Как долить воду в систему отопления дома и что нужно?
Ни один теплоноситель не служит вечно. И воду, и антифриз периодически требуется пополнять или заменять. Не все владельцы отопительных систем знают, как долить воду в систему отопления. Нюансы долива зависят от объема и конструкции конкретной системы.
Содержание
- 1 Как заполнить отопительный контур водой
- 1.1 Расчет объема
- 1.2 Правила выполнения подпитки отопления
- 2 Как заполнить систему антифризом
- 2.1 Критерии выбора незамерзающей жидкости
- 2.2 Заполнение системы открытого типа
- 2.3 Заполнение закрытой системы отопления
- 3 Сроки эксплуатации бытового антифриза
Как заполнить отопительный контур водой
Вода все еще является популярным теплоносителем, главным образом из-за своей дешевизны. При заполнении отопительных систем старой конструкции, с железными трубами среднего сечения и большими чугунными радиаторами использование воды даст существенную экономию ввиду большого общего объема системы. Вода также обладает практически идеальной вязкостью и теплоемкостью по сравнению с антифризами. Вязкость воды также заметно ниже, что снижает вероятность ее просачивания через уплотнения.
На этом достоинства воды заканчиваются. Даже подготовленная водопроводная вода содержит в себе большое количество растворенных минеральных добавок. В воде из колодца или скважины их может быть в десятки раз больше. Эти вещества в ходе эксплуатации отопительной системы при высоких температурах интенсивно оседают на стенках труб и теплообменников. При этом сужается эффективное сечение труб, понижается эффективность теплообмена, повреждаются детали насоса и расширительного бачка.
Содержащийся в воде кислород ведет к коррозии металлических деталей системы.
если принято решение заполнять отопительный контур водой, ее следует очистить от минеральных компонентов химическим путем или по крайней мере прокипятить и дать отстояться осадку.
И самая большая опасность воды как теплоносителя- при охлаждении ниже 0оС она замерзает, превращаясь в лед и увеличивая при этом свой объем. Это приводит к разрушению труб и теплообменников, повреждению насосов.
Мало знать, как долить воду в систему отопления- необходимо еще и правильно определить ее объем.
Расчет объема
Перед заполнением отопительного контура необходимо рассчитать его внутренний объем.
Для этого суммируют объемы:
- котла;
- расширительной емкости;
- трубопроводов;
- радиаторов.
Внутренние объемы котла, расширительной емкости и радиаторов указываются в их сопроводительной документации. Они также приведены на сайтах производителей.
Объем трубы в кубометрах рассчитывается по формуле
где D- диаметр трубы, м
l- длина трубы, м
К расчетному объему добавляют поправочный коэффициент, т.е. умножают на 1,15.
Объем воды можно определить не только расчетным, но опытным путем. Для этого систему заполняют водой полностью и сливают ее в мерную емкость. Опытный более точен.
Правила выполнения подпитки отопления
В ходе эксплуатации отопительного контура периодически необходимо производить, долив воды, или подпитку. В системах открытого типа это можно сделать прямо в расширительный бачок, по нему же контролируют и уровень воды в системе. Если жидкость не достигла рабочей температуры, не следует заполнять бачок полностью. Нагревшись, вода расширится и польется через край.
В современных двухконтурных бойлерах имеется специальный клапан подпитки. Заполнение системы проводится следующим образом:
- присоединить водопроводный шланг к клапану подпитки;
- открыть вентиль в нижней точке контура рядом с котлом;
- открыть воздушный клапан в верхней точке трубопровода;
- при появлении воды из воздушного клапана закрыть вентиль подпитки и воздушный клапан.
- Если при запуске отопления в насосе слышно бульканье и звук струящейся воды, следует повторить стравливание воздуха через воздушный клапан.
- При заполнении системы рекомендуется открывать вентиль не более чем на ¼ сечения.
Если в систему была добавлена холодная вода с температурой 3-8 градусов, перед включением котла на полную мощность необходимо дать жидкости в контуре равномерно перемещаться, чтобы избежать гидравлических температурных ударов.
Как заполнить систему антифризом
Незамерзающие теплоносители, или антифризы, лишены большинства недостатков воды.
Они не замерзают при отрицательных температурах, не содержат примеси, откладывающиеся на стенках труб и теплообменников, не вызывают коррозию металлических деталей.
Заполнение системы антифризомАвтомобили и другие виды транспорта давно перешли на использование антифризов в своих системах охлаждения и отопления. В домашних системах такой переход в полном разгаре. 90 % вновь вводимых в строй систем использует антифризы.
Критерии выбора незамерзающей жидкости
Чтобы эффективно работать в отоплении, незамерзающая жидкость для отопления дома должна удовлетворять следующим условиям:
- низкая токсичность, исключающая угрозу здоровью жильцов в случае утечки;
- негорючесть самой жидкости и ее паров;
- нулевая коррозионная активность;
- низкая вязкость, обеспечивающая достаточную для эффективной циркуляции текучесть;
- теплоемкость, обеспечивающая перенос тепловой энергии от топки к радиаторам.
Большая часть предлагаемых на рынке составов выполнена на основе следующих веществ:
- этиленгликоля;
- пропиленгликоля;
- глицерина.
Ученые постоянно ведут разработку новых формул, отличающихся улучшенными энергетическими характеристиками и сниженной нагрузкой на окружающую среду.
Многие составы в чистом виде проявляют коррозионную активность. Поэтому их используют в разбавленном виде и добавляют присадки- ингибиторы. Добавки также снижают пенообразование, способствуют очищению компонентов системы.
Большинство производителей предлагают две климатические версии своих продуктов:
- концентрированная, не замерзающая до 65оС;
- разбавленная, выдерживающая температуры до -30оС.
При выборе состава для долива системы лучше всего использовать ту же самую марку того же производителя, что и была залита первоначально.
Смешивание антифризов разных марок, а тем более- с разными действующими веществами, может привести к резкому снижению их срока службы или даже к повреждению компонентов отопительного контура.
Антифризы имеют большую вязкость, чем вода. Поэтому они не подходят для отопительных контуров с естественной циркуляцией жидкости. При гидравлическом расчете системы и выборе мощности циркуляционного насоса следует учитывать паспортную вязкость выбранного теплоносителя.
В отличие от воды, антифризы весьма уязвимы со стороны перегрева системы. При повышенных температурах в них начинаются нежелательные химические реакции, газообразование и выпадение осадков. Большая часть нынешних бойлеров, рассчитанных на работу с незамерзающими составами, имеют аппаратное ограничение максимальной температуры в 80оС
В руководстве пользователя отопительного прибора перечислены допустимые типы теплоносителей. Выход за пределы этого перечня ведет к утрате заводской гарантии.
Заполнение системы открытого типа
В открытых отопительных контурах теплоноситель циркулирует под атмосферным давлением. В верхней точке контура монтируется расширительная емкость, в нее выходит расширившаяся при нагревании жидкость. После охлаждения она поступает обратно в контур. В эту же емкость выходит попавший в систему воздух.
Такой контур можно заполнять под давлением через нижний вентиль. Можно и просто добавлять жидкость в расширительный бачок. Емкость заполняют до мерки, соответствующей температуре теплоносителя. Верхний уровень, на котором выходит дренажная трубка, соответствует максимальной температуре жидкости.
Систему отопления открытого типа можно заполнять под давлением через нижний вентильДобавлять его следует постепенно, давая время воздушным пробкам пройти по теплообменникам и трубопроводам и подняться в верхнюю точку.
После заполнения емкости следует проверить все воздушные клапаны на участках трубопроводов и радиаторах. Если где-либо была обнаружена и выпущена воздушная пробка, жидкость в бачок необходимо снова долить до заданного уровня.
Заполнение закрытой системы отопления
В таких системах отопительный контур герметичен и изолирован от атмосферы. Расширительный бачок имеет резиновую мембрану, пространство за которой заполнено сжатым воздухом при рабочем давлении. При расширении теплоносителя он проминает мембрану, увеличивая доступный объем и компенсируя тепловое расширение.
Долив антифриза в систему отопления удобнее проводить вдвоем. Кто-то заливает жидкость, а кто-то следит за воздушным клапаном, установленным в верхней точке контура. Если же помощника нет, можно подавать воду под самым малым напором и смириться с тем, что какое-то количество прольется в подставленную под клапан емкость. При этом придется также побегать по лестнице от вентиля до клапана.
Патрубок для подпитки системы устанавливается обычно в нижней точке контура, рядом с отопительным котлом. Его оснащают обратным клапаном, позволяющим подавать воду в систему, но препятствующим ее вытеканию обратно.
Если система заполнена водой, патрубок иногда напрямую присоединяют к подаче холодной воды, предусмотрев, разумеется, запорный вентиль. В противном случает воду подают с помощью гибкой подводки или резинового шланга, обжатого хомутами.
Контур заполняют до тех пор, пока давление на манометре бойлера не достигнет рабочего (чаще всего это полторы атмосферы).
После того, как жидкость начнет вытекать из верхнего воздушного клапана, следует сбросить воздух из всех остальных воздушных клапанов, продвигаясь от нижней точки контура к верхней.
Двухконтурные котлы, кроме отопления выполняющие еще и функцию горячего водоснабжения, содержат встроенный клапан подпитки. Это делает, долив воды в такие системы ещеудобнее.
При заполнении закрытой системы антифризом приходится использовать специальный насос, накачивающий теплоноситель в систему.
Насосы бывают как с электроприводом, так и ручные. Входной шланг опускается в емкость с теплоносителем, а выходной присоединяется к патрубку подпитки в нижней части контура.
Далее открывают верхний воздушный клапан, включают насос, и пополняют контур жидкость. до достижения рабочего давления на манометре. Стравливание воздуха проводят так же, как и в случае использования воды.
Современные модели бойлеров оснащены механизмом самостоятельного удаления воздушных пробок. Если такой механизм отсутствует или по каким-либо причинам не сработал, и при включении из циркуляционного насоса слышны булькающие и журчащие звуки, следует немного ослабить крепление его крышки, пока из-под нее не выйдет воздух и не выступит жидкость. После этого крышку затягивают. Если журчание продолжается, процедуру следует повторить до полного устранения посторонних звуков.
После пополнения теплоносителя недопустимо сразу включать котел на полную мощность. Необходимо дать поработать насосу до тех пор, пока теплоноситель в системе не перемешается, и температура его не выровняется, в противном случае возможно возникновение резких перепадов давления в системе вплоть до гидроударов. После этого можно выводить котел на рабочий режим.
Сроки эксплуатации бытового антифриза
Обычно время жизни антифризов на основе органики устанавливается производителем в 3-5 лет. После этого специальные добавки утрачивают свои защитные свойства и жидкость становится химически активной, вызывая коррозию металлических компонентов отопительного контура. Не позже истечения паспортного срока эксплуатации теплоноситель следует полностью слить и заменить на свежий. Выливать старый антифриз в канализацию недопустимо- его следует сдавать в утилизационные пункты.
Восстановление старого способа обогрева: обогрев людей, а не мест
Иллюстрация: Люди собираются вокруг изразцовой печи. Die Bauern und die Zeitung, картина Альберта Анкера, 1867 год. Это кажется очевидным выбором, но есть гораздо более достойные альтернативы. Существует три типа (ощутимой) теплопередачи: конвекция (нагрев воздуха), теплопроводность (нагрев через физический контакт) и излучение (нагрев электромагнитными волнами). Старый способ обогрева основывался на излучении и теплопроводности, которые более энергоэффективны, чем конвекция. В то время как конвекция подразумевает нагревание каждого кубического сантиметра воздуха в помещении для обеспечения комфорта людей, излучение и теплопроводность могут напрямую передавать тепло людям, делая потребление энергии независимым от размера комнаты или здания.
Теплопроводность, конвекция, излучение
Во-первых, давайте более подробно рассмотрим различные методы теплопередачи. Проводимость и конвекция тесно связаны. Кондукция касается передачи энергии из-за физического контакта между двумя объектами: тепло будет течь от более нагретого объекта к более холодному. Скорость, с которой это происходит, зависит от термического сопротивления вещества. Например, через металл тепло передается гораздо быстрее, чем через дерево, потому что у металла меньше тепловое сопротивление. Это объясняет, почему, например, холодный металлический предмет ощущается намного холоднее, чем холодный деревянный предмет, хотя они оба имеют одинаковую температуру.
Конвективный перенос тепла от тела к окружающей среде.
Проводимость происходит не только между физическими объектами, но также между физическими объектами и газами (такими как воздух), а также между газами взаимно. Каждый физический объект, который теплее окружающего его воздуха, нагревает воздух в непосредственной близости за счет теплопроводности.
Излучение, третья форма физического переноса тепла, работает совершенно иначе, чем теплопроводность и конвекция. Лучистая энергия передается посредством электромагнитных волн, подобно свету или звуку. Точнее, это касается той части электромагнитного спектра, которая называется инфракрасным излучением. Излучению не нужна среда (например, воздух или вода) для передачи тепла. Он также работает в вакууме и является наиболее важной формой теплопередачи в космическом пространстве. Основным источником лучистой энергии является Солнце, но каждый объект на Земле излучает инфракрасную энергию, если он имеет массу и температуру выше абсолютного нуля.
Тепловой комфорт при низких температурах воздуха
Из-за общего использования систем центрального воздушного отопления (и охлаждения) мы пришли к выводу, что тепловой комфорт в наших помещениях зависит главным образом от температуры воздуха. Однако человеческое тело обменивается теплом с окружающей средой посредством конвекции, излучения, теплопроводности и испарения (форма «скрытого» теплообмена). Конвекция относится к теплообмену между кожей и окружающим воздухом, излучение — к теплообмену между кожей и окружающими поверхностями, испарение — к потере влаги кожей, а проводимость — к теплообмену между частями человеческого тела. и другой объект, с которым он соприкасается.
———————————————— ————————————————– ———————————————————–
Если доля увеличивается излучение или проводимость в общей теплоотдаче, люди могут чувствовать себя вполне комфортно при более низкой температуре воздуха в отопительный сезон
————————————— ————————————————– ————————————————– ——————
Зимой мы можем чувствовать себя комфортно при более низких температурах воздуха, увеличивая долю излучения или проводимости в общей теплопередаче помещения.
Лучистое тепло может сделать людей комфортными и при более низкой температуре воздуха. Яркий пример — прямые солнечные лучи. Весной или осенью мы можем комфортно сидеть на улице на солнце в одной футболке, даже если температура воздуха относительно низкая. В метре, в тени, может быть достаточно холодно, чтобы нуждаться в куртке, хотя температура воздуха более-менее одинакова. Летом мы предпочитаем тень. Разница объясняется лучистой энергией солнца, которая непосредственно нагревает тело при воздействии на него солнечного света.
Системы лучистого отопления компенсируют более низкую температуру воздуха более высокой температурой излучения, а системы воздушного отопления компенсируют более низкую температуру излучения более высокой температурой воздуха. Рабочая температура — средневзвешенное значение обеих величин — может быть одинаковой. Источник: Radiant Heating & Cooling Handbook , Richard Watson, 2008.
Следует отметить, что на Земле излучение всегда идет рука об руку с конвекцией. Поскольку воздух имеет небольшую массу, лучистая энергия солнца не нагревает воздух напрямую. Однако делает это косвенно. Лучистая энергия солнца поглощается земной поверхностью, где она преобразуется в тепло. Затем более теплая земная поверхность медленно отдает это тепло в воздух посредством ранее описанных механизмов теплопроводности и конвекции. Другими словами, не солнце, а земная поверхность нагревает воздух на нашей планете.
Температура излучения одинаково важна при обогреве здания, независимо от используемой системы отопления. В помещении лучистая температура представляет собой общее инфракрасное излучение, которым обмениваются все поверхности в помещении. Системы лучистого отопления, о которых мы поговорим позже, работают аналогично солнцу: они нагревают не воздух, а поверхности в помещении, в том числе кожу человека, повышая температуру излучения и обеспечивая тепловой комфорт при более холодном воздухе. температура. Использование лучистого отопления более практично в помещении, где факторы окружающей среды находятся под контролем. Например, если на улице поднимается ветер, согревающий эффект солнца быстро исчезает.
———————————————— ————————————————– ———————————————————–
Это не солнце а земная поверхность которая нагревает воздух на нашей планете
————————————- ————————————————– ————————————————– —–
100% лучистой системы отопления не существует, потому что как лучистая поверхность нагрева, так и излучаемые поверхности контактируют с воздухом и нагревают его за счет проводимости и конвекции. Однако этот нагрев воздуха имеет отсроченное начало и является более ограниченным, чем в случае системы прямого нагрева воздуха. Точно так же система воздушного отопления также повысит лучистую температуру в помещении, потому что горячий воздух нагревает поверхности здания за счет теплопроводности. Но опять же, повышение лучистой температуры происходит медленно и ограничено по сравнению с лучистой системой отопления.
Как и в случае теплопроводности, радиация может причинять людям дискомфорт, несмотря на высокую температуру воздуха. Если мы сидим рядом с холодным окном, наше тело будет излучать тепло на эту холодную поверхность, заставляя нас чувствовать холод даже при комфортной температуре воздуха 21ºC (70ºF). Короче говоря, ни высокая температура воздуха, ни высокая температура излучения не являются гарантией теплового комфорта. Лучшее понимание тепловой среды в помещении дает «рабочая температура», которая представляет собой средневзвешенное значение обеих величин.
Старый способ отопления
До появления систем центрального воздушного отопления в двадцатом веке здания в основном отапливались центральным источником лучистого тепла, таким как камин или дровяная, угольная или газовая печь. Обычно отапливалась только одна из комнат в здании. Но даже в этой комнате были большие различия в комфорте в зависимости от вашего точного местоположения в пространстве. В то время как воздушное отопление относительно равномерно распределяет тепло по площади, лучистый источник тепла создает локальный микроклимат, который может радикально отличаться от остального помещения.
Это связано с тем, что энергетический потенциал источника лучистого тепла уменьшается с расстоянием. Дело не в том, что инфракрасные волны становятся слабее, а в том, что они становятся более рассеянными, поскольку они расходятся веером из определенного источника. Это показано на двух иллюстрациях ниже, которые появляются в «Руководстве по лучистому отоплению и охлаждению» Ричарда Уотсона. На рисунке слева показано распределение лучистого тепла (или «лучистый ландшафт») в помещении, виденном сверху, обогреваемом системой принудительного воздушного отопления. Средняя лучистая температура в помещении составляет 20ºC (68ºF). За исключением влияния холодной поверхности окна (вверху рисунка), лучистая температура относительно постоянна во всем помещении.
Источник: Справочник по лучистому отоплению и охлаждению . Richard Watson, 2008
На рисунке справа показано то же помещение, снова со средней температурой излучения 20ºC (68ºF), но теперь обогреваемое источником лучистого тепла, расположенным в центре потолка. Речь идет об электрической длинноволновой инфракрасной панели, новой технологии, которую мы объясним во второй части этой статьи, но камин в центре комнаты даст аналогичный результат. Лучезарный пейзаж теперь совсем другой. Самая высокая температура излучения измеряется в середине помещения, прямо под нагревательной панелью. Затем лучистая температура быстро уменьшается по концентрическим кругам по направлению к сторонам помещения. Разница между минимальной и максимальной лучистой температурой намного больше, чем в случае системы воздушного отопления.
———————————————— ————————————————– ———————————————————–
В воздухе- отапливаемое помещение, не имеет большого значения, где вы находитесь. В помещении, обогреваемом лучистым источником тепла, расположение решает все.
————————————————————– ————————————————– ———————————————————–
Конечно, другое расположение излучающей поверхности нагрева или комбинация двух или более излучающих поверхностей нагрева снова представили бы совершенно другой излучающий ландшафт. Кроме того, как и в случае с солнечным излучением, другие объекты могут отбрасывать тени, а это означает, что даже расположение мебели может влиять на распределение тепла в помещении. Также обратите внимание, что неоднородное распределение лучистой температуры будет несколько смягчено однородным характером температуры воздуха, независимо от того, какая система отопления используется.
Энергоэффективность
В помещении с воздушным отоплением не имеет большого значения, где вы находитесь. В помещении, обогреваемом центральным источником лучистого отопления, расположение решает все. Средняя температура излучения может быть оптимальной, но температура излучения в некоторых частях помещения может быть слишком низкой. Но возможно и обратное: средняя лучистая температура может быть слишком низкой, а в некоторых местах в помещении вполне комфортно. Это древний принцип точечного или зонального отопления, который невозможно реализовать при воздушной системе отопления. Вместо того, чтобы отапливать все пространство, наши предки отапливали только занятые части здания.
Воздушное отопление (слева) и лучистое отопление (справа) в здании церкви. Источник: Безопасное для ткани отопление, Дарио Камуффо.
То же самое происходит и на вертикальной плоскости. Теплый воздух поднимается вверх, так что большая часть тепла оказывается под потолком, где от него мало пользы. При лучистом отоплении вполне возможно обогреть только нижнюю часть помещения, независимо от высоты потолка. Лучистое тепло не поднимается вверх, если только поверхность лучистого нагрева не направлена вверх. В заключение, вместо того, чтобы нагревать весь объем воздуха в помещении, система лучистого отопления может обогревать только ту часть помещения, которая занята, что, конечно, гораздо более энергоэффективно.
Если помещение не очень маленькое или в нем много людей, только очень небольшая часть энергии, используемой системой воздушного отопления, приносит пользу людям. С другой стороны, почти вся энергия, используемая системой лучистого отопления, эффективно обогревает людей.
Местная изоляция
Проблемой неоднородного внутреннего климата прежних времен была лучистая асимметрия — разница в лучистой температуре между отдельными частями тела. Человек, сидящий перед открытым огнем, получит достаточно лучистого тепла на одну сторону своего тела, в то время как другая сторона отдает тепло холодному воздуху и выходит на поверхность в противоположной половине комнаты. Тело может находиться в тепловом равновесии — потери тепла с одной стороны равны притоку тепла с другой, — но если разница температур слишком велика, тепловой комфорт не будет обеспечен.
Скамья с регулируемой спинкой. Источник: Dictionnaire de l’ameublement et de la decoration depuis le XIII siècle, 1887-1890
Задача проиллюстрирована на гравюре выше. Спинка скамейки может быть переставлена из стороны в сторону. Регулярно поворачивая тело к огню, а затем от него, можно было попеременно нагревать и переднюю, и заднюю часть тела. Хотя лучистая асимметрия может быть проблемой для систем принудительного воздушного отопления, она гораздо чаще появляется в помещениях, обогреваемых лучистым источником тепла. В исторических зданиях разница температур поверхностей усугублялась тем, что поверхности зданий не были изолированы. Сквозняки, еще одна причина локального теплового дискомфорта, также были проблемой в старых зданиях, потому что они были совсем не герметичными.
———————————————— ————————————————– ———————————————————–
Для создания комфортного микроклимат без лучистой асимметрии и сквозняка, наши предки дополняли местное отопление местным утеплением
———————————- ————————————————– ————————————————– ———
Для создания комфортного микроклимата без лучистой асимметрии и сквозняков наши предки дополняли локальное отопление местным изоляция . Одним из примеров было кресло с капюшоном. Этот стул, который мог быть обит или покрыт кожаными или шерстяными одеялами, полностью подвергал людей лучистому источнику тепла, защищая их спину от сквозняков и низких температур поверхности позади них.
В то же время форма мебели обеспечивала эффективное использование большей доли лучистого тепла, выделяемого огнем: кресло нагревалось непосредственно огнем за счет излучения, и это тепло передавалось сидящему в нем человеку. это. Недавние исследования показали, что показатель теплоизоляции этих типов стульев составляет не менее 0,4 кло, что соответствует коэффициенту теплоизоляции тяжелого пуловера или пальто. Некоторые стулья с капюшонами могли вместить более одного человека.
Вверху: стулья с капюшоном девятнадцатого века. Источники: Period Oak Antiques (слева) и Polyvore (справа). Внизу: ширма для зимнего использования. Источник: Ален Труонг.
Дополнительным решением, которое можно было использовать отдельно, была складная ширма. Складные экраны, использовавшиеся в качестве зимней мебели, утепляли тканью или строили из тяжелых деревянных панелей. Например, их можно разместить за изолированным стулом или за столом. Как и кресло с капюшоном, ширма защищала спину человека от сквозняков и низких температур, создавая комфортный микроклимат.
Вверху: зона отдыха рядом с камином (Источник: The English Fireplace). Внизу: кровать с балдахином (Источник: Wikipedia Commons).
Третьим примером местной изоляции были специальные зоны отдыха рядом с камином. Это могут быть скамейки, расставленные между огнем и боковыми стенками камина, или ниша в стене со встроенным сиденьем. В обоих случаях человек прислонялся к стене, согретой огнем и защищенной от сквозняков. В некоторых случаях сам камин располагался в комнате-в-комнате. В спальне, которая часто оставалась неотапливаемой, для обеспечения микроклимата был создан еще один предмет мебели: кровать с балдахином, имеющая балдахин и плотные портьеры. Когда шторы были закрыты, сквозняки устранялись, а тепло тела удерживалось внутри.
Переносные системы отопления
Очевидным недостатком точечного отопления является то, что вы должны находиться в определенном месте, чтобы чувствовать себя комфортно. В прежние времена семья собиралась у камина или печи, когда не нужно было выполнять никакой физической работы или когда нужно было согреть тело после долгого пребывания на холоде. Другие места в комнате, а также неотапливаемые помещения лучше подходили для деятельности, требующей более высокого метаболизма. Люди «мигрировали» по комнате и дому в поисках климата, который лучше всего соответствовал их потребностям.
Familienszene in einem Interieur, картина Альберта Анкера, 1910
Однако использование источников лучистого тепла и местной изоляции также дополнялось переносными источниками тепла, которые передача тепла посредством излучения, конвекции и/или теплопроводности. Их можно было использовать для дальнейшего повышения теплового комфорта при наличии центрального источника тепла, а также для обогрева других мест. Портативные системы обогрева были разработаны специально для обогрева ног или рук: частей тела, наиболее чувствительных к холоду.
———————————————— ————————————————– ———————————————————–
Индивидуальные источники отопления разрешены людям наслаждаться теплом центрального камина в неотапливаемом помещении или даже вне дома
—————- ————————————————– ————————————————– ————
Примером может служить ножная печь, ящик с одной или несколькими перфорированными перегородками, в котором находилась металлическая или глиняная чаша или кастрюля, наполненная угольками из камина. Ноги клали на печку, и часто длинная одежда, которую носили в те дни, усиливала эффект небольшого нагревательного устройства: тепло направлялось через юбку или камерный халат вдоль ног к верхней части тела. Верх печи делали из дерева или камня, так как эти материалы обладают низкой теплопроводностью, чтобы избежать ожогов.
Слева: Голландская печка (Wikipedia Commons). Справа: «Молодая женщина, греющая руки», картина Цезаря ван Эвердингена.
Во многих культурах мира аналогичные источники тепла использовались для согревания рук. Их делали из металла или керамики и наполняли угольками из камина, углем или торфом. Эти личные источники отопления также позволяли людям наслаждаться теплом центрального камина или печи за пределами дома. Их везли в неотапливаемых вагонах и вагонах или на воскресную мессу. Бедняки пользовались раскаленными камнями или кирпичами или даже раскаленной картошкой, которую клали в карманы пальто.
Для обогрева кровати использовались латунные судны с длинной ручкой, которые засовывали под матрац. У некоторых кроватей была тележка-кровать: большая деревянная рама, предназначенная для размещения горшка с раскаленным топливом в центре кровати. В 19 веке, после появления общественного водоснабжения, использование керамических грелок стало обычным явлением — вода является гораздо более безопасным теплоносителем, чем тлеющий огонь. Эти устройства, которые часто были защищены тканевым покрытием, использовались в качестве грелок для ног, рук или грелок для сна.
Афган “Корси”. Источник неизвестен.
Некоторые народы подняли концепцию ножной печи на уровень выше. У японцев был свой «котацу» — передвижной низкий столик с угольной печью под ним. На стол клали толстую ткань или одеяло, чтобы удерживать тепло, и вся семья просунула ноги под стол, сев на пол. Как и в случае с европейскими и американскими печками для ног, современная одежда усиливала эффект устройства. Жар угольной горелки передавался через традиционное японское кимоно, согревая все тело. Подобные нагревательные устройства использовались в Афганистане (типа «корси»), а также в Иране, Испании и Португалии.
Кондуктивные системы отопления
Некоторые исторические системы лучистого отопления также передавали тепло за счет теплопроводности, что еще больше повышало эффективность и комфорт. Более 3000 лет назад китайцы и корейцы построили системы отопления, основанные на улавливании дымовых газов в тепловой массе. Северный китайский «кан» («кровать с подогревом») представлял собой приподнятую платформу из камня, кладки или самана, занимавшую примерно половину комнаты. Как видно из названия, кан был в первую очередь отапливаемой кроватью, но платформа также использовалась в течение дня как отапливаемое рабочее и жилое помещение. Типичный для Северо-Восточного Китая «дикан» («теплый пол») работал так же, как и кан, но имел большую площадь пола.
Вверху: китайский Кан, сфотографированный в 1920-х годах. Источник: Путешествие по Северному Китаю, Гарри А. Франк.
Корейцы использовали «ондол» («нагретый камень»), который представлял собой платформу от стены до стены. Подобная система отопления в Афганистане, «тавахане» («горячая комната»), возможно, является самой старой из этих систем: ее использование насчитывает 4000 лет. Во всех этих системах тепло от открытого огня отводилось под платформу к дымоходу на другой стороне комнаты. И камин, и дымоход могли находиться в комнате или в смежных комнатах. Тепло горячих дымовых газов передавалось тепловой массе платформы, которая медленно отдавала тепло в пространство. Теплопроводность была так же важна, как излучение и конвекция в общей передаче тепла.
Вверху: Blick in eine Schwarzwaldstube mit kleinem Mädchen auf der Ofenbank, картина Георга Заала, 1861 г. Внизу: Auf dem Ofen, картина by Albert Anker, 1895
Эти старинные восточные отопительные системы чем-то напоминают европейские изразцовые печи, появившиеся в средние века. Изразцовые печи (или «каменные обогреватели», как их называют в США) представляют собой дровяные печи с накоплением тепла, в которых используется большая тепловая масса для сжигания древесины при очень высоких температурах, что является более чистым и эффективным. Дымовые газы задерживаются в лабиринте дымовых каналов, передавая большую часть тепла кладочной конструкции, прежде чем выйти из дымохода.
Изразцовые печи производят большую долю лучистого тепла, но, кроме того, они обеспечивают передачу тепла за счет теплопроводности, так как многие изразцовые печи имеют встроенные платформы, на которых можно сидеть или спать. Даже если этих площадок не было, рядом с печкой ставили деревянные лавки, чтобы можно было опереться на теплую (но не слишком горячую) поверхность.
Почему нам также нужны современные технологии
В заключение, все исторические системы отопления использовали излучение и/или теплопроводность в качестве основных способов передачи тепла, в то время как конвекция была просто побочным продуктом. Имеет смысл вернуться к этой концепции отопления, но это не означает, что мы должны вернуться к использованию каминов и ношению тлеющих углей по дому. Хотя старая концепция отопления более энергоэффективна, этого нельзя сказать о большинстве старых отопительных приборов.
———————————————— ————————————————– ———————————————————–
В то время как старая концепция отопления является более энергоэффективным, чего нельзя сказать о большинстве старых отопительных приборов.
———————————————— ————————————————– ———————————————————–
Камины, на одного вещь, чрезвычайно неэффективны, потому что большая часть тепла уходит через дымоход. Они также всасывают большое количество холодного воздуха через трещины и щели в ограждающих конструкциях, что охлаждает воздух в помещении и создает сильные сквозняки. Из-за этого камины могут иметь даже отрицательную эффективность по температуре воздуха: они могут сделать комнату холоднее, а не теплее. Печи работают лучше, но они остаются относительно неэффективными и должны регулярно топиться, как камин. И для обоих вариантов загрязнение воздуха может быть значительным.
(Улучшенная) изразцовая печь — единственная древняя система отопления, которую все еще можно рекомендовать, но сейчас у нас гораздо больше вариантов, таких как электрические и водяные системы лучистого и кондуктивного отопления. Они эффективнее, практичнее и безопаснее, чем источники тепла прошлых лет. В следующих двух статьях мы исследуем, как можно улучшить старый способ обогрева с помощью современных технологий и сколько энергии можно сэкономить.
Крис Де Декер (вычитано Дженной Коллетт)
———————————————— ————————————————– ———————————————————–
Источники (в порядок важности):
- Stralingsverwarming: Gezonde Warmte с Minder Energie, Kris De Decker, 2015
- Согреться в прохладном доме. Создание комфорта с фоновым отоплением и локальным дополнительным теплом (PDF). Историческая Шотландия Технический документ 14, Майкл Хамфрис, Историческая Шотландия, 2011 г.
- Справочник по лучистому отоплению и охлаждению (Справочники Mcgraw-Hill), Ричард Уотсон, 2008 г.
- Тепловая среда человека: влияние жаркой, умеренной и холодной окружающей среды на здоровье, комфорт и производительность человека, третье издание», Кен Парсонс, 2014 г.
- Книга каменных печей: новое открытие старого способа обогрева, Дэвид Лайл, 1984 г.
- История систем лучистого отопления и охлаждения, часть первая. Роберт Бин, Бьярн В. Олесен, Кван Ву Ким, в “ASHRAE Journal”, январь 2010 г., стр. 40-47
- Адаптивный температурный комфорт: принципы и практика», Фергюс Никол, Майкл Хамфрис и Сьюзен Роаф, 2012 г.
- Dictionnaire de l’Ameublement et de la Décoration depuis le XIII век, Генри Хавард, 1887-1890.
- Грелки для ног: горячие угли, горячая вода. Главная Вещи Прошлое.
- Грелки для кровати. Старый и интересный.
- Грелки для муфт и другие антикварные грелки для рук. Главная Вещи Прошлое.
- Кёрпервармеспендер. Веб-сайт.
Статьи по теме
- Обогрейте свой дом ветряком с водяным тормозом
- Системы лучистого и кондуктивного отопления
- Как согреться в прохладном доме
- Фруктовые стены: городское хозяйство 1600-х годов
- Месть потолочного вентилятора
- Изоляция: сначала кузов, потом дом
- Солнечная оболочка: как обогревать и охлаждать города без ископаемого топлива
Читайте журнал Low-tech без доступа к компьютеру, источнику питания или Интернету. Печатные архивы теперь составляют четыре тома с общим объемом 2398 страниц и 709 изображений. Их можно заказать в нашем книжном магазине Лулу.
Продукты для защиты от образования лиг – контурный нагрев
Наряду с радиаторами и защитными кожухами Contour для защиты от образования лиг у нас есть широкий ассортимент других решений против образования лиг, предназначенных для использования в психиатрической практике и в сложных условиях.
Окружающая среда такого рода представляет собой ряд рисков самоубийства и членовредительства, что побудило нас разработать нашу линейку средств защиты от перевязывания.
Изделие, препятствующее слипанию, снижает риск того, что кто-то обвяжет предмет мебели материалом и причинит вред себе или кому-либо еще. Компания Contour, особенно полезная в условиях психического здоровья, усердно работала над разработкой безопасных решений для тех, кто подвергается наибольшему риску.
Мы разработали все эти продукты, заботясь о безопасности и благополучии их пользователей, и в то же время предлагаем множество вариантов индивидуальной подгонки и цвета, соответствующих вашим индивидуальным потребностям.
Профессиональное и обширное предложение услуг доступно для поддержки вашего проекта радиатора против лигирования, включая технические консультации и осмотры на месте, короткие сроки, специальные отделы доставки и технические отделы, индивидуальный дизайн и аккредитованную общенациональную сеть установщиков защиты радиатора.
- Доступные модели
- Тематические исследования
- Брошюра
- Связаться с нами
Доступные продукты для защиты от образования лиг
Выключатель освещения для защиты от образования завязей
Вентиляционная решетка против завязывания
Термостат против завязывания
Антилигатурный TV блок
Основные характеристики
Контурная работа в секторе охраны психического здоровья в Великобритании для снижения риска связывания для уязвимых пользователей услуг. Будь то психиатрическая палата, учреждение строгого режима или центр эмоционального благополучия, Contour предлагает антилигатурные нагревательные изделия, которые одновременно обеспечивают безопасность и тепло. Преимущества
“>”>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquamererat volutpat. Ut wisi enim ad mini. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad mini.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquamererat volutpat. Ut wisi enim ad mini.
“>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquamererat volutpat. Ut wisi enim ad mini. неумный нибх euismod tincidunt ut laoreet dolore magna aliquam erat volutpat Ut wisi enim ad mini
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquamererat volutpat. Ut wisi enim ad mini.
“>”>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquamererat volutpat. Ut wisi enim ad mini. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad mini.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquamererat volutpat. Ut wisi enim ad mini.
Экономическое обоснование выбора Anti-Ligature
Contour позволил NHS потенциально сэкономить более 35 миллионов фунтов стерлингов с 2006 г.* . Исходя из этого, вот пример расчета стоимости для больницы со 150 радиаторами, которые требуют полной еженедельной очистки.
Загрузите документ с нашим бизнес-кейсом
Традиционный LST
2 человека работа с персоналом поместья.
По консервативным оценкам, потребуется не менее 30 минут, чтобы снять 1 корпус LST, очистить корпус изнутри, очистить радиатор, очистить стену, очистить пол и установить на место корпус (стену и заднюю часть радиатора чистить нельзя). Исключает замену силиконового герметика вокруг блока.
7 часов рабочего дня = 14 очисток радиаторов LST в день на бригаду.
Более 10 дней требуется 2 человекам для очистки 150 радиаторов в доме.
Для еженедельной очистки этих радиаторов потребуются 2 бригады по два человека, каждая из которых работает не менее 5 дней в неделю, чтобы выполнить 1 цикл очистки.
Годовой бюджет в размере не менее 63 481,60 фунтов стерлингов из расчета прожиточного минимума (8,72 фунтов стерлингов в час на 19.05.21) потребуется для еженедельной очистки всех 150 радиаторов.
DeepClean LST
1 специалист по очистке теперь может открыть корпус LST в одиночку.
5 минут на очистку всех внутренних поверхностей кожухов и радиатора, включая заднюю часть радиатора и всю поверхность стены.