Максимальное количество секций радиатора отопления: Способы подключения радиаторов. Свойства и параметры.

Содержание

Максимальное количество секций в алюминиевом радиаторе

Радиаторы отопления. Способы подключения радиаторов. Свойства и параметры.

В этой статье Вы узнаете:

Какими бывают радиаторы отопления ?
В чем различие между алюминиевыми радиаторами и биметаллическими?
Какие различия между секционными радиаторами и панельными стальными?
Максимальное количество секций радиатора?
Схемы подключения. Преимущества и недостатки. Проблемы с подключениями.
Системы подключения. Радиаторы с нижним подключением. С однотрубным подключением.
Разбираем мощность радиаторов. Количество секций радиатора. Типы подключения и КПД.
Монтаж радиаторов. Установка радиаторов. Как правильно повесить. Подводные камни.
Климат контроль через термостатические клапаны на радиатор.
Замена старых радиаторов на новые радиаторы.

При виде различных радиаторов разбегаются глаза.

Я Вам помогу быстро разобраться с видами радиаторов и расскажу о способах подключения отдельных видов радиаторов.

Конвекторы и чугунные радиаторы мы рассматривать не будем.

О них Вы можете узнать из этой статьи:

На сегодняшний день самые популярные радиаторы — это секционные радиаторы. Алюминиевые и биметаллические.

Рабочее давление до 16 Bar.

Рабочее давление до 20-40 Bar.

В чем различие между алюминиевыми радиаторами и биметаллическими?

Некоторые биметаллические радиаторы по внешнему виду очень похожи на алюминиевые радиаторы.

Так как в биметаллических радиаторах скрыт стальной трубопровод. покрытый алюминиевой оболочкой.

Биметаллические радиаторы более тяжелые в отличие от алюминиевых радиаторов.

Биметаллические радиаторы стали альтернативой алюминиевых радиаторов. Во-первых, они выдерживают большое давление, во-вторых, основным желанием сделать стальной сердечник в алюминиевом радиаторе, послужила нестойкость алюминиевых радиаторов к разрушению от щелочи в системах центрального отопления.

На втором месте по популярности стоят панельные стальные радиаторы .

Недостаток стальных панельных радиаторов в том, что они рассчитаны на маленькое давление системы отопления. Сталь подвержена коррозии. Такие радиаторы подойдут для частного жилого дома с давлением системы отопления не выше 3 атмосфер (3 Bar).

Толщина стенки таких панельных радиаторов от 1,25 — 2,5мм. Не факт, что они долго продержаться от коррозии. Рабочее давление до 10 Bar. Такие радиаторы стоят дешево.

Каковы различия между секционными радиаторами и панельными стальными?

Секционные радиаторы более универсальные. Секционные радиаторы состоят из секций.

Можно сделать секционный радиатор любой длинны. В зависимости от необходимой мощности по тепловым потерям.

Каждая секция радиатора соединяется специальным ниппелем. Между секциями устанавливается прокладка:

Соединительный ниппель такого радиатора имеет две резьбы разной направленности. Прокладки бывают из различных материалов.

Максимальное количество секций радиатора?

В среднем, максимальное количество секций достигает 14-ти, далее КПД радиатора падает. Имеется в виду, не снижение мощности радиатора. а теплопотери одной секции. То есть, экономически не целесообразно делать большое количество секций радиатора, если есть подозрение, что расход теплоносителя через радиатор будет мал.

О том, как рассчитать расход и теплопотери радиатора, в зависимости от количества секций, описано тут:

Многие пишут в своих статьях, что больше 10 секций устанавливать нет смысла, я же говорю обратное. Смысл есть, теплоотдача от радиатора с большим количеством секций намного больше. Закон теплотехники.

20 секционный радиатор. Пример из жизни! Греет прекрасно!

Если Вы решили поставить до 20 секций, то обратите внимание на крепежные элементы, четырех может быть недостаточно. Существуют в природе два вида креплений радиаторов :

1. Угловой кронштейн

2. Штыревой кронштейн

Угловой кронштейн подходит для ровных отштукатуренных стен.

Штыревой кронштейн — для любых стен. Единственный недостаток в том, что штыревой кронштейн будет плохо держаться в пустотелом кирпиче.

Самый лучший угловой кронштейн тот, на котором стенка с креплением самая большая по площади. Такой угловой кронштейн лучше держит горизонтальное положение, не деформируясь на изгиб вниз.

Из штыревых кронштейнов лучше те, у которых толще диаметр штыря, и в пробке лучше распирающий. На данный момент мне нравится от фирмы «Omec».

Способы подключения радиаторов.

Рассмотрим различное множество подключений. Ниже рассмотрим, какое подключение подходит для различных схем. Например, для многоквартирных домов с однотрубными системами и с двухтрубными системами.

Рейтинг подключения в плане КПД радиаторов. Первое место занимает перекрестное соединение (соединение по диагонали).

Достоинства и недостатки каждой схемы.

1 место. Подключение по диагонали. Самый эффективный способ, при котором происходит максимальное потребление тепловой энергии от теплоносителя. Недостаток в отсутствии возможности изменения количества секций радиатора.

2. место. Боковое подключение. Не сильно проигрывает в плане КПД от диагонального подключения. Если стоит вопрос между вариантами 1 и 2, я выбираю боковое подключение. Так как если, по каким либо причинам, меня не устроит мощность радиатора. то можно добавить (или уменьшить) количество секций без переделок по узлам подключения.

3 место. Нижнее подключение. Тут много ходит мифов по данному подключению. И сейчас я скажу недостаток данного подключения.

Недостаток. Для частного дома. Когда вы начинаете заливать в систему отопления незамерзающую жидкость, не перемешав капитально с долей дистиллированной воды, возникает прослойка по высоте (вода/незамерзайка). И, так как, незамерзающая жидкость тяжелее воды, то она находиться ниже обычной воды. Поэтому возникает слоеный пирог в радиаторе по массе в виде двух разных сред: воды и незамерзайки. Данный, не размешанный слоеный пирог препятствует естественной циркуляции внутри радиатора. Это явление похоже на то, как вы пытаетесь перемешать масло с водой и, естественно, из-за разной плотности, эти две среды (вода и масло) будут находиться друг на другом.

Входящая незамерзающая жидкость в радиаторе не может подниматься вверх и перемешиваться с водой, так как, идет по прямой. Смотри изображение:

Очень часто, я, лично, сталкивался с такой проблемой, что верхняя часть радиатора оставалась холодной. Даже остывшая на 100 градусов вода не станет тяжелее незамерзайки.

Устраняется данная проблема следующим образом.

Через кран Маевского нужно вылить всю верхнюю (легкую) воду. И, в самом конце, Вы увидите, когда пойдет незамерзайка специфичного для нее цвета (синий, розовый или зеленый).

Что касается плавного обогрева в радиаторе с таким подключением, то это полнейший бред. И не стоит заострять на этом внимание.

Подключение радиатора сверху вниз

Это лучшее что может быть для системы отопления. Уж поверьте моему опыту, как гидравлику и теплотехнику.

Достоинство подключения радиатора «сверху вниз» заключается в том, что создается полезный гравитационный напор, который идет только на пользу такому подключению. Остывший теплоноситель тяжелее и стремится вниз, к выходу из радиатора, а нагретый теплоноситель идет вверх и остается там до тех пор, пока не поделиться своей тепловой энергией и не остынет.

4 место. Одноточечное подключение. Вообще самое худшее, что может быть для системы отопления. Одно достоинство данной схемы в том, что у него одно подключение. Одна точка. Смотри фото:

Расход через такое соединение явно будет меньше. Так как создается достаточно большое местное сопротивление вследствие сужения прохода.

Смотрим еще одно фото:

Не стоит полагать, что некоторые стальные панельные радиаторы, имеющие вид нижнего подключения, являются типом одноточечного подключения.

В данном радиаторе подключение идет снизу, а вот подающая труба поднимается вверх до термоклапана, и после клапана теплоноситель попадает в верхнюю точку радиатора. В данном виде, радиатор подключен как бы «сверху вниз». Трубопровод, поднимающийся вверх, спрятан внутри конструкции.

Про квартирную разводку

В квартирах обычно существуют два вида систем отопления:

Однотрубная система отопления и двухтрубная:

Запрещено на перемычках ставить вентиля! Запрещено на стояках ставить вентиля!

Радиаторы для центрального отопления лучше ставить или чугунные или биметаллические. Они выдерживают достаточно большое давление, которое может возникать вследствие непредвиденных гидравлических ударов.

Алюминиевые радиаторы в контакте с водой выделяют водород. С незамерзающей жидкостью это выделение меньше. Но в биметалле есть сталь, которая коррозирует с кислородом.

На сегодняшний день для системы центрального отопления лучше поставить биметалл или чугун, а для частного дома — лучше алюминиевые радиаторы. Для частного дома, любая сталь в системе отопления приводит к ухудшению теплоносителя, отложению на стенках ржавчины, отложению отходов коррозии стали и тому подобное.

Какой трубопровод использовать для центрального отопления?

Для системы центрального отопления нужно использовать только стальной трубопровод .

В нашей фирме, когда дело доходило до прокладки систем центрального отопления, мы использовали для обвязки только стальной трубопровод. И это не обсуждалось, так как закладываются риски .

Достоинство стального трубопровода для центрального отопления.

Для тех, кто не в курсе. Стальной трубопровод это обычная железная труба. Существует оцинкованная труба — это стальная (железная) труба. покрытая снаружи тонким слоем цинка. Цинк вреден для системы водоснабжения. то есть для нашего здоровья. Цинк защищает сталь от коррозии, но даже на цинке существуют отложения. Существуют химические промывки для удаления отложений.

1. Стальной трубопровод выдерживает большое давление до 40 Bar
2. Стальной трубопровод выдерживает большую температуру
3. Стальной трубопровод достаточно крепкий, чтобы противостоять вандальскому разрушению.

Попробуйте найти пластиковый трубопровод с такими параметрами!

А в системах центрального отопления могут случаться такие коллапсы, как:

1. Высокая температура 95 градусов.
2. Большое давление вследствие гидроударов и опрессовок.

Поэтому для систем центрального отопления нужно ставить стальной трубопровод.

Пластик не любит температур уже выше 80 градусов. Полипропилен тем более. Кстати сшитый полиэтилен рекордсмен по стойкости к высоким температурам. Можно конечно выбрать медь, но с медью тоже случались проблемы. Медь может разрушаться от блуждающих токов в трубопроводе с прикосновением некоторых металлов. Примером может служить стальная арматура в стене. Контакт меди с алюминием и сталью тоже вреден. Оловянный припой на стыках не любит щелочь, которая присутствует в системах центрального отопления. На практике случались вещи, когда в медном трубопроводе образовывались отверстия вследствие прикосновения медной трубы со стальной арматурой. Поэтому как не крути, а стальной трубопровод лучше подходит для центрального отопления. К тому же он дешевле.

Для того, чтобы не было отложений в стальном трубопроводе, добавляют различные присадки.

Но все не так страшно как кажется.

Выше я рассказал байку обо всех достоинствах стального трубопровода.

Для систем центрального отопления можно использовать металлопластик. сшитый полиэтилен, полипропилен, медь. Однако нужно знать их особенности в полной мере.

Существуют дома, в которых есть свои котельные с личной замкнутой системой отопления. Поэтому, если вы решились на пластиковый трубопровод или медь, то необходимо проконсультироваться с жилищно-управляющей компанией. К тому же, во многих котельных стоит автоматика, которая не допустит высоких температур и высокого давления в системе отопления.

Жизнь не стоит на месте, и автоматика упрощает нам жизнь. Но всегда остается риск, что автоматика не сработает.

Поэтому, монтируя пластик в систему отопления, вы действуете на свой страх и риск. Хотя, с каждым десятилетием эти риски становятся все меньше и постепенно сводятся к нулю.

Как поменять старый радиатор на новый в системах центрального отопления?

Если это однотрубная система, то стояк с перемычкой лучше не трогать и оставить как есть!

На идущие стальные трубопроводы от стояка после перемычки, нужно поставить ремонтные вентиля для ремонта радиатора. Это могут быть обычные шаровые краны. После кранов продолжить стальными или иными трубопроводами до радиатора. На радиатор лучше поставить термостатические вентиля для регулировки температуры в комнате.

Термостатический клапан на радиаторе.

Термостатический клапан с термоголовкой осуществляет климат контроль в помещение. То есть, сама термоголовка, чувствуя температуру в помещение, меняет положение штока у термостатического клапана, шток, в свою очередь, закрывает или открывает проход клапана. Если становиться жарко, то клапан закрывает проход теплоносителю. Если холодно — клапан открывает проход для впуска теплоносителя.

В системах центрального отопления при первом пуске теплоноситель может загнать грязь в Ваш радиатор. Могут засоряться термостатические клапана. В моем опыте это часто случалось. Так бывает не всегда, но в некоторых системах отопления бывает часто. В этом случае, я устанавливаю фильтры-грязевики на подаче и на обратке. Симптомом засора клапана является то, что клапан не может закрыть проход. В узкий проход попадает крупная крошка или осколок стали. Там, где такое происходит, ставьте фильтр-грязевик. На каждые 5 радиаторов попадается один, в который попадает крошка мусора.

Что еще нужно знать?

Сам по себе термостатический клапан имеет сужение прохода. Там имеются и повороты течения теплоносителя. Все это создает местное сопротивление. Возможно при установке такого термоклапана, у вас уменьшиться расход через радиатор. что повлечет за собой маленький его прогрев. Но этот феномен бывает мало заметен, если с системой отопления все в порядке.

Но скажу, что расход уменьшиться, но не сильно. Все зависит от вашей системы отопления данного дома.

Существуют термостатические клапаны с хорошей проходимостью, которые заметно проигрывают обычным:

В них находится более широкий клапан, который создает большую площадь проходимости, в отличии от таких:

Существуют и рекордсмены по проходимости об этом можно узнать, поискав клапана с большими диаметрами по подключению. Например, существуют клапан с дюймовыми резьбовыми соединениями.

Если у Вас алюминиевый радиатор, то краны на летнее время нельзя перекрывать полностью и на обратке и на подаче. У меня был случай, когда на летнее время на три месяца я закрыл краны. У меня вследствие выделения водорода, от большого давления лопнули металлопластиковые трубы. Если бы у меня были стальные трубы. то лопнул бы радиатор .

Что касается установки радиатора, то минимальным расстоянием от пола по стандарту от 10-12см.

Все эти зазоры влияют на тепловыделение тепла от радиатора. Чем дальше от стены, тем больше тепла. Если Вы радиатор утопите в пол, то это также уменьшит тепловыделение радиатора. Минимальное расстояние от пола должно быть 10 см. Максимально — 15 см. Также, от верха радиатора до подоконника должен быть проем для вентиляции.

И не нужно задвигать кресло и кровати со спинкой на сам радиатор — это уменьшает тепловыделение.

Если у Вас дома холодно, то в вашем случае закрывать радиатор декоративными решетками противопоказано.

Даже шторы, нависшие возле радиатора. уменьшают теплоотдачу.

Для лучшего обогрева помещения радиатор должен быть полностью открыт и за радиатором на стене можно поклеить фольгированный теплоизолятор для того, чтобы не обогревать холодную стену. Особенно тепло уходит в не утепленных домах. Где стена является сплошным кирпичом или блоком без наружного утепления.

Вот так уходит тепло на улицу.

А теперь рассмотрим системы отопления для частного дома.

Существует самая распространенная схема двухтрубная тупиковая. В такой схеме лучше использовать подключение сверху вниз.

В каждом радиаторе по такой схеме создается маленький гравитационный напор. То есть это сила, создаваемая остывшим теплоносителем по отношению к нагретому. Проще говоря, холодная вода давит вниз. Эта сила очень маленькая, но все же заметная! И идет системе отопления — только на пользу!

Приведу пример! Например, сделайте двухтрубную тупиковую систему с 50 радиаторами по схеме сверху вниз и другую систему, тоже двухтрубную тупиковую, но по схеме нижнего подключения.

И вы увидите разницу, что схему с нижним подключением требует большего участия по балансировке системы отопления и использования ресурса насоса на 100%.

Радиатор. подключенный по схеме сверху вниз, создает маленький полезный гравитационный напор, для увеличения расхода через себя.

Что касается однотрубной системы (по ленинградке)

То к однотрубной системе правила те же. Но однотрубная система с подключением сверху вниз дает очень полезный эффект. То есть последний радиатор будет теплее чем, по схеме с нижним подключением.

Двух трубная попутная система отопления

Данная система создает равную длину трубопровода до радиатора. Это условие помогает создать равномерное распределение расхода между радиаторами.

Дело в том, что существуют сопротивления по длине трубопровода, которые влияют на расход.

Если Вы хотите глубже понять, что такое сопротивление в системе отопления, то Вам следует познакомиться с такими разделами как:

Сборник фотографий для размышления:

Все схемы рабочие, есть некоторые недостатки. Данные схемы только для размышления.

Пример расчета секций алюминиевых радиаторов отоплениия на квадратный метр

Мало знать, что алюминиевые батареи обладают высоким уровнем теплоотдачи.

Перед их установкой обязательно нужно произвести расчет, какое именно их количество должно быть в каждом отдельном помещении.

Только зная, сколько алюминиевых радиаторов нужно на 1 м2, можно с уверенностью покупать необходимое количество секций.

Расчет секций алюминиевых радиаторов на квадратный метр

Как правило, производителями заранее просчитаны нормы мощности батарей из алюминия. которые зависят от таких параметров, как высота потолков и площадь помещения. Так считается, что на то, чтобы нагреть 1 м2 комнаты с потолком до 3 м высоты потребует тепловая мощность в 100 Вт.

Эти цифры приблизительны, так как расчет алюминиевых радиаторов отопления по площади в данном случае не предусматривает возможных теплопотерь в помещении или более высокие или низкие потолки. Это общепринятые строительные нормы, которые указывают в техпаспорте своей продукции производители.

  1. Немалую важность играет параметр тепловой мощности одного ребра радиатора. Для алюминиевого обогревателя она составляет 180-190 Вт.
  2. Температура носителя так же должна учитываться. Ее можно узнать в управляющем тепловом хозяйстве, если отопление централизованное, либо измерить самостоятельно в автономной системе. Для алюминиевых батарей показатель равен 100-130 градусам. Разделив температуру на тепловую мощность радиатора, получается, что для обогрева 1 м2 потребуется 0.55 секций.
  3. В том случае, если высота потолков «переросла» классические стандарты, то необходимо применять специальный коэффициент:
    • если потолок равен 3 м, то параметры умножаются на 1.05;
    • при высоте 3.5 м он составляет 1.1;
    • при показателе 4 м – это 1.15;
    • высота стены 4.5 м – коэффициент равен 1.2.
  4. Можно воспользоваться таблицей, которую предоставляют производители к своей продукции.

Сколько нужно секций алюминиевого радиатора?

Расчет количества секций алюминиевого радиатора производится по форме, подходящей для обогревателей любого типа:

  • S – площадь помещения, где требуется установка батареи;
  • k – коэффициент корректировки показателя 100 Вт/м2 в зависимости от высоты потолка;
  • P – мощность одного элемента радиатора.

При расчете количества секций алюминиевых радиаторов отопления получается, что в помещении площадью 20 м2 при высоте потолка 2.7 м для алюминиевого радиатора с мощностью одной секции 0.138 кВт потребуется 14 секций.

Q = 20 х 100 / 0.138 = 14.49

В данном примере коэффициент не применяется, так как высота потолка менее 3 м. Но даже такой секций алюминиевых радиаторов отопления не будут верными, так как не взяты во внимание возможные теплопотери помещения. Следует учитывать, что в зависимости от того, сколько в комнате окон, является ли она угловой и есть ли в ней балкон: все это указывает на количество источников теплопотерь.

Делая расчет алюминиевых радиаторов по площади помещения, следует в формуле учитывать процент потери тепла в зависимости от того, где они будут установлены:

  • если они закреплены под подоконником, то потери составят до 4%;
  • установка в нише моментально увеличивает этот показатель до 7%;
  • если алюминиевый радиатор для красоты прикрыть с одной стороны экраном, то потери составят до 7-8%;
  • закрытый экраном полностью, он будет терять до 25%, что делает его в принципе малорентабельным.

Это далеко не все показатели, которые следует учесть при установке алюминиевых батарей.

Пример расчета

Если рассчитывать, сколько секций алюминиевого радиатора надо на комнату площадью 20 м2 при норме 100 Вт/м2, то так же следует вносить корректировочные коэффициенты потери тепла:

  • каждое окно добавляет к показателю 0.2 кВт;
  • дверь «обходится» в 0.1 кВт.

Если предполагается, что радиатор будет размещен под подоконником, то корректирующий коэффициент составит 1.04, а сама формула будет выглядеть следующим образом:

Q = (20 х 100 + 0,2 + 0,1) х 1,3 х 1,04 / 72 = 37,56

  • первый показатель – это площадь комнаты;
  • второй – стандартное количество Вт на м2;
  • третий и четвертый указывают на то, что в комнате по одному окну и двери;
  • следующий показатель – это уровень теплоотдачи алюминиевого радиатора в кВт;
  • шестой – корректирующий коэффициент касаемо расположения батареи.

Все следует разделить на теплоотдачу одного ребра обогревателя. Его можно определить из таблицы от производителя, где указаны коэффициенты нагрева носителя по отношению к мощности устройства. Средний показатель для одного ребра равен 180 Вт, а корректировка – 0.4. Таким образом, умножив эти цифры, получается, что 72 Вт дает одна секция при нагреве воды до +60 градусов.

Так как округление производится в большую сторону, то максимальное количество секций в алюминиевом радиаторе конкретно для этого помещения составит 38 ребер. Для улучшения работы конструкции, ее следует разделить на 2 части по 19 ребер каждая.

Узнайте полезную информацию об алюминиевых батареях на нашем сайте:

Вычисление по объему

Если производить подобные вычисления, то потребуются обратиться к нормативам, установленным в СНиП. В них учитываются не только показатели радиатора, но и то, из какого материала построено здание.

Например, для дома из кирпича нормой для 1 м2 будет 34 Вт, а для панельных строений – 41 Вт. Чтобы рассчитать количество секций батареи по объему помещения, следует: объем помещения умножить на нормы теплозатрат и разделить на теплоотдачу 1 секции.

  1. Чтобы высчитать объем комнаты площадью 16 м2, нужно умножить этот показатель на высоту потолков, например, 3 м (16х3 = 43 м3).
  2. Норма тепла для кирпичного здания = 34 Вт, чтобы узнать какое требуется количество для данной комнаты, 48 м3 х 34 Вт (для панельного дома на 41 Вт) = 1632 Вт.
  3. Определяем, сколько требуется секций при мощности радиатора, например, 140 Вт. Для этого 1632 Вт/ 140 Вт =11.66.

Округлив этот показатель, получаем результат, что для комнаты объемом 48 м3 требуется алюминиевый радиатор из 12 секций.

Тепловая мощность 1 секции

Как правило, производители указывают в технических характеристиках обогревателей средние показатели теплоотдачи. Так для обогревателей из алюминия он составляет 1.9-2.0 м2. Чтобы высчитать, какое количество секций потребуется, нужно площадь помещения разделить на этот коэффициент.

Например, для той же комнаты площадью 16 м2 потребуется 8 секций, так как 16/ 2 = 8.

Эти расчеты приблизительные и использовать их без учета теплопотерь и реальных условий размещения батареи нельзя, так как можно получить после монтажа конструкции холодную комнату.

Чтобы получить самые точные показатели, придется рассчитать количество тепла, которое необходимо для обогрева конкретной жилой площади. Для этого придется учитывать многие корректирующие коэффициенты. Особенно важен такой подход, когда требуется расчет алюминиевых радиаторов отопления для частного дома.

Формула, необходимая для этого выглядит следующим образом:

КТ = 100Вт/м2 х S х К1 х К2 х К3 х К4 х К5 х К6 х К7

  1. КТ – это то количество тепла, которое требуется данному помещению.
  2. S – площадь.
  3. К1 – обозначение коэффициента для остекленного окна. Для стандартного двойного остекления он равен 1.27, для двойного стеклопакета – 1.0, а для тройного – 0.85.
  4. К2 – это коэффициент уровня утепления стены. Для неутепленной панели он = 1.27, для кирпичной стены с кладкой в один слой = 1.0, а в два кирпича = 0.85.
  5. К3 – это соотношение площади, занимаемой окном и полом.Когда между ними:
    • 50% — коэффициент составляет 1.2;
    • 40% — 1.1;
    • 30% — 1.0;
    • 20% — 0.9;
    • 10% — 0.8.
  6. К4 – это коэффициент, учитывающий температуру воздуха по СНиП в самые холодные дни года:
    • +35 = 1.5;
    • +25 = 1.2;
    • +20 = 1.1;
    • +15 = 0.9;
    • +10 = 0.7.
  7. К5 указывает на корректировку при наличии наружных стен.Например:
    • когда она одна, показатель равен 1.1;
    • две наружные стены – 1.2;
    • 3 стены – 1.3;
    • все четыре стены – 1.4.
  8. К6 учитывает наличие помещения над комнатой, для которой производятся расчеты.При наличии:
    • неотапливаемого чердака – коэффициент 1.0;
    • чердак с обогревом – 0.9;
    • жилая комната – 0.8.
  9. К7 – это коэффициент, который указывает на высоту потолка в комнате:
    • 2.5 м = 1.0;
    • 3.0 м = 1.05;
    • 3.5 м = 1.1;
    • 4.0 м = 1.15;
    • 4.5 м = 1.2.

Если применить эту формулу, то можно предусмотреть и учесть практически все нюансы, которые могут повлиять на обогрев жилой площади. Сделав расчет по ней, можно быть точно уверенным, что полученный результат указывает на оптимальное количество секций алюминиевого радиатора для конкретного помещения.

Если вы решили установить алюминиевые радиаторы отопления важно знать следующее:

Какой бы принцип расчетов ни был предпринят, важно сделать его в целом, так как правильно подобранные батареи позволяют не только наслаждаться теплом, но и значительно экономят на энергозатратах. Последнее особенно важно в условиях постоянно растущих тарифов.

Полезное видео

Как провести расчет секций радиаторов отопления?

Сколько должно быть секций в радиаторе?

Прожив худо-бедно зиму, мы каждый раз ставим перед собой одну и ту же цель — к новому отопительному сезону подготовиться максимально продуктивно, заменив старые батареи отопления на более эффективные. Выбрав отопительный прибор, нужно еще правильно рассчитать количество секций радиаторов отопления. Сделать это легко, если знать формулу.

Для правильных расчетов понадобится замерить габариты помещения и вычислить его площадь. Важно учесть, где располагается комната — в окружении других помещений или в стороне от них, определить толщину стен и материал, из которого они сделаны, обратить внимание на количество окон и качество теплоизоляции.

Стандартный расчет

Многие сетуют на то, что даже после установки новых батарей дома все равно некомфортно и холодно. Специалисты уверены — дело не в том, что приборы не оправдали надежды потребителей. Чаще причиной является неправильный расчет секций радиаторов отопления. Существуют стандартные схемы, учитывающие требования СНиП. В них указано, что на обогрев 1 квадратного метра жилой площади необходимо 100 Вт мощности отопительного прибора.

Отсюда можно вывести простую формулу:

К (количество батарей) = S (площадь помещения) умножить на 100 и разделить на Р (мощность одной секции батареи). Последняя величина указана в техническом паспорте изделия.

Приведем простой пример применения этой формулы. Допустим, есть помещение, площадь которого составляет 22 квадратных метра. 22×100/ 200=11

Для данной комнаты необходимо выбрать 11-секционный радиатор. А далее по обстоятельствам. Если комната угловая, добавляем 20% на запас и получаем немного больше — 13. По такой схеме можно рассчитать практически все радиаторы — и чугунные, и биметаллические.

Объемный расчет количества секций

Рассчитать количество необходимых секций можно, исходя из объема радиатора. Если дом или квартира построены без учета модных ныне технологий энергосбережения, то на 1 кубический метр объема требуется 41 Ватт тепловой мощности.

Такой схемой пользуются в Европе. Разделив имеющийся объем помещения на 41, мы получаем требуемую мощность прибора. Зная ее и этот же показатель для одной секции батареи, легко высчитать секционность прибора.

Приведем пример из расчета, что помещение имеет площадь 22 квадратных метра и высоту потолка 2,7 м. Кубический объем вычисляют так:

22×2,7=59,4 м. куб. Далее 59,4/41=1,448 кВт.

Современная комбинированная батарея

Мощность одной единицы радиатора в зависимости от модели может варьировать в пределах от 120 до 200 Вт. Приведем примеры расчета:

  1. Если эта величина равна 120 Вт (параметры указаны в паспорте), то формула вычислений такова — 1448/120=12,06 (12-секционная батарея).
  2. Если мощность одной единицы прибора равна 250 Вт, то получаются такие цифры — 1448/250=5,8 (6-секционная батарея). Принцип вычислений в целом понятен.

Как правило, продавцы в магазине осведомлены о мощности отопительного прибора. Известно, что для одной секции чугунного агрегата этот показатель равен 160 Вт, алюминиевого — 192 Вт, биметаллического — 200 Вт. Зная эти величины, можно заранее перед покупкой произвести точные расчеты.

Обратите внимание! Так как зимы в наших широтах могут быть очень суровыми, то к точным расчетам специалисты советуют еще прибавлять лишних 20%. Это значит, что к полученной вами цифре, указывающей на секционность прибора, всегда нужно добавлять 2 лишние единицы.

Обобщение по теме

Теперь вы знаете, как решить поставленную проблему. Есть две схемы, позволяющие с математической точностью найти ответ на вопрос о количестве секций радиаторов. Специалисты рекомендуют детально изучить технический паспорт изделия и не стесняться расспрашивать продавцов, приобретая отопительные приборы.

Источники: http://infobos.ru/str/797.html, http://netholodu.com/elementy-otopleniya/radiatory/alyuminievye/raschet-sektsij.html, http://gidotopleniya.ru/radiatory-otopleniya/raschet-kolichestva-sekcij-radiatorov-otopleniya-2833

Секции радиаторов отопления: расчет количества, инструкции сборки

На чтение 5 мин. Просмотров 56 Опубликовано Обновлено

Можно ли самостоятельно изменить конфигурацию радиатора, увеличить или уменьшить его теплоотдачу? Эта задача решаема, если предварительно разобраться в конструкции. Поэтому нужно узнать специфику каждого вида секции радиаторов отопления: расчет количества, инструкции сборки и эксплуатационные свойства.

Конструктивные особенности радиаторов

Конструкция секции радиатора

До того, как собрать секции радиатора отопления – следует выяснить особенности строения этого элемента отопления. Его основная задача – передача тепловой энергии от теплоносителя в помещение. Поэтому он должен иметь большую площадь нагрева.

Внутри располагается 2 канала, по которым протекает горячая вода. От них тепло передается поверхности батареи. По такому принципу изготавливаются алюминиевые, чугунные и биметаллические модели. Стальные чаще всего имеют неразборной корпус.

Как рассчитать количество секций радиаторов отопления и что необходимо учесть?

  • Тепловые потери в помещении. Они определят необходимую энергию отопления для компенсации и поддержания комфортной температуры;
  • Удельную мощность секции. Она зависит от материала изготовления, размеров конструкции и должна указываться производителем;
  • Тепловой режим работы отопления. Для низкотемпературного не рекомендуется устанавливать максимальное количество секций в радиаторе отопления. Это может привести к снижению нагрева воды и тепловой разбалансировке на следующих участках.

При выборе материала изготовления нужно рассматривать не только эксплуатационные качества радиаторов, но и возможность самостоятельной установки (демонтажа) секций. В домашних условиях это можно сделать только с алюминиевыми и биметаллическими моделями.

Существуют неразборные типы секционных радиаторов. У них канал приставляет собой цельнометаллическую трубу. Изменить их размеры невозможно.

Расчет количества секций для радиаторов отопления

Тепловые потери дома

Корректный расчет секций биметаллических радиаторов отопления начинается с анализа помещения, где они будут установлены. Его основой является вычисление тепловых потерь в доме. Большая часть из них происходит через стены и окна.

Именно они должны стать основой для расчета количества секций радиатора отопления на помещение. Комфортная температура в комнате должна составлять 18-22°С. Исходя из этого выбирается тепловой режим работы отопления, и как следствие – параметры батарей.

Рекомендуется сначала выполнить утепление наружных стен, а затем выбирать батареи, исходя из характеристик теплоизоляции здания.

Приблизительный расчет

Не всегда известен материал изготовления стен и характеристики утепления. В таком случае делается приближенный  расчет количества секций чугунных радиаторов отопления. Для этого можно воспользоваться двумя методиками:

  • На 10 м² площади необходимо 1 кВт тепловой энергии;
  • На 1 м³ объема помещения система отопления должна генерировать 34 Вт.

В качестве примера можно рассчитать количество секций радиаторов отопления для комнаты площадью 20 м² со стандартной высотой потолков 2,55 м. В этом случае общий объем составит 51 м³. Предположим, что тепловая отдача одной секции составляет 160 Вт. Рассчитываем их количество:

  • По площади — 20м²*0,1кВт/0,16кВт=12,5 или 13 секций;
  • По объему – 51*0,34= 17.

Как видно, при расчете по последней методике количество секций существенно больше. Это объясняется нормативными требованиями.

Точный расчет

Теплопроводность материалов

Для точного расчета максимального количества секций в радиаторе отопления нужно оперировать характеристикой теплопроводности материалов. Этот показатель определяет, какое количество тепла будет выходить из помещения через стены.

Сначала вычисляется общая площадь наружных стен и отдельно — оконных конструкций. Предположим, что первые занимают 2,55*5=12,75 м². Общая площадь окна при этом составляет 3 м². Тогда для расчета секций биметаллических радиаторов отопления узнаем, какие материалы применялись при строительстве дома. Чаще всего это строительный кирпич, коэффициент теплопроводности которого составляет 0,16 Вт/м*С.

Но для правильного расчета количества секций радиатора отопления на помещение следует узнать толщину стен. Это необходимо для вычисления сопротивления теплопередачи – коэффициента, обратного теплопроводности. В среднем толщина несущих конструкций составляет 0,6 м.

Вычисляем сопротивление теплопередачи для 1 м²:

0,6/0,16=3,75 м²*с/Вт

Исходя из этого тепловые потери для стены составят:

(1/3,75)*12,75=3,4 кВ

По этому же принципу вычисляем тепловые потери через оконные конструкции, беря среднее значение сопротивления теплопередачи 0,9 на 1 м²:

(1/1,9)*3=1,57 кВт

Итоговые тепловые потери в этом случае составят 3,4+1,57= 5 кВт. Эту цифру нужно взять за основу для корректного расчета количества секций чугунных радиаторов отопления, у которых удельная тепловая отдача в среднем составляет 200 Вт:

5/0,20= 25 секций

Это количество не является завышенным, так как по исходным данным стена не утеплена. Если же установить хотя бы 100 мм пенополистирола на наружную стену, то расчетное количество секций радиаторов отопления значительно уменьшится. Коэффициент теплопередачи пенополистирола составляет 0,015 Вт/м*с. Тогда тепловые потери будут состоять из суммы сопротивления теплопередачи стен и утеплителя:

(0,6/0,16)+(0,1/0,015)= 10,41 м²*с/Вт

(1/10,41)*12,75=1,22

1,22+1,57=2,77 кВт

2,77/0,2=14 секций

Как видно из расчета максимального количество секций в отопительном радиаторе — даже относительно небольшое утепление существенно уменьшает тепловые потери комнаты.

Помимо стен и оконных конструкций нужно учитывать потери тепла через потолок и пол. В особенности это важно для первых этажей частных домов без подвального помещения.

Сборка радиатора отопления своими руками

Монтажный ключ и узел соединения секции радиатора

Выполнив расчет секций биметаллических отопительных радиаторов можно приступать к их сборке. Если есть возможность – лучше всего эту работу доверить профессионалам. Чаще всего торгующие компании предоставляют эту услугу.

Для самостоятельного сбора секции радиатора отопления потребуется специальный ключ. Если это мероприятие разовое – лучше всего взять его в аренду. В каждом канале батареи должна быть резьба, на которую накручивается ниппель – стальной патрубок. Долинная штанга ключа позволяет собирать радиаторы с количеством секций до 7-ми.

Направление резьбы в ниппеле различное. Т.е. для соединения секции радиатора отопления достаточно установить его в монтажный паз и с помощью ключа закрутить. После окончательной сборки проверяется герметичность конструкции и в обязательном порядке выполняется опрессовка.

В видеоматериале подробно описывается специфика монтажа секций радиаторов:

Схемы подключения радиаторов отопления | ТЕПЛОВИЧЁК

Для подключения радиаторов отопления применяются три основных схемы: диагональное подключение, боковое и нижнее («ленинградка»).

При диагональном подключении труба, по которой горячий теплоноситель подается в радиатор (подающая труба), подключается к верхнему патрубку с одной стороны радиатора, а труба, по которой холодный теплоноситель выводится из радиатора (отводная труба), подключается к нижнему патрубку с другой стороны. То есть подключение радиатора отопления выполняется по диагонали. Боковое подключение радиаторов подразумевает подключение подающей и отводной труб к верхнему и нижнему патрубкам с одной стороны радиатора. Нижнее подключение – к нижним патрубкам с разных сторон радиатора.

Диагональная схема обеспечивает максимальный коэффициент теплоотдачи от радиатора, т.е. является наиболее эффективной, и обеспечивает самое максимальное количество тепла в сравнении с другими схемами подключения. У боковой схемы подключения теплоотдача на 2-5% ниже, чем теплоотдача диагональной схемы. У нижней — на 10-15%.

Диагональная схема подключения позволяет использовать радиаторы большой длины, максимальное количество секций — 24. Обеспечивается равномерный прогрев всей поверхности радиатора. При боковой схеме подключения максимальное количество секций – 12. При большом количестве секций при боковой схеме подключения дальние секции греются значительно меньше ближних. При этом в радиаторе образуются застойные зоны, что приводит к резкому снижению эффективности его работы.

Боковая схема подключения радиаторов наиболее часто использовалась в городских многоэтажных домах советского периода, так как она является наиболее выгодной с точки зрения расхода материалов. В боковой схеме используется меньшее количество труб на подключение радиатора (за счет короткой обратной трубы). При применении диагональной схемы обратная труба обычно проходит под радиатором в обратную сторону, чтобы вернуть отработанный теплоноситель в стояк.

Нижняя схема подключения радиаторов обычно используется, когда предъявляются повышенные требования к внутреннему дизайну помещения. В этом случае разводку системы отопления осуществляют под полом.

В настоящее время в связи с повышенными требованиями к эффективности системы отопления именно диагональная схема подключения все чаще используется как при строительстве частных домов, так и при городском строительстве.

Вам необходимо включить JavaScript, чтобы проголосовать

Расскажите о нас друзьям:

Как рассчитать количество секций радиатора

Расчет мощности алюминиевой батареи можно проводить по-разному. 

Самый простой способ определения числа секций на 1 кв. м

Существует метод расчета алюминиевого радиатора по площади. Для обогрева 1 м2 помещения до комфортной температуры ( +20 °С) отопитель должен выделять 100 Вт тепла. Эту цифру нужно использовать.

Нужно выполнить следующие действия:

  1. Определить тепловую мощность одного ребра батареи. Часто она равняется 180 Вт.
  2. Рассчитать или измерить температуру теплоносителя в системе отопления. Если температура воды, входящей в отопитель, составляет tвх. = 100 °С и, выходящей из него, составляет tвых. = 80 °С, то цифру 100 делят на 180. Результат составляет 0,55. Именно 0,55 секции нужно использовать для 1 кв. м.
  3. Если измеренные показатели ниже, то рассчитывают показатель ΔT (в вышеуказанном случае он составляет 70 °С). Для этого используют формулу ΔT = (tвх. + tвых.)/2 – tк, где tк является желаемой температурой. Стандартно tк составляет 20 °С. Пусть tвх. = 60 °С, а tвых. = 40 °С, тогда ΔT = (60 + 40)/2 – 20 = 30 °С.
  4. Найти специальную табличку, в которой определенному значению ΔT соответствует корректирующий коэффициент. Для некоторых радиаторов при ΔT = 30 °С он составляет 0,4. Эти таблички нужно спрашивать у производителей.
  5. Умножить тепловую мощность одного ребра на 0,4. 180 * 0,4 = 72 Вт. Именно столько тепла может передать одна секция от теплоносителя, нагретого до 60 °С.
  6. Разделить норму на 72. Итого 100/72 = 1,389 секции нужно, чтобы отопить 1 м2.

Этот показатель можно умножить на площадь. Если комната имеет 20 кв. м, то нужно установить батарею с 28 ребрами. Лучше разбить ее пополам.


Этот метод имеет такие недостатки:

  1. Норма 100 Вт рассчитана для помещений, высота которых меньше 3 м. Если высота больше, то нужно использовать корректирующий коэффициент.
  2. Не учитываются потери тепла через окна, дверь и стены, если комната угловая.
  3. Не учитывается потеря тепла, вызванная определенным способом установки отопителя.

Правильный расчет

Он предусматривает умножение площади комнаты на норму 100, корректировку результата в зависимости от особенностей помещения и деление конечной цифры на мощность одного ребра (желательно использовать скорректированную мощность).

Корректируют произведение площади и нормы, равной 100 Вт, таким образом:

  1. На каждое окно к нему добавляют 0,2 кВт.
  2. На каждую дверь к нему добавляют 0,1 кВт.
  3. Для угловой комнаты конечную цифру умножают на 1,3. Если угловая комната расположена в частном доме, то коэффициент составляет 1,5.
  4. Для помещения с высотой, большей 3 м, применяют коэффициенты 1,05 (высота 3 м), 1,1 (высота 3,5 м), 1,15 (4 м), 1,2 (4,5 м).

Нужно учесть и способ размещения отопителя, который также приводит к потере тепла. Эти потери являются такими:

  • 3-4% – в случае монтажа отопительного устройства под широким подоконником или полочкой;
  • 7%, если радиатор устанавливается в нише;
  • 5-7%, если находится возле открытой стены, но частично его закрывает экран;
  • 20-25% – в случае полного закрытия экраном.

Пример расчета количества секций

Планируется поставить батарею в помещении площадью 20 кв. м. Комната является угловой, имеет два окна и одну дверь. Высота равна 2,7 м. Радиатор будет размещаться под подоконником (корректирующий коэффициент – 1,04). Котел подает теплоноситель с температурой 60 °С. На выходе из отопителя вода будет иметь температуру 40 °С.

Расчет максимального количества ребер таков:

Q = (20 * 100 + 0,2 + 0,1) * 1,3 * 1,04 / 72 = 37,56 секций.

Поскольку нужно округлять в максимальную сторону, то нужно устанавливать батарею с 38 ребрами. Ее можно разделить на две части и поставить под обоими окнами. Каждая из них будет иметь 19 ребер.

Метод учитывающий высоту

Он отличается тем, что предусматривает норму тепла на 1 куб. м, а также использует не площадь помещения, а объем. Нормой в этом случае является 41 Вт. Все другие корректировки являются такими же.

Если взять вышерассмотренный пример, то количество секций радиатора будет таким:

Q = (20 * 2,7 * 41 + 0,2 + 0,1) * 1,3 * 1,04 / 72 = 41,57, то есть 42. Этот показатель можно считать максимальным.

Алюминиевые радиаторы Stout Bravo

Алюминиевые секционные радиаторы STOUT Bravo предназначены для применения в системах водяного отопления зданий различного назначения.

Радиаторы STOUT Bravo собираются из отдельных секций, которые изготавливаются из качественного алюминиевого сплава методом литья под давлением. Каждая секция представляет собой единый монолит из двух коллекторов и связывающего их оребрения, внутри которого проходит вертикальный канала овального сечения. Особая форма оребрения и канала обеспечивают высокие теплотехнические показатели радиатора и низкое гидравлическое сопротивление. В отверстиях коллекторов выполнена трубная резьба размером 1″ (с одной стороны правая, а с другой – левая). Резьба служит для соединения секций между собой в радиаторы различной длины с помощью стальных резьбовых ниппелей. Геометрия ниппельных соединений и параметры прокладок гарантируют надежную герметичность собранного радиатора. Наружная поверхность секции радиатора окрашена порошковой эмалью белого цвета (RAL 9010).

Рис. 1. «Габаритные размеры радиатора»

Длина радиатора (L) = n × D
где n – число секций в радиаторе

«Основные технические характеристики 1 секции радиаторов»
Наименование показателя, размерность Значение показателя
Модель радиатора Bravo 350 Bravo 500
Вид теплоносителя Вода
Рабочее (избыточное) давление теплоносителя, МПа 1,6 (16 атм.)
Испытательное (пробное) давление, МПа 2,4 (24 атм.)
Разрушающее давление секции, МПа 4,8 (48 атм.)
Максимальная температура теплоносителя, °С 110
Номинальный тепловой поток Qну, Вт* 130 175
Размеры, мм
(рис. 1)
Межосевое расстояние (A) 350 500
Высота полная (B) 429 576
Глубина (C) 80 80
Ширина (D) 80 80
Размер резьбы в ниппельных отверстиях коллекторов, дюймы G1 G1
Емкость, л 0,24 0,31
Масса, кг 0,84 1,17

Расчет секций биметаллических радиаторов отопления по площади


Здесь вы узнаете про расчет секций алюминиевых радиаторов на квадратный метр: сколько нужно батарей на комнату и частный дом, пример вычисления максимального количества обогревателей на необходимою площадь.

Мало знать, что алюминиевые батареи обладают высоким уровнем теплоотдачи.

Перед их установкой обязательно нужно произвести расчет, какое именно их количество должно быть в каждом отдельном помещении.

Только зная, сколько алюминиевых радиаторов нужно на 1 м2, можно с уверенностью покупать необходимое количество секций.

Расчет секций алюминиевых радиаторов на квадратный метр

Как правило, производителями заранее просчитаны нормы мощности батарей из алюминия, которые зависят от таких параметров, как высота потолков и площадь помещения. Так считается, что на то, чтобы нагреть 1 м2 комнаты с потолком до 3 м высоты потребует тепловая мощность в 100 Вт.

Эти цифры приблизительны, так как расчет алюминиевых радиаторов отопления по площади в данном случае не предусматривает возможных теплопотерь в помещении или более высокие или низкие потолки. Это общепринятые строительные нормы, которые указывают в техпаспорте своей продукции производители.

Кроме них:

  1. Немалую важность играет параметр тепловой мощности одного ребра радиатора. Для алюминиевого обогревателя она составляет 180-190 Вт.
  2. Температура носителя так же должна учитываться. Ее можно узнать в управляющем тепловом хозяйстве, если отопление централизованное, либо измерить самостоятельно в автономной системе. Для алюминиевых батарей показатель равен 100-130 градусам. Разделив температуру на тепловую мощность радиатора, получается, что для обогрева 1 м2 потребуется 0.55 секций.
  3. В том случае, если высота потолков «переросла» классические стандарты, то необходимо применять специальный коэффициент:
      если потолок равен 3 м, то параметры умножаются на 1.05;
  4. при высоте 3.5 м он составляет 1.1;
  5. при показателе 4 м – это 1.15;
  6. высота стены 4.5 м – коэффициент равен 1.2.
  7. Можно воспользоваться таблицей, которую предоставляют производители к своей продукции.

Сколько нужно секций алюминиевого радиатора?

Расчет количества секций алюминиевого радиатора производится по форме, подходящей для обогревателей любого типа:

Q = S х100 х k/P

В данном случае:

  • S – площадь помещения, где требуется установка батареи;
  • k – коэффициент корректировки показателя 100 Вт/м2 в зависимости от высоты потолка;
  • P – мощность одного элемента радиатора.

При расчете количества секций алюминиевых радиаторов отопления получается, что в помещении площадью 20 м2 при высоте потолка 2.7 м для алюминиевого радиатора с мощностью одной секции 0.138 кВт потребуется 14 секций.

Q = 20 х 100 / 0.138 = 14.49

В данном примере коэффициент не применяется, так как высота потолка менее 3 м. Но даже такой секций алюминиевых радиаторов отопления не будут верными, так как не взяты во внимание возможные теплопотери помещения. Следует учитывать, что в зависимости от того, сколько в комнате окон, является ли она угловой и есть ли в ней балкон: все это указывает на количество источников теплопотерь.

Делая расчет алюминиевых радиаторов по площади помещения, следует в формуле учитывать процент потери тепла в зависимости от того, где они будут установлены:

  • если они закреплены под подоконником, то потери составят до 4%;
  • установка в нише моментально увеличивает этот показатель до 7%;
  • если алюминиевый радиатор для красоты прикрыть с одной стороны экраном, то потери составят до 7-8%;
  • закрытый экраном полностью, он будет терять до 25%, что делает его в принципе малорентабельным.

Это далеко не все показатели, которые следует учесть при установке алюминиевых батарей.


Как рассчитать количество секций радиаторов отопления

Базовой величиной для расчетов необходимой мощности радиаторов выступает площадь помещения или его объем. Но простые формулы используются для расчета, когда помещение не имеет особенностей. В остальных случаях формула значительно усложняется.

На квадратный метр

Если помещение имеет стандартную высоту потолка – 2,7 м, а также не отличается архитектурными особенностями – большая площадь остекления, высокие потолки, – можно воспользоваться простой формулой, в которой учитывается только площадь:

Q=S×100.

S в этой формуле – площадь помещения, которая обычно заранее известна из документов. Если таких данных нет, ее легко рассчитать, перемножив длину комнаты на ширину. 100 – количество Вт, которые требуются для обогрева 1 м2 комнаты. Q – теплоотдача – значение, получаемое в результате умножения.


Теплоотдачу одной секции производитель указывает в документах на радиаторы

Мощность неразборного радиатора указывается в документах. Следует подобрать такой прибор, мощность которого немного превышает расчетную. Такая формула подойдет, если рассчитывается мощность радиатора для комнаты в многоэтажном доме с высотой потолков 2,65. Пусть площадь этой комнаты равна 20 м2, тогда мощность батареи равна 20×100 или 2000 Вт. Если в комнате есть балкон, значение увеличивают еще на 20%.

Если требуется узнать, сколько секций батарей нужно на квадратный метр, полученное значение делят на мощность одной секции и получают необходимое число секций для эффективного обогрева конкретного помещения. Используя уже рассчитанное значение для определения количества секций чугунной батареи отопления, получится 2000/160=12,5 секций. Округляют число обычно в большую сторону, значит, необходим 13-секционный чугунный радиатор.

В помещениях, где теплопотери не велики, допустимо выполнять округление в меньшую сторону. На кухне, например, работает плита, которая будет дополнительным средством отопления.

В таблице представлены готовые значения для стандартных помещений различной площади:

Площадь, м25-67-910-1212-1415-1718-1920-2324-27
Мощность, Вт500750100012501500175020002500

По объёму

Если потолки значительно выше 2,7 м, например 3,5 м, следует использовать в подсчетах формулу, которая учитывает этот показатель помимо площади помещения. Определено, что для отопления 1 м3 в панельном доме требуется 34 Вт, в кирпичном – 41 Вт, поэтому формула приобретает следующий вид:

Q=S×h×41(34)

Вместо h подставляют высоту потолков в метрах, вместо S – площадь, аналогично предыдущей формуле. Q – искомая мощность радиатора отопления. Предположим, что нужно выполнить расчет для комнаты 20 м2 с высотой потолков 3,5 м в панельном доме. Получаем: 20×3,5×34=2380 Вт. Делим мощность 160 Вт, чтобы рассчитать количество секций радиатора отопления: 2380/160=14,875. Необходима 15-секционная батарея.

Помещение нестандартное


При утепленных наружных и внутренних стенах радиаторов может быть меньше

Более сложные расчеты с учетом второстепенных параметров необходимы, если стены помещения контактируют с улицей, окна выходят на северную сторону или стены недостаточно хорошо утеплены. Также множество других параметров учитывает формула вида:

Q = S×100×А×В×С×D×Е×F×G×H×I×J

Основа остается прежней, это S×100. Другие составляющие формулы – повышающие и понижающие поправочные коэффициенты, в зависимости от ряда особенностей помещения.

А позволяет учесть теплопотери при наличии уличных стен:

  • если внешняя стена одна (это стена с окном) – k=1;
  • две внешних стены (угловая комната) – k=1,2;
  • три стены контактируют с улицей – k=1,3;
  • четыре стены – k=1,4.

B используется для расчета тепловой энергии, в зависимости от того, на какую сторону света выходят окна комнаты. Когда оконный проем расположен на северной стороне, солнце не заглядывает в окна вообще, восточное помещение недополучает солнечную энергию, потому что лучи на восходе еще недостаточно активны. В этих случаях k=1,1. Для западных и южных комнат этот коэффициент не учитывают или считают его равным единице.

С учитывает способность стен удерживать тепло. За единицу приняты стены в два кирпича с поверхностным утеплителем, в роли которого могут выступать, например, плиты полистирола. Для стен, теплоизолирующие свойства которых, согласно расчетам, выше, используется k=0,85, для стен без утепления k=1,27.

D позволяет рассчитать мощность радиатора с учетом климата. Средняя температура наиболее холодной декады января учитывается при расчете:

  • температура опускается ниже -35°C, k=1,5;
  • составляет от -35°C до -25°С – k=1,3;
  • если опускается до -20°C и не ниже – k=1,1;
  • не холоднее -15°C – k=0,9;
  • не ниже -10°C – k=0,7.

E – это высота потолков. Для помещений с высотой потолков до 2,7 м k=1, т.е. он совершенно не влияет на результат. Другие значения представлены в таблице:

Высота потолков, м2,8-33,1-3,53,6-4>4,1
k(E)1,051,11,151,2

F – коэффициент, который позволяет учесть в расчетах тип помещения, расположенного сверху:

  • неотапливаемый чердак или любое другое помещение без отопления – k=1;
  • утепленный чердак или кровля – k=0,9;
  • помещение с отоплением – k=0,8.

G изменяет итоговое значение в соответствии с типом остекления:

  • стандартные деревянные двойные рамы – k=1,27;
  • стандартный стеклопакет – k=1;
  • двойной стеклопакет – k=0,85.

H – учитывает площадь остекления. Если окна большие, через них проникает больше солнца, оно интенсивнее нагревает предметы и воздух в комнате. Предварительно необходимо разделить S окон на S комнаты. Полученное значение следует оценить по таблице:

Sокон/Sпомещения<0,10,11-0,20,21-0,30,41-0,5
k(H)0,80,911,2

I определяют согласно схеме подключения радиаторов.

Подключение по диагонали:

  • вход горячего теплоносителя сверху, выход остывшего теплоносителя снизу – k-1;
  • вход снизу, а выход сверху – k= 1,25.

С одной стороны:

  • горячий теплоноситель сверху, остывший – снизу – k=1,03;
  • горячий – снизу, остывший – сверху – k=1,28;
  • горячий и остывший снизу – k=1,28.

На две стороны: горячий и остывший теплоноситель снизу – 1,1.

J – нужно использовать, если радиатор частично или полностью скрыт подоконником или экраном:

  • полностью открыт – k=0,9;
  • сверху подоконник – k=1;
  • в бетонной или кирпичной нише – k=1,07;
  • сверху располагается подоконник, а с фронтальной части экраном – k=1,12;
  • со всех сторон закрыт экраном – k=1,2.

Остается подставить в формулу все числа и рассчитать результат.


Двухкамерные стеклопакеты с аргоновым наполнителем хорошо удерживают тепло

Предположим, что нужно рассчитать мощность радиатора для комнаты:

  • на втором этаже двухэтажного дома с утепленным чердаком сверху;
  • площадью 23 м2;
  • площадью остекления 11,2 м2;
  • с двойными стеклопакетами;
  • с полностью открытым монтажом радиатора;
  • с двумя внешними стенами;
  • с окнами, выходящими на восток;
  • с высотой потолков 3,5 м;
  • со стенами в два кирпича без утепления;
  • с односторонним нижним подключением радиаторов;
  • средней температурой самой холодной декады января от -25°C до -35°C.

Подставляем значения в формулу 23×100×1,2×1,1×1,27×1,3×1,1×0,9×0,85×1,2×1,28×0,9=5830,91 Вт. Вычислим количество секций 5831/160=36,44. Это количество лучше разбить на две или три батареи, обязательно расположив хотя бы одну на внешней стене, даже если там нет окна.

Пример расчета

Если рассчитывать, сколько секций алюминиевого радиатора надо на комнату площадью 20 м2 при норме 100 Вт/м2, то так же следует вносить корректировочные коэффициенты потери тепла:

  • каждое окно добавляет к показателю 0.2 кВт;
  • дверь «обходится» в 0.1 кВт.

Если предполагается, что радиатор будет размещен под подоконником, то корректирующий коэффициент составит 1.04, а сама формула будет выглядеть следующим образом:

Q = (20 х 100 + 0,2 + 0,1) х 1,3 х 1,04 / 72 = 37,56

Где:

  • первый показатель – это площадь комнаты;
  • второй – стандартное количество Вт на м2;
  • третий и четвертый указывают на то, что в комнате по одному окну и двери;
  • следующий показатель – это уровень теплоотдачи алюминиевого радиатора в кВт;
  • шестой – корректирующий коэффициент касаемо расположения батареи.

Все следует разделить на теплоотдачу одного ребра обогревателя. Его можно определить из таблицы от производителя, где указаны коэффициенты нагрева носителя по отношению к мощности устройства. Средний показатель для одного ребра равен 180 Вт, а корректировка – 0.4. Таким образом, умножив эти цифры, получается, что 72 Вт дает одна секция при нагреве воды до +60 градусов.

Так как округление производится в большую сторону, то максимальное количество секций в алюминиевом радиаторе конкретно для этого помещения составит 38 ребер. Для улучшения работы конструкции, ее следует разделить на 2 части по 19 ребер каждая.

«Расчет с учетом» особенностей комнаты

Это самый сложный метод, но он даст практически точные цифры благодаря большому количеству различных коэффициентов. Они относятся не к системе отопления, а только к особенностям помещения, к способам установки батарей. Формулу используют ту же:

Для получения требуемой теплоотдачи, которую потом придется делить на тепловую мощность одной секции, метраж (не объем!) комнаты сначала умножают на среднюю норму мощности для 1 м2. Она не зависит от региона и составляет 100 Вт. Затем результат по очереди перемножают с коэффициентами А, В, С, D, Е, F, G, H, I и J.

«А» — число внешних стен комнаты

В большей степени, именно от их количества сильно зависят теплопотери:

  • внешняя стена — лишь одна: 1,0;
  • две внешние стены — 1,2;
  • внешних стен — три: 1,3;
  • четыре стены — 1,4.
«B» — ориентация помещения

Минимум тепла сохраняется в комнатах, смотрящих окнами туда, где всегда мало солнечного света: на север или восток, где солнечные лучи «отмечаются» только по утрам:

  • окна выходят на восток либо на север — 1,1;
  • комната расположена на западной или на южной стороне — 1,0.
«С» — степень утепления

Качественная теплоизоляция дает шанс максимально сохранить тепло в помещении:

  • кладка в 2 кирпича или утепленные наружные стены — 1,0;
  • нет утепления снаружи — 1,27;
  • очень высокий уровень утепления (если были проведены теплотехнические расчеты) — 0,85.
«D» — климат в регионе

Эти условия учитывает и СНиП, без их учета невозможно ни одно капитальное строительство. Тут используют средние показатели температуры декабря, его самой холодной декады. Эти данные необходимо узнать в гидрометеорологической службе города (района):

  • до -10° — 0,7;
  • до -15° — 0,9;
  • не ниже -20° — 1,1;
  • от -25° до -35° — 1,3;
  • от -35° или ниже — 1,5.
«Е» — высота потолков

Как уже было отмечено, и нормы СНиП (от 60 до 200 Вт на 1 м2), и среднее значение (100 Вт), использующееся в этом случае, подразумевают стандартную высоту потолков — 2700 мм. Если они не «дотягивают» до этой цифры, то выбирают коэффициент 1,0. Когда высота ее превосходит, то для умножения берут другой:

  • 1,05, если высота находится в пределах 2800-3000 мм;
  • 1,1 для 3100-3500 мм;
  • 1,15 для 3600-4000 мм;
  • 1,2, если высота потолка более 4100 мм.
«F» — помещение, находящееся выше

Так как через потолок помещения с большей охотой уходит поднимающийся вверх теплый воздух, в этом случае большое значение имеет верхний этаж. Эти коэффициенты выглядят так:

  • сверху чердак или другое неотапливаемое помещение — 1,0;
  • утепленный чердак и кровля — 0,9;
  • отапливаемая комната — 0,8.
«G» — качество оконных конструкций

Разные пластиковые окна имеют неодинаковые характеристики. Особняком стоят обычные оконные конструкции, сильно повышающие коэффициент:

  • деревянные рамы старого образца с двойным остеклением — 1,27;
  • однокамерный стеклопакет с двумя стеклами — 1,0;
  • двойной стеклопакет либо однокамерный, но имеющий аргановое покрытие, — 0,85.
«H» — площадь остекления комнаты

Независимо от качества оконных конструкций большее количество теплопотерь происходит из-за впечатляющей площади окон. Этот коэффициент зависит от соотношения площади оконных проемов и общего метража помещения:

  • менее 0,1 — 0,8;
  • от 0,11 до 0,2 — 0,9;
  • 0,31-0,4 — 1,1;
  • от 0,41 до 0,5 — 1,2.
«I» — схема подключения радиаторов

Эффективность отопления зависит от того, каким образом батареи подключают к трубам — как к подающим, так и к обратным. Самый лучший вариант — диагональное подключение: первая сверху, вторая снизу. Он (на рисунке обозначен буквой А) соответствует коэффициенту 1,0.

  • Б — 1,03;
  • В — 1,13;
  • Г — 1,25;
  • Д, Е — 1,28.

Вычисление по объему

Если производить подобные вычисления, то потребуются обратиться к нормативам, установленным в СНиП. В них учитываются не только показатели радиатора, но и то, из какого материала построено здание.

Например, для дома из кирпича нормой для 1 м2 будет 34 Вт, а для панельных строений – 41 Вт. Чтобы рассчитать количество секций батареи по объему помещения, следует: объем помещения умножить на нормы теплозатрат и разделить на теплоотдачу 1 секции.

Например:

  1. Чтобы высчитать объем комнаты площадью 16 м2, нужно умножить этот показатель на высоту потолков, например, 3 м (16х3 = 43 м3).
  2. Норма тепла для кирпичного здания = 34 Вт, чтобы узнать какое требуется количество для данной комнаты, 48 м3 х 34 Вт (для панельного дома на 41 Вт) = 1632 Вт.
  3. Определяем, сколько требуется секций при мощности радиатора, например, 140 Вт. Для этого 1632 Вт/ 140 Вт =11.66.

Округлив этот показатель, получаем результат, что для комнаты объемом 48 м3 требуется алюминиевый радиатор из 12 секций.

Видео: Советы специалистов по расчету количества радиаторов отопления в квартире

Если вам до сих пор не до конца понятно, как производятся эти расчеты и вы не рассчитываете на свои силы, можно обратиться к специалистам, которые произведут точный расчет и сделают анализ с учетом всех параметров:

  • особенности погодных условий региона, где расположено строение;
  • температурные климатические показатели на начало и окончание отопительного сезона;
  • материал, из которого возведено строение и наличие качественного утепления;
  • количество окон и материал, из которого изготовлены рамы;
  • высота отапливаемых помещений;
  • эффективность установленной системы отопления.

Зная все вышеперечисленные параметры, специалисты-теплотехники по имеющейся у них программе расчёта с легкостью высчитают нужное количество батарей. Такой просчет с учетом всех нюансов вашего дома гарантированно сделает его уютным и теплым, а вас и вашу семью — счастливыми!

Тепловая мощность 1 секции

Как правило, производители указывают в технических характеристиках обогревателей средние показатели теплоотдачи. Так для обогревателей из алюминия он составляет 1.9-2.0 м2. Чтобы высчитать, какое количество секций потребуется, нужно площадь помещения разделить на этот коэффициент.

Например, для той же комнаты площадью 16 м2 потребуется 8 секций, так как 16/ 2 = 8.

Эти расчеты приблизительные и использовать их без учета теплопотерь и реальных условий размещения батареи нельзя, так как можно получить после монтажа конструкции холодную комнату.

Чтобы получить самые точные показатели, придется рассчитать количество тепла, которое необходимо для обогрева конкретной жилой площади. Для этого придется учитывать многие корректирующие коэффициенты. Особенно важен такой подход, когда требуется расчет алюминиевых радиаторов отопления для частного дома.

Формула, необходимая для этого выглядит следующим образом:

КТ = 100Вт/м2 х S х К1 х К2 х К3 х К4 х К5 х К6 х К7

  1. КТ – это то количество тепла, которое требуется данному помещению.
  2. S – площадь.
  3. К1 – обозначение коэффициента для остекленного окна. Для стандартного двойного остекления он равен 1.27, для двойного стеклопакета – 1.0, а для тройного – 0.85.
  4. К2 – это коэффициент уровня утепления стены. Для неутепленной панели он = 1.27, для кирпичной стены с кладкой в один слой = 1.0, а в два кирпича = 0.85.
  5. К3 – это соотношение площади, занимаемой окном и полом.Когда между ними:
      50% — коэффициент составляет 1.2;
  6. 40% — 1.1;
  7. 30% — 1.0;
  8. 20% — 0.9;
  9. 10% — 0.8.
  10. К4 – это коэффициент, учитывающий температуру воздуха по СНиП в самые холодные дни года:
  11. +25 = 1.2;
  12. +20 = 1.1;
  13. +15 = 0.9;
  14. +10 = 0.7.
  15. К5 указывает на корректировку при наличии наружных стен.Например:
      когда она одна, показатель равен 1.1;
  16. две наружные стены – 1.2;
  17. 3 стены – 1.3;
  18. все четыре стены – 1.4.
  19. К6 учитывает наличие помещения над комнатой, для которой производятся расчеты.При наличии:
      неотапливаемого чердака – коэффициент 1.0;
  20. чердак с обогревом – 0.9;
  21. жилая комната – 0.8.
  22. К7 – это коэффициент, который указывает на высоту потолка в комнате:
  23. 3.0 м = 1.05;
  24. 3.5 м = 1.1;
  25. 4.0 м = 1.15;
  26. 4.5 м = 1.2.

Если применить эту формулу, то можно предусмотреть и учесть практически все нюансы, которые могут повлиять на обогрев жилой площади. Сделав расчет по ней, можно быть точно уверенным, что полученный результат указывает на оптимальное количество секций алюминиевого радиатора для конкретного помещения.

Какой бы принцип расчетов ни был предпринят, важно сделать его в целом, так как правильно подобранные батареи позволяют не только наслаждаться теплом, но и значительно экономят на энергозатратах. Последнее особенно важно в условиях постоянно растущих тарифов.

Альтернативный метод расчета мощности радиаторов отопления

Расчет количества секций радиаторов отопления далеко не единственный способ правильной организации обогрева помещения.

Можно рассчитать мощность, необходимую для обогрева помещения и сопоставить ее с предполагаемой мощностью радиаторов отопления.

Посчитаем объем предполагаемой комнаты площадью 30 кв. м и высотой в 2,5 м:

30 х 2,5 = 75 куб.м.

Теперь нужно определиться с климатом.

Для территории европейской части России, а так же Белоруссии и Украины стандартом является 41 ватт тепловой мощности на кубический метр помещения.

Для определения необходимой мощности умножаем объем помещения на норматив:

75 х 41 = 3075 Вт

Округлим полученное значение в большую сторону – 3100 вт. Для тех людей, кто проживает в условиях очень холодных зим, данную цифру можно увеличить на 20%:

3100 х 1,2 = 3720 Вт.

Придя в магазин и уточнив мощность радиатора отопления, можно посчитать, сколько секций радиатора потребуется для поддержания комфортной температуры даже в самую суровую зиму.

Каждый специалист знает, что существует несколько способов подключения радиаторов отопления. Узнайте как выбрать оптимальный.

Как отопить дачу если нет магистрального газа? Есть очень простое решение – об этом можете прочитать по адресу: .

Расчет секций радиаторов в зависимости от реальных условий

Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.

Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе +60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.

Формула расчета температурного напора системы отопления

Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.

Таблица коэффициентов для систем отопления с разной дельтой температур

При пересчете действуем в следующем порядке. Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.

https://youtu.be/8k7_ZndjIOs

Как выбрать радиатор отопления | СанРемО

Радиаторы GORDI. Производство Китай.

Радиаторы «Gordi» разработаны и адаптированы к эксплуатации в российских системах отопления, сертифицированы органами по сертификации отопительного оборудования в соответствии с ГОСТ 31311-2005.

Алюминиевые радиаторы «Gordi» отличаются рядом преимуществ перед аналогами из прочих материалов. Прежде всего, изделие из этого металла обладает современным дизайном, высокой теплопроводностью и поэтому быстро реагирует на изменение температуры. Благодаря двум коллекторам (верхнему и нижнему), соединенным друг с другом вертикальным каналом и наличию оребрения внутри каждой секции, происходит оптимальное распределение тепла в помещении. Алюминиевые радиаторы мало весят и просты в монтаже.  Тепловая мощность алюминиевого секционного радиатора зависит от количества секций (расчетом должен заниматься специалист, который учтет мощность оборудования, площадь помещения и прочие технические нюансы). Из недостатков стоит отметить повышенную требовательность алюминиевого радиатора к теплоносителю. При использовании таких радиаторов нужно обратить пристальное внимание на химический состав теплоносителя в системе отопления. РH-фактор теплоносителя должен находиться примерно в пределах рН=7-8 (оптимальное соотношение).

Условия эксплуатации алюминиевых радиаторов Gordi:

  • рабочее давление – до 1,6 мПа (16 атм.)
  • опрессовочное давление – до 2,4 мПа (24 атм.)
  • давление на разрыв – 4,0 мПа (40 атм.)
  • температура теплоносителя – до 110°С
  • показатель рН теплоносителя – от 6,5 до 8,5 (оптимальный 7 – 8)

Модель

350/85

350/98

500/80

500/98

Высота, мм

422

417

578

580

Длина, мм

80

80

80

80

Глубина, мм

85

98

80

98

Монтажная высота, мм

350

350

500

500

Масса, кг

1

1,05

1,27

1,39

Емкость теплоносителя, л

0,25

0,28

0,35

0,39

Теплоотдача, Вт (Δ Т 64,5°С)

140

144

183

191

Биметаллические радиаторы «Gordi»  предназначены для применения в системах водяного отопления коттеджей, жилых и административных зданий, как в автономных, так и в централизованных системах отопления.
Они совмещают в себе достоинства стальных и алюминиевых радиаторов: не очень требовательны к качеству теплоносителя, устойчивы к механическим повреждениям и имеют высокое рабочее давление – с большим запасом, превосходящее среднее давление центральной системы отопления в населенном пункте.

Условия эксплуатации биметаллических радиаторов Gordi

  • рабочее давление – до 3,0 МПа (30 атм.)
  • опрессовочное давление – до 4,0 МПа (40 атм.)
  • давление на разрыв – 6,0 МПа (60 атм.)
  • температура теплоносителя- до 110°С
  • показатель рН теплоносителя – от 6,5 до 8,5 (оптимальный 7 – 8)

Модель

500/80

500/96

350/80

Высота, мм

572

572

412

Длина, мм

80

80

80

Глубина, мм

80

96

80

Монтажная высота, мм

500

500

350

Масса, кг

1,7

1,76

1,4

Емкость теплоносителя, л

0,3

0,4

0,21

Теплоотдача, Вт (Δ Т 64,5°С)

181

188

160

Правильный расчет радиаторов отопления — довольно важная задача для каждого домовладельца. Разумеется, самый правильный способ − обратиться за расчетом к специалистам. Их метод очень точен и позволяет рассчитать необходимое количество секций радиатора и для каждой комнаты в квартире многоэтажного жилого дома, и для любого помещения в частном доме.

Метод учитывает множество параметров:

  • материал, из которого изготовлены стены и их толщину
  • тип окон, установленных в помещении
  • соотношение площади стен и окон
  • угловые стены
  • площадь помещения и высоту потолков

Если будет использовано недостаточное количество секций, помещение не прогреется во время зимних холодов, а приобретение и эксплуатация слишком больших радиаторов повлечет неоправданно высокие расходы на отопление. Для стандартных помещений можно воспользоваться самыми простыми расчетами:

S пом.*100 Вт./ΔТ
Пример расчета радиаторов отопления:
Давайте попробуем рассчитать радиатор по этой методике. Предположим, у нас есть комната площадью 20 кв.м. с одним окном и одной наружной стеной, с высотой потолков 3м, и нам надо рассчитать, сколько секций радиатора модели биметаллический GORDI 500/80  потребуется.
20*100/181≈11,05
Исходя из расчетов, на вашу комнату понадобится 11 секций радиатора GORDI 500/80 биметалл.

Радиаторы GLOBAL. Производство Италия. Итальянская фабрика «Global Di Fardelli Ottorino&C» была основана братьями Фарделли в 1971 г. и стала одним из первых массовых производителей алюминиевых радиаторов в Европе.

Алюминиевые радиаторы (батареи) отопления GLOBAL Klass

Технические характеристики радиаторов Глобал:

  • Рабочее давление: 16 атм. (1.6 МПа)
  • Максимальная температура теплоносителя: 110°С
  • Глубина радиаторов: 80 мм
  • Высота радиаторов: 432мм и 582мм
  • Межосевое расстояние: 350 мм и 500 мм
  • Подключение: 4 присоединительных отверстия, 1″
  • Гарантия производителя: 10 лет
  • Страна-изготовитель: Италия

1 секция радиатора

Размеры 1 секции, мм

Теплоотдача 1 секции, Вт

H

L

C

высота

длина

глубина

KLASS – 350

432

80

80

134

KLASS – 500

582

80

80

181

Биметаллические радиаторы GLOBAL Style

Технические характеристики Global Style:

  • Рабочее давление: 35 атм. (3,5 МПа)
  • Максимальная температура теплоносителя: 110°С
  • Глубина радиаторов: 80 мм
  • Высота радиаторов 425мм и 575мм
  • Межосевое расстояние: 350 мм и 500 мм
  • Подключение: с боковым подключением, 1″
  • Гарантия производителя: 10 лет
  • Страна-изготовитель: Италия

1 секция радиатора

Размеры 1 секции, мм

Теплоотдача 1 секции, Вт

H

L

C

высота

длина

глубина

STYLE 350*

425

80

80

125

STYLE 500*

575

80

80

168

ПЕРЕЙТИ В КАТАЛОГ РАДИАТОРОВ

Радиаторы для учреждений, модель I от Shaw Perkins

Модель I Радиаторы для учреждений

Shaw-Perkins, лидер в области безопасности и долговечности институциональное излучение, осознали важность правильного распределения тепла в помещении в исправительных учреждениях и психиатрических больницах. Модель I была разработана более 40 лет назад для удовлетворения этих конкретных потребностей; Фактически, Модель I идет намного превосходит любой другой продукт теплового излучения, предлагаемый в отрасли для институционального рынка.

Модель Shaw I устанавливает стандарты, корректирующие учреждения и психиатрические больницы используют для оценки качества. Требования установлены учреждениями за необычную прочность, долговечность, простоту обслуживания, и застрахованная безопасность каждого человека, находящегося в комнате, от случайного или самоуничтожения травм, доступны только с радиатором Shaw Model I.

Знания, полученные в многочисленных тюрьмах и психиатрические больницы, в настоящее время использующие Модель I, а также положения, установленные администраторами учреждения, архитекторами и уточняющие инженеров, подтверждает обоснованность превосходного дизайна и прочности радиатора модели I.

Обычно из-за характера заключенных размещены в помещениях с максимальной безопасностью, особое внимание должно быть уделено на качество и долговечность фурнитуры и приспособлений, установленных в области ячеек. Радиаторы Shaw-Perkins модели I – единственные радиаторы которые разработаны специально для использования в тюрьмах строгого режима.


Скорость устаревания
Shaw-Perkins производит Модель I более 50 лет и продолжит производство модели I как системы отопления высочайшего качества. продукт, доступный в отрасли.

Простота обслуживания
В модели I нет движущихся частей. Модель I предлагает 1/2 дюйма расстояние между плавниками. Это предотвращает накопление грязи и пыли и их влияние на BTU. выход. Обслуживание клапанов проще, потому что только небольшая крышка трубы должен быть удален, чтобы получить доступ.

Доступность обслуживания
Shaw-Perkins работает более 100 лет и имеет стандартизировали наш дизайн за последние 40 лет.При необходимости детали или блоки могли быть заменены в короткие сроки.

Долговечность
Shaw-Perkins имеет подтвержденный опыт установки модели I. более 40 лет в крупных тюрьмах и психиатрических учреждениях.

Расположение трубопроводов
Доступны различные схемы, включая встроенные вентиляционные камеры и встроенные линии подачи и возврата. (См. Чертежи трубопроводов начало на странице 14.)

Длина и высота
Длина и высота подходят для любых инженерных нужд.Диапазон высот от 11 до 26 дюймов с шагом 3 дюйма. Длина варьируется от От 11 до 111 дюймов с шагом 2 дюйма.

Низкие температуры поверхности
Перфорированные стальные профили обеспечивают повышенный поток конвективных воздух, что снижает температуру поверхности, безопасен на ощупь. В возможность умышленного возгорания снижается, даже если радиаторы работает при максимальных температурах. Исключается необходимость в особом системном зонировании.

Гарантия на изделие
Shaw-Perkins гарантирует, что модель I не будет изготовлена дефекты, вызванные дефектным материалом или дефектами изготовления, в течение определенного периода 10 лет со дня установки.Данная гарантия распространяется на замену частей или радиатора. Ни один другой производитель не предлагает этот тип или длину гарантии.

Инжиниринг дизайн дает явные преимущества

  1. Штампованная секция
    Радиатор Shaw-Perkins Model I представляет собой серию отдельных штампованных коробчатые секции, уложенные друг на друга с внешним диаметром 1 дюйм. медные змеевики. Каждый секция имеет размеры 2 дюйма в ширину и 3 дюйма в глубину и доступна в высоты, соответствующие высоте модели I.Каждая секция коробки имеет 3 стальных плавники проходят по всей длине и ширине коробчатого сечения, обеспечивая стальная арматура радиатора модели I через каждые 1/2 дюйма радиатора, находящегося под напряжением, чтобы сформировать прочный, единый радиатор, устойчивый ко всем институциональным злоупотреблять.
  2. Медные трубки
    Медные трубки расширяются при гидравлическом давлении 3750 фунтов на кв. ребра и коробчатые секции, чтобы сделать прочное соединение для передачи тепла от медь к ребрам.Расширение также блокирует все ребра, медные и коробчатые секции. в один блочный радиатор. После расширения блока корпус, Ребра и медные трубки нельзя удалить или повредить ненадлежащим образом.
  3. Низкая температура поверхности
    Перфорированные стальные профили обеспечивают повышенный поток конвектируемого воздуха, что приводит к пониженной температуре поверхности, безопасной на ощупь. Кроме того для уменьшения возможности преднамеренного сжигания, необходимость в специальных системное зонирование исключено.
  4. Крепление
    При креплении модели I используются стержни из углеродистой стали 3/16 дюйма, неразъемно сваренные к радиатору, придавая Model I. Из-за унифицированного конструкции радиатор монтируется как единое целое.
  5. Покраска
    Радиатор Shaw-Perkins после сборки на заводе погружается в воду в емкости для краски, заполненной грунтовкой с высоким содержанием цинка. Этот процесс покрывает все поверхность, внутри и снаружи, ребер радиатора, медных трубок и внутренних стали.Это предотвращает влажность и коррозию на основе мочи, и, следовательно, поддерживает высокий выход BTU и сводит к минимуму проблемы с обслуживанием
  6. Заводские испытания / отсутствие утечек
    Модель I протестирована на заводе и гарантированно не имеет утечек когда он установлен на работе.
  7. Постоянные крышки труб
    При установке от стены к стене крышки труб устанавливаются на радиатор для покрытия внешних труб и клапанов.Эти кожухи для труб имеют большой размер. сталь и ребристые для обеспечения дополнительной прочности. Крышки устанавливаются на Прутки из углеродистой стали 3/16 дюйма, которые прочно приварены к радиатору. Применение силы не приведет к смещению этого укрытия.
  8. Разнообразие размеров
    Различной длины и высоты от 11 дюймов до 26 дюймов в высоту, и длиной от 11 дюймов до 111 дюймов.

Тепло в вашей комнате | Студенческая жизнь и жизнь в кампусе

Как и когда отапливают здания?

Обычно в начале октября в жилых массивах включают отопление.Температура в зданиях установлена ​​примерно на уровне 68-72 градусов по Фаренгейту (20-22 градуса по Цельсию). Большинство зданий отапливаются горячей водой, и вы можете слышать, когда работает система отопления.

Могу ли я отрегулировать температуру в моей комнате?

Да, в некоторой степени. Обычно вы можете отрегулировать температуру примерно на 2–3 градуса выше или ниже. Это позволяет зданиям поддерживать постоянную температуру 68-72 градусов по Фаренгейту (20-22 градусов по Цельсию).

Комнат с радиаторами:

Вы можете отрегулировать температуру, повернув ручку управления на радиаторе (примеры показаны ниже).Символ «*» выключает радиатор, это означает, что ваша комната будет обогреваться только в результате ее близости к коридору и другим отапливаемым помещениям в здании. «1» – это минимальный уровень тепла, а «5» – максимальный.

СЛИШКОМ ТЕПЛЫЙ?

Поверните шкалу вниз в сторону «*», чтобы выключить радиатор. Откройте дверь, чтобы увеличить поток воздуха из коридора.

СЛИШКОМ ХОЛОДНО?

Поверните шкалу вверх в сторону «5», чтобы поднять радиатор.Убедитесь, что ваши окна и дверь закрыты, а вокруг радиатора достаточно места для циркуляции воздуха.

Проблемы?

  • Помните, что вы можете регулировать температуру в своей комнате только на 2-3 градуса вверх или вниз, и только в те месяцы, когда здание отапливается.
  • Убедитесь, что вокруг радиатора достаточно места для циркуляции воздуха. Если вы ограничите воздушный поток (например, из-за того, что к нему прижимаются предметы), радиатор не будет работать должным образом, независимо от настройки шкалы.
  • В некоторых старых зданиях может наблюдаться долгое время отклика после регулировки шкалы радиатора. Может пройти несколько часов, прежде чем вы заметите разницу температур.
  • Если через пару часов вы все еще не заметите разницы, попробуйте «потренировать» диск управления, медленно повернув его от низкого к высокому несколько раз.
  • Если вы считаете, что ваше отопление не работает, пожалуйста, отправьте запрос на техническое обслуживание . (У вас должен быть Cornell NetID для ввода вашего запроса.Жителям без NetID следует обращаться в свой сервисный центр .)

Помещения с настенными датчиками:

СЛИШКОМ ТЕПЛЫЙ?

Нажмите рычаг ВНИЗ, чтобы уменьшить жар. Откройте дверь, чтобы увеличить поток воздуха из коридора.

СЛИШКОМ ХОЛОДНО?

Нажмите рычаг ВВЕРХ, чтобы увеличить тепло. Убедитесь, что ваши окна и дверь закрыты, а вокруг датчика есть достаточно места для циркуляции воздуха.

Проблемы?

  • Помните, что вы можете регулировать температуру в своей комнате только на 2-3 градуса вверх или вниз, и только в те месяцы, когда здание отапливается.
  • Убедитесь, что вокруг датчика температуры достаточно места для обтекания воздуха.
  • Если вы считаете, что ваше отопление не работает, пожалуйста, отправьте запрос на техническое обслуживание . (Для ввода вашего запроса необходимо иметь Cornell NetID. Жителям без NetID следует обращаться в свой сервисный центр .)

КАК УПРАВЛЯТЬ МОЕЙ СИСТЕМОЙ ОТОПЛЕНИЯ

Какие регуляторы отопления мне нужны? Как минимум, у вас должен быть программатор (для управления временем, когда вы хотите нагревать)

  • настенный термостат (для измерения температуры и отправки сигнала котлу, чтобы обеспечить тепло или выключить тепло)
  • термостатические клапаны на каждом из радиаторов для контроля температуры в каждой комнате
  • установка термостата на бойлере, контролирующая температуру воды, поступающей в каждый радиатор.

Хорошей практикой является наличие в новостройках как минимум двух зон нагрева, каждая зона должна иметь отдельный таймер и настенный термостат. Например, у вас могут быть спальни в отдельной зоне от гостиной, которая нагревается в разное время.

У вас должны быть термостатические радиаторные клапаны (TRV) на всех радиаторах, но не в том же месте, что и настенный термостат, возможно, что в этой комнате никогда не будет достаточно тепла, чтобы выключить котел с помощью настенного термостата, если температура в этой зоне независимо контролируется TRV.

Кроме того, для некоторых котлов требуется по крайней мере один радиатор без ТРВ или байпаса в системе, чтобы обеспечить минимальный поток воды через котел. В некоторых котлах байпас находится внутри котельной установки, поэтому, пожалуйста, проконсультируйтесь с инженером, нужен ли вам байпас.

Если у вас есть водонагреватель с горячей водой, в нем должен быть установлен термостат, регулирующий заданное значение, чтобы котел знал, когда горячая вода достаточно горячая, чтобы не ошпарить кого-либо при помощи крана.

Что такое зоны нагрева и сколько их должно быть?
Зоны обогрева позволяют устанавливать разные режимы отопления в разных частях дома.

Каждая зона имеет свой настенный термостат и таймер. Например, 2 зоны, 1 для спален и 1 для гостиной, вы можете обогревать спальни в первую очередь и снова перед сном, в то время как гостиные нагреваются позже утром и раньше вечером.

Зональное отопление может быть установлено путем организации водопровода с отдельным контуром радиатора для каждой зоны или электронным способом с использованием приводов радиаторных клапанов, которые включаются и выключаются с контроллера

У меня нет настенного термостата. Нужен ли он мне?
Если у вас нет настенного термостата, полагайтесь на термостат котла; это измеряет температуру воды, возвращаемой из радиаторов.

Если вы установили термостатические вентили радиаторов и отрегулировали их в соответствии с вашими потребностями, тогда, когда в комнатах достаточно тепло, циркулирующая вода обходит радиаторы и возвращается в котел почти такой же горячей, как и была запущена, хотя она также будет терять тепло из труб. в цепи между радиаторами и эта потеря может быть значительной – в большинстве случаев эти трубы не заедают. Если потери тепла невелики, котел заметит это и отключится. Однако даже в этом случае он должен постоянно проверяться, поэтому он периодически направляет воду по трубам, чтобы проверить, требуется ли отопление.Если у вас есть комнатный термостат, это полностью отключит котел и даст хоть какую-то экономию.

Если у вас нет термостатических вентилей на радиаторах и в ваших комнатах теплее, чем вам нужно, то комнатный термостат очень поможет.

Можно ли добавить таймер или регулирующий термостат к моей существующей системе отопления?
Это зависит от того, есть ли у вас котел, который позволяет встроить таймер в органы управления для выключения котла, когда тепло не требуется, вам понадобится это средство на панели котла для установки контроллера или комнатного термостата. .

Стоит ли иметь радиаторные термостаты?
Термостатические радиаторные клапаны (TRV)] позволяют поддерживать в одних частях дома больше тепла, чем в других. Вы можете настраивать их в течение дня в соответствии с потребностями, или вы можете оставить их на одной настройке большую часть времени.

Например, если у вас есть свободная комната, которой вы не пользуетесь, вы можете выключить термостат, кроме случаев, когда к вам приезжает гость. Вы можете поддерживать в спальне более прохладную температуру, чем в гостиной, или выключать ее в течение дня и включать только незадолго до сна.Вам также необходимо держать двери закрытыми, чтобы не допустить утечки тепла из других частей дома. Сколько вы сэкономите с TRV, зависит от того, в какой части вашего дома вы можете уменьшить отопление.

Как настроить термостаты радиатора?
Настройка радиаторных термостатов может быть сложной задачей, потому что любое изменение температуры в комнате требует времени, и вы не получаете щелчка при открытии или закрытии клапана радиатора.

Для большинства комнат вам нужно будет поэкспериментировать, убедившись, что в первую очередь включено отопление.Затем зайдите в каждую комнату и посмотрите, не слишком ли тепло или слишком холодно: поверните радиаторные клапаны вверх или вниз соответственно. Если вы включили обогрев, проверьте через несколько минут, теплые ли трубы, показывая, что в них поступает горячая вода. Если нет, подправьте еще немного. Если вы выключили нагрев, трубы остынут, но это займет некоторое время. Еще раз проверьте температуру в помещении через полчаса (убедившись, что нагрев все еще включен) и при необходимости отрегулируйте еще немного.

Могу ли я получить термостат, который устанавливает разные температуры для разного времени дня и недели?
Многие современные программируемые термостаты могут это сделать.Вы можете установить разные температуры для разных временных окон в течение дня. Например, у вас могут быть разные настройки для вставания утром, ранним вечером и поздним вечером.

Какое место лучше всего подходит для моих радиаторов?
Если вы хотите, чтобы воздух мог циркулировать спереди и сзади радиаторов, а затем в комнату, обычно радиаторы устанавливают под окном, чтобы избежать появления холодных пятен в комнате.

  • Если у вас длинные шторы, не позволяйте им висеть перед радиатором, так как вы не получите свободный поток теплого воздуха через радиаторы в комнату.
  • Если радиаторы установлены на внешней стене, вы можете установить за ними отражающую панель, которая поможет не терять много тепла через стену. Это особенно актуально, если у вас сплошные стены.
  • Если радиаторы расположены за мебелью, свободный воздух не будет циркулировать свободно, и нагревание мебели до того, как комната, не будет эффективным способом в конечном итоге обогреть вашу комнату.

Какое положение лучше всего подходит для настенного термостата?
Настенный термостат лучше всего устанавливать на внутренней стене, возможно, в коридоре, вдали от прямых источников тепла, включая радиаторы, а также электрического оборудования, такого как телевизоры или компьютерные мониторы.

Обычно термостаты устанавливают примерно на уровне головы. Если вы поставите их ниже, вам следует установить температуру немного ниже, чем вы бы сделали, потому что воздух обычно прохладнее на более низких уровнях (особенно в помещениях с сквозняком).

У вас не должно быть TRV на каких-либо радиаторах в комнате с настенным термостатом. Если вы это сделаете, то TRV может выключить радиатор до того, как термостат отключит котел, поэтому в комнате никогда не станет достаточно жарко для отключения настенный термостат, и вы обнаружите, что котел работает постоянно, независимо от того, нужно вам тепло или нет.

В комнатах, которые я использую редко, следует ли полностью выключить отопление или оставить их немного теплыми?
Даже если вы выключите радиаторы и закроете дверь, некоторое количество тепла будет проходить через остальную часть дома, и вы можете обнаружить, что этого достаточно, чтобы трубы в комнате не замерзли.

Однако через некоторое время он может стать немного влажным, поэтому рекомендуется поддерживать клапан в положении защиты от замерзания и регулярно проветривать комнату.

Когда я уезжаю зимой, как мне настроить отопление, чтобы трубы не замерзали?
7 C, вероятно, достаточно тепло, но он понадобится вам постоянно, как ночью, так и днем.

На какую температуру установить термостат котла?
Термостат котла устанавливает температуру воды, циркулирующей через радиаторы. Очевидно, что это должно быть теплее, чем комнатная температура, которую вы хотите достичь, и чем горячее радиаторы, тем быстрее будут нагреваться комнаты.

Однако имейте в виду, что если радиаторы слишком горячие, люди могут обжечься.

Каждая система спроектирована по-своему, и производители конденсационных котлов рекомендуют, чтобы системы обычно были сбалансированы, чтобы обеспечить падение температуры на 20 ° C с 70 ° C на подающей до 50 ° C на обратной линии.

Это означает, что термостат котла установлен на 70 ° C, а температура воды, возвращающейся из радиаторов обратно в котел, составляет 50 ° C, что достаточно мало для обеспечения хорошей конденсации и максимальной эффективности.

Если у вас котел без конденсации, нормально запускать подачу при температуре 80 ° C с понижением температуры через радиаторы на 10 ° C, поэтому температура обратной воды составляет 70 ° C.

Если у вас есть резервуар для горячей воды, он должен поддерживать температуру горячей воды для ванн и смесителей на уровне 60 ° C, чтобы избежать роста опасных бактерий, таких как болезнь легионеров.

Ваш котел, вероятно, имеет отдельную шкалу регулировки для контура нагрева горячей воды, и он должен работать при температуре не выше 60 ° C и не менее 50 ° C, в любом случае рекомендуется установить смесительные краны системы перед отбором воды, чтобы избежать ожогов.

У меня есть солнечная батарея для горячей воды – какая разница?
Чтобы получить максимальную отдачу от солнечной панели, вам необходимо рассчитать время нагрева воды так, чтобы она пополняла тепло в резервуаре для воды только тогда, когда это необходимо, и ровно столько, сколько необходимо.

Вы должны рассчитать время, чтобы нагреть воду непосредственно перед тем, как использовать, или, по крайней мере, после того, как солнце сделает все возможное. Например, если вы в основном используете горячую воду утром с 7 до 9 утра, вы можете долить воду в резервуар утром около 6 часов утра, чтобы ее хватило, когда вам это нужно. В течение дня солнце будет давать вам бесплатное тепло, но если этого недостаточно, то на следующее утро бойлер обеспечит разницу.

Проблемы
Мне холодно, а радиатор здесь холодный – что мне делать?
Убедитесь, что термостатические клапаны на радиаторах открыты, комнатный термостат включен, таймер включен, котел включен и система находится под давлением (если применимо).В противном случае, если радиатор частично нагрелся, проверьте наличие воздуха в системе. Если на радиаторе есть ТРВ, попробуйте увеличить его. Если это не поможет, возможно, он застрянет.

Мне тепло, так почему котел все еще включен?
Это отопление радиаторов или только горячая вода? Если он пропускает тепло через радиаторы, проверьте комнатный термостат и подумайте о его понижении.

У моего радиатора есть TRV, но он всегда включен (или всегда выключен)
Клапаны радиатора иногда могут заедать.Попробуйте повернуть его вниз, затем вверх, а затем обратно на место. Если он все еще застрял, вы можете попробовать снять головку клапана и поиграть со штифтом, чтобы освободить его – попробуйте поочередно нажимать и отпускать его, но если он полностью застрял, вам может потребоваться новый клапан, что означает опорожнение системы.

Как быстрее согреть дом?
Регулировка термостата не поможет – он либо выключен, либо включен. Вы можете настроить бойлер на повышение температуры воды, циркулирующей вокруг радиаторов.

Чтобы обогреть этот дом, нужно много энергии – разве я не сэкономлю, оставив тепло постоянно включенным?
Для большинства людей гораздо лучше дать дому остыть, когда вам не нужно тепло. Когда в доме тепло, он теряет больше тепла, чем в холодный, поэтому, если он теплее, чем должен быть, он тоже теряет больше тепла.

Если ваш дом долго нагревается, это может быть связано с большими потерями тепла из-за сквозняков и плохой теплоизоляции.

Устранение сквозняков и улучшение теплоизоляции уменьшат это. Однако вашему дому может потребоваться много времени для обогрева просто потому, что он сохраняет тепло в стенах и полах – это может быть хорошо, так как летом в нем также будет дольше оставаться прохладнее.

Мои радиаторы нагреваются неравномерно. Что не так?
Если радиатор холодный вверху и холодный внизу, вероятно, в нем есть воздух (см. «Как удалить воздух из радиатора»). Вам понадобится ключ для удаления воздуха из радиатора, чтобы открыть небольшой ручной клапан в верхней части радиатора, чтобы выпустить воздух.При прохождении воздуха и появлении воды необходимо закрыть клапан. Хорошая идея – иметь салфетку или тряпку, чтобы вытереть ее.

Если радиатор местами холодный, он может быть забит илом или накипью. Его необходимо промыть средством для удаления накипи.

NB. Каждый раз, когда заправляется радиаторная система, следует добавлять химический ингибитор для предотвращения образования накипи.

Практическая поддержка для оценки коэффициентов эффективности системы отопления помещений в холодном климате

В этом разделе объясняется методология, используемая для оценки тепловых потерь в оболочке здания и для расчета коэффициентов эффективности между различными жидкостными панельными радиаторами.В частности, в разделе «Метод расчета коэффициентов эффективности для свободной поверхности нагрева (радиатора) в соответствии с EN 15316-1,2-1 (2007) под названием ‘ Немецкий метод» »объясняется, как рассчитать тепловые потери и КПД радиаторов. В разделе «Переходная модель жидкостного панельного радиатора» представлена ​​переходная модель жидкостного панельного радиатора, используемая в моделировании. В разделе «Проверка модели жидкостного панельного радиатора» описывается проверка модели жидкостного панельного радиатора в сравнении с имеющимися экспериментальными измерениями.Раздел «Испытание на скачкообразную реакцию между водяными панельными радиаторами с различным расположением соединительных труб: сравнение выделяемого тепла» описывает испытание на скачкообразную реакцию между жидкостными радиаторами с различным расположением соединительных труб. Раздел «Краткий обзор имитационной модели здания» представляет собой краткий обзор имитационной модели здания. В разделе «План моделирования» описывается план моделирования для исследуемого случая.

Метод расчета коэффициентов эффективности для свободной поверхности нагрева (радиатора) в соответствии с EN 15316-1,2-1 (2007) под названием

«« Немецкий метод »

Метод повышения эффективности, описанный в EN 15316-1 ( 2007), стандартизирует подвод тепла и тепловые потери на ограждающую конструкцию здания для системы отопления помещений.Тепловые потери необходимы для расчета КПД системы отопления помещений. Изменение тепловых потерь из-за климата, типа системы отопления и типа конструкции здания обсуждается позже в разделе «План моделирования». Тепловые потери в оболочку здания следующие: потери тепла из-за неравномерного распределения внутренней температуры Q e м , м т r и потери тепла из-за стратегии управления Q e м , в т r л , как показано на Рис.3а. К e м , м т r разделяется на потери тепла, что приводит к повышению / понижению внутренней температуры вблизи границ рассматриваемого контрольного объема (помещения) Q e м , м т r 1 , а тепловые потери из-за положения излучателя Q e м , м т р 2 .

Рис. 3

Тепловые потери. a Control. b Стратификация

К e м , м т r относится к теплопотерям у потолка Q e м , в e и , где на температуру в помещении влияет эффект расслоения.В этом контексте в Техническом стандарте рассматриваются также потери тепла при расслоении, потери тепла через окна Q e м , ширина и n , где на температуру в помещении влияют холодные поверхности. К e м , м т r 2 относится к потере тепла в направлении задней стенки радиатора, учитываемой как конвекция и излучение, как показано на рис.3b.

Для обоих условий, Q e м , м т r 1 a n d 2 , техническая норма определяет, как их рассчитать, применяя общее уравнение для потерь тепла при передаче, как показано в уравнении.1.

$$ \ mathrm {Q_ {em, str, i}} = \ mathrm {\ Sigma A_ {i}} \ cdot \ mathrm {U_ {inc, i}} \ cdot \ mathrm {(T_ {air, inc , i} – T_ {out, i})} \ cdot \ mathrm {\ Delta \ theta} $$

(1)

Технические стандарты учитывают потери при передаче, потому что механизм конвекции между объемом воздуха и внутренними поверхностями, а также излучение между внутренними поверхностями помещения происходит внутри анализируемого контрольного объема. Пример контрольного объема можно найти на рис.3b. Уравнение 1 учитывает локальное повышение / понижение температуры в помещении T и n т , и n c , и локально увеличенный / уменьшенный коэффициент теплопередачи, рассчитанный от изоляционного материала к внутренней поверхности U и n c .Скорее всего, уравнение. 1 может применяться к результатам моделирования помещений, разработанных с помощью программного обеспечения вычислительной гидродинамики. Неочевидно рассчитать локальное повышение / понижение температуры в помещении с помощью программного обеспечения для моделирования энергоснабжения здания. По этой причине T c e и и T w и n , температура внутренней поверхности потолка и окна, заменить T a и R , и n c в уравнении.1 с использованием того же коэффициента теплопередачи U и Рассмотрено единиц структуры. Особое внимание следует уделять повышению температуры в помещении около потолка. Согласно Приложению A.2 стандарта EN 15316-1 (2007), коэффициент полезного действия при перегреве около потолка составляет 0,95% с кривой нагрева 55/45 ℃ и ΔT = 30 K для радиаторов. Повышение температуры в помещении около потолка считается постоянным в течение всего времени моделирования.

Потери тепла из-за контроля температуры в помещении Q c т r л относится к невозвратному теплу, превышающему заданную температуру в помещении. Неидеальный контроль вызывает отклонения и отклонения от предварительно заданной заданной температуры из-за физических характеристик системы управления, самой системы нагрева и расположения датчика.В этой статье, чтобы упростить задачу, датчик определяет только поведение температуры воздуха.

Согласно стандарту EN (EN 15316-2-1 2007), коэффициенты эффективности для расслоения η e м , м т r , 1 a n d 2 и контроль η e м , в т r можно количественно оценить с помощью отношения между тепловыми потерями, рассчитанными с идеальной системой отопления, и тепловыми потерями в реальном случае, как показано в формуле.2а и б. В идеальном случае рассчитывается потребность в энергии для обогрева жилого помещения в соответствии с EN 13790 (2008). Температура в помещении поддерживается постоянной (или приблизительно постоянной) в течение всего периода обогрева. Помещение оборудовано как идеальной системой управления, так и идеальной системой отопления. Это означает, что система отопления не учитывает возможные задержки в управлении, тепло, накопленное в тепловом излучателе, и тепло, выделяемое из распределительных труб. Приток тепла от солнца, людей, электроприборов, освещения и механической вентиляции одинаков как для реальных, так и для идеальных случаев.

$$ \ mathrm {\ eta _ {\ mathrm {em, str1 / 2}}} = \ mathrm {\ frac {Q _ {\ mathrm {em, ideal, str1 / 2}}} {Q _ {\ mathrm {em , str1 / 2}}}} $$

(2а)

$$ \ mathrm {\ eta _ {\ mathrm {em, ctrl}}} = \ mathrm {\ frac {Q _ {\ mathrm {em, ideal, ctrl}}} {Q _ {\ mathrm {em, ctrl}}} } $$

(2b)

Общий коэффициент полезного действия системы отопления помещений можно рассчитать, используя выражение в формуле.3, как указано в разделе 7.2 EN (EN 15316-2-1 2007).

$$ \ mathrm {\ eta_ {em}} = \ mathrm {\ frac {1} {4 – (\ eta_ {em, str} + \ eta_ {em, ctr} + \ eta_ {em, embed}) }} $$

(3)

η e м , и м б e d имеет значение 1, так как радиатор не имеет труб, встроенных в конструкцию здания.Член η e м , м т r – среднее значение между η e м , м т r 1 и η e м , м т р 2 .

Переходная модель радиатора жидкостной панели

Модель разработана совместно с IDA ICE. Радиаторы моделируются как изотермическая поверхность, сообщающаяся с моделью зоны посредством границы раздела температур и теплового потока. Следовательно, одна поверхность моделируется как средняя температура всего металла. Это упрощение связано с относительно высокой теплопроводностью металла по сравнению с теплопроводностью жидкости. Однако для получения динамических характеристик жидкость радиатора моделируется несколькими элементами, соединенными последовательно.Тепловые характеристики радиатора (номинальная мощность, мощность n и т. Д.) Указаны в техническом каталоге. Тепло, излучаемое радиатором, оценивается на основе тепловых характеристик радиатора с использованием температуры воздуха и температуры перепада воды. Наконец, температура поверхности получается на основе разницы между расчетным выделенным теплом и общим теплопереносом на границе раздела модели.

Линия подачи расположена в верхнем углу T с u с. , а выхлопная линия расположена в противоположном нижнем углу T e х ч .Температура приточного потока i-го элемента – это температура на выходе элемента (i-1) -го . Когда i = 1, T эт d , 0 T с u с. в радиатор. Таким образом, тепловой поток, подаваемый на каждую емкость \ (\ dot {\ mathrm {Q}} _ {\ mathrm {{sup, i}}} \), можно определить следующим образом:

$$ \ dot {Q} _ {\ mathrm {sup, i}} (\ theta) = \ dot {\ mathrm {m}} _ {\ text {fld}} \ cdot \ mathrm {c_ {fld} } \ cdot \ mathrm {\ left (T_ {fld, i-1} (\ theta) -T_ {fld, i} (\ theta) \ right)} $$

(4)

где \ (\ dot {\ mathrm {m}} _ {\ text {fld}} \) – массовый расход жидкости, подаваемой в радиатор, c эт d – удельная теплоемкость и температура жидкости T эт d , i при разной i-й ёмкости .

Модель рассчитывает температуру каждой жидкости, емкость T эт d , i как разница между тепловым потоком, подаваемым \ (\ dot {\ mathrm {Q}} _ {\ mathrm {sup, i}} \) к каждой емкости, и теплотой, исходящей от каждой емкости жидкости \ (\ dot {\ mathrm { Q}} _ {\ mathrm {fld, i}} \), как показано в уравнении. 5.

$$ \ mathrm {\ frac {C_ {fld}} {nCap}} \ cdot \ mathrm {\ frac {dT_ {fld, i} (\ theta)} {d \ theta}} = \ dot {\ mathrm {Q}} _ {sup, i} (\ theta) – \ dot {\ mathrm {Q}} _ {fld, i} (\ theta) $$

(5)

где C эт d = M эт d c эт d – это общая емкость жидкости внутри радиатора, а nCap – это количество емкостей.

Модель вычисляет потери тепла из жидкости \ (\ dot {\ mathrm {Q}} _ {\ mathrm {fld, i}} \), как показано в уравнении. 6.

$$ \ dot {\ mathrm {Q}} _ {\ mathrm {fld, i}} (\ theta) = \ mathrm {\ frac {K_ {tot}} {nCap}} \ cdot \ mathrm {\ left (T_ {fld, i} (\ theta) -T_ {air} (\ theta) \ right)} $$

(6)

где общий / эквивалентный коэффициент теплопередачи радиатора K т o т соответствует формуле.{n}} {L \ cdot H \ cdot \ left | \ left (T_ {fld, i} (\ theta) -T_ {air} (\ theta) \ right) \ right |} $$

(7)

L и H – геометрические параметры, длина и высота радиатора, а \ (\ dot {\ mathrm {Q}} _ {\ mathrm {N}} \) – общее количество тепла, выделяемого радиатором жидкостной панели в номинальных условиях.

Логарифмическая разница температур в уравнении. 7 вычисляется в формуле. 8.

$$ \ mathrm {\ Delta T_ {ln, i} (\ theta)} = \ frac {\ mathrm {T_ {fld, i} (\ theta)} – \ mathrm {T_ {fld, i + 1} (\ theta)}} {ln \ frac {\ mathrm {T_ {fld, i} (\ theta)} – \ mathrm {T_ {air} (\ theta)}} {\ mathrm {T_ {fld, i + 1 } (\ theta)} – \ mathrm {T_ {air} (\ theta)}}} $$

(8)

Уравнение 8 не может быть решено, если отношение разностей температур жидкость-воздух равно 1.Таким образом, уравнение. 8 необходимо заменить арифметической разностью температур, как показано в формуле. 9.

$$ \ mathrm {\ Delta T_ {i}} = \ frac {\ mathrm {T_ {fld, i} (\ theta)} + \ mathrm {T_ {fld, i + 1} (\ theta)}} {2} – \ mathrm {T_ {air} (\ theta)} $$

(9)

Логарифмическая разница температур при номинальных условиях Δ T л , вычисляется как в формуле.{nCap}} \ dot {\ mathrm {Q}} _ {\ mathrm {fld, i}} (\ theta) \: – \ dot {Q} _ {\ text {tot}} (\ theta) $$

(10)

где C м e т – емкость металлической части радиатора гидронной панели, а Тл с u r f – средняя температура поверхности излучателя тепла.

Модель радиатора вычисляет общую теплопередачу от поверхности к окружающей среде \ (\ dot {\ mathrm {Q}} _ {\ text {tot}} \) в сочетании с моделью зоны, выраженной как в формуле. 11. Граница раздела между моделями – это длинноволновое излучение, передаваемое между поверхностью радиатора и окружающими поверхностями, и конвекция на поверхности радиатора с узлом температуры воздуха в помещении. {n}} $$

(11)

Общее тепло, выделяемое в термическую зону, делится на три компонента, как показано на рис.4 тепло к задней стене \ (\ dot {\ mathrm {Q}} _ {\ mathrm {back-wall}} \), конвективное тепло \ (\ dot {\ mathrm {Q}} _ {\ text {conv }} \) и тепло к зоне \ (\ dot {\ mathrm {Q}} _ {\ text {front}} \). Уравнение 12 показывает этот тепловой баланс.

$$ \ dot {\ mathrm {Q}} _ {\ text {conv}} (\ theta) = \ dot {\ mathrm {Q}} _ {\ text {tot}} (\ theta) – \ dot {\ mathrm {Q}} _ {\ text {front}} (\ theta) – \ dot {\ mathrm {Q}} _ {\ mathrm {back-wall}} (\ theta) $$

(12)

Фиг.4

Схема радиатора с соединительными патрубками на противоположной стороне

Тепло к задней стенке вызывается излучением и конвекцией. В этой статье мы аппроксимируем потерю тепла с помощью механизма естественной конвекции. Механизм передачи тепла естественной конвекцией к задней стенке радиатора зависит от температуры задней стенки T б c к к a л л , температура воздуха в канале, размер канала b и его высота H.{\ beta}} $$

(13)

Оценка коэффициента теплопередачи за счет конвекции между радиатором и его задней стенкой показана в формуле. 14.

$$ \ mathrm {h_ {back-wall}} = \ text {Nu} \ cdot \ mathrm {\ frac {\ lambda_ {air}} {b}} $$

(14)

где λ a и r – теплопроводность воздуха.

Средние значения температуры задней стенки, температуры воздуха, толщины и длины канала дают средний коэффициент теплопередачи за счет конвекции к задней стенке радиатора 3 Вт м −2 К -1 . Коэффициент теплопередачи за счет конвекции предполагается постоянным на протяжении всего моделирования. Потери тепла к задней стенке рассчитываются, как показано в формуле. 15.

$$ \ dot {\ mathrm {Q}} _ {\ mathrm {back-wall}} (\ theta) \, = \, \ mathrm {h_ {back-wall}} \ cdot \ mathrm {A} \ cdot \ mathrm {\ left (T_ {surf} (\ theta) \, – \, T_ {back-wall} (\ theta) \ right)} $$

(15)

Конвективное тепло \ (\ dot {\ mathrm {Q}} _ {\ text {conv}} \) – это тепло, выделяемое водяным панельным радиатором в помещении за счет конвективного механизма циркуляции воздуха в помещении.Внутренний воздух циркулирует в помещении, попадает в канал между радиатором и его задней стенкой, а затем поднимается к потолку.

\ (\ dot {\ mathrm {Q}} _ {\ text {conv}} \) вычисляется как разница среди других известных членов уравнения. 12, поскольку \ (\ dot {\ mathrm {Q}} _ {\ text {front}} \) вычисляется в модели зоны.

Проверка модели водяного панельного радиатора

Проверка модели водяного панельного радиатора выполняется путем сравнения смоделированной температуры выхлопного потока во время фазы зарядки и тепла, выделяемого при достижении устойчивого состояния, с имеющимися экспериментальными измерениями в Стефан (1991).

Стефан (1991) провел испытание ступенчатой ​​характеристики радиатора с жидкостной панелью, подвергшегося внезапному увеличению массового расхода. Эксперимент проводится в кабине, которая соответствует техническим характеристикам, указанным в стандарте DIN 4704, который в настоящее время заменен на EN 442-2 (2014). Технический стандарт направлен на измерение тепловой мощности водяного панельного радиатора с указанием лабораторных условий и методов испытаний.

Для измерения тепловой мощности радиатора с жидкостной панелью температура воздуха в помещении поддерживается постоянной на протяжении всего испытания за счет соблюдения стационарных условий.Чтобы обеспечить постоянный профиль воздуха в помещении, кабина оборудована системой охлаждения, встроенной в каждую поверхность кабины. Интегрированная система охлаждения позволяет контролировать температуру каждой поверхности кабины (кроме поверхности на задней стенке радиатора), соблюдая установившиеся условия испытания.

Конструкция каждой будки изготовлена ​​из сэндвич-панелей. Сэндвич-панель состоит из трех слоев: стальной панели со встроенной системой охлаждения, изоляционной пены (толщиной 80 мм с термическим сопротивлением 2.5 м 2 К Вт -1 ) и внешний стальной лист. Стена за жидкостным радиатором имеет такую ​​же сэндвич-панель, но без системы охлаждения. Система охлаждения должна быть спроектирована таким образом, чтобы ограничивать разницу температур между охлаждаемыми внутренними поверхностями в диапазоне ± 0,5 К. Для этого каждая панель должна поставляться с массовым расходом не менее 80 кг ч -1 за каждые м 2 поверхности.Кабина имеет два отверстия в стенах, чтобы гарантировать водное и электрическое соединение между водяным панельным радиатором и за пределами помещения. На рисунке 5 показана схема камеры и системы охлаждения, взятая из стандарта EN 442-2 (2014).

Рис. 5

Камера и система охлаждения. Изображение взято из EN 442-2

Метод оценки тепла, выделяемого радиатором жидкостной панели, – это метод взвешивания. Метод взвешивания заключается в вычислении разницы энтальпий между подачей (входом) и возвратом (выходом) жидкости, умноженной на массовый расход.Энтальпия жидкости при давлении и температуре, измеренная в ходе испытания, известна по табличным значениям.

Радиатор с жидкостной панелью, рассмотренный в эксперименте Стефана (1991), имеет номинальные параметры, перечисленные в Таблице 1, с соединительными трубами, расположенными на противоположной стороне.

Таблица 1 Номинальное состояние радиатора гидронной панели

Модель жидкостного панельного радиатора имеет те же технические характеристики, которые указаны в таблице 1. Экспериментальные измерения и результаты моделирования сравниваются на рис.6 по температуре выхлопного потока от времени.

Рис. 6

Сравнение экспериментальных измерений, сделанных Стефаном (1991), и результатов моделирования для воды на выходе

Разница в количестве выделяемого тепла между экспериментальными измерениями и результатами моделирования составляет 3,75% при достижении установившегося состояния.

Испытание на скачкообразный переход между жидкостными панельными радиаторами с различным расположением соединительных труб: сравнение выделяемого тепла

Гидравлический панельный радиатор размещается в помещении с постоянной наружной температурой, поддерживаемой на уровне -15 ° C в течение всего времени моделирования.Выбор поддержания температуры наружного воздуха на уровне –15 ° C является случайным; Фактически, можно выбрать другое значение (как правило, меньшее, чем значение температуры, подаваемой в радиатор), но оно должно быть стабильным на протяжении всего времени моделирования, чтобы избежать помех в системе. Тепловые поступления от электроприборов, освещения, присутствия людей, интенсивности ветра и солнца во время испытания отключаются. Массовый расход увеличен до 0,01484 кг с −1 в момент моделирования 𝜃 = 0.До этого массовый расход составлял 2 × 10 −4 кг с -1 , а температура подаваемого потока поддерживалась постоянной на уровне 83 .

Такое же испытание было выполнено на том же типе водяного панельного радиатора с соединительными трубками, расположенными на той же стороне. Предполагается, что емкость жидкости рядом с соединительными трубами имеет массовый расход на 10% выше, чем емкость, наиболее удаленная от соединительных труб.Этот тип водяного радиатора имеет температуру выхлопного потока; средневзвешенное значение температуры выхлопных газов, заданное разными потоками в каждом элементе.

На рисунке 7 показана схема радиатора, когда соединительные трубы расположены с одной стороны.

Рис.7

Схема радиатора с соединительными трубками, расположенными на той же стороне

Общее количество тепла, излучаемого радиатором жидкостной панели при различном расположении соединительных трубок, показано на Рис. 8.Можно заметить, что радиаторы с соединительными трубками на одной стороне выделяют немного больше тепла, чем радиаторы с соединительными трубками, расположенными на противоположной стороне. Это означает, что радиаторы с соединительными трубками, расположенными на одной стороне, быстрее реагируют на изменение подаваемого массового расхода по сравнению с радиаторами с соединительными трубками, расположенными на противоположной стороне. В конечном итоге оба тепла, выделяемые двумя растворами, достигают одного и того же значения.

Рис.8

Сравнение тепла, выделяемого радиаторами с различным расположением трубных соединений

Краткий обзор имитационной модели здания

Имитационная модель состоит из комнаты, смежной с другими отапливаемыми комнатами.В идеале тепло не передается в другие кондиционируемые помещения, поэтому для всех внутренних стен, потолка и пола задано адиабатическое граничное условие. Характеристики конструкции, окон, системы отопления, вентиляции и кондиционирования указаны в таблице 2. Помещение имеет чистую площадь пола 10 м 2 с постоянным расходом приточного воздуха при температуре 16 ° C. Еженедельные графики занятости, освещения и электроприборов являются стандартными; комната занята каждый день с 07.С 00:00 до 08:00 и с 17:00. до 20.00 в отопительный период.

Таблица 2 Тепловые характеристики здания

Помещение оборудовано системой механической вентиляции, в которой поток приточного вентиляционного воздуха смешивается с воздухом в помещении, обеспечивая примерно однородную температуру всего объема воздуха. Были произведены расчеты размера труб для распределительной системы, мощности, необходимой для циркуляционных насосов, а также мощности, требуемой от радиатора, и мощности, необходимой для установки кондиционирования воздуха.Радиатор подключен к системе хранения, которая состоит из многослойного резервуара для горячей воды. Электрический резистор внутри резервуара гарантирует требуемую температуру подаваемой жидкости в соответствии с погодозависимой кривой нагрева. Циркуляционные насосы работают согласно постоянной кривой нагрузки. Распределительные трубы предполагается изолированными и интегрированными в ограждающую конструкцию здания. Схема имитационной модели здания и системы отопления, вентиляции и кондиционирования представлена ​​на рис.9.

Рис.9

Имитационная модель помещения

План моделирования

В следующем разделе объясняется, как моделирование планируется, чтобы учесть вероятные изменения тепловых потерь из-за различных технических решений здания.План моделирования состоит из анализа чувствительности местоположения здания, внешней оболочки здания и характеристик системы отопления.

Первый анализ чувствительности был проведен путем размещения здания в четырех различных климатических условиях Швеции: северный, северо-центральный, южно-центральный и южный. Климат влияет на соотношение свободного тепла и тепловых потерь в помещении; таким образом, обогрев может быть уменьшен для удовлетворения требований комфорта для пассажиров, как показано Bianco et al.(2016). В этом сценарии влажность воздуха также играет роль, как объяснил Menghao (2011), поскольку она влияет на микроклимат в помещении и, следовательно, на конструкцию системы HVAC. Файл погоды, используемый в программе моделирования здания, представляет собой синтетический файл погоды, полученный за один час на основе значений внешней температуры по сухому термометру T или u т , относительная влажность воздуха ϕ, сила ветра в направлении x и y и процент облачности в%.Значения прямого D и рассеянного d солнечного излучения рассчитываются по модели Чжан-Хуанга. Синтетический файл погоды записывается в базу данных ASHRAE (2001) и используется в коммерческой программе моделирования зданий IDA ICE vers. 4.7. На рисунках 10 и 11 показана среднемесячная температура наружного воздуха и прямая солнечная радиация для каждого выбранного населенного пункта.

Рис.10

Среднемесячная наружная температура

Рис.11

Среднее за месяц прямое солнечное излучение на горизонтальную поверхность

Второй анализ чувствительности был проведен путем изменения активной тепловой массы.Активная тепловая масса – это первый слой материала, контактирующий с воздухом в помещении, учитывая также все слои материала до изоляции, как показано в Brembilla et al. (2015b). Активная тепловая масса накапливает тепловую энергию, которая выделяется в помещении. Многие авторы рассматривали преимущества и недостатки изменения тепловой массы здания. Горейши и Али (2013) утверждают, что тяжелая тепловая масса может сглаживать резкие колебания температуры в помещении, обеспечивая стабильную температуру в помещении.Во время отопительного сезона накопленное тепло будет выделяться в кондиционируемое пространство; тогда как в период похолодания ночная вентиляция рассеивает накопленное тепло. Masy et al. (2015) утверждают, что активная тепловая масса также имеет положительный эффект за счет переключения нагрузки используемой электроэнергии. Автор статьи изменил внутренний слой наружной стены из кирпича ( ρ б r и c к = 1500 кг м −3 , с б r и c к = 1000 Дж г -1 К −1 ) в древесину ( ρ w o o d = 600 кг м −3 , с w o o d = 700 Дж г -1 К -1 ), регулируя толщину деревянного слоя, чтобы иметь одинаковый коэффициент теплопередачи как для тяжелой, так и для легкой конструкции.Такое же изменение произошло для кирпичного слоя адиабатических стен, примыкающих к кондиционируемым помещениям, и для бетонного слоя в полу и потолке ( ρ c o n = 2300 кг м −3 , с c o n = 880 Дж г -1 К -1 ).

Третий анализ чувствительности сосредоточен на местном управлении радиатором. Местное управление переключалось между P (зона пропорциональности с ΔT = 1 K сначала, а затем с ΔT = 2 K) и PI-регулированием. P-регулирование обеспечивает пропорциональную регулировку расхода при изменении температуры в помещении, когда она выходит за пределы диапазона пропорциональности. ПИ-регулирование также гарантирует время интегрирования, которое снижает отклик системы и стабилизирует колебания температуры в помещении, как указано в Sanchis et al.(2010) и Ку и Захируддин (2004).

Последний анализ чувствительности проводился путем изменения местоположения соединительных труб. Соединительные патрубки сначала располагаются на той же стороне радиатора, а затем на противоположной стороне. Весь анализ чувствительности учитывает 48 реальных случаев и 8 идеальных случаев. Для каждого анализируемого климата и для тяжелой, и для легкой активной тепловой массы устанавливаются идеальные случаи.

Переносной обогреватель радиатора ComforTemp EW7707CB

Найдите запасные части на сайте www.encompassparts.com

Какие размеры у нагревательного блока?

14 x 6 x 25 дюймов и весит 24 фунта

Нужно ли доливать маслонагреватель или менять масло?

Масло в наших маслонаполненных радиаторах остается на весь срок службы изделия. Менять масло или доливать его не нужно.

Какова длина кабеля у обогревателей De’Longhi?

Длина кабеля 6 футов.

Какой тип масла используется в ваших маслонаполненных радиаторах?

Масляные радиаторы заполнены диатермическим теплоносителем.Его не нужно будет заменять в течение всего срока службы продукта.

Какие настройки мощности на моем маслонаполненном радиаторе?

Установки мощности нагрева для нагревателя мощностью 1200 Вт:

  • мин – 500 Вт
  • Mid – 700 Вт
  • Макс – 1200 Вт

Установки мощности нагрева для нагревателя мощностью 1500 Вт:

  • Мин. – 700 Вт
  • Mid – 800 Вт
  • Макс – 1500 Вт

Сколько стоит мой обогреватель?

  • На самом деле очень сложно определить, сколько стоит запустить обогреватель в вашем собственном помещении.Во многом это зависит от типа дома, размера комнаты и качества утепления.
  • Однако максимальная стоимость нагревателя будет стоить за 1 единицу электроэнергии в час за киловатт тепла. Например, если у вас есть обогреватель мощностью 1500 Вт, он будет использовать максимум 1,5 единицы энергии в час. Масляные радиаторы более экономичны в эксплуатации, потому что они дольше сохраняют тепло, а потребление энергии за счет регулирования температуры требуется реже. Электрические обогреватели обогревают только комнату, в которой вы находитесь, а не весь дом, обеспечивая дополнительное тепло только там, где это необходимо, и помогая оптимизировать потребление энергии.
  • Стоимость электроэнергии зависит от поставщика. Если вы проверите свой счет, вы сможете узнать, сколько вы платите за единицу электроэнергии.

Где я могу купить запчасти для лучистого обогревателя?

Пожалуйста, свяжитесь с нашим бесплатным номером (для США 1-800-322-3848; для Канады 1-888-335-6644) или посетите наш веб-сайт www.delonghi.com

Радиатор

– Kerbal Space Program Wiki

Радиаторы – это специальные устройства, которые могут охлаждать другие части корабля, потребляя при работе небольшое количество электрического заряда.

Они рассеивают тепло в космос (радиационное) и атмосферу (конвективное). Чтобы сделать это эффективно, они нагреваются, передавая тепло внутрь, но они самоограничиваются, чтобы избежать перегрева до разрушения. Их эффективность может быть ограничена условиями окружающей среды, но для многих применений она больше ограничена произвольными функциональными ограничениями. Они необходимы для поддержания оптимального теплового КПД сердечников комбайнов и конвертеров.

Варианты

  • Жесткие, фиксированные Панели , охлаждают только ту часть, к которой они непосредственно прикреплены, и части, непосредственно связанные с этой частью.
  • Развертываемые Системы терморегулирования (TCS), отбирают тепло от каждой части емкости (как если бы они были подключены к контуру охлаждающей жидкости). Как и развертываемые солнечные панели, они автоматически вращаются в зависимости от относительного направления Кербола, но поворот на минимизирует их воздействие солнечного излучения на . Все они имеют «Скорость отслеживания: 0,1». В развернутом состоянии они отламываются при динамическом давлении 2,5 кПа – слишком быстро движутся в довольно плотной атмосфере (например.грамм. ~ 67 м / с на уровне моря на Кербине, край в сторону движения). В отличие от фиксированных панелей, к ним нельзя прикреплять никакие другие части.

Эксплуатация

Чтобы начать работу, необходимо выбрать «Активировать радиатор» в интерфейсе правой кнопки мыши на панели или «Выдвинуть / убрать радиатор» для систем терморегулирования, которые также их развертывают. В качестве альтернативы эти функции могут быть связаны с группами действий, с помощью опции «Toggle Panels», позволяющей одной группе действий запускать и останавливать несколько излучателей одновременно.

Функция

Радиаторы отводят тепло только изнутри деталей (которые составляют большую часть их теплоемкости), а не их кожи, которая может иметь очень разную температуру. Тепло может накапливаться от внешних источников (например, от входа в атмосферу или солнечного света от Кербола) или вырабатываться реактивными двигателями или ядрами буровых установок или преобразователей ресурсов, пока они активны.

Характеристики охлаждения

Все радиаторы:

  • «Ставка передачи: 10%».
  • «Охлаждает до 4-кратной температуры детали».

Охлаждение сердечника (сверл и преобразователей) в основном ограничивается показателем “Core Heat xFer” (передача) радиатора. Это всегда малая часть того, что фактически может рассеять радиатор, в большинстве случаев, обозначенных цифрой «Максимальное охлаждение».

Охлаждение сердечника

Чтобы поддерживать активную буровую установку или сердечник преобразователя с оптимальным тепловым КПД, радиаторы должны обеспечивать достаточную неиспользованную способность теплообмена сердечника для выполнения стата «Требуемое охлаждение», показанного ниже:

(*) Convert-O-Tron 125 – особый случай – его нельзя поддерживать с оптимальным тепловым КПД, потому что его максимальная мощность охлаждения 50 кВт ниже требуемого охлаждения (100 кВт).С помощью радиаторов он все равно достигнет равновесия, хотя и немного горячее оптимальных 1000К. Это возможно, потому что производство тепла ядром уменьшается при более высоких температурах ядра, так как термический КПД падает.

Также обратите внимание на то, что для обоих преобразователей требуемый показатель охлаждения составляет для каждого активного режима преобразования , при этом каждое устройство может иметь один или все из своих четырех режимов преобразования руды в одно и то же время. Следовательно, требуемое охлаждение Convert-O-Tron 250 также может превышать максимально допустимое (например,грамм. 3 режима производят 600 кВт нагрева сердечника).

Изменения

1,1
  • «Фиксированные» радиаторы теперь также необходимо активировать, прежде чем они начнут работать.

Основное руководство по промышленным водогрейным котлам

Теперь, когда мы знаем разницу между промышленными паровыми котлами и системами водогрейных котлов, давайте более подробно рассмотрим типы систем водогрейных котлов. Как уже упоминалось, основное различие между системами водогрейного котла – это температура.Следовательно, названия дают некоторое представление о температуре, связанной с системой. В этом разделе мы объясним три типа водогрейных котлов: высокотемпературные водогрейные, среднетемпературные водогрейные и низкотемпературные водогрейные котлы. Мы дадим определение этих котельных систем из ASME, а также то, как они обычно выглядят в применении.

Высокотемпературные водогрейные котлы (HTHW)

Согласно ASME, высокотемпературный водогрейный котел является энергетическим котлом ASME, раздел I, и включает в себя любой котел с максимальной температурой, превышающей 250 ° F и / или максимальным давлением, превышающим 160 фунтов на квадратный дюйм.В применении системы HTHW относятся к конструкциям, в которых температура превышает 350 ° F. Обычно система HTHW работает с максимальным рабочим давлением менее 300 фунтов на кв. Дюйм. Эти системы идеальны для более крупных систем, таких как централизованное теплоснабжение и отопление кампуса, из-за больших тепловых нагрузок, разветвленных сетей трубопроводов и общего размера объектов. Крупные технологические процессы также идеально подходят для систем водогрейных котлов с высокой температурой из-за требований к высокой температуре, которые не могут быть достигнуты в системах с низкой и средней температурой.

Среднетемпературные водогрейные котлы (MTHW)

Среднетемпературные водогрейные котлы – это котлы с температурой в диапазоне от 250 ° F до 350 ° F, с максимальным рабочим давлением 150 фунтов на квадратный дюйм. Это означает, что для системы MTHW может потребоваться котел ASME Section I для одних конструкций и котел ASME Section IV для других. Каждую конкретную систему необходимо сравнить с ASME BPVC, чтобы убедиться, что котел для этой системы спроектирован в соответствии с применимыми разделами. Системы, в которых используется среднетемпературный водогрейный котел, – это районные и университетские энергетические контуры, жилые и гостиничные комплексы, а также небольшие технологические процессы, требующие среднего диапазона температур.

Низкотемпературные водогрейные котлы (LTHW)

Согласно разделу IV ASME, отопительный котел включает любой котел с максимальной температурой ниже 250 ° F и максимальным давлением ниже 160 фунтов на кв.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *