Отопление с естественной циркуляцией: Система отопления с естественной циркуляцией

Содержание

Система отопления с естественной циркуляцией: принцип работы

Система отопления с естественной циркуляцией теплоносителя (гравитационная система отопления) не имеет в своей конструкции циркуляционных насосов, а циркуляция теплоносителя осуществляется путем использования природных физических законов. Ее большим плюсом есть то, что она является весьма долговечной и не требует для своего функционирования наличия дополнительных источников энергии и дорогостоящего оборудования. При правильном проектировании и качественно выполненном монтаже гравитационная система отопления может работать без капитального ремонта не менее 35-40 лет. Она характеризуется небольшой протяженностью трубопроводов (ограничен радиус действия по горизонтали до 30 м), низкие гидравлические напоры и потери давления.

Система отопления с естественной циркуляцией теплоносителя (гравитационная система отопления) была изобретена и запатентована в 1832 г. русским инженером-металлургом, членом-корреспондентом Российской академии наук П. Г. Соболевским.

Принципиальная схема гравитационной системы отопления состоит из теплогенератора (отопительного котла), подающего и обратного магистральных трубопроводов, расширительного бака, и отопительных приборов (радиаторов).

Нагретый в теплогенераторе теплоноситель поступает по подающему и горизонтальным трубопроводам в нагревательные приборы (радиаторы), где происходит отдача им части своего тепла, в свою очередь элементы радиатора передают тепло в помещение. Затем по обратке (обратному трубопроводу) теплоноситель возвращается в теплогенератор, где снова подогревается до требуемой температуры, и далее цикл повторяется.

Естественная циркуляция теплоносителя (воды) по замкнутой системе трубопроводов обусловлена изменением веса и плотности жидкости, при повышении и понижении температуры. При нагреве теплоносителя в теплогенераторе снижается его масса и плотность в подающем трубопроводе. В тоже время в обратном трубопроводе находится уже отдавший свое тепло более холодный теплоноситель, имеющий большую массу и плотность. В системе возникает давление под действием сил гравитации – горячий теплоноситель поднимается вверх по подающей магистрали и растекается по горизонтальным трубопроводам самотеком, замещая холодный теплоноситель, который также самотеком поступает обратно в теплогенератор (котел). Расширительный бак принимает в себя теплоноситель, объём которого увеличивается с повышением температуры, создаёт и поддерживает постоянное давление.

Гравитационное давление вызывает движение теплоносителя, однако оно также расходуется на преодоление сопротивлений в трубах. Сопротивления вызываются в основном трением теплоносителя о стенки труб, а всевозможные разветвления, угловые повороты, присутствующие в системе являются дополнительными источниками сопротивлений. При проектировании отопления одной из главных задач является свести к минимуму сопротивления в трубопроводе. Для снижения сопротивления применяются трубы с большим сечением, также немалое значение имеет материал из которого изготовлены трубы.

Важным условием, обеспечивающим естественную циркуляцию теплоносителя, является наличие уклона в горизонтальных магистралях трубопроводов в сторону движения воды – уклон от подающего стояка к радиаторам, и уклон обратной магистрали от радиаторов к отопительному котлу. Если уклон будет выполнен в другую сторону, от система работать не будет.

Уклон трубопровода должен составлять как минимум 0,005 м на 1 метр погонный трубы.

Помимо обеспечения циркуляции теплоносителя уклон в трубах позволяет эффективно бороться с «завоздушиванием» системы. Пузырьки воздуха, образующиеся в процессе нагрева теплоносителя в системе, устремляется вверх по трубам и поступают в расширительный бак, а затем, соответственно, удаляются в атмосферу.

Проектируя систему отопления, необходимое гравитационное давление (циркуляционный напор) следует обязательно просчитывать по специальной формуле. Оно зависит от разности высот расположения котла и самого нижнего радиатора – чем больше эта разница (h), тем больше давление. Увеличению циркуляционного напора способствует также увеличение угла наклона подающей магистрали трубопровода, направленной в сторону радиаторов, и уклон обратной магистрали, направленной к теплогенератору (котлу).
Уклон трубопровода должен составлять, как минимум 0,005 м на 1 метр погонный трубы.

Такая схема позволяет теплоносителю легче преодолеть местные сопротивления в трубах. Возникающий циркуляционный напор также напрямую зависит от высоты установки радиаторов. Выполняя проектирование и последующий монтаж системы отопления с естественной циркуляцией, котёл размещают в самой нижней точке так, чтобы все теплообменники (радиаторы) находились выше него.

Трубопроводы систем отопления по виду монтажа подразделяются на одно- и двухтрубные. (Не следует путать понятия «двухпоточная», «однотрубная», «двухтрубная»: первое характеризует направление потоков теплоносителя, «цикличность» их в системе, а два последних – только способы соединения трубопроводов с отопительными приборами при соблюдении цикличности).

Что собой представляет отопление с естественной циркуляцией

Содержание статьи:
Как работает отопление с естественной циркуляцией теплоносителя
Преимущества и недостатки системы с естественной циркуляцией теплоносителя
Тонкости и нюансы естественной системы отопления

Несмотря на современные достижения в области отопительной техники, водяное отопление с естественной циркуляцией теплоносителя упорно не желает сдавать свои позиции и в некоторых регионах довольно успешно конкурирует с нынешними принудительными системами. Это обусловлено тем, что такое отопление отлично справляется с обогревом помещения без помощи электричества. Кроме того, для своей работы отопление с естественной циркуляцией может использовать практически любой энергоноситель. Именно эту систему, ее особенности, монтаж и тонкости эксплуатации мы и рассмотрим вместе с сайтом stroisovety.org в этой статье.

Отопление с естественной циркуляцией фото

Как работает отопление с естественной циркуляцией теплоносителя

Работа такой системы отопления основана на элементарных законах физики: при нагревании плотность жидкости изменяется (она становится меньше) и ее потоки поднимаются вверх. Менее холодная жидкость соответственно устремляется вниз – получается так, что холодная вода выталкивает нагретую. Именно на этих свойствах жидких веществ и основан принцип естественной циркуляции – помещенная в замкнутый контур и подогреваемая в одном месте вода создает непрерывно движущийся поток в направлении к горячему источнику.

Система отопления с естественной циркуляцией теплоносителя является достаточно капризной штукой – для ее правильной работы в процессе монтажа необходимо соблюдать массу требований, которые призваны улучшить циркуляцию жидкости и заставить такую систему отопления быстрее прогреваться. Вообще долгое прогревание этой системы многие относят к ее недостаткам, но этот мнимый отрицательный момент можно с легкостью отнести и к преимуществам. Ровно настолько, насколько долго естественное отопление прогревается, оно и остывает. В отличие от него, современные принудительные системы отопления охлаждаются в несколько раз быстрее.

Система отопления с естественной циркуляцией

Преимущества и недостатки системы с естественной циркуляцией теплоносителя

В принципе, подходя к вопросу выявления отрицательных моментов этой системы отопления, следует понимать, что они являются несущественными и выражаются исключительно в некоторых неудобствах эксплуатации. По большому счету, на работу отопления они практически не влияют. К этим недостаткам можно отнести следующее:

  1. Во-первых, масса нюансов при сборке. Не владея ими, собрать полноценную и качественно работающую систему естественного отопления не получится.
  2. Во-вторых, необходимость постоянного контроля жидкости – водяное отопление с естественной циркуляцией не является закрытой системой, и вода быстро испаряется.
  3. В-третьих, сравнительно небольшой радиус действия. Такую систему невозможно собрать в большом доме – она хорошо работает только в помещениях, габариты которых не превышают 25-30м и высотой до 7м. Следует понимать, что чем больше и разветвленнее данная отопительная система, тем больше ей необходимо времени и энергии для прогрева.
  4. В-четвертых, эстетический вид. Как правило, все трубопроводы располагаются в видимой зоне – подача горячего теплоносителя размещается под потолком, а обратка над полом. Такое положение дел не позволяет вести разговор о какой-либо эстетике помещения. Можно, конечно, разместить подачу отопления на чердаке, но тогда ее придется качественно утеплять. Да и от стояков в данном случае избавиться не получится.

Схема отопления с естественной циркуляцией

Тонкости и нюансы естественной системы отопления

Существует несколько схем отопления с естественной циркуляцией – верхняя и нижняя разводка. И в том и другом случае принцип прокладки магистральных трубопроводов не меняется. Но начнем по порядку – самым главным звеном любой отопительной системы является котел, а что касается данной системы, так это его местоположение. В соответствии все с теми же законами физики, естественное отопление работает лучше, когда котел находится в самой нижней точке. Его следует расположить в подвале, а если такового нет, то в специально оборудованном приямке. Для чего это нужно? Чтобы обеспечить легкий сток воды с обратных трубопроводов, которые располагаются под уклоном на всем протяжении от батарей до котла.

Куда поставить котел при отоплении с естественной циркуляцией

Об уклонах следует поговорить более подробно – без них не обойтись, поскольку они обеспечивают вывод воздуха из труб и облегчают ток жидкости в системе. Как правило, этот уклон варьируется в пределах от 7 до 100мм на каждый погонный метр трубы. Следует понимать, что независимо от их назначения, под уклоном должны располагаться все горизонтальные трубопроводы (лежаки). Подача имеет уклон, направленный в сторону от котла, а обратка, соответственно, к котлу. Таким способом обеспечивается не только легкая и быстрая подача теплоносителя к батареям, но и отток от них охлажденной жидкости.

Как сделать отопление дома с естественной циркуляцией

Немаловажным моментом в системе отопления дома с естественной циркуляцией является так называемый главный стояк – это вертикальная труба, непосредственно связанная с котлом. Она служит для разгона нагретой жидкости – по ней теплоноситель поднимается на максимально возможную высоту, после чего по наклонным трубам устремляется к отопительным приборам.

Здесь есть несколько нюансов – во-первых, это диаметр главного стояка, а во-вторых, расширительный бак, который, как правило, располагается в самом верху этого стояка. По сути, расширительный бак располагается в самой верхней точке отопления, служит для вывода воздуха из системы и обеспечивает хранение расширившейся при нагревании жидкости. Что касается диаметра главного стояка, то он не должен быть меньше, чем имеющийся на котле патрубок выхода нагретого теплоносителя. Больше можно, но это не означает, что отопление с естественной циркуляцией будет работать лучше – здесь все зависит от мощности котельного оборудования.

Монтаж водяного отопления с естественной циркуляцией

Раз уж пошел разговор о диаметрах труб, то следует рассказать и о принципе построения всей системы. Чтобы улучшить ток воды и обеспечить равномерное распределение теплоносителя, монтаж естественной системы отопления выполняется трубами разного диаметра. Здесь принцип такой – чем дальше от котла находится отопительный прибор, тем меньшего диаметра трубы используются для подачи к нему воды.

Чтобы было понятно, приведу пример. Допустим, в доме имеется 10 батарей. К первым двум подача теплоносителя осуществляется по магистралям диаметром 2″, к двум следующим вода подводится по трубам 1,5″ к следующей паре ток осуществляется по 1,1/4″, потом по дюймовой трубе, далее по трехчетвертной и в конце используется полудюймовая труба. Точно такая же схема используется и при прокладке обратного трубопровода. Если подходить к этому вопросу более серьезно, то необходимо выполнять комплексный расчет естественной циркуляции отопления. А здесь без знаний, которыми обладают инженера, не обойтись.

Водяное отопление с естественной циркуляцией

Следующей немаловажной особенностью системы отопления с естественной циркуляцией является правильная установка батарей. На данном этапе уклоны также никто не отменял. Имеется два варианта установки отопительных приборов. В первом случае они оснащаются кранами Маевского для сброса воздуха и монтируются так, чтобы эти краны располагались в верхней точке батареи. Во втором случае верхней точкой является сторона, к которой подсоединяется патрубок подачи теплоносителя – при такой постановке вопроса воздух будет выгоняться в расширительный бак через подающие трубопроводы.

В общем, из выше написанного можно сделать только один правильный вывод – отопление с естественной циркуляцией является достаточно сложной системой, монтаж которой невозможен без знания всех этих тонкостей и нюансов. Если уж вы решились на установку такой системы, то лучше обратиться к специалистам.

Автор статьи Дмитрий Ворохов

Естественная циркуляция | Инженерная библиотека

На этой странице представлена ​​глава о естественной циркуляции из «Справочника по основам DOE: термодинамика, теплопередача и поток жидкости», DOE-HDBK-1012/3-92, Министерство энергетики США, июнь 1992 г.

Другие связанные главы из «Справочника по основам Министерства энергетики: термодинамика, теплопередача и поток жидкости» можно увидеть справа.

Естественная циркуляция — это циркуляция жидкости в трубопроводных системах или открытых бассейнах, возникающая из-за изменений плотности, вызванных разницей температур. Естественная циркуляция не требует каких-либо механических устройств для поддержания потока.

Принудительная и естественная циркуляция

В предыдущих главах, посвященных потоку жидкости, объяснялось, что всякий раз, когда жидкость течет, возникает некоторое трение, связанное с движением, которое вызывает потерю напора. Было указано, что эта потеря напора обычно компенсируется в трубопроводных системах насосами, которые работают с жидкостью, компенсируя потерю напора из-за трения. Циркуляция жидкости в системах с помощью насосов обозначается как принудительная циркуляция .

Некоторые жидкостные системы можно спроектировать таким образом, чтобы не требовалось наличие насосов для обеспечения циркуляции. Напор, необходимый для компенсации потерь напора, создается градиентами плотности и изменениями высоты. Поток, возникающий в этих условиях, называется

естественная циркуляция .

Термоголовка

Тепловая приводная головка – это сила, вызывающая естественную циркуляцию. Это вызвано разницей в плотности между двумя телами или областями жидкости.

Рассмотрим два равных объема жидкости одного и того же типа. Если два объема имеют разную температуру, то объем с более высокой температурой также будет иметь меньшую плотность и, следовательно, меньшую массу. Поскольку объем при более высокой температуре будет иметь меньшую массу, на него также будет действовать меньшая сила тяжести. Эта разница в силе тяжести, действующей на жидкость, приводит к тому, что более горячая жидкость поднимается, а более холодная опускается.

Этот эффект наблюдается во многих местах. Одним из примеров этого является воздушный шар. Сила, заставляющая воздушный шар подниматься, является результатом разницы в плотности между горячим воздухом внутри воздушного шара и более холодным воздухом, окружающим его.

Тепло, добавленное к воздуху в воздушном шаре, добавляет энергию молекулам воздуха. Движение молекул воздуха увеличивается, и молекулы воздуха занимают больше места. Молекулы воздуха внутри воздушного шара занимают больше места, чем такое же количество молекул воздуха снаружи воздушного шара. Это означает, что горячий воздух менее плотный и легче, чем окружающий воздух. Поскольку воздух в воздушном шаре менее плотный, гравитация оказывает на него меньшее влияние. В результате воздушный шар весит меньше окружающего воздуха. Гравитация втягивает более холодный воздух вниз в пространство, занимаемое воздушным шаром. Нисходящее движение более холодного воздуха выталкивает воздушный шар из ранее занятого пространства, и воздушный шар поднимается.

Условия, необходимые для естественной циркуляции

Естественная циркуляция будет происходить только при наличии правильных условий. Даже после того, как естественная циркуляция началась, устранение любого из этих условий приведет к остановке естественной циркуляции. Условия естественной циркуляции следующие.

  1. Существует разница температур (существуют источник тепла и радиатор).
  2. Источник тепла находится на более низкой высоте, чем радиатор.
  3. Жидкости должны соприкасаться друг с другом.

Должно быть два тела жидкости с разными температурами. Это также может быть одно тело жидкости с участками разной температуры. Разница в температуре необходима, чтобы вызвать разницу в плотности жидкости. Разница в плотности является движущей силой естественного циркуляционного потока.

Для продолжения естественной циркуляции необходимо поддерживать разницу температур. Добавление тепла от источника тепла должно иметь место в области высоких температур. В области низких температур должен существовать непрерывный отвод тепла радиатором. В противном случае температуры со временем выровнялись бы, и дальнейшей циркуляции не произошло бы.

Источник тепла должен находиться на более низкой высоте, чем радиатор. Как показано на примере воздушного шара, более теплая жидкость менее плотная и будет стремиться вверх, а более холодная жидкость более плотная и будет стремиться опуститься. Чтобы воспользоваться преимуществами естественного движения теплых и холодных жидкостей, источник тепла и радиатор должны находиться на соответствующей высоте.

Две области должны находиться в контакте, чтобы поток между областями был возможен. Если путь потока затруднен или заблокирован, то естественная циркуляция невозможна.

Пример охлаждения с естественной циркуляцией

Естественная циркуляция часто является основным средством охлаждения реакторов бассейнового типа и облученных тепловыделяющих сборок, хранящихся в бассейнах с водой после извлечения из реактора. Источником тепла является ТВС. Радиатор – это основная часть воды в бассейне.

Вода в нижней части топливной сборки поглощает энергию, вырабатываемую сборкой. Температура воды увеличивается, а плотность уменьшается. Гравитация втягивает более холодную (более плотную) воду в нижнюю часть сборки, вытесняя более теплую воду. Более теплая (более легкая) вода вынуждена уступить свое место более холодной (более тяжелой) воде. Более теплая (более легкая) вода поднимается выше в узле. По мере того, как вода проходит по всей длине сборки, она поглощает больше энергии. Вода становится все легче и легче, постоянно вытесняемая вверх более плотной водой, движущейся под ней. В свою очередь, более холодная вода поглощает энергию сборки и также вынуждена подниматься по мере продолжения естественного циркуляционного потока.

Вода, выходящая из верхней части топливной сборки, отдает свою энергию, смешиваясь с основной массой воды в бассейне. Основная часть воды в бассейне обычно охлаждается за счет циркуляции через теплообменники в отдельном процессе.

Расход и разница температур

Тепловой напор, который вызывает естественную циркуляцию, возникает из-за изменения плотности, вызванного разницей температур. Как правило, чем больше разница температур между горячей и холодной областями жидкости, тем больше тепловой напор и результирующая скорость потока. Однако рекомендуется держать горячую жидкость переохлажденной, чтобы предотвратить изменение фазы. В двухфазном потоке возможна естественная циркуляция, но поддерживать поток обычно сложнее.

Для индикации или проверки наличия естественной циркуляции можно использовать различные параметры. Это зависит от типа растения. Например, для реактора с водой под давлением (PWR) выбранные параметры системы теплоносителя реактора (RCS), которые будут использоваться, следующие.

  1. RCS ΔT (T Горячий − T Холодный ) должен составлять 25-80% от значения полной мощности и либо быть постоянным, либо медленно уменьшаться. Это указывает на то, что остаточное тепло отводится из системы с достаточной скоростью для поддержания или снижения температуры ядра.
  2. Температуры горячих и холодных участков RCS должны быть постоянными или медленно снижаться. Опять же, это указывает на то, что тепло отводится, и нагрузка остаточного тепла снижается, как и ожидалось.
  3. Давление пара в парогенераторе (давление на вторичной стороне) должно соответствовать температуре RCS. Это подтверждает, что парогенератор отводит тепло от хладагента RCS.

Если естественная циркуляция для PWR осуществляется или неизбежна, можно выполнить несколько действий, чтобы обеспечить или улучшить возможности охлаждения активной зоны. Во-первых, уровень компенсатора давления может поддерживаться выше 50%. Во-вторых, поддерживайте переохлаждение RCS на 15°F или выше.

Оба этих действия помогут предотвратить образование паровых/паровых карманов в СТР, где они будут ограничивать поток СТР. В-третьих, поддерживайте уровень воды в парогенераторе на уровне ≥ нормального диапазона. Это обеспечивает адекватный теплоотвод для обеспечения достаточного отвода тепла для предотвращения закипания RCS.



Естественная циркуляция | Определение и условия

Естественная циркуляция – это циркуляция жидкости в трубопроводных системах или открытых бассейнах из-за изменений плотности , вызванных разницей температур. Естественная циркуляция не требует никаких механических устройств для поддержания потока.

Это явление имеет сходную природу с естественной конвекцией , но коэффициент теплопередачи не является объектом исследования. В этом случае объемный поток через контур является объектом исследования. Это явление является скорее гидравлической проблемой , чем проблемой теплопередачи. Однако в результате естественная циркуляция отводит тепло от источника и переносит его к теплоотводу и имеет первостепенное значение для безопасности реактора. Естественная циркуляция в замкнутом контуре

Что такое естественная конвекция

Естественная конвекция , также известная как свободная конвекция. из-за перепадов температур, а не из-за какого-либо внешнего источника (например, насоса, вентилятора, всасывающего устройства и т. д.).

При естественной конвекции жидкость, окружающая источник тепла, получает тепло, становится менее плотной и поднимается на тепловое расширение . Тепловое расширение жидкости играет решающую роль. Другими словами, более тяжелые (более плотные) компоненты будут падать, а более легкие (менее плотные) компоненты будут подниматься, что приведет к движению объемной жидкости. Естественная конвекция может происходить только в гравитационном поле или при наличии другого собственного ускорения , такого как:

  • ускорение
  • центробежная сила
  • 9003 5 Сила Кориолиса

Естественная конвекция практически не работает на орбите Земли. Например, на орбитальной Международной космической станции требуются другие механизмы теплопередачи для предотвращения перегрева электронных компонентов.

Условия, необходимые для естественной циркуляции

Аналогично, как и для естественной конвекции , естественная циркуляция по существу не действует на орбите Земли, а естественная циркуляция возникает по замкнутому контуру только при определенных условиях. Даже после того, как естественная циркуляция началась, устранение любого из этих условий вызовет естественная циркуляция до остановки . Условия естественной циркуляции следующие:

  • Наличие собственного ускорения. Естественная циркуляция может происходить только в гравитационном поле или при наличии другого собственного ускорения, например ускорения центробежной силы.
  • Наличие источника тепла и радиатора . Источник тепла и теплоотвод необходимы, поскольку естественная циркуляция создается разницей плотности жидкости, возникающей из-за разницы температур. Жидкость, попадая в источник тепла, получает тепло, становится менее плотной и поднимается за счет теплового расширения. Тепловое расширение жидкости играет решающую роль. Процесс в тепловом узле противоположный, тепловому узлу передается тепло, а жидкость уплотняется. Разница в плотности является движущей силой естественного циркуляционного потока. Для продолжения естественной циркуляции необходимо поддерживать разницу температур. Добавление тепла от источника тепла должно иметь место в высокотемпературной области. В низкотемпературной области должен существовать непрерывный отвод тепла радиатором. В противном случае температуры со временем выровнялись бы, и дальнейшей циркуляции не произошло бы.
  • Правильная геометрия . Наличие и величина естественной циркуляции также зависят от геометрии задачи. Наличие градиента плотности жидкости в гравитационном поле не обеспечивает существования естественных конвекционных течений. Естественная циркуляция в замкнутом контуре, заполненном жидкостью, создается путем размещения радиатора в контуре на высоте выше источника тепла. Циркулирующая жидкость отбирает тепло от источника и переносит его к стоку. Поток может быть однофазным или двухфазным, при котором пар течет вместе с жидкостью. Для продолжения естественной циркуляции необходимо поддерживать разницу температур. Добавление тепла от источника тепла должно иметь место в высокотемпературной области. В низкотемпературной области должен существовать непрерывный отвод тепла радиатором. В противном случае температуры со временем выровнялись бы, и дальнейшей циркуляции не произошло бы. В двухфазном потоке возможна естественная циркуляция, но поддерживать поток обычно сложнее.
  • Контактирующие жидкости . Две области должны быть в контакте, чтобы сделать возможным поток между областями. Если путь потока затруднен или заблокирован, естественная циркуляция невозможна.

Естественная циркуляция – расход

Расход естественной циркуляции в контуре в установившихся условиях определяется из баланса между движущей и силами сопротивления . Движущая сила возникает из-за разницы в плотности между горячим и холодным ответвлениями контура. Напор, необходимый для компенсации потерь напора, создается градиентами плотности и изменениями высоты.

Тепловая приводная головка

Тепловая приводная головка представляет собой силу, вызывающую естественную циркуляцию . Это вызвано разницей в плотности между двумя телами или областями жидкости. Рассмотрим два равных объема жидкости одного и того же типа. Если два объема имеют разную температуру, то объем с более высокой температурой также будет иметь меньшую плотность и, следовательно, меньшую массу. Известно, что плотность газов и жидкостей зависит от температуры, в общем случае уменьшаясь (из-за расширения жидкости) с повышением температуры. Поскольку объем при более высокой температуре будет иметь меньшую массу, на него также будет действовать меньшая сила тяжести. Эта разница в силе тяжести, действующей на жидкость, приводит к тому, что более горячая жидкость поднимается, а более холодная опускается. Термальный  приводной напор можно просто рассчитать, используя разность гидростатических давлений:

Как видно, чем больше разница температур между горячими и холодными участками жидкости, тем больше тепловой приводной напор и результирующий расход ставка.

Плотность воды как функция температуры

Плотность воды как функция температуры

Сила гидравлического сопротивления

Как было написано, расход естественной циркуляции , V, в петле, в установившемся режиме определяется из баланса между движущим напором и силами сопротивления. Подобно трению в трубе, общие потери давления пропорциональны квадрату расхода и, следовательно, их можно легко интегрировать в уравнение Дарси-Вейсбаха . Инженеры часто используют коэффициент потери давления , PLC . Отмечается K или ξ (произносится «xi»). Этот коэффициент характеризует потерю давления конкретной гидросистемы или части гидросистемы. Его можно легко измерить в гидравлических контурах. Коэффициент потери давления может быть определен или измерен как для прямых труб, так и для локальные (незначительные) потери . Поскольку коэффициент трения Дарси является функцией скорости (в числе Рейнольдса), то расчет коэффициента потери давления представляет собой итеративный процесс.

Естественная циркуляция в реакторостроении

Естественная циркуляция в замкнутом контуре

В реакторостроении естественная циркуляция является очень желательным явлением, поскольку она может обеспечить охлаждение активной зоны реактора после потери ГЦН (например, после потеря внешнего питания – LOOP). В PWR конструкция установки обеспечивает перепад высот , h , примерно 12 метров между осевой линией парогенератора и осевой линией активной зоны реактора. Компоновка системы должна обеспечивать возможность естественной циркуляции после потери потока, чтобы обеспечить охлаждение без перегрева активной зоны. Кроме того, соединительный трубопровод от корпуса реактора до парогенераторов должен быть неповрежденным, свободным от препятствий, таких как неконденсирующиеся газы (например, паровые карманы). Таким образом, естественная циркуляция гарантирует, что жидкость будет продолжать течь до тех пор, пока температура реактора выше температуры радиатора, даже если питание насосов не подается.

RCP обычно не являются «системами безопасности», как они определены. После потери ГЦН (например, после отключения внешнего электроснабжения – LOOP) реактор должен быть немедленно остановлен, так как ГЦН медленно снижаются до нулевого расхода. Достаточный и безопасный отвод остаточного тепла затем обеспечивается естественной циркуляцией потока через реактор. При отсутствии принудительного течения теплоноситель в активной зоне начинает нагреваться. Повышение температуры теплоносителя вызывает уменьшение плотности теплоносителя, что приводит к перемещению теплоносителя в парогенератор. Следует отметить, что естественной циркуляции недостаточно для отвода тепла, выделяющегося при работе реактора на мощности.

В современных конструкциях реакторов используется естественная циркуляция, очень важная функция безопасности . Многие пассивные системы безопасности в современных конструкциях реакторов работают без использования каких-либо насосов, что обеспечивает повышенную безопасность, целостность и надежность конструкции при одновременном снижении общей стоимости реактора.

Индикаторы естественной циркуляции

В PWR можно использовать различные параметры для индикации или проверки наличия естественной циркуляции. Это зависит от типа установки и систем установки. Например, для PWR можно использовать следующие выбранные параметры:

  • В идеале расход можно измерить в каждом из контуров.
  • ΔT ( T Горячий – T Холодный ). Разница температур между горячими и холодными ветвями должна составлять 25-80% от значения полной мощности и либо быть постоянной, либо медленно снижаться. Это указывает на то, что остаточное тепло отводится из системы с достаточной скоростью для поддержания или снижения температуры ядра.
  • Температура горячих и холодных ног должна быть постоянной или медленно снижаться. Опять же, это указывает на то, что тепло отводится, и нагрузка остаточного тепла снижается, как и ожидалось.
  • Давление пара в парогенераторе (давление на вторичной стороне) должно соответствовать температуре системы теплоносителя реактора, и это подтверждает, что парогенератор отводит тепло от теплоносителя СТР.

Специальный номер: Естественная циркуляция в атомных электростанциях с водяным охлаждением, IAEA-TECDOC-1474. МАГАТЭ, 2005 г. ISBN 92–0–110605–X.

 

Ссылки:

Теплопередача:

  1. Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
  2. Тепломассообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
  3. Министерство энергетики, термодинамики, теплопередачи и течения жидкости. Справочник по основам Министерства энергетики США, том 2 из 3, май 2016 г.

Ядерная и реакторная физика:

  1. Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Аддисон-Уэсли, Рединг, Массачусетс (1 983).
  2. Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. WM Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *