Параллельное подключение батарей отопления: Схемы подключения радиаторов отопления: правильный выбор гарантия комфорта

Содержание

диагональное, последовательное, прямое, боковое, видео и фото

Наверное, сразу следует обратить внимание на то, что прямое подключение радиатора отопления подразумевает три основных варианта – боковой, нижний и диагональный, но при этом возможны некоторые нюансы. Кроме того, есть варианты для контуров, которые могут быть однотрубными или двухтрубными, ещё это зависит от количества этажей в здании, а также может рассматриваться с точки зрения дизайна. Но подробнее обо всём этом мы поговорим в материале, расположенном ниже, а также продемонстрируем вам по теме видео в этой статье.

Боковое подключение радиаторов отопления в однотрубной системе

Способы разного подключения

Разновидность контуров

Примечание. Контур системы отопления может быть либо однотрубным, либо двухтрубным.
От этого зависит эффективность теплоотдачи приборов, а также способы их подключения.

Диагональное подключение радиатора отопления в однотрубной системе

  1. Однотрубная система отопления подразумевает собой закольцованный контур из одной трубы, в которую врезаются радиаторы отопления – пример такого монтажа показан на верхнем изображении:
    • здесь теплоноситель, двигаясь от котла, по пути, через трубы меньшего диаметра, расходится по батареям и под давлением циркуляционного насоса возвращается назад в ту же трубу;
    • но пройдя через отопительный прибор, вода теряет температуру, следовательно, чем больше радиаторов в такой системе, тем холоднее вода будет в её конце;
    • в автономных системах не рекомендуется устанавливать более 3-4 радиаторов на одну закольцованную трубу, чтобы была возможность сохранить примерно одинаковую температуру в каждом из них;

Байпас в однотрубной системе

  1. В однотрубной системе, особенно в многоэтажных домах, удобнее подключать приборы сбоку, но как подключить радиатор отопления с боковым подключением, чтобы максимально сохранить температуру в последующих батареях?
    Для этого между трубами подачи и возврата врезается перемычка, называемая «байпас» и она служит двум целям:
    • во-первых, часть воды проходит по трубе, не попадая в батарею, следовательно, она не охлаждается;
    • во-вторых, благодаря байпасу можно произвести демонтаж без слива теплоносителя, если даже контур напрямую, без обвода, проходит через радиатор;

Принцип двухтрубного контура

  1. Более удобным можно назвать двухтрубный контур – здесь теплоноситель попадает в радиатор из трубы подачи, а охлаждённая вода сбрасывается в трубу возврата и возвращается в котёл для нового подогрева:
    • Но цена эксплуатации такого обустройства несколько выше, так как приходится подогревать большее количество воды, следовательно, нужно потратить больше энергоносителей, которые нужно оплачивать;
    • Зато такой контур никогда не вызывает проблем и в него можно врезать большое количество радиаторов, так как есть возможность сохранить во всех равномерную температуру;

Совместное подключение

  1. Кроме того, для двухтрубной системы инструкция предусматривает совместное подключение радиаторного контура с тёплым полом, но это два разных устройства, требующих циркуляции теплоносителя при разной температуре.
    • Но, несмотря на такое кажущееся разногласие, такое подключение имеет место – на входе в трубу тёплого пола устанавливается трёхходовой кран, работающий по дискретной системе, и когда контур нагревается до нужного состояния, срабатывает клапан и горячая вода с подачи сбрасывается в «обратку»;
    • Принцип такого подключения хорошо показан на схематическом изображении выше этого абзаца.

Последовательно и параллельно

Последовательное подключение

Помимо всего прочего, подключение может быть последовательным и параллельным, так, последовательное подключение радиаторов отопления показано на верхнем изображении.

Такая ситуация возникает также в том случае, когда перекрывают байпас и вода из одного радиатора сразу попадает в другой, минуя подачу и обратку. Но совсем не обязательно, чтобы циркуляция была по диагонали прибора – так, это может быть нижнее боковое подключение («ленинградка») или одностороннее боковое подключение, суть в том, что теплоноситель сразу попадает из батареи в батарею.

Параллельное подключение

Когда подключение радиаторов отопления параллельное, то они не зависят друг от друга, следовательно, температура воды в них будет равномерной, как в первом, так и в последнем приборе.

Но такое возможно только в двухтрубной системе, где на подачу теплоносителя никаким образом не влияет количество батарей. Схему такого подсоединения вы видите вверху, и оно может быть боковым, нижним или диагональным.

По диагонали, сбоку и снизу

Варианты подключения радиаторов отопления (сверху вниз): по диагонали, сбоку, снизу

Оптимальным считается диагональное подключение радиаторов, так как теплоноситель циркулирует в нём с наибольшей равномерностью, поэтому, когда вы видите в сопроводительных документах номинальную мощность, то производитель исходит именно от такого типа подсоединения, когда вся площадь прибора задействована одинаково.

Считается, что здесь потерь максимальной мощности не существует, и она выдаётся на все 100%. Есть ещё один вспомогательный вариант, когда можно оптимально задействовать всю ёмкость, но об этом немного ниже.

Несколько хуже (только на 95% номинальной мощности) работает прибор отопления, если его подсоединяют сбоку (с одной или с двух сторон) – здесь площадь нагрева будет более интенсивной со стороны подачи.

А вот при нижнем подключении, что также называется «ленинградкой» номинальный КПД составляет всего 90%, так как циркуляция затрудняется столбовым давлением и, вполне естественно, что здесь площадь нагрева является наиболее неравномерной.

Примечание. Прежде чем начать расчёт мощности для отопителей в вашей квартире или частном доме, вам следует окончательно определить способ подключения радиаторов. Только в таком случае вы сможете вычислить количество секций наиболее правильно.

Удлинитель протока, как оптимизатор распределения тепла

Удлинитель протока, как решение проблем

Далеко не всегда удаётся в автономной или централизованной системе отопления подсоединять батареи по диагонали, чтобы обеспечить максимальную (100%) отдачу тепла, и для этого есть разные причины – здесь и технические возможности, и особенности интерьера или попросту человеческий фактор – упустил из виду или не знал.

Когда секций не особенно много, во всяком случае, не более 8-10 штук, а то и меньше, то перепады температуры на общей площади радиатора не заметны, а если и заметны, то не особо. Но вот если количество секций увеличить, а такая потребность возникает довольно-таки часто, то перепады температуры на разных концах одного и того же приборе могут достигать 10̎⁰C и даже более.

Безусловно, можно провести переподключение, то есть, подсоединить прибор по диагонали и в таком случае теплоноситель станет равномерно распределяться по всей площади, но это не всегда возможно из-за тех же технических условий или особенностей интерьера.

В таких ситуациях есть своеобразная панацея – это удлинитель протока, который по непонятным причинам почему-то очень сложно найти в наших магазинах, торгующих сантехникой, но его, зато можно сделать самостоятельно.

Нагрев медной трубы перед пайкой

Для этого вам понадобится медная труба с наружным диаметром 18 мм и толщиной стенки не менее 1 мм, а также медная муфта для пайки (переходник на фитинг) с наружным диаметром 19,5 мм.

Длину трубы рассчитывают с учётом количества секций, так, её конец должен доставать до стыка последней и предпоследней секции – в некоторых случаях удлинитель делают до средины радиатора, но обрезать трубу вы сможете в любой момент. Мы не будем во всех подробностях описывать процесс пайки, скажем только, что флюс не должен попасть внутрь трубы, то есть его не должно быть много, так как может образоваться застывшая капля, и вода при циркуляции будет шуметь.

На фото: установка удлинителя протока

Удлинитель протока устанавливают в верхней части радиатора, но его лучше, конечно, использовать вместе с термоголовкой, которой вы сможете задавать нужную вам температуру. А вот распределение теплоносителя по площади батареи у вас теперь будет равномерным.

Заключение

Произвести подключение радиаторов отопления вы можете и своими руками, если, конечно, для этого у вас имеются необходимые инструменты. Но если вы в этом деле новичок, то не забывайте о том, что это достаточно ответственно – подтекание системы в период отопительного сезона явление не просто неприятное, а, можно сказать, из ряда вон выходящее. Поэтому, если не надеетесь на свои силы, то лучше пригласите специалиста.

Соединение батарей и радиаторов отопления последовательно

⁠Для обеспечения максимальной эффективности и гармоничности функционирования системы отопления необходимо ещё на стадии проектирования решить ряд важных вопросов:

  1. одно- или двухтрубная разводка труб
  2. параллельное или последовательное подключение радиаторов
  3. самотёчная или принудительная циркуляция теплоносителя
  4. нижняя, диагональная или боковая схема подсоединения батарей к общей магистрали

Исходя из выбранного типа комплекса обогрева определяется необходимая мощность, количество приборов, число секций или площадь панели каждого из них.

Виды систем отопления

Прежде всего они различаются по количеству линий разводки, что в конечном итоге определяет последовательное или параллельное соединение радиаторов отопления, схему подведения труб и т.д. Существует два основных типа

Однотрубные

В этом случае имеется одна магистраль, к которой производится подключение и входа, и выхода каждой батареи. Главное достоинство такой системы в простоте реализации, а также в возможности сэкономить на стройматериалах: трубах, фитингах, арматуре и т.д. Большинство отопительных сетей многоквартирных домов работают именно по такому принципу.

В ходе эксплуатации проявляются недостатки схемы

  1. неравномерное распределение тепла в цепочке приборов. Первые получают максимум энергии, до последних вода доходит значительно остывшей
  2. невозможность регулирования температуры, мощности отдельных радиаторов
  3. сложность проведения ремонтных работ, так как для замены одной батареи необходимо сливать всю систему, останавливать её функционирование
  4. необходимость открытой прокладки разводки, что не всегда выглядит аккуратно и эстетично

Частично решить проблему перекоса в распределении тепла, когда реализовано последовательное подключение в систему радиаторов отопления, можно, увеличивая количество секций для последних в цепи потребителей. Вообще такая схема эффективна в небольших комплексах на 4-5 приборов.

Двухтрубные

Их организация предполагает наличие подающей и обратной линии, к каждой из которых подключаются батареи. По первой магистрали движется от котла нагретый теплоноситель, во второй – отводится остывший. Таким образом нивелируются недостатки замкнутой цепи предыдущего типа, все потребители получают одинаковое количество энергии. Кроме того, появляется возможность отсоединения отдельных единиц от системы без остановки её работы.

Двухтрубная разводка более эффективна, так как позволяет избежать перерасхода топлива. Батареи в неиспользуемых в данный момент комнатах можно отключить или понизить их мощность до минимума, сэкономив дорогостоящие ресурсы. Так как последовательное соединение радиаторов отопления невозможно в двухтрубной системе, здесь реализуются две другие схемы

  1. Параллельная. Подающая и обратная линия проходят рядом от одного прибора к другому. Может прокладываться открытым способом либо в конструкциях пола, стен. Несколько схожа с последовательной, однако требует большего расхода материалов.
  2. Лучевая. Ещё более затратное и сложное в организации соединение батарей. Для реализации такой разводки необходим распределительный коллектор с двумя трубами для подачи и обратки. Все приборы подключаются к обеим гребёнкам, поэтому от каждого потребителя тянется две линии. Такая схема применяется также в контуре тёплого пола. Она прокладывается только скрытым способом ввиду большого количества коммуникаций.

Изначальные затраты на обустройство двухтрубной системы окупаются со временем за счёт удобного и точного регулирования мощности приборов.

Можно ли подключить в доме батареи отопления последовательно

Несмотря преимущества лучевой и параллельной схем простая разводка не менее востребована. При условии грамотного расчёта и правильной организации она может быть не менее эффективна. Её применяют в квартирах, подключённых к централизованной сети, а также в небольших системах обогрева дач, частных домов. Её можно реализовать как в горизонтальной обвязке в одноэтажном здании, так и в вертикальной, когда стояки соединяют верхние и нижние уровни. При этом возможна установка приборов любого типа: секционных, панельных, трубчатых.

Как выполнить подключение двух и более радиаторов отопления последовательно

  1. Батареи развешиваются по периметру дома под окнами по центру. Для фиксации применяются кронштейны и крепёжные планки. Положение корпуса проверяется по строительному уровню.
  2. Вдоль стен от котла прокладывается основная магистраль, к которой подключаются приборы. От каждого из них отходит по два ответвления со стороны входа и выхода, которые врезаются в трубопровод посредством тройников. После прохождения всех радиаторов система замыкается на теплогенераторе.
  3. В случае организации самотёчной системы главная линия прокладывается с небольшим уклоном. Принудительное движение рабочей среды предполагает установку перед котлом циркуляционного насоса. Рекомендуется планировать разводку с минимальным количеством изгибов, поворотов.
  4. Для заполнения/слива системы необходимо предусмотреть наличие соответствующей арматуры.
  5. Перед входом в теплогенератор желательно установить фильтр механической очистки, который будет задерживать частицы загрязнений из трубопровода.

Для большей наглядности схема последовательного соединения и врезки радиаторов отопления представлена на рисунке 1.

Рис.1

Способы подключения приборов

Специалисты в сфере проектирования и организации комплексов обогрева выделяют три основные типа, отличающиеся по алгоритму реализации и эффективности. Каждый из них имеет свои преимущества, проявляющиеся в конкретных условиях функционирования. Подключение бывает

Боковое

Предполагает присоединение радиатора к главной линии с одной стороны. При этом вход воды располагается вверху, выход – внизу для обеспечения максимально равномерного прогрева секций или поверхности панели. Такой способ установки считается эффективным, так как процент неохваченной площади теплообмена составляет не более 10%. Чаще всего последовательное боковое подключение батарей отопления выполняется в квартирах многоэтажных домов, являющихся потребителями централизованной коммунальной сети.

Зачастую такая схема дополняется байпасом – трубой меньшего диаметра, соединяющей подающую и обратную магистрали. Это приспособление дополняется запорными кранами, отсекающими прибор от системы.

Диагональное

Позволяет максимально задействовать площадь теплообмена отопительного прибора. Получаемая при этом мощность является эталонной и указывается в паспорте к товару. Для реализации этой схемы подключения необходимо вход в радиатор расположить вверху с одной стороны, выход – внизу с другой. За счёт этого поток рабочей среды равномерно пройдёт через все внутренние каналы.

Этот способ идеально подходит для батарей с большим количеством секций. Именно диагональная обвязка позволяет наиболее полно реализовать преимущества, которые даёт последовательное соединение отопительных радиаторов.

Среди её недостатков стоит выделить

  1. увеличенные расходы на стройматериалы по сравнению с боковым подключением
  2. невозможность спрятать коммуникации в стену или пол
  3. сложность проведения монтажных работ

Нижнее

Наиболее эстетичный способ интеграции прибора в систему, когда и вход, и выход теплоносителя находятся в нижней части корпуса с разных сторон. В этом случае трубы чаще всего прячутся под напольное покрытие и бетонную стяжку. В связи с этим обустройство такой схемы возможно на стадии строительства и ремонта.

Если соединение батарей отопления выполняется последовательно, при нижнем подключении возможна потеря до 15-20% КПД системы. Это происходит из-за того, что воде несколько проблематично подняться по внутренним коллекторам в верхнюю часть корпуса прибора. В результате некоторые участки прогреваются недостаточно.

Профилактические работы

Сводятся к периодической промывке внутренних каналов радиаторов. Это процесс может осуществляться несколькими способами

  1. гидропневматическим с использованием воды и сжатого воздуха, которые подаются в систему под пульсирующим давлением
  2. микробиологическим с применением специальных разрыхляющих налёт и ржавчину составов
  3. химическим, предполагающим добавление в теплоноситель активных реагентов
  4. пневматическим с созданием искусственного гидроудара

Периодичность этих работ при условии, что реализовано последовательное подключение радиаторов определяется индивидуально. Необходимость их проведения возникает в случае необоснованного повышения расхода энергии, значительной разницы температур горячих труб и тёплых отопительных приборов, увеличения времени, необходимого на прогрев помещения и т. д.

Заказывайте монтаж в нашей компании

Специалистами “Альфа-Терм” может быть выполнена установка радиаторов любого типа, мощности, конфигурации. Обратившись к нам, заказчик сможет получить весь перечень услуг от подбора подходящей модели по привлекательной цене до запуска оборудования в работу. С нами задача организации комфортной и эффективной системы отопления будет решена предельно просто.

схема, инструкция, как подключить два и более батареи

Последовательное подключение радиаторов — наиболее популярный и экономичный вариант обогрева помещения, благодаря которому создаётся автономная, независящая от центральной, отопительная система.

Необходимый инструментарий

Для формирования такого соединения приборов отопления потребуются следующие составляющие:

  • Трубы: для главной магистрали желательно выбирать трубопровод из стали, оцинковки или металлопластика с соответствующими диаметрами 2,2 см, 2,2 см и 2,6 см. А также допускаются к использованию полипропиленовые трубы, но только не в системе с тремя и более радиаторами. Отходящие от магистрали патрубки изготавливаются из тех же материалов, но имеют меньшие диаметры.

Фото 1. Металлопластиковые трубы разного диаметра в разрезе: видна прослойка из металла между двумя слоями пластика.

  • Радиаторы: выбор необходимого оборудования осуществляется на основании личных предпочтений и советов специалиста. Для подобной схемы самым оптимальным считается 5 батарей, а для большего их количества требуется грамотно рассчитанный проект.
  • Ленты для уплотнения резьбы на батареях.
  • Термостатические клапаны для регулировки нагрева радиаторов.
  • Фитинги для соединения труб между собой.

Непосредственными составляющими являются также расширительный бак и отопительный котёл.

Подготовительные действия

Перед началом процесса рассчитывается подробный проект системы отопления для каждого конкретного помещения.

Затем выбирается один из вариантов последовательного подключения: горизонтальный или вертикальный исходя из особенностей жилой площади и личных предпочтений.

Затем, ориентируясь на выбранный тип схемы, требуется определиться с теплоносителем. При вертикальной развязке лучше использовать антифриз, разбавленный в воде, а при горизонтальной — обычную воду.

Как подключить два радиатора отопления, схема

  1. Изначально при последовательном соединении определяется месторасположение отопительного котла. Его располагают, как правило, в подвальном помещении на специальной противопожарной платформе. Над ним крепко фиксируется расширительный бак.

Внимание! Высота расширительного бака относительно котла должна составлять не менее трёх метров.

  1. При этом продумывается грамотная настройка дымохода: тяга должна быть достаточной, а сам дым выходить наружу, не оставаясь внутри помещения.
  2. После производится подключение магистрального трубопровода. Важно избегать изгибов при прокладке.
  3. По периметру всего дома проходит труба, параллельно которой врезаются все батареи.

Фото 2. Схема последовательного подключения батарей в однотрубной системе с котлом и циркуляционным насосом.

  1. Радиаторы размещаются под оконными проёмами.
  2. Замыкаться такая схема должна на отопительном котле.

Внимание! Перед котлом рекомендуется поместить фильтр, очищающий теплоноситель от любых примесей.

  1. А также необходимо предусмотреть элемент, через который будет производиться заполнение системы водой и её слив.
  2. В последовательной схеме подключения, можно дополнять кранами и терморегуляторами каждую батарею.

При вертикальной обвязке в схему включают для принудительной циркуляции теплоносителя циркуляционный насос, а при горизонтальной — создаётся уклон трубы подачи, и перед каждым радиатором монтируется кран Маевского для удаления из системы излишков воздуха.

Плюсы и минусы последовательного подключения батарей

Плюсы последовательного подключения:

  • низкая стоимость расходного материала;
  • допускается использование любых видов радиаторов;
  • при необходимости трубопровод заводится в «тёплый пол»;
  • охват приборами отопления всего периметра комнаты;
  • лёгкий монтаж;
  • небольшое количество расходуемого материала.

Минусы:

  • сложное проектирование процесса;
  • высокий коэффициент потерь тепла: из-за характерной вытянутости такой магистрали теплоноситель к концу охлаждается;
  • при отсутствии циркуляционного насоса возникают застои перемещаемой по радиаторам жидкости и снижение эффективности работы системы в целом;
  • при отсутствии терморегуляторов на батареях — отсутствие контроля над подачей тепла.

Полезное видео

Посмотрите видео, в котором показан пример последовательного подключения радиаторов в частном доме.

Помощь профессионалов

При проведении последовательного подключения радиаторов необходимо проконсультироваться со специалистами по части разработки полноценного проекта. Для исключения различного рода просчётов рекомендуется доверить им ведение этого процесса под ключ.

Параллельное подключение радиаторов | ТЕПЛОВИЧЁК

На сегодняшний день при проектировании систем отопления используются две схемы подключения радиаторов в систему: последовательная и параллельная.

При последовательной схеме подключения труба подачи теплоносителя подключена к первому радиатору. Отводная труба первого радиатора является трубой подачи второго радиатора и так далее. Таким образом, теплоноситель последовательно передается по радиаторам от первого к последнему. Недостатком такой схемы является то, что нельзя использовать большое количество радиаторов, так как теплоноситель теряет свою температуру в каждом радиаторе. Как следствие, эффективность последнего радиатора меньше эффективности первого.

При параллельной схеме подключения трубы подачи всех радиаторов подключены к общему стояку. Аналогично отводные трубы всех радиаторов также подключены к своему стояку при двухтрубной трубной системе отопления или в тот же стояк подачи при однотрубной системе. В этом случае температура теплоносителя поступающего во все радиаторы одинакова. Следовательно, все радиаторы работают с одинаковой эффективностью.

Дополнительным плюсом использования параллельной схемы подключения радиаторов является возможность установки на каждый радиатор запорной арматуры, что значительно облегчает сезонное обслуживание радиатора. Нет необходимости полностью перекрывать общие стояки, чтобы провести чистку или замену радиатора, для этого достаточно перекрыть индивидуальные краны.

Кроме того, при использовании параллельной схемы подключения, на каждый радиатор можно установить ручной или автоматический терморегулятор, с помощью которого регулируется поток теплоносителя, поступающего в радиатор, и как следствие теплоотдача радиатора. Использование терморегуляторов позволяет поддерживать комфортные условия в помещении, независимо от колебаний температуры на улице.

Для установки запорной арматуры или терморегулятора радиатор должен быть оснащен байпасом. Байпас – это перемычка (отрезок трубы), который устанавливается между трубами подачи и отвода теплоносителя, и служит для сброса излишка теплоносителя при уменьшении потока через радиатор. Диаметр байпаса должен быть меньше диаметра трубы подачи на один калибр.

Вам необходимо включить JavaScript, чтобы проголосовать

Расскажите о нас друзьям:

Соединение батарей и радиаторов отопления последовательно


Зачем соединять аккумуляторы

Аккумулятор, как и конденсатор, может накапливать энергию. В отличие от простой гальванической батареи, где химические реакции, при которых происходит выработка электроэнергии, необратимы, аккумулятор можно зарядить. При этом ионы разводятся друг от друга, и внутренняя химия аккумулятора взводится, как пружина. Впоследствии эти ионы, благодаря «заряженному» химическому процессу, будут отдавать свои лишние электроны в электрическую цепь, сами стремясь обратно к нейтральности кислого электролита.

Все хорошо, только у аккумулятора количество энергии, которое он способен выработать после полной зарядки, зависит от его общей массы. А масса зависит от исполнения — есть стандарты, и по этим стандартам и делаются аккумуляторы. Хорошо, когда потребление электроэнергии точно так же стандартизовано. Например, когда имеется автомобиль, который берет определенное количество электричества для пуска двигателя. Ну, и для других своих нужд — подпитки автоматики на стоянке, питания замков с противоугонными устройствами и т.д. Стандарты аккумуляторов и рассчитаны на электропитание автомобилей различных типов.

А в других областях, где требуется стабильное постоянно напряжение, запрос по параметрам питания гораздо шире и разнообразнее. Поэтому, имея однотипные и строго одинаковые аккумуляторы, можно думать и об использовании их в разных сочетаниях, и более эффективных способах зарядки, чем банально заряжать их все по очереди.

Соединение источников питания

Как и нагрузки, например, лампочки, соединить аккумуляторы можно как параллельно, так и последовательно.

При этом, как можно сразу заподозрить, что-то должно обязательно суммироваться. При последовательном соединении резисторов суммируется их сопротивление, ток на них уменьшится, но через каждое из них он будет идти одинаковый. Аналогично и через последовательное подключение аккумуляторов ток будет течь один и тот же. А раз их стало больше, больше станет напряжение на выходах батареи. Следовательно, при неизменной нагрузке будет идти больший ток, который израсходует емкость всей батареи за то же время, как и емкость одной подключенной к этой нагрузке батареи.

Параллельное подключение нагрузок приводит к увеличению суммарного тока, напряжение же на каждом из сопротивлений будет одним и тем же. То же самое и с аккумуляторами: напряжение на параллельном подключении будет таким, как у одного источника, а ток могут все вместе дать больший. Или, если нагрузка осталась какой и была, питать ее током они смогут дольше ровно настолько, насколько возросла их суммарная емкость.

Теперь, установив, что соединять аккумуляторы параллельно и последовательно можно, рассмотрим подробнее, как это работает.

Параллельное подключение радиаторов отопления

Параллельное подключение батарей

Параллельное соединение радиаторов используют чаще всего в многоквартирных домах. Отопительная система с таким видом подключения работает по следующему принципу: горячая вода по всем этажам идет по одной трубе вверх, и по другой – вниз. При этом теплоноситель последовательно проходит все радиаторы дома.

Минус подобной конструкции состоит в необходимости при ремонте одного радиатора отключения системы отопления во всем подъезде. Проблема решается установкой на отводах шаровых кранов, одновременно предоставляющих возможность регулирования уровня теплоотдачи отдельных радиаторов.

Следует отметить и другой недостаток параллельного подключения радиаторов отопления – снижение давления теплоносителя в магистрали приводит к недостаточному прогреванию батарей, что сокращает эффективность такой системы отопления.

Принципы работы химического источника питания

Источники питания, основанные на химических процессах, бывают первичными и вторичными. Первичные источники состоят из твердых электродов и соединяющих их химически и электрически электролитов — жидких или твердых составов. Комплекс реакций всего агрегата действует так, что заложенное в нем химическое неравновесие разряжается, приводя к некоему балансу компонентов. Выделяющаяся при этом энергия в виде заряженных частиц выходит наружу и на клеммах создает электрическое напряжение. Пока оттока заряженных частиц наружу нет, электрическое поле замедляет химические реакции внутри источника. При соединении клемм источника с какой-нибудь электрической нагрузкой по цепи побежит ток, а химические реакции возобновятся с новой силой, снова поставляя электрическое напряжение на клеммы. Таким образом, напряжение на источнике остается неизменным, медленно уменьшающимся, пока в нем продолжает оставаться химическое неравновесие. Это можно наблюдать по медленному постепенному уменьшению напряжения на клеммах.

Такое явление называется разрядка химического источника электроэнергии. Первоначально обнаружили такой комплекс реакции с двумя разными металлами (медь и цинк) и кислотой. При этом металлы в процессе разрядки подвергаются разрушению. Но потом подобрали такие компоненты и такое их взаимодействие, что если после уменьшения напряжения на клеммах в результате разрядки поддерживать его там искусственно, то через источник обратно потечет электрический ток, и химические реакции способны повернуть вспять, снова создавая в комплексе прежнее неравновесное состояние.

Источники первого типа, в которых компоненты безвозвратно разрушаются, называются первичными, или гальваническими элементами, по имени открывателя таких процессов Луиджи Гальвани. Источники второго рода, способные под действием внешнего напряжения, повернув вспять весь механизм химических реакций, снова вернуться к неравновесному состоянию внутри источника, называются источниками второго рода, или электрическими аккумуляторами. От слова «аккумулировать» — сгущать, собирать. И их главная особенность, только что описанная, называется зарядка.

Однако у аккумуляторов все не так просто.

Таких химических механизмов было найдено несколько. С разными участвующими в них веществами. Поэтому и типов аккумуляторов несколько. И они по-разному себя ведут, заряжаются и разряжаются. А в некоторых случаях возникают явления, которые очень хорошо знать людям, имеющим с ними дело.

А с ними имеют дело практически все. Аккумуляторы, как автономные источники энергии, применяются повсюду, в самых разных устройствах. От маленьких наручных часов до транспортных средств разного размера: автомобилей, троллейбусов, тепловозов, теплоходов.

Ошибки коммутации и их последствия

Самое главное — избежать поражения электротоком

. Некорректное объединение химических источников тока повлечет за собой:

  • Формирование короткозамкнутого контура. В гальванических элементах начнется химическая реакция, которая приведет к вытеканию электролита, короблению корпуса, взрыву, возгоранию (характерно для параллельного соединения).
  • Размыкание контура. Во время подключения нагрузки сгенерируется обратный электроток через некорректно подсоединенный источник. Это приведет к быстрому выходу из строя блока (характерно для последовательного соединения).
  • Продолжительное короткое замыкание. Результат — расплавление проводов, возгорание, коробление корпуса, химическая реакция внутри источников, воспламенение, утечка электролита и взрыв.
  • Кратковременное замыкание. Результат — снижение емкости, порча электродов.
  • Перегрев и оплавление проводников. Результат — короткое замыкание (если некорректно подобран проводник по сечению).

Некоторые особенности аккумуляторов

Классический аккумулятор — автомобильный свинцово-сернокислый. Выпускается в виде последовательно соединенных в батарею аккумуляторов. Его использование и зарядка/разрядка хорошо известны. Опасными факторами у них являются едкая серная кислота, имеющая концентрацию 25–30%, и газы — водород и кислород, — которые выделяются при продолжении зарядки после того, как она химически закончилась. Смесь газов, являющихся результатом диссоциации воды, как раз и является хорошо известным гремучим газом, где водорода ровно в два раза больше, чем кислорода. Такая смесь взрывается при любом удобном случае — искре, сильном ударе.

Аккумуляторы для современной аппаратуры — мобильников, компьютеров — делаются в миниатюрном исполнении, для их зарядки выпускаются зарядные устройства разного исполнения. Многие из них содержат схемы управления, позволяющие отследить окончание процесса зарядки или заряжать все элементы сбалансированно, то есть, отключая от устройства те из них, которые уже зарядились.

Большинство этих аккумуляторы довольно безопасны, и неправильная разрядка/зарядка может повредить только их самих («эффект памяти»).

Это касается всех, кроме аккумуляторов на основе металла Li — лития. Экспериментов с ними лучше не проводить, а заряжать только на специально для него предназначенных зарядных устройствах и работать с ними только по инструкции.

Причиной является то, что литий очень активен. Это третий после водорода элемент периодической таблицы, металл, который активнее натрия.

Во время работы с литий-ионными и другими батарейками на его основе, металлический литий может постепенно выпадать из электролита и однажды произвести внутри элемента замыкание. От этого он может загореться, что приведет к катастрофе. Так как погасить его НЕЛЬЗЯ. Он горит без доступа кислорода, при реакции с водой. При этом выделяется большое количество теплоты, и к горению присоединяются и другие вещества.

Случаи возгорания мобильных телефонов с литий-ионными аккумуляторами известны.

Однако инженерная мысль идет вперед, создавая все новые заряжаемые элементы на основе лития: литий-полимерный, литий-нанопроводниковый. Стараясь преодолеть недостатки. И они как аккумуляторы очень хороши. Но… от греха подальше лучше не делать с ними тех нехитрых действий, которые описаны ниже.

Ограничения, меры безопасности, дополнительные рекомендации

Зарядка для аккумуляторов 18650

Рассмотрим типовые аккумуляторы к машине, созданные с применением свинцовых пластин и кислотного электролита. Даже при работе с изделиями одной торговой марки заметны существенные отличия сопротивлений и емкостей. Различия увеличиваются в процессе эксплуатации. В частности, они зависят от действительной плотности раствора.

При последовательном соединении одинаковый ток проходит по всей цепи. Однако на выходных клеммах каждого элемента будет разное напряжение. Эта особенность создает затруднения в процессе пополнения заряда.

Если такую схему подключить к зарядному устройству, возникнет опасная ситуация. Не исключено, что на одной аккумуляторной батарее напряжение увеличится чрезмерно. В таких условиях интенсифицируется выделение горючих газов. Достаточно небольшой искры для взрыва и пожара. В некоторых ситуациях бесполезным будет даже интенсивное проветривание помещения.


Диаграммы токов/ напряжений

Представленные на рисунках данные наглядно иллюстрируют описанный выше пример. Предположим, что для ускорения процедуры принято решение не разбирать компоненты, соединенные в последовательной цепи. Подключают к зарядному устройству 9 и 1 АКБ на 20 А*ч и 10 А*ч, соответственно. По графикам устанавливают стандартное автоматическое отключение на уровне 138 V. Контролируют общие выходные клеммы, предполагая ограничение по напряжению для каждого компонента 13,8 V.

При одинаковом токе в любой части цепи аккумулятор меньшей емкости получает равное с другими компонентами количество энергии за единицу времени. По диаграммам видно, что для накопления номинального заряда понадобится около трех часов. Однако остальным АКБ для завершения процесса потребуется в два раза больше времени. Автомат по указанным выше настройкам не отключит источник питания. Рост напряжения на батарее с меньшей емкостью будет сопровождаться отмеченными выше опасными проявлениями.

Если аккумуляторы соединяются последовательно, зарядку обязательно выполняют синхронно. Это значит, что необходимо контролировать единство емкостей, технического состояния и уровня разряда. Выполнить эти условия проще, если пользоваться одинаковыми изделиями (с учетом модели, производителя).

На примере этого же последовательного подсоединения рассмотрим процесс разряда. В современной схемотехнике подключают защитные автоматы, размыкающие цепь при уменьшении энергетического запаса ниже определенного уровня. Это необходимо, чтобы увеличить срок службы АКБ, созданных с применением данной технологии.

Если соединить разные аккумуляторы, первым разрядится меньший по емкости компонент. Отключающее устройство фиксирует общее значение напряжения, поэтому в этом примере не будет способен выполнить свои функции в полном объеме. При настройке на 72 V защита для АКБ на 10 А*ч не отключит потребителей. Соответствующий компонент разрядится чрезмерно. В таком режиме он достаточно быстро будет испорчен.

Изучим алгоритм, как подключить аккумулятор из параллельных элементов к зарядному устройству. В этом случае тщательный контроль равенства емкостей не нужен. Зарядные и разрядные токи различаются в каждой цепи, поэтому следует учитывать соответствующие ограничения производителя. Предельно допустимые параметры приведены в сопроводительной документации. Проверять нужно уровень напряжения с учетом емкости.

К сведению. Если технические данные на конкретную модель утеряны, необходимую информацию можно найти в интернете.

Последовательное и параллельное соединение аккумуляторов помогает успешно решать задачи автономного и запасного энергоснабжения. При работе с этими схемами следует учитывать в комплексе представленные рекомендации.

Последовательное соединение источников

Это всем известная батарея из элементов, «банок». Последовательно — это значит, плюс первого вывести наружу — будет плюсовая клемма всей батареи, а минус соединяется с плюсом второго. Минус второго — с плюсом третьего. И так далее до последнего. Минус предпоследнего присоединен к его плюсу, а его минус выводится наружу — вторая клемма батареи.

При последовательном соединении аккумуляторов складывается напряжение всех банок, и на выходе — клеммах плюс и минус батареи — получится сумма напряжений.

Например, аккумулятор автомобильный, имея в каждой заряженной банке примерно 2,14 вольта, дает в сумме из шести банок 12,84 вольт. 12 таких банок (аккумулятор для дизелей) дадут 24 вольта.

А емкость такого соединения остается равной емкости одной банки. Ввиду того, что напряжение на выходе выше, номинальная мощность нагрузки возрастает и расход энергии будет быстрее. То есть все разрядятся сразу вместе как один элемент.


Последовательное соединение аккумуляторов

Такие аккумуляторы заряжаются тоже в последовательном соединении. К плюсу подключается плюс питающего напряжения, к минусу — минус. Для нормальной зарядки нужно, чтобы все банки были одинаковыми по параметрам, из одной партии и одинаково дружно разряжены.

Иначе, если они разряжены чуть по-разному, то при зарядке один закончит зарядку раньше других и у него начнется перезарядка. А это может для него плохо кончиться. То же самое будет наблюдаться при разной емкости элементов, что, собственно говоря, одно и то же.

Последовательное соединение элементов питания было испробовано с самого начала, практически одновременно с изобретением гальванических элементов. Алессандро Вольта создал свой знаменитый вольтов столб из кружочков двух металлов — меди и цинка, которые перекладывал тряпочками, пропитанными кислотой. Сооружение оказалось удачной придумкой, практичной, да еще давало напряжение, вполне достаточное для смелых тогдашних опытов по изучению электричества — достигало 120 В, — и стало надежным источником энергии.

Решение задач с применением разных видов соединений

Подключение светодиода через резистор и его расчет

Во всех проводящих цепях есть потери, которые созданы внутренним сопротивлением. Вместо эффективной передачи энергия тратится попусту на обогрев окружающего пространства. Очевидное решение – последовательное подключение АКБ для повышения напряжения. В частности, такой вариант применяют в конструкциях блоков преобразователей, которые устанавливают в источниках бесперебойного питания компьютерного оборудования.

Параллельное соединение аккумуляторов применяют для увеличения тока и емкости. Этим решением улучшают автономность источника. Одновременно продлевают работоспособность устройств, которые подключаются к АКБ. Объединив необходимое количество элементов, получают нужное значение мощности потребления.

Параллельное соединение аккумуляторов

При параллельном соединение источников питания все плюсы нужно присоединить в один, создавая плюсовой полюс батареи, все минусы — в другой, создавая минус батареи.

Часть аккумулятора


Параллельное соединение

При таком соединении напряжение, как мы видим, должно быть одно на всех элементах. Только вот какое? Если у аккумуляторных батарей перед подключением окажется разное напряжение, то сразу после подключения мгновенно начнет происходить процесс «выравнивания». Те элементы, у которых напряжение ниже, начнут очень интенсивно подзаряжаться, черпая энергию из тех, у которых напряжение больше. И хорошо, если разница в напряжениях объясняется разной степенью разрядки одинаковых элементов. Но если они разные, с разными номиналами напряжений, то начнется перезаряд, со всеми вытекающими прелестями: разогрев заряжаемого элемента, кипение электролита, выпадение металла электродов, и так далее. Следовательно, раньше того, как соединить между собой элементы в параллельную АКБ, необходимо измерить вольтметром напряжение на каждом из них, чтобы убедиться в безопасности предстоящей операции.

Как мы видим, вполне жизнеспособны оба способа — и параллельное, и последовательное соединение аккумуляторов. В обыденной жизни нам достаточно тех элементов, которые включаются в наши гаджеты или фотоаппараты: один аккумулятор, или два, или четыре. Подключаются они так, как это определено конструкцией, и мы даже не задумываемся, это параллельное или последовательное соединение.

Но вот когда в технической практике нужно обеспечить сразу большое напряжение, да еще в течение долгого периода, там в помещениях выстраивают огромные поля из аккумуляторов.

Например, для аварийного питания радиорелейной станции связи напряжением в 220 вольт в течение периода, когда должна быть устранена всякая авария в цепи питания, нужно 3 часа… Немало аккумуляторов.

Похожие статьи:

  • Способы преобразования 220 Вольт в 380
  • Расчет потерь напряжения в кабеле
  • Работа с мегаомметром: для чего нужен и как пользоваться?

Последовательно-параллельное соединение элементов напряжения.

Источники питания включают по последовательно-параллельной схеме для увеличения, как тока, так и напряжения. При этом основываются на том, что параллельное включение увеличивает силу тока, а последовательное увеличивает общее напряжение. На рисунке 3.13 показаны примеры последовательно-параллельных схем включения элементов питания.

Рисунок 3.11.Последовательно-параллельное соединение элементов питания.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

  • Источники напряжения
  • Приложенное напряжение и падение напряжения на участке цепи.
  • Общий провод или земля.
Комментарии

#42 ExTpABepT 09.10.2019 06:34 Если исключить всякие балансиры и Т. П., имею 2 источника питания 1. 10В, 1А 2. 5В, 0.5А какое напряжение я получу на выходе при параллельном подключении (+ к +; — к -)??

Цитировать

#41 Iiiiiii 01.06.2019 05:09 Цитирую Владик:

Мне надо соединить последовательно два аккумулятора по 3.7 в но как их заряжать если на аккумуляторах межет быть разное напряжение

Для этого существуют балансиры Цитировать
#40 Andr 18.05.2019 05:53 Цитирую Слава:

Мне нужно 12 в для питания прибора. Что будет если соединить последовательно «крону» 9 В 300 мАч и три батерейки по 1,2 В 2600 мАч (все аккумуляторные).

Работать будет, но когда крона первая даст слабину, напряжение просядет Цитировать
#39 Слава 18.12.2018 15:09 Мне нужно 12 в для питания прибора. Что будет если соединить последовательно «крону» 9 В 300 мАч и три батерейки по 1,2 В 2600 мАч (все аккумуляторные) .

Цитировать

#38 Юрийц 23.11.2018 23:27 Здраствуйте ,падскажите пажалуйста можноли падключить зарядное с выходом вторичной обмотки на 21 волт акб с выходом полной зарядки на 24 вольта?Спасибо.

Цитировать

#37 Владимир1987 26.08.2018 06:19 Цитирую nick:

Подскажите, пожалуйста, каким током заряжать запараллеленые аккумуляторы 3шт по 1.5V 1000mAh?

300 mA не ошибешься Цитировать
#36 Вадим 06.06.2018 08:22 Цитирую Petr:

Что будет если соединить два источника тока, например батарейки типа КРОНА друг с другом? Плюс к минусу, минус к плюсу?

Замкнёт, и либо взорвётся, либо нагреется и заряд пропадёт, либо ничего, в зависимости от количества электрического напряжения Цитировать
#35 Владик 28.02.2018 19:09 Мне надо соединить последовательно два аккумулятора по 3.7 в но как их заряжать если на аккумуляторах межет быть разное напряжение

Цитировать

#34 Petr 18.12.2017 11:18 Что будет если соединить два источника тока, например батарейки типа КРОНА друг с другом? Плюс к минусу, минус к плюсу?

Цитировать

#33 Связист 04.11.2016 16:42 Подскажите пожалуйста, хочу собрать зарядное устройство на АКБ 24 В и 12 А, есть 2 блока питания 24 В и 6 А если их соединить паралельно они выдавать нужные величины или с блоками это не действует?

Цитировать

#32 vsb55 30. 10.2016 14:07 4шт. элемента питания для игрушки соединены последовательно , напряжение меряю есть 6 вольт ток 0,75А, а подключаю стабилизированн ый блок питания с напряжением 6 вольт и током 2А, игрушка не работает, возвращаю батарейки — все работает, почему?

Цитировать

#31 Felix 29.08.2016 17:48 Из текста статьи,не совсем понял про последовательно -препятствующее соединение источников питания. Вернее будет сказать, совсем не понял. Ведь соединение элементов одноимёнными полюсами это есть параллельное соединение. А что такое последовательно — препятствующее? Схемку не изобразите?

Цитировать

#30 Maksimillian 10.05.2016 08:09 Доброго времени! Имеется машинка на управлении. 6 дюрасельчиков АА подключены последовательно . Мультиметр в режиме DCA 200m выдаёт 42,1 С какими параметрами можно подобрать уже аккумулятор? Чтобы выдавал те-же параметры, или даже получше Спасибо за внимание

Цитировать

#29 Ммммм 21.11.2015 19:07 Цитирую мм:

Подскажите, если параллельно подсоединить батарею 12 В, блок питания 16 в, какое напряжение будет в итоге на нагрузке

Присоединюсь к вопросу. Только батарея 11.1 (7600 мап) а блок 19,2 2а. В моем случае это шанс запитать ноутбук. Выгорела цепь питания. Цитировать
#28 Alex42ru 10.08.2015 16:31 А что будет если подключить 6 солнечных батарей смешано, две последовательно + две последовательно + две последовательно ? Одна выдает напряжение в 2,5 В, ток в 25 мА. Сколько будет напруга и сколько будет ампер?

Цитировать

#27 nick 22.06.2015 08:46 Подскажите, пожалуйста, каким током заряжать запараллеленые аккумуляторы 3шт по 1.5V 1000mAh?

Цитировать

#26 Administrator 17.05.2015 00:45 Цитирую Агата:

Три одинаковые батареи, соединенные параллельно, подключены к внешнему сопротивлению. Как изменится ток через это сопротивление, если переключить полярность одной из батарей ?

Смотрите второй закон Кирхгофа: Цитировать
#25 Агата 27.04.2015 18:37 Три одинаковые батареи, соединенные параллельно, подключены к внешнему сопротивлению. Как изменится ток через это сопротивление, если переключить полярность одной из батарей ?

Цитировать

#24 Тихогром 19. 04.2015 22:04 Ток при последовательно м соединении батареек и аккумов. Как оно на практике: берем тестер ставим на «10А» и измеряем ток одной (!!отдельно взятой!!)батаре йки или аккума, получим от 2 до 4 Ампер. Соединяем посл. 3 аналогичных батарейки или аккума и замеряем их суммарный ток… получаем от 5 до 10Ампер. Новичкам это крайне важно понимать! Чтобы понять почему так представляем вместо тока — поток воды, батарейки — насосами, а проводники — трубами.

Цитировать

#23 Administrator 13.04.2015 17:25 Цитирую Rolin:

Извините возможно за глупый вопрос: Имеется машинка на радиоуправлении. Хочу увеличить емкость аккумуляторов. Изначально идет 4 батареи соединенных последовательно , хочу добавить еще 4 батареи параллельно. как правильно это сделать?

Четыре новых аккумулятора соедините последовательно , а потом эту батарею присоедините к первой (штатной)паралл ельно. Только аккумуляторы должны быть одной емкости. Цитировать
#22 Rolin 08. 04.2015 12:23 Извините возможно за глупый вопрос: Имеется машинка на радиоуправлении . Хочу увеличить емкость аккумуляторов. Изначально идет 4 батареи соединенных последовательно , хочу добавить еще 4 батареи параллельно. как правильно это сделать?

Цитировать

#21 Administrator 07.02.2015 16:17 В этом случае рассчитать ток трудно, так как вы не знаете внутреннее сопротивление аккумулятора, которое зависит от многих факторов, в том числе и от степени разряда. Проще последовательно в цепь поставить амперметр и измерить ток.

Цитировать

#20 Рома 06.02.2015 03:17 а если нужно расчитать какой ток потечет через подсаженный аккумулятор 21 В (ном. 24,8), если его заряжать напряжением 30 В. У меня на работе возникла такая проблема.

Цитировать

#19 Administrator 16.01.2015 16:50 Цитирую Игорь:

Как обеспечить соединение элементов питания напряжением 3.7 вольта чтоб на выходе получилось в р-не 12 вольт разьясните пожалуйста

Игорь соедините три элемента последовательно , получите 11,1 вольта Цитировать
#18 Игорь 16. 01.2015 03:51 Как обеспечить соединение элементов питания напряжением 3.7 вольта чтоб на выходе получилось в р-не 12 вольт разьясните пожалуйста

Цитировать

#17 Administrator 23.12.2014 02:29 Не постоянная, а одинаковая через все элементы! Естественно закон Ома никто не отменял

Цитировать

#16 Germont 22.12.2014 08:47 Не понимаю, как может изменяться напряжение, а сила тока оставаться постоянными, если по закону Ома они зависят прямопропорцион ально?

Цитировать

#15 Administrator 13.02.2014 15:49 Цитирую мм:

Подскажите, если параллельно подсоединить батарею 12 В, блок питания 16 в, какое напряжение будет в итоге на нагрузке

Мало исходных данных, что бы дать ответ. Какая батарея? Ток нагрузки блока питания? Внутреннее сопротивление источников напряжения? Если хотите теории, то расписал и пояснил в видеоуроке здесь: В вообще какова цель такого соединения? Зарядить аккумулятор? Цитировать
#14 мм 12.02.2014 12:28 Подскажите, если параллельно подсоединить батарею 12 В, блок питания 16 в, какое напряжение будет в итоге на нагрузке

Цитировать

#13 Сергей 30. 11.2013 22:41 Цитирую Николай:

Цитирую Кирилл: А если при параллельном включении Е1=5В, а Е2=1,5В тогда чему равно общее напряжение?

5в. берется большее значение тогда а если при параллельном соединении Е1=5В а Е2=7В? то общее напряжение 12 , 5 или 7? Цитировать
#12 Николай 30.05.2013 21:22 Цитирую Кирилл:

А если при параллельном включении Е1=5В, а Е2=1,5В тогда чему равно общее напряжение?

5в. берется большее значение тогда Цитировать
#11 Кирилл 29.05.2013 07:57 А если при параллельном включении Е1=5В, а Е2=1,5В тогда чему равно общее напряжение?

Цитировать

+1 #10 Administrator 04.12.2012 18:36 В теории соглашусь с Вами на все 100, на практике можно по исследовать эту проблему. Однако ее решение не имеет большого практического значения, проще поставить батарейку по мощнее. В общем задачка для «фанатиков» электротехники ну и для студентов! В жизни встречал только параллельное соединение аккумуляторных батарей и то не штатное, когда в «тяжелые времена для нашей страны» приходилось для запуска дизель-генерато ров включать аккумуляторы меньшей емкости параллельно. Пусковые токи были большие!

Цитировать

+3 natasha.webuspex 03.12.2012 18:45 Вывод делаю следующий: параллельное соединение батарей — дело вредное. При наличии в наборе одной некачественной испортит всё дело, посадит и хорошую. natasha.webuspex.ru/dva-istoch nika-toka.htm

Цитировать

+1 Administrator 03.12.2012 17:27 Цитирую natasha.webuspex:

С батареями этот номер не пройдет (не зарядится), а для аккумуляторов ситуация реальная, автомобилисты частенько пользуются этим. В этом случае меньшая эдс будет балластом, ток в нагрузку отдавать не будет.

Безусловно батарейка не зарядится, я утверждаю что батарейка с большей эдс будет разряжаться. А на счет «прикуривания» это правильно. Цитировать
+2 Administrator 03.12.2012 17:05 Цитирую Dmitry:

У меня вопрос. Что будет если соеденить два элемента последовательно а третий точно так но в обратной полярности?

Смотрите второй закон Кирхгофа Если имеете такое соединение то напряжение на нагрузке будет: Rн=-E1-E2+E3=-12в Цитировать
natasha. webuspex 03.12.2012 06:13 С батареями этот номер не пройдет (не зарядится), а для аккумуляторов ситуация реальная, автомобилисты частенько пользуются этим. В этом случае меньшая эдс будет балластом, ток в нагрузку отдавать не будет.

Цитировать

-2 Dmitry 02.12.2012 10:46 У меня вопрос. Что будет если соеденить два элемента последовательно а третий точно так но в обратной полярности?

Цитировать

-1 Administrator 29.11.2012 16:30 Согласен, однако этот ток приведет к «разряду» элемента с большим напряжением до уровня наименьшего напряжения параллельно включенного элемента. А когда напряжения станут равными ток между параллельно соединенными элементами будет равен нулю. Что касается аккумуляторов то попросту один зарядил другой параллельно включенный. В любом случае выражение Iобщ=I1 +I2+I3 остается истинным, просто ток элемента с меньшей эдс будет отрицательным.

Цитировать

natasha.webuspex 29.11.2012 09:35 При этом вы забываете, что эдс реальных батареек различается, поэтому возникнет значительный ток между самими элементами. Если интересно, мои взгляды natasha.webuspe x.ru/dva-istoch nika-toka.htm

Цитировать

Administrator 28.11.2012 15:21 Уважаемая Наташа, не сомневайтесь, все проверено на практике! А вообще все проверяется с помощью закона Ома для полной цепи.То есть при подключении нагрузки в цепь ток будет зависеть не только от самой нагрузки, но и от внутреннего сопротивления источника. Общее внутренне сопротивление параллельно включенных источников всегда меньше чем одного, отсюда вывод: ток в цепи будет увеличиваться.

Цитировать

natasha.webuspex 26.11.2012 09:55 С параллельным соединением батарей рекомендация сомнительная.

Цитировать

Обновить список комментариев

Как регулировать батареи отопления: особенности и полезные советы


Плюсы и минусы диагонального подключения радиаторов отопления

Отличительной особенностью диагональной схемы является подвод трубопровода к радиаторам. Чтобы отопление было максимально эффективное, нужно ознакомиться с положительными и отрицательными сторонами такого подключения.

Диагональная схема отличается особым подводом трубопровода к радиаторам

Плюсы:

  1. Схема обладает высокой эффективностью, считается оптимальным выбором для частного дома. КПД отопления превышает 90%.
  2. При диагональном способе подключения можно устанавливать на отопительном приборе обогрева большое количество секций – оптимально до 24 штук.
  3. Во время циркуляции теплоносителя по секциям образуется контур градиента.

Минусы:

  1. Эффективность отопления достигается, когда подключение способом по диагонали выполнено в двухтрубной системе. Для однотрубной схемы такой вариант плохо подходит.
  2. Подвод двух труб к отопительному прибору обогрева с разных сторон не эстетично смотрится внутри помещения.
  3. При диагональной схеме подвод патрубков к прибору обогрева происходит с двух сторон. В будущем, если надо добавить или уменьшить количество секций, трубопровод придется разрезать.
  4. Для квартир диагональная схема используется редко, а в некоторых случаях вовсе не доступна.
  5. Монтаж отопительного контура по диагональной схеме затратный, так как требует больше материалов и работы.

Чтобы иметь четкое представление о диагональном способе подсоединения, надо разобраться с его особенностями и нюансами.

Как подключить стальной радиатор

Существует три способа подключения батарей:

  • диагональное – подающая труба соединена с верхним патрубком, отводящая — с нижним по диагонали. Такое подключение обеспечивает максимальную теплоотдачу, а потери тепла составляют всего 2%. Недостатками являются неудобство монтажа и не эстетичный вид, поэтому в многоэтажных домах такое подключение почти не используется;
  • боковое (одностороннее) – подающая/отводящая трубы подключаются сверху и снизу с одного бока. Используется в многоэтажных домах наиболее часто. Оно достаточно эффективно, а теплопотери составляют 2…5%. Однако при увеличении количества секций более 15, тепловая эффективность понижается из-за неравномерного прогрева;
  • нижнее (седельное) – подающая/отводящая трубы подключаются снизу радиатора с разных сторон. Теплопотери в этом случае возрастают до 15% из-за неравномерного нагрева изделия. Такое подключение применяется в домах, где потери тепла почти незаметны.

Особенности подключения радиатора по диагонали

Благодаря подключению подводящих патрубков с двух сторон, нагретый теплоноситель равномерно распределяется по всем секциям. Самой эффективной считается схема, когда подача подсоединена вверху, а отток – внизу. Ведь по законам физики горячая жидкость всегда располагается выше холодной. Однако бывает диагональное подключение радиаторов отопления с нижней подачей теплоносителя. КПД такой системы меньше. Связано это с тем, что по тем же законам физики остывающему теплоносителю в нижней части секций сложнее направляться вверх к отводящему трубопроводу.

Большим КПД обладает система, у которой подающая труба подключена к верхнему коллектору отопительного прибора

Увеличенное количество трубных линий портит внешний вид, но в частном доме эстетика уходит на задний план. Подключение приборов обогрева по диагонали с верхней подачей обладает большим КПД, и это главное для потребителя.

Схема комплектации отопительного прибора при диагональном способе подсоединения тоже отличается. Батарею обязательно оснащают краном Маевского. Устанавливают его на свободном от трубопровода верхнем коллекторе. Кран помогает стравливать воздух, иначе при завоздушивании часть секций не прогреется.

Важно! Конструкция кранов Маевского разнообразна. Существуют модели с рычажками, рукоятками, под отвертку или ключ.

Независимо от того, что у диагонального подключения радиаторов подача снизу или сверху, отводящая труба всегда подходит. Снять при необходимости батарею невозможно без разрезания трубопровода. Чтобы избежать таких неудобств, подключение выполняют разъемными муфтами. Раньше использовались так называемые резьбовые сгоны. Их недостаток в том, что металл быстро поддается коррозии. Через пару лет раскрутить такой сгон сложно. В современном отоплении ставят «американки». Муфта состоит из двух частей, между которыми расположено уплотнительное кольцо. «Американка» легко раскручивается ключами, после чего можно свободно демонтировать прибор обогрева.

Вместе с «американками» на каждый патрубок ставят запорную арматуру. Если радиатор зимой потек, его кранами перекрывают и демонтируют для ремонта. Остальная система продолжает функционировать.

В отоплении с диагональным способом подсоединения важно правильно расположить на стене радиатор. По установленным нормам соблюдают следующее расстояние:

  • от нижней поверхности подоконника до верхней части секций 5-10 см;
  • от пола до нижней части секций 8-12 см;
  • от стены до секций тыльной стороны отопительного прибора 2-5 см.

Соблюдение зазоров обеспечивает оптимальные условия для конвекции воздушных масс вокруг батареи.

Важно! Радиаторы устанавливают строго горизонтально по уровню, чтобы уменьшить вероятность завоздушивания секций и образования кальциевого осадка.

Принцип подключения радиаторов

Отопительные приборы могут подключаться к системе разными способами. Рассмотрим примеры подключения радиаторов отопления. Во многом выбор типа радиатора зависит от его размера и расположения относительно иных радиаторов системы, а также типа самой системы.

Существуют такие способы подключения радиаторов отопления: боковое, диагональное, радиаторы отопления с нижней подводкой, последовательное соединение радиаторов отопления и параллельное.

К наиболее распространенным можно отнести боковое подключение и радиаторы отопления с нижним подключением. Рассмотрим детальнее эти типы:

  • боковое подключение. Для такого метода характерно подключение подводящей трубы к верхнему патрубку, а отводящей – к нижнему. То есть, обе трубы – и подачи, и оттока теплоносителя, – расположены с одной стороны радиатора. Этот метод достаточно распространен по той причине, что позволяет добиться максимального прогрева радиатора, и соответственно – максимальной теплоотдачи. Однако радиаторы отопления с боковым подключением не следует применять для большого количества секций – в таком случае, последние могут быть недостаточно прогретыми. Однако если иного способа подсоединения нет, то для устранения проблемы следует воспользоваться удлинителем протока воды.
  • батареи отопления с нижней подводкой. Применяется такой вариант в том случае, если батареи отопления с нижней разводкой проходят под плинтусами или полом. Нижнее подключение называют самым красивым – батареи отопления с нижним подключением и подачи теплоносителя, и его оттока спрятаны под пол и подключаются к радиатору при помощи патрубков, направленных в пол.


Варианты подключения радиаторов отопления

Виды диагонального подключения батареи

Существует несколько видов схем, по которым происходит диагональное подсоединение приборов обогрева в системе отопления. Общее у них то, что в любом варианте подвод трубопровода осуществляется с двух сторон. При двухстороннем присоединении КПД радиатора больше, чем при одностороннем подключении.

Двухстороннее присоединение труб способствует повышению теплоотдачи по сравнению с односторонним подключением

Важным различием у диагональной системы является подвод подающей и отводящей трубы. Эффективной считается схема, где подача подключена к верхнему коллектору батареи, а обратка – подходит снизу. Такой вариант подходит для самотечных систем автономного отопления, где не предусмотрен циркуляционный насос. При обратном подводе (подача снизу, а обратка сверху), КПД уменьшается. Схема подходит для закрытого типа отопления, где перекачкой теплоносителя занимается циркуляционный насос.

Еще одним различием является то, что подключение приборов обогрева по диагонали можно выполнять в однотрубном и двухтрубном отопительном контуре.

Диагональное подключение радиатора отопления при однотрубной системе

Схема подразумевает использование в контуре одной трубы. Из нее сформировано кольцо. Другими словами, закольцованная одна линия исполняет роль подачи и обратки. К ней отводящими патрубками по диагонали подведена батарея.

Диагональное подключение радиаторов в двухтрубной системе отопления

У двухтрубной системы аналогично контур выполнен кольцом, но трубы идет две. По подающему трубопроводу направляется нагретый котлом теплоноситель. По обратной трубе (обратке) теплоноситель отводится от радиаторов и направляется в котел для прогрева. Обогревательный прибор у двухтрубной системы подключают отводящими патрубками к обеим линиям общего контура.

Настройка отопления в частном доме

Наталья Роки написал: Мне кажется что из-за этого у нас слишком часто включается котёл, причем не особо и жарко +23 в доме, а на улице +12, при том что температура воды установлена на котле 60 градусов.

Тактование котла это штатная плата за простоту подключения котла.

Установка специальных балансировочно-запорных клапанов, термоклапанов на радиаторы вместо шаровых клапанов НЕ уменьшит тактование котла!

Только упростит балансировку радиаторов.

Минимизировать тактование котла, не во всех котлах, можно уменьшением мощности горелки в режиме отопления.

Делается, в зависимости от котла, регулировкой в самом котле или через панель управления, обычно с входом в специальное меню через код.

Не самый эффективный, но самый простой способ уменьшить тактование котла и уменьшить расход газа поставить комнатный термостат.

В котлах обычно есть специальная перемычка вместо которой подключается комнатный термостат. .

Наталья Роки написал: Объясните пожалуйста как регулировать температуру во всех комнатах

Балансировочно-запорные клапана, термоклапана для бюджетного варианта не обязательны, дольше поигравшись, пару дней, недельку, можно и шаровыми клапанами настроить, что при ограниченном бюджете позволит сэкономить деньги и поберегти нервы.

Без опыта, хоть и на много меньше, будете играться и специальными балансировочно-запорными клапанами, термоклапанами!

Так же специальных балансировочно-запорных клапанов, термоклапанов много разновидностей и если существующая разводка радиаторов в притырочку, то установив специальные балансировочно-запорные клапана можете УСУГУБИТЬ ситуацию!

Специальные балансировочно-запорные клапана, термоклапана для систем в притырочку стоят существенно дороже!

Это не говоря, что без опыта можно купить не то, так как производители бывает предоставляют НЕ верную информацию, а за бывшее установленное деньги не возвращают.

Специальные балансировочно-запорные клапана, термоклапана правильно может купить только опытный мастер взявши предварительно их в руки и позаглядывавши, перемерив все отверстия, зазоры и то бывают подводные камни.

На последних, тупиковых, радиаторах все шаровые клапана откройте и не трогайте больше, на остальных на подаче откройте, балансируйте на обратке, как отбалансируюте тоже больше не трогайте. Просто учитывайте, что у шаровых клапанов малый диапазон регулировки, так что сразу можете прикрыть на 45° и потом пробовать поджимать, прикрывать, больше, чтоб радиаторы грели как надо по помещениям. Теоритически чем ближе к котлу, тем сильней должен быть поджат клапан на обратке радиатора, так как чем ближе к котлу тем больше напор.

Где размещать диагональную систему подключения радиатора

Систему используют в автономном и централизованном отоплении. Больше она подходит для частных домов, чем квартир. Автономное отопление бывает открытого и закрытого типа.

У открытого типа отопления циркуляция теплоносителя происходит самотеком

Если подсоединение по диагонали выбрано для самотечной системы, трубопровод укладывают под уклоном. Подача всегда идет на возвышение, а обратка – на понижение. Отсутствие циркуляционного насоса не позволяет равномерно распределять теплоноситель. Дальние по кольцу радиаторы всегда будут холоднее тех, которые расположены ближе до котла. Проблему решают параллельным двухтрубным подсоединением. Подающая труба от котла и расширительного бака подходит патрубками к верхнему коллектору каждой батареи. Аналогично от нижнего коллектора каждого прибора обогрева отходит патрубок к обратной трубе, подсоединенной к нижней части котла. Сам отопительный прибор устанавливают в приямке, чтобы основной контур был выше по уровню.

Важно! Самотечную систему можно устанавливать в здании максимум с двумя этажами. Вдобавок ограничивается длина контура, количество батарей. Минусом является невозможность подключить «теплый пол».

Принудительное отопление оснащено циркуляционным насосом

Централизованное и автономное отопление закрытого типа предполагает использование циркуляционного насоса. Теплоноситель подается под давлением. Отпадает необходимость соблюдения уклонов, вывода расширительного бака большого объема в верхнюю точку. В принудительном отоплении диагональ подходит для однотрубной и двухтрубной системы. Вдобавок подающий трубопровод можно подвести к верхнему или нижнему коллектору прибора обогрева.

На видео больше информации о подсоединении радиаторов:

Схемы диагонального подключения радиаторов отопления

Самой эффективной и правильной считается двухтрубная схема, когда дело касается диагонального способа подключения. Подающую ветку лучше подводить к верхнему коллектору с одной стороны, а обратку – к нижнему коллектору с другой стороны радиатора. Двухтрубная схема отлично работает в самотечной и принудительной системе. Однако важно правильно расположить подающую и отводящую линию.

Если циркуляция принудительная, две трубы можно располагать снизу радиатора

Так как при принудительной циркуляции теплоноситель подается под давлением, подающую и обратную линию можно расположить по полу ниже батареи. Схема выигрывает в эстетичности, так как на стене видны только подходящие к коллектору патрубки.

Если циркуляция естественная, подающую трубу располагают выше приборов обогрева

При естественной циркуляции двухтрубная схема выглядит не эстетично, так как выше радиаторов по стене пролегает подающая ветка. От нее идут отводные патрубки к верхним коллекторам каждой батареи. Обратная линия пролегает по полу. По-прежнему она остается менее заметной.

Однотрубная схема предполагает прокладку по полу только одной трубы, от которой патрубки подводят к нижнему и противоположному верхнему коллектору

По эффективности однотрубная схема проигрывает во всем, но есть один плюс. При нижней разводке диагональный способ подключения позволяет увеличить теплообмен на 15%, чем у других систем, например, «ленинградки», где оба подводящих патрубка от одной трубы подключены только к пробкам нижних противоположно расположенных коллекторов.

Как диагонально установить радиатор

Прежде чем приступить к монтажу, необходимо точно определиться со схемой. Она будет отличаться в зависимости от вида отопления. Важным нюансом является тип жилья: частный дом или квартира в многоэтажном здании.

Диагональное подключение радиаторов отопления в квартире

Для квартир редко принято подключать батареи по диагонали. В многоквартирных домах чаще встречается боковой подвод. То есть, в однотрубной и двухтрубной системе отводящие патрубки от стояков подсоединяют к верхнему и нижнему коллектору с одного бока.

Для квартир приемлем боковой подвод от стояков

Недостатком является невозможность прогрева длинных батарей. Если набрано от 12 и больше секций, то каждый последующий элемент будет холоднее предыдущего. Только по этой причине диагональное подключение радиаторов отопления в многоквартирном доме специалисты рекомендуют использовать. Даже если у батареи больше 12 секций, теплоноситель равномерно будет циркулировать по каждой из них.

Диагональное подключение радиаторов отопления в частном доме

Совсем иначе обстоят дела с частным домом. Отопительный контур здесь обычно небольшой. Теплоноситель отлично циркулирует по всем секциям в однотрубной и двухтрубной схеме. Однако оптимально отдать предпочтение второму варианту.

Технология монтажа требует использование дополнительных деталей

Монтаж происходит в следующем порядке:

  1. На стене наносят разметку, монтируют кронштейны. Участок стены, прилегающий к тыльным секциям, обклеивают фольгированным материалом. Отражающий экран увеличит теплоотдачу отопительного прибора на 30%.
  2. Следующим этапом комплектуют батарею. На один верхний коллектор ставят кран Маевского. К противоположному верхнему коллектору будет подходить подающая труба. Здесь ставят «американку» и запорный кран. Аналогичный комплект ставят на нижний коллектор с противоположной стороны. Здесь будет подходить обратка. Оставшийся свободный второй коллектор снизу закрывают заглушкой.
  3. Укомплектованную батарею навешивают на кронштейны, подсоединяют к общему контуру. Способ подсоединения зависит от выбранных труб (пластик, металл).

По аналогичному принципу монтируют все радиаторы. По окончании работ закачивают теплоноситель, проверяют отсутствие протечек.

Где лучше устанавливать радиатор?

Отопительные радиаторы, устанавливаемые в любом помещении, помимо отопительной функции, имеют еще одну, не менее важную – защитную. То есть, поток теплого воздуха, идущий от отопительного прибора, создает своеобразный щит, который защищает помещение от проникновения холодного воздуха. И, в таком случае, не имеет значения, каким образом подключены радиаторы – параллельное подключение радиаторов отопления или это последовательное подключение радиаторов отопления.

Именно создание такого заслона от холода и заставляет нас устанавливать радиаторы там, где возможно просачивание холодного воздуха – в нише под окнами.

Поэтому – параллельное или последовательное подключение батарей отопления будет в таком случае – не имеет значение.


Установка батареи отопления под окном

Для того чтобы помещение было максимально защищено от холода, прежде чем приступать непосредственно к установке радиаторов, необходимо правильно определить места, где они будут располагаться. Это не лишняя мера предосторожности – ведь в дальнейшем изменить что-либо возможности не будет.

Еще одна важная особенность – вам следует не только знать, где именно расположить батареи, но и как это правильно сделать, а в дальнейшем – какая будет схема подсоединения радиаторов отопления.

В частности, есть несколько правил относительно того, на каком расстоянии от поверхностей должен быть установлен отопительный прибор:

Правила установки радиаторов отопления

  • от нижней точки подоконника до верхней точки радиатора должно быть не менее 10 см;
  • от поверхности пола до нижней точки радиатора должно быть не менее 12 см;
  • от задней стенки радиатора до стены должно быть не менее 2 см.


Требования к установке радиаторов отопления

Советы профессионалов

Несколько полезных рекомендаций помогут точнее определиться с выбором схемы:

  • для квартир подключение по диагонали выгодно, если у прибора обогрева 12 и больше секций;
  • оптимально отдать предпочтение диагонали, если разводка двухтрубная;
  • подачу всегда надо стараться подводить к верхнему коллектору, а обратку – к нижнему.

В отоплении с принудительной циркуляцией можно отдать предпочтение диагонали при однотрубной системе, а подающую трубу подводить к нижнему коллектору. Однако эффективность обогрева снижается.

Способы разводки радиаторов отопления.

   
   Боковое одностороннее, последовательное, нижнее, диагональное и параллельное подключение радиаторов отопления.

Боковое одностороннее подключение радиаторов относится к наиболее распространённым. Его суть сводится к тому, что подводящая труба присоединяется к верхнему патрубку, а отводящая труба присоединяется к нижнему патрубку. Этот тип подключения обеспечивает набольшую теплоотдачу. Если горячая вода подаётся снизу, подводящая труба соединяется с нижним патрубком, то мощность снижается на 5-7%. При одностороннем боковом подключении многосекционных радиаторов и при наличии недостаточного прогрева в их последних секциях потребуется дополнительная установка удлинителей протока воды.

Последовательное подключение радиаторов подразумевает движение теплоносителя под воздействием давления внутри отопительной системы. Для выхода лишнего воздуха из системы радиаторы снабжаются краном Маевского. При аварийных ситуациях, при ремонте или замене радиатора придётся полностью отключить всю отопительную систему.

Нижнее подключение радиаторов отопления используется в случаях, когда трубы отопления уложены под плинтус или в пол. Патрубки подачи и “обратки” находятся снизу и вертикально направляются в пол. С эстетической точки зрения данный способ представляется наиболее приемлемым.

Теплоотдача может изменяться в зависимости от способа подвода теплоносителя к радиаторам отопления.


Диагональное подключение радиаторов отопления используется при наличии многосекционных – от 12 и более секций радиаторов. Подводка горячей воды в радиатор происходит через его верхний патрубок с одной стороны, а “обратка” – через нижний патрубок с обратной стороны радиатора.
При параллельном подключении радиаторов отопления устанавливается такая разводка, при которой теплоноситель поступает через встроенный в отопительную систему теплопровод. Отвод происходит таким же образом. К плюсам подобной системы относится то, что замену радиаторов можно производить без отключения общей системы отопления – достаточно перекрыть установленные на входе и выходе краны. Отрицательным фактором такого подключения является то, что при низком давлении в системе радиаторы могут недостаточно прогреваться.
 
Электрическое сопротивление

– разные батареи в параллельной цепи

Перед применением KVL необходимо показать внутреннее сопротивление батарей в нужных местах на принципиальной схеме.

ПРИЛОЖЕНИЕ:

По вашему запросу, ниже приведены шаги, которые обычно предпринимаются для применения закона Кирхгофа о напряжении (KVL). См. Мою измененную принципиальную схему ниже, которая демонстрирует применение шагов к вашей схеме.

  1. Назначьте токи контура .Петли могут быть выбраны произвольно вместе с направлением токов петли. Я выбрал показанные ниже.

  2. Покажите полярность напряжений на каждом элементе схемы из-за токов контура. По традиции ток – это поток положительного заряда. Укажите полярность резисторов от (+) до (-) в направлении тока.

  3. Нанести КВЛ на каждую петлю . Обойдите каждую петлю в направлении тока петли и алгебраически сложите напряжения на каждом резисторе и источнике напряжения.Установите сумму равной нулю. При переходе от (+) к (-) через любой элемент напряжение отрицательное (падение напряжения). При переходе от (-) к (+) напряжение положительное (рост напряжения).

ВНИМАНИЕ : Не только подсчитывайте падение / повышение напряжения на резисторе из-за рассматриваемого тока контура, но также учитывайте любое падение / повышение из-за другого тока контура, если этот ток также проходит через резистор. Это случай $ R_3 $ на моей схеме, потому что оба контура тока проходят через этот резистор.Я думаю, вы могли пренебречь этим, когда разрабатывали свои уравнения.

Петля 1: $ + 9- (0,45) I_ {1} – (2) I_ {1} – (2) I_ {2} = 0 $

Цикл 2: $ + 6- (0,3) I {2} – (2) I_ {2} – (2) I_ {1} = 0 $

Решите одновременные уравнения, чтобы получить $ I_ {1} $ и $ I_ {2} $. Затем вычислите мощность в $ R3 $ и «мощность батарей».

Следующие мои результаты:

$ I_ {1} = 5,32A $

$ I_ {2} = – 2.02A $

Это означает, что фактический ток в контуре 2 противоположен предполагаемому.{2}) (0,45) ≈12,7 Вт $.

Мощность, которую эта батарея фактически подает на остальную часть цепи, подключенной к клеммам A и B, составляет

48–12,7 $ = 35,3 против

$

Ни один из них не соответствует тому, что, по вашему мнению, было книжным, а именно 28 Вт. Так что я не знаю, откуда у них 28 Вт. Но вот проверка моих результатов на практике. Мы знаем, что общая мощность, рассеиваемая на всех резисторах, плюс мощность, хранящаяся в батарее 2, должна равняться мощности, развиваемой в батарее 1, которая составляла 48 Вт.{2}) (0,3) = 1,2 w $

$ P_ {батарея 2} = (2) (6) = 12 w $

Всего = 48 Вт

И последнее замечание. Вы также можете решить эту проблему с помощью наложения, как предлагает @Solomon Slow, и иногда это можно сделать быстрее. Но я считаю, что нужно сначала изучить и применить законы Кирхгофа, прежде чем использовать другие методы.

Надеюсь, это поможет.

электричество – Почему напряжение остается неизменным в параллельной цепи

Такое заблуждение можно устранить с помощью самого определения.

Напряжение – это энергия, приходящаяся на один свободный электрон (которая способствует протеканию тока в проводнике), тогда как ток – это скорость потока свободных электронов через площадь поперечного сечения проводника. Другими словами, ток – это количество материала, который проходит через поперечное сечение в течение заданного периода времени, а напряжение – это то, что движет материалом.

Начисление – это сохраняемая величина. То, что вы воспринимаете как тепло, – это энергия частиц 1 , движущихся со скоростью дрейфа (около нескольких миллиметров в секунду).Это просто напряжение, которое преобразуется в тепло. Свободные электроны не могут учуять и делиться соответственно в зависимости от сопротивления на каждом пути цепи. Это просто случайный поток. Они просто ходят по кругу, и когда встречается разделение пути, некоторые проходят одним путем, а некоторые – другим.

Чтобы копнуть глубже, давайте рассмотрим параллельную сеть, подобную приведенной здесь (ABCDEFA). Батарея (DC) поддерживает разность потенциалов (сколько сейчас не имеет значения), которой достаточно для того, чтобы заряды 2 начали течь.Эти заряды наталкиваются на перекресток B. Как уже говорилось ранее, нет никаких особых условий, которые перенаправляют платежи в предпочтительном направлении. Это просто случайно. Следовательно, некоторые идут по пути BE, а остальные идут через CD, чтобы добраться до батареи.

Скажем, сопротивление $ R_2> R_1 $. Что случилось бы? Время, затрачиваемое зарядами на прохождение через $ R_2 $, больше, чем через $ R_1 $. Таким образом, в течение определенного периода времени из $ R_1 $ может быть снято много сборов, тогда как в случае $ R_2 $ их количество будет меньше.И это происходит в течение нескольких секунд после установления разности потенциалов, и поэтому мы понимаем, что ток через $ R_2 $ меньше, чем через $ R_1 $ (что является причиной того, что «ток делит в параллельных цепях).

Как только заряды выходят из резисторов, электрического поля батареи достаточно, чтобы свести их с ума (поскольку провод имеет относительно более низкое сопротивление). И заряды снова получают свою энергию. Вот почему мы говорим, что напряжение в параллельных цепях одинаковое 3 .


1: Я упомянул «частицы» просто потому, что свободные электроны не обязательно движутся со скоростью дрейфа (что может привести к другому заблуждению). Они всегда на релятивистской скорости. Скорость дрейфа – это просто представление их вклада в текущий поток в макромасштабе …

2: Грубо говоря, я просто использовал «заряды», потому что обычный ток течет от положительного к отрицательному, тогда как поток электронов – наоборот (что мне довольно сложно выразить).Под зарядами я имел в виду заряженные частицы.

3: Также обратите внимание, что напряжение и ток остаются неизменными для резисторов с одинаковым сопротивлением независимо от того, включены они параллельно или последовательно …

Практические соображения – Аккумуляторы | Аккумуляторы и системы питания

При соединении батарей вместе, чтобы сформировать более крупные «банки» (батарея , батарей?), Составляющие батареи должны быть согласованы друг с другом, чтобы не создавать проблем.

Батареи серии

Сначала рассмотрим последовательное подключение аккумуляторов для большего напряжения:

Мы знаем, что ток одинаков во всех точках в последовательной цепи, поэтому какая бы величина тока ни была в одной из последовательно соединенных батарей, она должна быть одинаковой и для всех остальных.По этой причине каждая батарея должна иметь одинаковую мощность в ампер-часах, иначе некоторые батареи разрядятся раньше, чем другие, что поставит под угрозу емкость всего банка. Обратите внимание, что общая емкость батарейного блока этой серии не зависит от количества батарей.

Батареи, подключенные параллельно

Далее мы рассмотрим подключение батарей параллельно для большей емкости по току (меньшее внутреннее сопротивление) или большей емкости в ампер-часах:

Мы знаем, что напряжение на всех ветвях параллельной цепи одинаково, поэтому мы должны быть уверены, что эти батареи имеют одинаковое напряжение.В противном случае у нас будут относительно большие токи, циркулирующие от одной батареи к другой, причем батареи с более высоким напряжением превосходят батареи с низким напряжением. Это не хорошо.

Максимальная токовая защита

По той же теме, мы должны быть уверены, что любая защита от перегрузки по току (автоматические выключатели или предохранители) установлена ​​таким образом, чтобы быть эффективной. Для нашей последовательной аккумуляторной батареи одного предохранителя будет достаточно, чтобы защитить проводку от чрезмерного тока, поскольку любой разрыв в последовательной цепи прекращает ток во всех частях цепи:

При параллельном блоке батарей одного предохранителя достаточно для защиты проводки от перегрузки по току нагрузки (между подключенными параллельно батареями и нагрузкой), но у нас есть и другие проблемы, от которых нужно защитить.Известно, что батареи имеют внутреннее короткое замыкание из-за неисправности сепаратора электродов, что вызывает проблему, похожую на ту, где батареи с неравным напряжением подключены параллельно: исправные батареи будут перегрузить вышедшую из строя батарею (более низкое напряжение), вызывая относительно большие токи внутри соединительных проводов батарей. Чтобы избежать такой возможности, мы должны защитить каждую батарею от перегрузки по току с помощью отдельных предохранителей батареи в дополнение к предохранителю нагрузки:

При работе с аккумуляторными батареями особое внимание следует уделять методу и времени зарядки.Батареи разных типов и конструкции имеют разные потребности в зарядке, и рекомендации производителя, вероятно, являются лучшим руководством при проектировании или обслуживании системы. Две разные проблемы зарядки аккумулятора: циклически, и перезарядка, . Цикличность относится к процессу зарядки аккумулятора до «полного» состояния, а затем его разрядки до более низкого состояния. Все батареи имеют ограниченный (ограниченный) срок службы, а допустимая «глубина» цикла (как долго она должна быть разряжена в любой момент) варьируется от конструкции к конструкции.Перезарядка – это состояние, при котором ток продолжает возвращаться через вторичную ячейку за пределы точки, в которой ячейка достигла полного заряда. В частности, в свинцово-кислотных элементах перезарядка приводит к электролизу воды («кипячению» воды из батареи) и сокращает срок службы.

Любая батарея, содержащая воду в электролите, может выделять водород в результате электролиза. Это особенно верно для перезаряженных свинцово-кислотных элементов, но не только для этого типа.Водород – чрезвычайно легковоспламеняющийся газ (особенно в присутствии свободного кислорода, образующегося в результате того же процесса электролиза), без запаха и цвета. Такие батареи представляют опасность взрыва даже при нормальных условиях эксплуатации и требуют уважительного обращения. Автор был непосредственным свидетелем взрыва свинцово-кислотной батареи, когда искра, образовавшаяся при извлечении зарядного устройства (небольшого источника питания постоянного тока) из автомобильной батареи, зажгла водородный газ в корпусе батареи, оторвав верхнюю часть батареи. и брызги серной кислоты повсюду.Это произошло в автомобильном магазине средней школы, не меньше. Если бы не все студенты, находившиеся поблизости, были в защитных очках и комбинезонах с застегнутыми воротниками, могла бы произойти серьезная травма.

При подключении и отключении зарядного оборудования от аккумулятора всегда выполняйте последнее подключение (или первое отключение) в месте, удаленном от самого аккумулятора (например, в точке на одном из кабелей аккумулятора, по крайней мере, в футе от аккумулятора. ), так что любая возникающая искра практически не может воспламенить газообразный водород.

В больших, стационарных батареях батареи снабжены вентиляционными крышками над каждой ячейкой, а газообразный водород удаляется за пределы аккумуляторной комнаты через кожухи непосредственно над батареями. Газообразный водород очень легкий и быстро поднимается. Наибольшая опасность возникает, когда ему позволяют скапливаться в зоне в ожидании возгорания.

Более современные конструкции свинцово-кислотных аккумуляторов герметичны и изготовлены для повторного объединения электролизованного водорода и кислорода обратно в воду внутри самого корпуса аккумулятора.Адекватная вентиляция может быть хорошей идеей на случай, если батарея протечет.

ОБЗОР:

  • Последовательное подключение аккумуляторов увеличивает напряжение, но не увеличивает общую емкость в ампер-часах.
  • Все батареи в последовательном банке должны иметь одинаковый номинал ампер-часов.
  • Параллельное подключение аккумуляторов увеличивает общую емкость по току за счет уменьшения общего сопротивления, а также увеличивает общую емкость в ампер-часах.
  • Все батареи в параллельном блоке должны иметь одинаковое номинальное напряжение.
  • Батареи могут быть повреждены при чрезмерном цикле и перезарядке .
  • Батареи с электролитом на водной основе могут выделять взрывоопасный водород, который не должен накапливаться в помещении.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Как подключить две литий-ионные батареи – соединить параллельно_Greenway аккумулятор

Можно ли параллельно подключать литий-ионные батареи?

Литий-ионные аккумуляторы можно подключать параллельно.Если в цепи могут потребоваться более высокие токи, а элементы большего размера недоступны или несовместимы с конструкцией, то можно подключить параллельно один или несколько литий-ионных элементов. Большинство химических компонентов батарей, включая литий-ионные элементы, допускают параллельные конфигурации, которые имеют несколько побочных эффектов. Однако емкость параллельных ячеек, а также время работы имеют тенденцию к увеличению, в то время как, с другой стороны, напряжение остается постоянным.

Ячейка с высоким сопротивлением менее критична при параллельном подключении, чем при последовательном.Однако отказавший элемент уменьшит общую нагрузочную способность. С другой стороны, короткое замыкание более опасно, поскольку неисправный аккумулятор истощает энергию других элементов в цепи, и это может вызвать опасность пожара. Многие из этих коротких замыканий имеют тенденцию быть умеренными и возникают как повышенный саморазряд.

Короткое замыкание может иногда происходить из-за обратной поляризации или даже роста дендритов в клетках. Большие аккумуляторные блоки обычно имеют предохранитель, который отключает вышедшие из строя ячейки от параллельной цепи в случае короткого замыкания.При параллельном подключении слабая ячейка не влияет на напряжение, поскольку оно остается постоянным по всей цепи. Однако из-за уменьшенной емкости он обеспечит низкое время работы. Кроме того, закороченный элемент в цепи может вызвать чрезмерный нагрев и, следовательно, опасность возгорания.

Как подключить литий-ионные аккумуляторы параллельно?

Перед тем, как подключить литий-ионные батареи к параллельному соединению, есть несколько рекомендаций или рекомендаций, которых вам, возможно, придется придерживаться в качестве меры предосторожности для вас и батареи.

1. Избегайте подключения батарей с совершенно другим химическим составом

Существует много типов версий или технологий литий-ионных аккумуляторов. Поскольку все они подпадают под категорию литий-ионных и работают по одним и тем же принципам функционирования, эти батареи были изготовлены с использованием разного химического состава. Поэтому они, как правило, производят разные уровни плотности энергии, а также по-разному реагируют в одних и тех же условиях окружающей среды.

Например, вам не следует пытаться подключать литий-фосфатные батареи (LiFePO4) к обычным литий-ионным элементам.Из-за разницы в химическом составе между ними будет одна батарея, которая будет производить больше энергии, чем другая, что создает большую нагрузку на последнюю. Если, например, обычная литий-ионная батарея разрядится или сначала разрядится, это снизит производительность другой батареи LiFePO4, и это сократит время использования.

Если вы согласны использовать обе батареи в соединении, установка станет очень несбалансированной и в конечном итоге станет бесполезной.

2. Всегда рекомендуется использовать батареи того же напряжения, а также со спецификациями ампер-часов

Если вы планируете использовать, например, литий-полимерные элементы для этого соединения, было бы разумно просто подключить две или более моделей одних и тех же литий-полимерных элементов. Если вам случится подключить элементы, которые имеют различную электронику в их системах управления батареями, все может выйти из-под контроля или сложно. Вариации возможностей или результатов также достаточно широки.Даже если результаты кажутся разными, вы все равно получите сильно разбалансированные клетки.

Поэтому рекомендуется использовать батареи аналогичного типа с одинаковыми характеристиками и напряжениями. Если это литий-ионный аккумулятор на 3 В, обязательно подключите его к тому же самому литиево-ионному элементу, который выдает 3 В. Это улучшает балансировку ячеек и дает вам точные результаты, уменьшая при этом вероятность любых нарушений, которые могут возникнуть в результате эксперимента или подключения. На всякий случай попробуйте взять элементы из одних и тех же аккумуляторных блоков.

3. Попробуйте использовать изолирующий предохранитель

Возможно, не было сообщений о каких-либо проблемах, возникающих при параллельном подключении батарей, но когда вы имеете дело с крупными элементами, рекомендуется использовать изолирующие предохранители. Это мера предосторожности, которую следует предпринять на всякий случай.

Что вам понадобится

При параллельном подключении аккумуляторов вам может понадобиться несколько вещей. Эти предметы включают следующее:

· Две или более полностью заряженных батареи с одинаковыми напряжениями и характеристиками для обеспечения сбалансированности элементов; таким образом, увеличивая общее время использования.

· Провода, подходящие для особых требований к силе тока ячеек,

· Коннекторы или зажимы типа «крокодил».

Подсоедините зажимы или разъемы к проводам, чтобы получился соединительный кабель, или вы можете использовать уже сделанный соединительный кабель. Подключите положительные клеммы одним кабелем, а отрицательные клеммы – другим. Убедитесь, что подключение к клеммам выполнено правильно, оно должно быть отрицательным к отрицательному, а положительным – к положительному.

В качестве альтернативы вы можете подключить нагрузку к одной из ячеек, и она будет истощать их одинаково. Однако наиболее подходящий метод, который обеспечит выравнивание ячеек, – это соединение положительного полюса на одном конце батареи и отрицательного – на другом.

Как совместить два аккумуляторных блока?

Можно объединить два аккумуляторных блока. Большинство из этих блоков уже имеют встроенные схемы для параллельного или последовательного подключения.Например, автомобильный аккумулятор может состоять из 6 ячеек, каждая с напряжением 2 В, что в сумме составляет 12 В. Вы можете подключить аккумуляторные блоки параллельно, чтобы получить более высокий ток, но напряжение останется 12 В. Однако, когда вы решите соединить батареи последовательно, вы получите более высокое напряжение 24 В, в то время как ток останется неизменным во всей цепи.

Чтобы соединить эти блоки параллельно, используйте соединительный кабель для подключения положительных клемм и другой кабель для подключения отрицательных клемм.

Заключение

Если вы понятия не имеете, что делаете при обращении с литий-ионными батареями, не делайте этого без помощи специалиста. Батареи содержат горючий электролит, и они могут легко воспламениться. Поэтому важно понимать все правила и процедуры, прежде чем проводить эксперименты самостоятельно.

литий-ионный аккумулятор для электровелосипеда литиевая батарея

Серия

и параллельные схемы в источниках питания

Фотоэлектрические модули и батареи являются строительными блоками системы.Хотя каждый модуль или батарея имеют номинальное напряжение или силу тока, их также можно соединить вместе, чтобы получить желаемое напряжение системы.

1. Цепи серии

Проводные соединения серии

выполняются на положительном (+) конце одного модуля с отрицательным (-) концом другого модуля. Когда нагрузки или источники питания подключаются последовательно, напряжение увеличивается. Последовательное подключение не увеличивает производимый ток. На изображении справа показаны два модуля, подключенных последовательно, что дает 24 В и 3 А.Цепи серии

можно также проиллюстрировать с помощью батареек для фонарей. Батареи фонарей часто подключаются последовательно для увеличения напряжения и питания лампы с более высоким напряжением, чем может питать одна батарея.

Вопрос: Каково результирующее напряжение при последовательном подключении четырех батарей 1,5 В постоянного тока?

Ответ: 6 вольт

2. Параллельные цепи

Параллельные проводные соединения выполняются от положительной (+) к положительной (+) клеммам и отрицательной (-) к отрицательной (-) клеммам между модулями.Когда нагрузки или источники подключены параллельно, токи складываются, а напряжение одинаково во всех частях цепи. Чтобы увеличить силу тока в системе, источники напряжения должны быть подключены параллельно. На изображении справа показаны фотоэлектрические модули, подключенные параллельно, чтобы получить систему на 12 В, 6 А. Обратите внимание, что параллельная проводка увеличивает производимый ток и не увеличивает напряжение.

Батареи также часто подключаются параллельно для увеличения общего количества ампер-часов, что увеличивает емкость накопителя и продлевает время работы.s

3. Последовательные и параллельные схемы

В системах может использоваться сочетание последовательной и параллельной проводки для получения требуемых значений напряжения и силы тока. На изображении справа показаны четыре модуля на 3 А, 12 В постоянного тока, подключенных последовательно и параллельно. Гирлянды из двух модулей соединены последовательно, увеличивая напряжение до 24 В. Каждая из этих струн подключается параллельно цепи, увеличивая силу тока до 6 ампер. В результате получилась система на 6 ампер и 24 В постоянного тока.

4. Батареи, включенные последовательно и параллельно

Преимущества параллельной схемы можно проиллюстрировать, наблюдая, как долго проработает фонарик, прежде чем батареи полностью разрядятся.Чтобы фонарик прослужил вдвое дольше, необходимо вдвое увеличить емкость аккумулятора.

На картинке слева последовательно добавлена ​​цепочка из четырех батарей параллельно другой цепочке из четырех батарей для увеличения емкости (ампер-часов). Новый комплект аккумуляторов подключается параллельно, что увеличивает доступный ампер-час, тем самым добавляя дополнительную емкость и увеличивая время использования. Вторую цепочку нельзя было добавить последовательно, потому что общее напряжение будет 12 вольт, что несовместимо с 6-вольтовой лампой.

5. Высоковольтные фотоэлектрические массивы

До сих пор в этой главе мы обсуждали только входное напряжение до номинального 24 В. Сегодня для большинства инверторов с подключением к сети без батарей требуется вход постоянного тока высокого напряжения. Это входное окно обычно находится в диапазоне от 350 до 550 В постоянного тока. Из-за требований инвертора к входу высокого напряжения фотоэлектрические модули должны быть подключены последовательно, чтобы в достаточной степени увеличить напряжение.

6. Примеры и инструкции последовательного и параллельного подключения

1. Подключите фотоэлектрические модули (массив) последовательно или параллельно, чтобы получить желаемое напряжение в системе.

2. Рассчитайте общую мощность модуля для вольт и ампер.

3. Подключите массив к контроллеру заряда.

4. Подключите батареи последовательно или параллельно, чтобы получить желаемое напряжение в системе.

5. Рассчитайте общее напряжение аккумуляторной батареи и емкость ампер-часов.

6. Подсоедините аккумуляторный блок к контроллеру заряда.

Источник : «ФОТОЭЛЕКТРОЭНЕРГИЯ – Руководство по проектированию и установке» компании Solar Energy International.

Тренинг по сертификации солнечной энергии от профессиональных установщиков солнечной энергии

С 18 сертифицированными IREC-ISPQ тренерами по солнечной фотоэлектрической системе и 24 сертифицированными специалистами по установке солнечных панелей, сертифицированными NABCEP – больше, чем в любой другой учебной организации по солнечной энергии, – опытная команда Solar Energy International находится в авангарде образования в области возобновляемых источников энергии. Если вы ищете онлайн-обучение по солнечной энергии или личное лабораторное обучение для сдачи экзамена начального уровня NABCEP или сертификации установщика NABCEP, почему бы не получить свое образование от команды самых опытных специалистов по установке солнечных батарей в отрасли? Многие инструкторы SEI участвовали в самых известных солнечных установках в своих общинах в штатах и ​​в развивающихся странах.

Чтобы начать свой путь солнечной тренировки сегодня с Solar Energy International, щелкните здесь.

battery-PACK-in-series-first-or-in-parallel-first – Benzo Energy / лучший производитель полимерных литий-ионных аккумуляторов в Китае, литий-ионные аккумуляторы, липо-аккумуляторные батареи, аккумуляторы LiFePO4, аккумуляторы 18650, аккумуляторы для дистанционного управления

УПАКОВКА включает аккумуляторные блоки, медные шины, никелевые листы, защитные пластины, внешнюю упаковку, вывод (включая разъемы), зеленую бумагу, пластиковые кронштейны и другие вспомогательные материалы.Эти элементы образуют литиевую аккумуляторную батарею PACK через последовательную и параллельную конструкцию. При проектировании ПАКа литиевых аккумуляторов инженеры всегда обсуждают вопрос о том, следует ли их сначала подключать последовательно, а затем параллельно или сначала параллельно, а затем последовательно. Затем давайте посмотрим на преимущества и недостатки подключения батареи сначала последовательно, а затем параллельно или сначала параллельно, а затем последовательно.

Во-первых, батарея PACK в последовательном и параллельном анализе характеристик конструкции:

1.Батарейный PACK требует высокой степени согласованности (емкость, внутреннее сопротивление, напряжение, кривая разряда, срок службы).


2. Срок службы батареи PACK меньше, чем цикл одиночной батареи.


3. Использование в ограниченных условиях (включая зарядку, ток разряда, метод зарядки, температуру и т. Д.)


4. После того, как пакет литиевой аккумуляторной батареи сформирован, напряжение и емкость батареи значительно увеличились, и ее необходимо защитить, а также контролировать баланс заряда, температуру, напряжение и перегрузку по току.


5. Батарейный блок должен соответствовать расчетным требованиям к напряжению и емкости.

Во-вторых, анализ преимуществ и недостатков аккумуляторной батареи, которая сначала подключается параллельно, а затем последовательно или сначала последовательно, а затем параллельно:

1. Недостатки аккумуляторной батареи сначала параллельно, а затем последовательно. : из-за разницы во внутреннем сопротивлении и неравномерного рассеивания тепла при параллельном подключении это повлияет на срок службы батареи после параллельного подключения.

2. Преимущества батарейного блока, подключенного сначала параллельно, а затем последовательно:
A. Одиночный аккумулятор автоматически выйдет из строя, если он выйдет из строя, за исключением того, что емкость будет уменьшена, и это не повлияет на использование после параллельного подключения. Процесс параллельного подключения более строгий.
B. При коротком замыкании аккумуляторной батареи, включенной параллельно, ток в параллельной цепи очень велик. Обычно, чтобы этого избежать, используется технология защиты плавкими предохранителями.

3. Когда литиевая батарея PACK, преимущества батарей, которые подключаются последовательно, а затем параллельно или сначала параллельно, а затем последовательно:
A.В соответствии с емкостью батареи всей группы, она сначала подключается последовательно, например, 1/3 емкости всей группы, и, наконец, подключается параллельно, что снижает вероятность отказа группы аккумуляторов большой емкости.
B. Аккумуляторные блоки подключаются сначала параллельно, а затем последовательно, что очень помогает для обеспечения прочности аккумулятора.

В-третьих, аккумулятор PACK сначала параллельно, а затем последовательно и сначала последовательно, а затем параллельно общие характеристики:

1.Требуется стабильная батарея. Независимо от того, является ли батарея гибкой или цилиндрической, требуется несколько цепочек. Если последовательность плохая и влияет на емкость батареи, батарея с наименьшей емкостью в группе определяет емкость всей батареи.

2. Требуется сильноточная разрядка. Предназначен ли PACK для литиевой батареи для подключения сначала последовательно, а затем параллельно или сначала параллельно, а затем последовательно? Пусковой ток двигателя в три раза превышает нормальный рабочий ток, а сильноточная разрядка может улучшить динамические характеристики двигателя.

3. Требуется, чтобы аккумулятор хорошо рассеивал тепло. Количество батарей велико, и повышение температуры батареи внутри батарейного отсека нелегко распространить, что приводит к неравномерной температуре между батареями, различным характеристикам разряда и длительному ухудшению характеристик батареи.

4. Высокий уровень технологии производства. Аккумулятор должен выдерживать вибрацию на неровной дороге. Производственный процесс, особенно процесс точечной сварки, очень сложен.После сварки проверьте, чтобы не допустить ложной сварки и распайки.

В-четвертых, аккумуляторная батарея подключается параллельно, а затем последовательно или сначала последовательно, а затем параллельно, требования к жгуту проводов следующие:

Как правило, у нас есть определенные требования к жгуту проводов, когда мы делаем Аккумулятор PACK последовательно и параллельно, в основном выходной ток или стыковка с портами продукта клиента. Обычные последовательные и параллельные жгуты проводов можно разделить на линии электропередач, провода заземления, сетевые линии и сигнальные линии в соответствии с ролью проводов и т. Д., В то время как блоки литиевых батарей, такие как 6.Аварийные огни 4V используются последовательно и параллельно.

A. Силовые кабели подключаются сначала параллельно, а затем последовательно: силовые кабели относятся к положительной и отрицательной силовым линиям, которые обеспечивают питание каждой электрической нагрузки ниже 36 В. Диаметр кабеля питания зависит от соотношения между площадью поперечного сечения проводника и допустимой токовой нагрузкой. Изначально определяется площадь поперечного сечения проводника. При нагрузке 5–9 А выберите 1,5 мм и так далее, чтобы обеспечить допустимую нагрузку по току из-за старения жгута проводов или более высокой температуры.

B. При определении площади поперечного сечения провода следует учитывать падение напряжения и нагрев провода, а также диаметр провода следует учитывать в следующих случаях:
a) Если провод слишком длинный, диаметр проволоки можно соответствующим образом увеличить;
b) В случае, когда провод подключается к потребителю после передачи через несколько разъемов, учитывая большое падение напряжения на клемме, диаметр провода может быть соответствующим образом увеличен.

С.Заземляющий провод сначала последовательно, а затем параллельно: диаметр заземляющего провода

a) Для одиночного провода заземления выберите диаметр провода в соответствии с силой тока.
b) Заземляющий провод требует хорошего контакта с шасси или рамой кузова.
c) Точка заземления должна быть гладкой и отполированной, без изоляционного покрытия.

RELiON Часто задаваемые вопросы | RELiON

Сколько мне нужно литиевых батарей для троллингового двигателя RELiON?

Это зависит от напряжения вашего троллингового двигателя.RELiON предлагает 12-вольтовые и 24-вольтовые литиевые батареи. Если у вас троллинговый двигатель на 12 В, вы можете выбрать один из нескольких вариантов на 12 В, если у вас двигатель на 24 В, вы можете использовать 2 батареи на 12 В последовательно или одну батарею на 24 В, и если вы Имея двигатель на 36 В, вы можете использовать последовательно 3 12-вольтовые батареи.

Какой аккумулятор RELiON на 12 В я должен использовать для моего троллингового двигателя?

RELiON предлагает на выбор несколько вариантов 12-вольтных батарей.Самые распространенные модели: RB50, RB75, RB80 и RB100, которые составляют 50 Ач, 75 Ач, 80 Ач и 100 Ач соответственно. Чтобы обеспечить такое же время работы, как у влажной свинцово-кислотной батареи или AGM, используйте литиевую батарею, емкость которой на 60% меньше емкости этой свинцово-кислотной батареи. Если вы хотите больше времени на воде, увеличивайте размер. Бывший. Литиевая батарея RELiON 60 Ач = свинцово-кислотная батарея 100 Ач

Могут ли литиевые батареи RELiON заменить мою свинцово-кислотную батарею?

RELiON предлагает батареи стандартного размера; Группа 24, Группа 27 и Группа 31.

Могу ли я установить на них литиевые батареи RELiON?

Хотя они будут работать на своей стороне, мы рекомендуем устанавливать их вертикально в морских приложениях.

Кабели какого размера я должен использовать для подключения моих литиевых батарей RELiON?

Для большинства приложений мы рекомендуем кабели 4-AWG или 6-AWG.

Водонепроницаемы ли мои литиевые батареи RELiON?

Литиевые батареи RELiON заключены в корпус со степенью защиты IP66, что означает, что брызги воды с любого направления не причинят вреда. Они будут повреждены, если погрузить их в воду. Мы рекомендуем вам сделать все возможное, чтобы ваши батареи были сухими.

Нужно ли мне использовать литиевую стартерную батарею, если мои батареи для троллингового двигателя литиевые?

Нет, вы можете использовать свинцово-кислотную стартерную батарею с литиевыми батареями для троллингового двигателя.

Есть ли у моих литиевых батарей RELiON ограничения по пиковому току?

Да, пожалуйста, обратитесь к таблице данных, чтобы узнать предел пикового тока для вашей конкретной модели.

Предлагает ли RELiON литиевый стартерный аккумулятор?

RELiON имеет RB100-HP, аккумулятор двойного назначения Группы 31, который можно использовать для запуска.

У меня есть RB100-HP для запуска, но его недостаточно для работы всей моей электроники. Могу ли я добавить RB100 параллельно?

Да, их можно подключить параллельно. Хотя это случается редко, у нас есть рыболовы, использующие второй RB100-HP для своей электроники. Для этого приложения подойдет вторая батарея.

Насколько я могу разрядить аккумулятор двойного назначения RB100-HP и при этом запустить двигатель?

RB100-HP может разряжаться до 70% (уровень заряда 30%) и при этом запускать большинство двигателей.

Можно ли подключить мою пусковую батарею параллельно к одной из моих литиевых батарей для троллингового двигателя RELiON, чтобы при необходимости облегчить запуск?

Да, однако, если вы это сделаете, необходимо использовать переключатель для изоляции каждой батареи, чтобы их можно было заряжать отдельно с помощью зарядного устройства для нескольких банков.

Как долго прослужат мои литиевые батареи RELiON?

Литий-железо-фосфатные батареи RELiON (LiFePO4) рассчитаны на более 6000 циклов при глубине разряда 80%.

Будет ли мой нынешний датчик заряда батареи обеспечивать точное состояние заряда моих литиевых батарей?

Нет, если это типичный свинцово-кислотный аккумулятор, основанный на напряжении. Вам нужно будет использовать индикатор литиевой батареи для точного определения уровня заряда.

Что означает, если напряжение моей литиевой батареи RELiON составляет ≤4 Вольт?

Литиевые батареи поставляются с системой управления батареями (BMS) для защиты батареи от различных неблагоприятных условий, таких как низкое напряжение, высокое напряжение, высокий ток и высокая температура.Если BMS перейдет в режим защиты, он отключит аккумулятор от клемм, и напряжение будет составлять от 0 до 4 вольт. В этом случае просто отсоедините кабели аккумуляторной батареи и подключите их снова, и напряжение должно вернуться.

Как хранить литиевые батареи RELiON?

При длительном хранении, от 3 до 12 месяцев, литиевые батареи следует хранить в сухом месте при температуре от 23 ° F до 95 ° F (от -5 ° C до 35 ° C), в идеале при 50% -ном уровне заряда.

Зарядное устройство какого типа мне следует использовать для литиевых батарей RELiON?

Мы рекомендуем использовать зарядное устройство с несколькими банками, чтобы каждую 12-вольтовую батарею можно было заряжать отдельно, чтобы обеспечить их сбалансированность и полную зарядку. В идеале используйте зарядное устройство с литиевым профилем заряда, однако большинство профилей заряда AGM будут работать нормально.

Сколько времени потребуется для зарядки моих литиевых батарей RELiON?

Это будет зависеть от нескольких факторов; сколько использовались ваши батареи и выходной ток зарядного устройства.Литиевые аккумуляторы можно заряжать быстрее, чем влажные или свинцово-кислотные аккумуляторы AGM, однако для этого зарядное устройство должно обеспечивать более высокий ток.

Какой максимальный ток я могу использовать для зарядки моих литиевых батарей RELiON?

Литиевые батареи RELiON могут заряжаться максимальным током 1С (C = емкость батареи). Бывший. Литиевую батарею RELiON емкостью 80 Ач можно заряжать с максимальным током 80 А. Технические характеристики зарядного тока см. В паспорте батареи.

Нужно ли мне заряжать батареи каждый раз, когда я их использую?

В отличие от свинцово-кислотных батарей, литиевые батареи не повреждаются, если они остаются частично разряженными в течение длительного периода времени.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *