерывание пути тока, если температура при достижении температурных пределов достигается с помощью обычных схем защиты.Хотя это предотвратит повреждение аккумулятора от перегрева, оно, тем не менее, может отключить аккумулятор до того, как будет достигнут предел допустимой нагрузки по току, что серьезно ограничит его производительность.
  • Рассеивание избыточного тепла –
    Удаление тепла из батареи позволяет переносить более высокие токи до достижения температурных пределов. Тепло выходит из батареи за счет конвекции, теплопроводности и излучения, и задача разработчика блока состоит в том, чтобы максимизировать эти естественные потоки, поддерживая низкую температуру окружающей среды, обеспечивая прочный, хороший путь теплопроводности от батареи (используя металлические охлаждающие стержни или пластины между ячейки, если необходимо), максимально увеличив площадь его поверхности, обеспечив хороший естественный поток воздуха через или вокруг блока и установив его на проводящей поверхности.
  • Равномерное распределение тепла –
  • Даже несмотря на то, что тепловая конструкция батареи может быть более чем достаточной для рассеивания общего тепла, выделяемого батареей, внутри аккумуляторной батареи все же могут быть локализованные горячие точки, которые могут превышать указанные температурные пределы. Это может быть проблемой для ячеек в середине многоячеечной упаковки, которая будет окружена теплыми или горячими ячейками по сравнению с внешними ячейками в упаковке, которые обращены к более прохладной среде.

    Температурный градиент аккумулятора может серьезно повлиять на срок его службы. Закон Аррениуса указывает, что с увеличением температуры на каждые 10 ° C скорость химической реакции увеличивается примерно вдвое. Это создает несбалансированную нагрузку на элементы в батарее, а также усугубляет любой возрастной износ элементов. См. Также «Взаимодействие между ячейками и балансировка ячеек».

    Разделение ячеек во избежание этой проблемы увеличивает объем упаковки.Для выявления потенциальных проблемных участков может потребоваться тепловидение.

    Пассивное рассеяние можно еще улучшить, установив ячейки в блок из теплопроводящего материала, который действует как теплоотвод. Теплопередача от ячеек может быть максимизирована, если для этой цели используется материал с фазовым переходом (PCM), поскольку он также поглощает скрытую теплоту фазового перехода при переходе из твердого состояния в жидкое. Находясь в жидком состоянии, конвекция также вступает в игру, увеличивая потенциал теплового потока и выравнивая температуру в аккумуляторной батарее.Для этого применения доступны высокопроводящие графитовые губчатые материалы, пропитанные воском, который поглощает дополнительное тепло, когда температура достигает точки плавления.

  • Минимальная прибавка к весу –
    Для приложений с очень большой мощностью, таких как тяговые батареи, используемые в электромобилях и HEV, естественного охлаждения может быть недостаточно для поддержания безопасной рабочей температуры, и может потребоваться принудительное охлаждение. Это должно быть последним средством, так как это усложняет конструкцию батареи, увеличивает ее вес и потребляет энергию.Однако, если принудительное охлаждение неизбежно, первым выбором будет принудительное воздушное охлаждение с помощью вентилятора или вентиляторов. Это относительно просто и недорого, но теплоемкость теплоносителя, воздуха, который предназначен для отвода тепла, относительно низкая, что ограничивает его эффективность. В худшем случае может потребоваться жидкостное охлаждение.
    Для очень высоких скоростей охлаждения требуются рабочие жидкости с более высокой теплоемкостью. Вода обычно является первым выбором, поскольку она недорогая, но можно использовать и другие жидкости, такие как этиленгликоль (антифриз), которые имеют лучшую теплоемкость.Вес хладагента, насосы для его циркуляции, рубашки охлаждения вокруг ячеек, трубопроводы и коллекторы для транспортировки и распределения хладагента, а также радиатор или теплообменник для его охлаждения – все это значительно увеличивает общий вес, сложность и стоимость. батареи. Эти штрафы вполне могут перевесить выгоды, которых можно добиться за счет использования химического состава батарей с высокой плотностью энергии.

Рекуперация тепла

В некоторых приложениях, таких как электромобили, как указано выше, есть возможность использовать отработанное тепло для обогрева салона, и большинство автомобильных систем включают в себя некоторую форму интеграции управления температурным режимом аккумуляторной батареи с климат-контролем транспортного средства.Однако это полезно только в холодную погоду. В жарком климате высокая температура окружающей среды ложится дополнительным бременем на управление температурным режимом батареи.

EV design – расчет батареи – x-engineering.

org

Высоковольтная батарея – это один из наиболее важных компонентов электромобиля с аккумулятором (BEV) . Параметры аккумуляторной батареи оказывают значительное влияние на другие компоненты и характеристики автомобиля, например:

  • максимальный крутящий момент тягового двигателя
  • максимальный крутящий момент рекуперативного тормоза
  • дальность полета
  • общий вес автомобиля
  • цена автомобиля

Практически все Основные аспекты чисто электрического транспортного средства (EV) зависят от параметров высоковольтной батареи .

При разработке аккумуляторной батареи для нашего электромобиля мы начнем с 4 основных входных параметров:

  • химия
  • напряжение
  • среднее энергопотребление транспортного средства за цикл движения
  • дальность полета

Аккумулятор состоит из одного или более электрохимических элементов ( аккумуляторных элементов ), которые преобразуют химическую энергию в электрическую энергию (во время разрядки) и электрическую энергию в химическую энергию (во время зарядки). Тип элементов, содержащихся в батарее, и химические реакции во время разрядки-зарядки определяют химию батареи .

Элемент батареи состоит из пяти основных компонентов: электродов – анода и катода, сепараторов, клемм, электролита и корпуса или корпуса. Для автомобильных применений используются различные типы элементов [1]:

Изображение: Литий-ионные аккумуляторные элементы различной формы
Фото: [1]

Отдельные аккумуляторные элементы сгруппированы в единый механический и электрический блок, называемый аккумулятором модуль .Модули электрически соединены, образуя аккумуляторный блок .

Есть несколько типов аккумуляторов (химические), используемых в силовых установках гибридных и электромобилей, но мы собираемся рассмотреть только литий-ионные элементы . Основная причина в том, что литий-ионные аккумуляторы имеют более высокую удельную энергию [Втч / кг] и удельную мощность [Вт / кг] по сравнению с другими типами [2].

Изображение: диаграмма уровня ячеек Рагона, адаптированная из Van Den Bossche 2009
Кредит: [2]

Уровень напряжения батареи определяет максимальную электрическую мощность, которая может быть доставлена ​​непрерывно.Мощность P [Вт] – это произведение между напряжением U [V] и током I [A] : \ [P = U \ cdot I \ tag {1} \]

Чем выше ток, тем больше диаметр высоковольтных проводов и тем выше тепловые потери. По этой причине ток должен быть ограничен до максимума, а номинальная мощность достигается за счет более высокого напряжения. Для нашего приложения мы собираемся рассмотреть номинальное напряжение 400 В .

В статье «Конструкция электромобиля – энергопотребление» мы рассчитали, что среднее энергопотребление силовой установки E p составляет 137.8 Втч / км на ездовом цикле WLTC. Помимо энергии, необходимой для приведения в движение, высоковольтная батарея должна обеспечивать энергией вспомогательные устройства транспортного средства E aux [Вт · ч / км] , например: электрическая система 12 В, обогрев, охлаждение и т. Д. Необходимо учитывать КПД трансмиссии η p [-] при преобразовании электрической энергии в механическую.

\ [E_ {avg} = \ left (E_ {p} + E_ {aux} \ right) \ cdot \ left (2 – \ eta_ {p} \ right) \ tag {2} \]

Для вспомогательных устройств потребление энергии мы собираемся использовать данные из [3], которые содержат типичные требования к мощности некоторых общих электрических компонентов транспортного средства (вспомогательные нагрузки).Продолжительные электрические нагрузки (фары, мультимедиа и т. Д.) И периодические нагрузки (обогреватель, стоп-сигналы, дворники и т. Д.) Потребляют в среднем 430 Вт электроэнергии. Продолжительность цикла WLTC составляет 1800 с (0,5 ч), что дает энергию 215 Втч для вспомогательных нагрузок. Если разделить его на длину ездового цикла WLTC (23,266 км), мы получим среднее потребление энергии для вспомогательных нагрузок E aux из 9,241 Втч / км .

Даже если Втч / км на самом деле не энергия, а факторизованная энергия, поскольку она измерена на единицу расстояния (км), для простоты мы будем называть ее средней энергией.

Постоянный ток (DC), подаваемый аккумулятором, преобразуется инвертором в переменный (AC). Это преобразование происходит с соответствующими потерями. Также электродвигатель и трансмиссия имеют некоторые потери, которые необходимо учитывать. Для этого упражнения мы собираемся использовать средний КПД η p 0,9 от аккумулятора до колеса.

Замена значений в (2) дает среднее потребление энергии:

\ [E_ {avg} = \ left (137.8 + 9.241 \ right) \ cdot 1.1 = 161.7451 \ text {Wh / km} \]

Аккумуляторная батарея рассчитана на среднее потребление энергии 161,7451 Wh / km .

Архитектура аккумуляторных блоков

Все высоковольтные аккумуляторные блоки состоят из аккумуляторных батарей ячеек , собранных в группы и модули. Ячейку батареи можно рассматривать как наименьшее деление напряжения.

Изображение: Элемент батареи

Отдельные элементы батареи могут быть сгруппированы параллельно и / или последовательно в виде модулей . Кроме того, аккумуляторные модули могут быть подключены параллельно и / или последовательно для создания аккумуляторного блока . В зависимости от параметров батареи может быть несколько уровней модульности.

Общее напряжение аккумуляторной батареи определяется количеством последовательно соединенных ячеек. Например, общее (цепное) напряжение 6 последовательно соединенных ячеек будет суммой их индивидуальных напряжений.

Изображение: Строка аккумуляторных ячеек

Чтобы увеличить текущую емкость аккумулятора, необходимо подключить больше строк в параллельно .Например, 3-х гирлянды, соединенные параллельно, утроят емкость и допустимый ток аккумуляторной батареи.

Изображение: ряды аккумуляторных элементов, соединенные параллельно

Высоковольтный аккумуляторный блок Mitsubishi i-MiEV состоит из 22 модулей, состоящих из 88 элементов, соединенных последовательно. Каждый модуль содержит 4 призматических ячейки. Напряжение каждой ячейки составляет 3,7 В, а общее напряжение аккумуляторной батареи 330 В.

Изображение: Аккумулятор (модули и элементы)
Кредит: Mitsubishi

Другой пример – высоковольтный аккумуляторный блок Tesla Model S, который имеет:

  • 74 элемента в параллельной группе
  • 6 последовательно соединенных групп для модуля
  • 16 последовательных модулей
  • Всего 7104 элемента

Изображение: Аккумулятор Tesla Model S
Кредит: Tesla

Аккумулятор расчет

Чтобы выбрать, какие аккумуляторные элементы будут в нашем пакете, мы проанализируем несколько моделей аккумуляторных элементов, доступных на рынке.В этом примере мы сосредоточимся только на литий-ионных элементах. Входные параметры аккумуляторных ячеек приведены в таблице ниже.

Примечание : Поскольку производители аккумуляторных элементов постоянно выпускают новые модели, возможно, данные, используемые в этом примере, устарели. Это менее важно, поскольку цель статьи – объяснить, как выполняется расчет. Тот же метод можно применить для любых других аккумуляторных элементов.

905 905 905 905 905 905 0,076 9000 на основе параметров ячейки Предоставляемые производителями, мы можем рассчитать энергосодержание, объем, гравиметрическую плотность и объемную плотность для каждой ячейки. 2} {4} \ cdot L_ {bc} \ tag {1} \]

где:
D bc [м] – диаметр элемента батареи
L bc [м] – длина элемента батареи

\ [V_ { pc} = H_ {bc} \ cdot W_ {bc} \ cdot T_ {bc} \ tag {2} \]

где:
H bc [м] – высота аккумуляторного элемента
W bc [м] – ширина элемента батареи
T bc [м] – толщина элемента батареи

Энергия элемента батареи E bc [Вт · ч] рассчитывается как:

\ [E_ {bc} = C_ {bc} \ cdot U_ { bc} \ tag {3} \]

где:
C bc [Ач] – емкость элемента батареи
U bc [В] – напряжение элемента батареи

Плотность энергии элемента батареи рассчитывается как:

  • объемная плотность энергии , u V [Вт · ч / м 3 ]
\ [u_ {V} = \ frac {E_ {bc}} {V_ {cc (pc)}} \ tag {4 } \]
  • гравиметрическая плотность энергии , u G [Втч / кг]
\ [u_ {G} = \ frac {E_ {bc}} {m_ {bc}} \ tag {5} \] 9 0002 где:
м bc [кг] – масса элемента батареи

Плотность энергии для каждой ячейки приведена в таблице ниже.

Производитель Panasonic A123-Systems Molicel A123-Systems Toshiba Kokam

905 цилиндрический 905 905 цилиндрический

мешочек мешочек
Модель NCR18650B ANR26650m1-B ICR-18650K 20Ah 20Ah SLPB Источник 900 ] [6] [7] [8] [9]
Длина [м] 0.0653 0,065 0,0652 0 0 0
Диаметр [м] 0,0185 0,026 0,0186 905 0 905 0 905 0 905 [м] 0 0 0 0,227 0,103 0,272
Ширина [м] 0 0 0 905. 16 0,115 0,082
Толщина [м] 0 0 0 0,00725 0,022 0,0077
0,05 0,496 0,51 0,317
Емкость [А · ч] 3,2 2,5 2,6 19,5 20.6
Напряжение [В] 3,6 3,3 3,7 3,3 2,3 3,6
C-rate (продолжение) 5 1 905 1 1 1 2
C-rate (пиковая) 1 24 2 10 1 3
905 90552
Производитель Panasonic A123-Systems Molicel A123-Systems Toshiba Kokam

905 цилиндрический 905 905 цилиндрический

мешочек мешочек
Модель NCR18650B ANR26650m1-B ICR-18650K 20Ah 20Ah Whirlpool

6
8,25 9,62 64,35 46 56,16
Объем [л] 0,017553 0,034510 0,017716 0,034510 0,017716 0,017716 905 плотность
гравиметрическая [Втч / кг]
237,53 108,55 192,40 129,74 90,20 177,16
Плотность энергии

3 объемная 496 / л 496. 31
239,06 543,01 244,38 176,52 327

Для лучшего обзора параметров ячеек и упрощения их сравнения основные параметры отображаются в виде гистограмм на изображениях ниже .

Изображение: Напряжение аккумуляторной батареи

Изображение: Емкость аккумуляторного элемента

Изображение: Объемная плотность энергии аккумуляторного элемента

Изображение: Гравиметрическая плотность энергии аккумуляторного элемента

29


064 С учетом указанных выше параметров элемента и основных требований к батарее (номинальное напряжение, среднее потребление энергии и запас хода автомобиля) мы рассчитываем основные параметры высоковольтной батареи.

Требуемая общая энергия аккумуляторного блока E bp [Wh] рассчитывается как произведение среднего энергопотребления E avg [Wh / км] и запаса хода D v [км]. Для этого примера мы спроектируем блок высоковольтной аккумуляторной батареи для пробега автомобиля в 250 км .

\ [E_ {bp} = E_ {avg} \ cdot D_ {v} = 161.7451 \ cdot 250 = 40436.275 \ text {Wh} = 40.44 \ text {kWh} \ tag {6} \]

Выполняются следующие вычисления для каждого типа ячеек.В этом примере мы будем считать, что аккумуляторная батарея состоит только из нескольких строк, соединенных параллельно .

Количество элементов батареи, соединенных последовательно N cs [-] в цепочке, рассчитывается путем деления номинального напряжения аккумуляторной батареи U bp [В] на напряжение каждого элемента батареи U bc [ V]. Количество строк должно быть целым числом. Поэтому результат вычисления округляется до большего целого числа.

\ [N_ {cs} = \ frac {U_ {bp}} {U_ {bc}} \ tag {7} \]

Энергосодержание строки E bs [Вт · ч] равно произведению между количеством элементов батареи, соединенных последовательно N cs [-], и энергией элемента батареи E bc [Вт-ч].

\ [E_ {bs} = N_ {cs} \ cdot E_ {bc} \ tag {8} \]

Общее количество комплектов батарейного блока N sb [-] рассчитывается путем деления батареи упаковать полную энергию E bp [Вт-ч] в энергосодержание струны E bs [Вт-ч].Количество строк должно быть целым числом. Поэтому результат вычисления округляется до большего целого числа.

\ [N_ {sb} = \ frac {E_ {bp}} {E_ {bs}} \ tag {9} \]

Теперь мы можем пересчитать общую энергию батарейного блока E bp [Вт-ч] как произведение между количеством струн N sb [-] и содержанием энергии каждой струны E bs [Вт-ч].

\ [E_ {bp} = N_ {sb} \ cdot E_ {bs} \ tag {10} \]

Емкость батарейного блока C bp [Ач] рассчитывается как произведение количества строк N sb [-] и емкость аккумуляторного элемента C bc [Ач].

\ [C_ {bp} = N_ {sb} \ cdot C_ {bc} \ tag {11} \]

Общее количество ячеек аккумулятора N cb [-] рассчитывается как произведение между количество строк N sb [-] и количество ячеек в строке N cs [-].

\ [N_ {cb} = N_ {sb} \ cdot N_ {cs} \ tag {12} \]

Размер и масса высоковольтной батареи являются очень важным параметром, который следует учитывать при проектировании аккумуляторного электромобиля (BEV) . В этом примере мы собираемся вычислить объем аккумуляторной батареи, учитывая только ее элементы.На самом деле необходимо учитывать и другие факторы, например: электронные схемы, контур охлаждения, корпус батареи, проводку и т. Д.

Масса аккумуляторного блока (только элементы) м п.н. [кг] – это произведение между общим числом ячеек N cb [-] и масса каждого элемента батареи m bc [кг].

\ [m_ {bp} = N_ {cb} \ cdot m_ {bc} \ tag {13} \]

Объем аккумуляторной батареи (только элементы) В bp [m 3 ] – это произведение между общим количеством элементов N cb [-] и массой каждого элемента батареи V cc (pc) [m 3 ].Этот объем используется только для оценки окончательного объема аккумуляторной батареи, так как он не принимает во внимание вспомогательные компоненты / системы аккумуляторной батареи.

\ [V_ {bp} = N_ {cb} \ cdot V_ {cc (pc)} \ tag {14} \]

Объем также может быть вычислен как функция количества строк и количества ячеек в строке. Этот метод расчета больше подходит для цилиндрической ячейки, так как в объеме, занимаемом цилиндрической ячейкой, необходимо учитывать воздушный зазор между ячейками.

Пиковый ток цепочки I spc [A] – это произведение пикового значения C для аккумуляторного элемента C-rate bcp [h -1 ] и емкости аккумуляторного элемента C до [Ах].

\ [I_ {spc} = \ text {C-rate} _ {bcp} \ cdot C_ {bc} \ tag {15} \]

Пиковый ток аккумуляторной батареи I bpp [A] – это продукт между пиковым током цепочки I spc [A] и количеством цепочек аккумуляторной батареи N sb [-].

\ [I_ {bpp} = I_ {spc} \ cdot N_ {sb} \ tag {16} \]

Пиковая мощность аккумуляторного блока P bpp [Вт] – произведение между пиковым током аккумуляторного блока I bpp [A] и напряжение аккумуляторной батареи U bp [В].

\ [P_ {bpp} = I_ {bpp} \ cdot U_ {bp} \ tag {17} \]

Непрерывный ток строки I scc [A] – это произведение между непрерывной скоростью C аккумуляторная батарея C-rate bcc [h -1 ] и емкость аккумуляторной ячейки C bc [Ач].

\ [I_ {scc} = \ text {C-rate} _ {bcc} \ cdot C_ {bc} \ tag {18} \]

Непрерывный ток аккумуляторной батареи I bpc [A] является продуктом между цепочкой постоянного тока I scc [A] и количеством цепочек аккумуляторной батареи N sb [-].

\ [I_ {bpc} = I_ {scc} \ cdot N_ {sb} \ tag {19} \]

Аккумулятор , непрерывное питание P bpc [Вт] является продуктом между аккумуляторным блоком постоянного тока I bpc [A] и напряжение аккумуляторной батареи U bp [V].

\ [P_ {bpc} = I_ {bpc} \ cdot U_ {bp} \ tag {20} \]

Результаты уравнений (7) – (20) обобщены в таблице ниже.

905 905 905 905 62 905 905 905 62 905 905 -] 135 905 19 Пиковый ток ВР [А] 905 мощность

905 ]
Производитель Panasonic A123-Systems Molicel A123-Systems Toshiba Kokam

– 9013 9049 [количество ячеек в строке 122

109 122 174 112
Энергия струны [Вт-ч] 1290 1007 1049 7851 8004 32 41 39 6 6 7
Энергия BP [кВтч] 41. 29 41,27 40,89 47,10 48,02 44,03
Емкость BP [А · ч] 102,4 102,5 101,4 905 905 117 905 117 905 117 # всего ячеек [-] 3584 5002 4251 732 1044 784
Масса BP [кг] * 173.8 380,2 212,6 363,1 532,4 248,5
Объем BP [л] * 63 173 7516 905 905 905 905 905 905 273 102,4 2460 202,8 1170 120 327,6
Пиковая мощность ВР [кВт] 40,96
468 48 131,04
BP длительный ток [A] 102,4 1025 101,4 117 120 218,4
40,96 410 40,56 46,8 48 87,36

BP – аккумуляторный блок
* – с учетом только аккумуляторных элементов

Из данных таблицы видно, что Ячейки такого типа имеют лучшее энергосодержание и большую емкость по сравнению с цилиндрическими ячейками.

Те же результаты могут быть отображены в виде гистограмм для облегчения сравнения между различными типами аккумуляторных элементов.

Изображение: Энергия батарейного блока

Изображение: Емкость батарейного блока

Изображение: Общее количество батарей

Изображение: Масса батарейного блока (только элементы)

Изображение: Объем аккумуляторного блока (только элементы)

Из-за низкой емкости цилиндрических элементов по сравнению с ячейками мешка количество элементов, необходимых для аккумуляторного блока, значительно выше.Большое количество ячеек может вызвать дополнительные проблемы в области проводки, контроля напряжения, надежности батареи.

Масса и объем рассчитываются только на уровне ячейки с учетом размеров и массы ячейки. Батарейный блок, который будет в автомобиле, будет иметь дополнительные компоненты (провода, электронные компоненты, пайка, корпус и т. Д.), Что увеличит как конечный объем, так и массу. Тем не менее, глядя только на объем и массу клеток, мы можем оценить, какая модель будет лучше по сравнению с другой.По массе и объему нет четкого различия между цилиндрическими ячейками и ячейками мешочка. Однако кажется, что аккумулятор с ячейками-чехлами немного тяжелее и больше.

Батарейные элементы, производимые A123-Systems, имеют очень высокий максимальный непрерывный ток разряда и максимальный импульсный (пиковый) ток разряда. Что касается энергии и емкости, элементы пакетного типа имеют более высокий пиковый (непрерывный) ток и мощность, чем цилиндрические элементы.

На основании расчетных данных и выводов мы можем выбрать, какие аккумуляторные элементы подходят для аккумуляторной батареи нашего электромобиля.Из наших примеров кажется, что элементы Kokam имеют наилучший компромисс между массой, объемом и плотностью энергии / мощности.

Все параметры, уравнения, результаты и графики реализованы в файле Scilab (* . sce). Для скачивания подпишитесь на страницу Patreon.

Вы также можете проверить свои результаты, используя калькулятор ниже.

Калькулятор батареи EV (он-лайн)

Ссылки:

[1] Моой, Роберт и Айдемир, Мухаммед и Селигер, Гюнтер. (2017). Сравнительная оценка различных форм литий-ионных аккумуляторных элементов.Процедуры Производство. 8. 104–111. 10.1016 / j.promfg.2017.02.013.
[2] Бернардини, Анналиа и Барреро, Рикардо и Махарис, Кэти и Ван Мирло, Джоэри. (2015). Технологические решения, направленные на рекуперацию энергии торможения в метро: пример многокритериального анализа. BDC – Bollettino del Centro Calza Bini – Università degli Studi di Napoli Federico II. 14. 301-325. 10.6092 / 2284-4732 / 2929.
[3] Том Дентон, Автомобильные электрические и электронные системы, Третье издание. Эльзевир Баттерворт-Хайнеманн, 2004, стр. 129.
[4] https://industrial.panasonic.com/
[5] http://www.a123systems.com/
[6] http://www.molicel.com/
[7] http: // www. {2} \ tau}) \ frac {L} {a}, V = I (ne2τm) aL,

, где mmm и eee – масса и заряд электрона соответственно, LLL и aaa – длина и площадь проводящего материала, составляющего резистор, nnn – плотность носителей заряда, а τ \ tau τ – интервал времени между два столкновения электронов в резисторе.Сопротивление также можно расширить до:

R = ρLA, R = \ frac {\ rho L} {A}, R = AρL,

, где ρ \ rhoρ – это удельное сопротивление , , свойство материала резистора, а LLL и AAA – длина и площадь поперечного сечения резистора соответственно.

Неупругие столкновения электронов, движущихся по проводнику, являются причиной сопротивления. Кристаллическая структура атомов металла в проводнике препятствует прохождению через него электронов. В любой данный момент электроны имеют определенную вероятность неупругого рассеяния от металлической решетки, передавая часть своей энергии решетке в виде кинетической энергии, т.е.е. высокая температура. Это рассеивание тепла в решетке, называемое нагревом Джоулей , является источником рассеивания мощности в резисторе. Обратите внимание, что хотя межэлектронные столкновения могут давать свою собственную связанную тепловую энергию движения, эта энергия остается внутренней по отношению к системе до тех пор, пока она не рассеивается в металлической решетке, которая не переносит ток.

Расчет среднего времени свободного пробега электронов, движущихся по проводнику, показывает, что электроны проходят через большое количество узлов решетки, прежде чем существенно взаимодействуют с катионами металлов.Объяснение этому факту исходит из квантовой механики и дуальности волна-частица. Из-за волновой природы электрона электроны могут распространяться без неупругого рассеяния на большее расстояние через решетку, чем ожидалось, и вероятность рассеяния гораздо более чувствительна к дефектам решетки, чем плотность решетки.

Мощность и энергия

  • Изучив этот раздел, вы должны уметь:
  • Выполняет расчеты мощности, напряжения, тока и сопротивления.
  • • с использованием соответствующих блоков и подразделов.
  • Различайте мощность и энергию в электрических цепях.

Мощность резисторов

Когда через резистор протекает ток, электрическая энергия преобразуется в ТЕПЛОВУЮ энергию. Тепло, генерируемое в компонентах схемы, каждый из которых обладает хотя бы некоторым сопротивлением, рассеивается в воздухе вокруг компонентов. Скорость рассеивания тепла называется МОЩНОСТЬЮ, обозначается буквой P и измеряется в ваттах (Вт).

Количество рассеиваемой мощности может быть вычислено с использованием любых двух величин, используемых в расчетах по закону Ома. Помните, что, как и в любой формуле, в формуле должны использоваться ОСНОВНЫЕ КОЛИЧЕСТВА, то есть ВОЛЬТЫ, ОМЫ и АМПЕРЫ (не милли, мег и т. Д.).

Чтобы найти мощность P, используя V и I

Чтобы найти мощность P, используя V и R

Чтобы найти мощность P, используя I и R

Перед тем, как начать, подумайте об этих нескольких советах, они упростят задачу, если следовать им.

1. Разработайте ответы карандашом и бумагой; в противном случае легко запутаться на полпути и получить неправильный ответ.

2. Конечно, ответ – это не просто число, это будет определенное количество ватт (или несколько или несколько единиц ватт). Не забудьте указать правильную единицу измерения (например, Вт или мВт и т. Д.), А также число, иначе ответ не имеет смысла.

3. Преобразуйте все вспомогательные единицы, такие как мВ или кОм, в ватты, указав их в соответствующей формуле.Ошибка здесь даст действительно глупые ответы, в тысячи раз слишком большие или слишком маленькие.

4. Хотя структура этих формул мощности кажется очень похожей на формулы закона Ома, есть небольшая разница – они содержат некоторые квадраты (I 2 и V 2 ). Будьте очень осторожны при использовании трюка с треугольником для транспонирования этих формул. Если вам нужно связать мощность с сопротивлением, то I или V необходимо возвести в квадрат (умножить на себя). Однако вы можете построить треугольник, который соответствует любой из формул для получения R, как показано ниже.

Не забудьте загрузить нашу брошюру «Советы по математике», в которой показано, как использовать калькулятор с показателями степени и инженерной нотацией, чтобы работать с этими частями и каждый раз получать правильный ответ.

У вас нет научного калькулятора? Буклет «Подсказки по математике» объясняет, что вам нужно (и что вам не нужно, чтобы не тратить деньги без необходимости). Если вы не хотите покупать научный калькулятор, вы всегда можете получить его бесплатно в сети.Пользователи ПК могут попробовать Calc98 на сайте www.calculator.org/download.html. Какой бы калькулятор вы ни выбрали, прочтите инструкции, чтобы ознакомиться с методами работы, которые вам следует использовать, поскольку они варьируются от калькулятора к калькулятору.

Важно помнить о влиянии рассеивания мощности в компонентах: чем больше мощность, тем больше тепла должно рассеиваться компонентом. Обычно это означает, что компоненты, рассеивающие большое количество энергии, нагреваются, а также они будут значительно больше по размеру, чем типы с низким энергопотреблением.Если компоненту требуется рассеивать больше энергии, чем он предназначен, он не сможет достаточно быстро избавиться от выделяемого тепла. Его температура повысится, и перегрев может вызвать полный выход из строя компонента и, возможно, повреждение других компонентов и самой печатной платы (PCB). В качестве меры предосторожности резисторы большой мощности часто устанавливают вне печатной платы с использованием более длинных выводных проводов, заключенных в керамические гильзы. Резисторы с проволочной обмоткой большой мощности могут даже быть заключены в металлический радиатор и прикреплены болтами к большой металлической поверхности, например к корпусу оборудования, чтобы избавиться от нежелательного тепла.Примеры резисторов большой мощности показаны на странице конструкции резистора.

Компоненты, такие как резисторы, имеют определенную номинальную мощность, указанную производителем (в ваттах или милливаттах). Этот рейтинг (параметр) необходимо проверить при замене компонента, чтобы не произошло завышения рейтинга. Это важный фактор безопасности при обслуживании электронного оборудования.

НАКОНЕЧНИК

Тепло, выделяемое резисторами большой мощности, является основной причиной преждевременного выхода из строя многих цепей.Либо сам резистор выходит из строя из-за «разомкнутой цепи», особенно в резисторах с проволочной обмоткой. В резисторах из углеродного состава перегрев в течение длительного периода может вызвать изменение значения. Это может увеличиваться в типах с высоким сопротивлением или более опасно уменьшаться (позволяя увеличить ток) в типах с низким сопротивлением. Увеличение тока, вызванное уменьшением сопротивления, только ускоряет процесс, и в конечном итоге резистор (а иногда и другие связанные компоненты) сгорает!

Энергия в резисторах

Если определенное количество мощности рассеивается в течение определенного времени, то рассеивается ЭНЕРГИЯ. Энергия (мощность x время) измеряется в Джоулях, и, включив время (t) в формулы мощности, можно рассчитать энергию, рассеиваемую компонентом или схемой.

Рассеиваемая энергия = Pt или VIt или V 2 t / R или даже I 2 Rt Джоулей

Обратите внимание, что в формулах для энергии такие величины, как мощность, время, сопротивление, ток и напряжение, должны быть преобразованы в их основные единицы, например Ватты, секунды, Ом, Амперы, Вольт и т. Д.Никаких дополнительных единиц или нескольких единиц! Как описано в буклете «Советы по математике».

Все вышеперечисленные единицы являются частью интегрированной системы международно стандартизированных единиц; Система S.I. (Système International d´Unités). Эта система устанавливает основные единицы для любых электрических, механических и физических свойств и их отношения друг к другу. Он также включает стандартную форму кратных и долей кратных, описанную в буклете «Подсказки по математике».

Что потребляет мой электровелосипед? – Энергид

Проблемы с пробками и парковками остались в прошлом; Вы можете без проблем преодолевать подъемы или длинные дистанции с ветром, независимо от того, спортсмен вы или нет: электрические велосипеды имеют много преимуществ!

Другой стороной медали является то, что они должны быть перезаряжены на , и это добавит к вашему счету за электроэнергию … Но сколько вам это будет стоить?

Три вещи, которые стоит знать

Чтобы рассчитать стоимость зарядки аккумулятора, вам необходимо знать:

  1. напряжение (в вольтах): определяет ощущение силы при езде на велосипеде.
  2. Емкость (в ампер-часах): эта переменная определяет срок службы батареи.
  3. стоимость вашей электроэнергии в кВтч: в Брюсселе рассчитывают примерно на 0 евро.20 / кВтч по полной ставке и 0,15 евро / кВтч при двухстороннем тарифе.

Первые две части данных вы найдете на аккумуляторе или в руководстве к вашему электрическому велосипеду.

Рассчитать стоимость подзарядки

Чтобы рассчитать стоимость перезарядки аккумулятора электровелосипеда, просто:

  1. . умножьте напряжение (В) на зарядную емкость (Ач) аккумулятора. Это дает вам энергетическую емкость (Втч) батареи.

    В x Ач = Втч
    e.грамм. : 36 В x 10 Ач = 360 Втч = 0,36 кВтч

  2. умножьте полученный результат на стоимость киловатт-часа, и вы получите стоимость полной зарядки аккумулятора.

    например: 0,36 кВтч x 0,20 евро / кВтч = 0,072 евро за полный заряд

Конкретный пример стоимости пополнения

В таблице ниже мы сравнили стоимость подзарядки 2-х велосипедов: одного напряжением 25 В, а другого – 36 В.

Мы также приняли во внимание цену за кВтч в размере 0,20 евро за час.

Напряжение (В) 25 В 36 В
Зарядная емкость (Ач) 10 Ач 10 Ач
Энергетическая мощность (Втч) 250 Вт 360 Вт
Расход на 1 зарядку (кВтч) 0,25 кВтч 0,36 кВтч
Стоимость за 1 заряд € 0,05 € 0,072
Стоимость за 50 зарядов 2,50 € € 3,60
Стоимость за 150 зарядов 7,50 € € 10,80

Учитывайте использование велосипеда и выбранный тип велосипеда

Очевидно, что использование вашего велосипеда (разовое или ежедневное) и тип выбранной модели будут иметь прямое влияние на потребление и стоимость вашего электрического велосипеда.

Как рассчитать скорость разряда батареи

Обновлено 28 декабря 2020 г.

Автором S. Hussain Ather

Знание того, сколько времени должна хватить батарея, может помочь сэкономить деньги и энергию. Скорость разряда влияет на срок службы батареи. Технические характеристики и особенности того, как электрические цепи с аккумуляторными источниками пропускают ток, являются основой для создания электроники и связанного с ней оборудования. Скорость, с которой заряд проходит через цепь, зависит от того, как быстро источник батареи может передавать ток через нее, в зависимости от скорости разряда.k

, где H – номинальное время разряда в часах, C – номинальная емкость скорости разряда в ампер-часах (также называемая рейтингом AH в ампер-часах), I – ток разряда в амперах, k – постоянная Пойкерта без размеров, а t – фактическое время разряда.

Номинальное время разряда батареи – это то, что производители батарей называют временем разряда батареи. Это число обычно указывается вместе с количеством часов, в которые рассчитывалась ставка.

Константа Пойкерта обычно находится в диапазоне от 1,1 до 1,3. Для батарей с абсорбирующим стеклянным матом (AGM) это число обычно составляет от 1,05 до 1,15. Он может колебаться от 1,1 до 1,25 для гелевых батарей и обычно от 1,2 до 1,6 для залитых батарей. На BatteryStuff.com есть калькулятор для определения постоянной Пейкерта. Если вы не хотите его использовать, вы можете оценить постоянную Пойкерта на основе конструкции вашей батареи.

Для использования калькулятора вам необходимо знать рейтинг AH для батареи, а также время в часах, в которое было взято значение AH.Вам понадобится два набора этих двух рейтингов. Калькулятор также учитывает экстремальные температуры, при которых работает аккумулятор, и возраст аккумулятора. Затем онлайн-калькулятор вычислит постоянную Пейкерта на основе этих значений.

Калькулятор также позволяет вам определять ток при подключении к электрической нагрузке, чтобы калькулятор мог определить емкость для данной электрической нагрузки, а также время работы, чтобы безопасно поддерживать уровень разряда на уровне 50%. {k-1}

, чтобы получить продукт Это как текущее время или скорость разряда.Это новый рейтинг AH, который вы можете рассчитать.

Общие сведения о емкости аккумулятора

Скорость разряда дает вам отправную точку для определения емкости аккумулятора, необходимой для работы различных электрических устройств. Продукт It – это заряд Q, в кулонах, выделяемый аккумулятором. Инженеры обычно предпочитают использовать ампер-часы для измерения скорости разряда, используя время t в часах и ток I в амперах.

Исходя из этого, вы можете понять емкость аккумулятора, используя такие значения, как ватт-часы (Втч), которые измеряют емкость аккумулятора или энергию разряда в ваттах, единицах мощности. Инженеры используют график Рагона для оценки емкости никелевых и литиевых батарей в ватт-часах. Графики Рагона показывают, как мощность разряда (в ваттах) падает с увеличением энергии разряда (Втч). Графики показывают эту обратную зависимость между двумя переменными.

Эти графики позволяют использовать химический состав батареи для измерения мощности и скорости разряда различных типов батарей, включая фосфат лития-железа (LFP), оксид лития-магнана (LMO) и никель-марганцевый кобальт (NMC).

Уравнение кривой разряда батареи

Уравнение кривой разряда батареи, лежащее в основе этих графиков, позволяет определить время работы батареи, найдя обратный наклон линии. Это работает, потому что единицы ватт-часа, разделенные на ватт, дают вам часы работы. Представив эти концепции в форме уравнения, вы можете написать E = C x V avg для энергии E в ватт-часах, емкость в ампер-часах C и V avg среднее напряжение разряда.

Ватт-часы обеспечивают удобный способ преобразования энергии разряда в другие формы энергии, потому что умножение ватт-часов на 3600 для получения ватт-секунд дает энергию в джоулях. Джоули часто используются в других областях физики и химии, таких как тепловая энергия и тепло для термодинамики или энергия света в лазерной физике.

Наряду со скоростью разряда полезны несколько других измерений. Инженеры также измеряют мощность в единицах C , что представляет собой емкость в ампер-часах, деленную точно на один час.Вы также можете напрямую преобразовать ватты в амперы, зная, что P = I x V для мощности P в ваттах, тока I в амперах и напряжения В в вольтах для батареи .

Например, батарея на 4 В с номиналом 2 ампер-часа имеет емкость в ватт-часах 2 Втч. Это измерение означает, что вы можете потреблять ток 2 ампера в течение одного часа или вы можете потреблять ток одним ампером в течение двух часов. Соотношение между током и временем зависит друг от друга, что определяется номиналом ампер-часов.

Калькулятор разряда батареи

Использование калькулятора разряда батареи может дать вам более глубокое понимание того, как различные материалы батареи влияют на скорость разряда. Углеродно-цинковые, щелочные и свинцово-кислотные батареи обычно снижают эффективность, если они разряжаются слишком быстро. Расчет скорости разряда позволяет вам это количественно оценить.

Разряд батареи предоставляет вам методы расчета других величин, таких как емкость и константа скорости разряда.Для заданного заряда, выделяемого батареей, емкость батареи (не путать с емкостью, как обсуждалось ранее) C определяется как C = Q / V для заданного напряжения V. Емкость, измеряемая в фарадах, измеряет способность батареи накапливать заряд .

Конденсатор, включенный последовательно с резистором, позволяет рассчитать произведение емкости и сопротивления цепи, которое дает постоянную времени τ как τ = RC.Постоянная времени этой схемы показывает время, за которое конденсатор потребляет около 46,8% своего заряда при разрядке через цепь. Постоянная времени также является реакцией схемы на постоянное входное напряжение, поэтому инженеры часто используют постоянную времени в качестве частоты среза для схемы

Приложения для зарядки и разрядки конденсаторов

Когда конденсатор или батарея заряжается или разряжается, вы можете создать множество приложений. в электротехнике.Лампы-вспышки или лампы-вспышки излучают интенсивные вспышки белого света в течение коротких периодов времени от поляризованного электролитического конденсатора. Это конденсаторы с положительно заряженным анодом, который окисляется, образуя изолирующий металл как средство хранения и производства заряда.

Свет лампы исходит от электродов лампы, подключенных к конденсатору с большим напряжением, поэтому их можно использовать для фотосъемки со вспышкой в ​​фотоаппаратах. Обычно они состоят из повышающего трансформатора и выпрямителя.Газ в этих лампах сопротивляется электричеству, поэтому лампа не будет проводить электричество, пока не разрядится конденсатор.

Помимо простых аккумуляторов, скорость разряда находит применение в конденсаторах стабилизаторов питания. Эти кондиционеры защищают электронику от скачков напряжения и тока, устраняя электромагнитные помехи (EMI) и радиочастотные помехи (RFI). Они делают это через систему из резистора и конденсатора, в которой скорость зарядки и разрядки конденсатора предотвращает скачки напряжения.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *