Калькулятор отопления по площади помещения: расчет секций онлайн
На чтение мин. Просмотров 3.4k. Обновлено
Чтобы правильно решить эту задачу, и определить сколько нужно секций радиаторов отопления (биметаллических, стальных, чугунных и т.д.), необходимо произвести достоверный расчёт, исходя из площади помещения с использованием расположенного ниже онлайн калькулятора.
Укажите в онлайн калькуляторе схему подключения радиаторов
При строительстве любого здания, важный момент отводится расчёту мощности радиаторов отопления, и определению размера теплообменника. Такая же проблема возникает и у владельцев жилья, при необходимости замены батарей.
В статье мы постараемся разобраться в этом вопросе — расскажем о всех видах конвекторов, а так же, произведём расчёт производительности радиатора отопления по площади, без калькулятора, по формуле.
Специфика расчёта отопленияРаспространённая конструкция для обогрева зданий — радиатор отопления, имеющий стандартные промежутки между отсеками — 50 см. На теплоотдачу одной секции влияет материал изготовления:
- чугун — 120 Вт;
- сталь — 90;
- алюминий — 180;
- биметаллический материал — 190.
Но данные величины средние, и в жизни на них влияют условия эксплуатации, размер помещения и градус нагрева воды на подаче и выходе, при его понижении уменьшается теплоотдача.
Поэтому, чтобы провести расчёт теплоотдачи радиатора отопления в конкретных условиях, требуется знать температурный напор в магистрали — это значение разницы температур воздуха в комнате и отопительного прибора.
Температура в устройстве является среднеарифметическим показателем подачи и обратки. Температурный напор можно высчитать при помощи онлайн-калькулятора, или по формуле
DT = (T подачи + T обратки) / 2-T помещения, где:
DT — температурный напор
В паспорте к прибору указана цифра расчётного перепада температуры, она находится рядом с мощностью. К примеру: производительность 2000 Вт, 90/70 (подача и обратка). То есть, при охлаждении воды с 90 до 70 градусов, тепловая мощность конвектора составляет 2000 Вт.
При установке такого устройства на низко или среднетемпературную систему, отдача тепла будет ниже заявленной, и её следует пересчитать. Это можно сделать с помощью онлайн-калькулятора, или по формуле:
Pf=Pn x (DTf / DTn) в степени 1/3, где:
- Pf и Pn — фактическая и нормативная тепловая мощность в Вт;
- DTf и Dtn — фактический и нормативный температурный напор.
В отапливаемом помещении показатель нормативного напора соответствует 20 градусам.
Средний показатель потребления тепла 1 метром квадратным 60 — 150 киловатт, на него влияют климатические условия и этаж, на котором находится обогреваемая комната. Если вы не укажите это значение в поле «Ориентировочная теплоэнергия на 1 м2», калькулятор возьмёт среднее — 100 Ват.
Виды теплообменниковРадиатор отопления — устройство, состоит из секций объединённых в единый прибор, по которым движется нагретый теплоноситель — чаще вода. Отсек — элемент батареи, обычно литая двухтрубчатая конструкция, способный излучать тепло, которое передаётся окружающему воздуху, что позволяет создавать комфортную атмосферу в квартире.
По своей конструкции приборы отопления бывают: панельные и секционные. Встречаются так же регистры — трубчатое изделие с большим диаметром, или фигурный змеевик (полотенцесушитель в ванной), они врезаются в систему.
Обогревательные приборы бывают: стальные, чугунные, алюминиевые, медные. Чугунные изделия, которые мы привыкли видеть в наших домах, нуждаются в окраске, для придания хорошего внешнего вида.
ЧугунныеК сведению! Есть конвекторы электрические — это корпус с нагревательным элементом внутри, который оснащён термостатом имеющим градусную шкалу и светодиоды.
Изделия из чугуна — самые распространённые, у них простая форма и дизайн. Они бывают навесные и на ножках.
Изготавливаются путём литья. Это массивные конструкции, долго хранящие тепло, в плане эксплуатации они наиболее выгодные.
Плюсы:
- хорошо передают тепло;
- устойчивы к коррозии;
- долговечны, служат не менее 30 лет;
- не привередливы к качеству воды.
Минусы:
- тяжёлые, сложны в установке;
- плохой дизайн.
Теплообменники из стали бывают панельными и трубчатыми.
Панельные модели изготавливаются из металла толщиной 1,5 мм, поэтому обладают небольшой тепловой ёмкостью. Это качество позволяет быстро производить регулировку температуры. Они эффективны в работе, их КПД достигает 75%. К плюсам так же относится не высокая стоимость и простая эксплуатация. Недостаток — плохая устойчивость к коррозии.
Трубчатые разновидности имеют все плюсы панельного типа, но в отличие от них, обладают большим уровнем давления 9 — 16 бар, у первых 7 — 9. А тепломощность (120 — 1600 Вт), и нагрев воды (120), у обеих моделей равный.
АлюминиевыеПо размеру (длине), ассортимент стальных радиаторов большой, это позволяет подобрать их для любой площади.
Теплообменники из алюминия рекомендованы для частных строений с автономным теплоснабжением. Для использования в централизованном отоплении эта модель не предназначена, так как подвержена воздействию не качественного теплоносителя. На российском рынке представлена компанией «Рифара».
Алюминиевые батареи бывают литыми и экструзионными:
- литые — имеют несколько отсеков, они прочные, с более толстыми стенками и широкими каналами для воды;
- экструзионные — по технологии производства, прибор выдавливается из алюминиевого сплава механическим путём, получается цельное изделие, при этом, число отсеков увеличить нельзя.
Все батареи из алюминия обладают высокой тепловой отдачей, они лёгкие и простые в монтаже. Внешне смотрятся презентабельно. По показателям давления и температурного уровня, их можно приравнять к стальным изделиям.
БиметаллическиеСлабые места у таких устройств — стыки отсеков с трубными соединениями, с истечением срока возможны протечки.
Кроме того, они не являются ударопрочными. Срок службы всего 3 — 5 лет.
Биметаллический теплообменник — трубчатый стальной сердечник и алюминиевый корпус. Он прочный и надёжный, способный выдерживать высокое давление. Несмотря на низкую инертность, имеет повышенную теплоотдачу, при небольшом расходе воды. Внешне выглядит презентабельно, и в уходе не сложен.
Основной минус — высокая цена.
МедныеМедь, для изготовления теплообменников используется давно, но широкое применение такие модели получили недавно. Так как, для обогревательных систем требуется рафинированный вид меди, а по новым технологиям его производство стало недорогим.
При одинаковых технических показателях с другими моделями, они весят меньше, а теплоотдача выше. Данное свойство существенно снижает затраты на электричество.
Медь имеет повышенную механическую прочность, поэтому трубы можно использовать в сочетании с водой нагретой до 150 градусов, при давлении 16 атмосфер.
Прежде чем приобретать элементы отопительного устройства, нужно знать из чего состоит вся система. В стандартную систему отопления входит:
- котёл — это может быть электрокотёл, или работающий на газе или твёрдом топливе;
- батарея;
- трубы;
- электрический насос, если он предусмотрен по проекту;
- расширительный бочок.
На расчёт батарей для отопления любой площади, и их подбор влияет:
- Рабочее давление — его максимум;
- Мощность;
- Конструкция устройства.
Кроме того, потребуется проведение расчёта количества секций радиатора отопления на 1 м2, с учётом числа обогреваемых помещений. Это возможно сделать с применением формулы или прибегнув к помощи калькулятора.
Способы расчёта секций радиатора по площади помещения без калькулятораТеплотехнические расчёты по объёму помещения в строительной отрасли — считаются наиболее сложными. Для расчёта количества секций радиатора: биметаллических, алюминиевых или чугунных — не важно, можно прибегнуть к помощи онлайн-калькулятора, или сделать вычисления с применением формулы:
- По площади помещения;
- По теплопотерям.
Первый способ проведения расчётов количества секций отопительного прибора, без использования калькулятора, по формуле, выглядит так:
k = P1/P2, где:
- P1 — необходимый уровень мощности в Вт;
- P2 — теплоотдача одного отсека в Вт.
Чтобы рассчитать показатель суммарной мощности, для обогрева всей квартиры, необходимо перемножить норму 1 м3 с площадью здания. Но в нормативной документации нет таких норм, и используются приблизительные значения для расчётов. Если дом из кирпича — 0,037 квт на 1 м3, панельный — 0,041 квт/м3, для деревянных используется меньшее значение.
Кроме того, в зависимости от способа подключения прибора применяются поправки:
- Для одностороннего:
- нагрев и возврат снизу — 1,28;
- подача сверху, а возврат снизу — 1,03.
- Для двухстороннего:
- нагрев и возврат снизу с обеих сторон — 1,13;
- подача и обратка снизу с одной стороны — 1,28.
- Для диагонального:
- нагрев и возврат снизу — 1,00;
- подача сверху, а возврат снизу — 1,25.
Второй способ расчёта без помощи калькулятора, по формуле с учётом теплопотерь.
k = Q / P2, где:
- Q — теплопотери в Вт;
- P2 — тепловая отдача одного отсека в Вт.
Мощность одной секции отражена в таблице:
Вид | Теплоотдача отсека в зависимости от осевого промежутка |
Стальной | 85 – 120 |
Чугунный | 100 – 160 |
Алюминиевый | 140 – 185 |
Биометрический | 150 – 210 |
Произвести расчёт числа отсеков батареи, для отопления частного дома, можно следующим образом.
N = S/t*100*w*h*r, где:
- N — число отсеков;
- S — размер здания;
- t — теплоэнергия, которая нужна для отапливания помещения;
- w — индекс, в нём учитывается площадь и модель окон, обычного вида — 1,1, или пластиковые с двойными стеклами — 1;
- h — высота потолка: до 2,7 м — 1, от 2,7 до 3,5 м — 1,5;
- r — поправочное значение, оно зависит от количества уличных стен: угловая комната — 1, иной тип — 1.
В зависимости от площади, расчёт производительности радиатора отопления на квадратный метр определяется согласно формуле:
t = S*100 Вт, где
- 100 Вт — тепло, необходимое для отапливания 1 м2 комнаты.
На эффективность отопительной системы влияет много факторов. Необходимо точно производить расчёты тепловой мощности и теплоотдачи отопительной системы, используемой для обогрева данной площади помещения.
Если вы не уверены, что сможете сделать вычисления правильно по формуле, то лучше использовать калькулятор, или обратиться за помощью к профессионалам.
Расчет отопления частного дома, фото и примеры на сайте. Обновлено 18.04.2020
При покупке или строительстве дома, а также при замене старого котла на новый возникает вопрос о расчет отопления частного дома. Современные универсальные котлы отопления, не только на дровах и угле, но и на пеллетах или газу, дают возможность не зависеть от коммунальных служб, регулировать температуру в доме по своему усмотрению, экономично обогревать помещения. Но чтобы отопительная система служила долго и исправно, нужно не только приобретать качественное оборудование, но и верно произвести расчет отопления частного дома.
Если в расчете будут неточности или даже грубые ошибки, это приведет не только к неравномерному прогреву дома, но и к преждевременному выходу оборудования из строя, а то и вовсе поломке элементов системы. Кроме того, точный расчет позволит использовать отопительную систему максимально эффективно и существенно сократить расходы на обогрев помещений.
Содержание:
- Типы отопительных котлов — преимущества и недостатки
- Расчет рабочих параметров системы отопления
- Как определить, сколько секций должно быть у радиаторов отопления?
- Радиаторы из какого материала лучше выбрать?
- Подводя итоги
Типы отопительных котлов — преимущества и недостатки
Прежде чем приступать к математическим вычислениям, нужно определиться, какой тип котла будет установлен в доме. Как правило, при выборе оборудования ориентируются на стоимость топлива, которое планируют использовать для его работы.
- Если в месте расположения дома проведен газ, то газовый котел будет удачным решением.
- Для тех, кому доступен дешевый уголь, подойдет угольный.
- Если вам выгодно приобретать пеллеты, то используйте пеллетный котел.
- Явное преимущество электрических котлов – возможность автоматической работы без вмешательства человека.
Если сложно определиться, можно взять котел, работающий на разных видах топлива, чтобы быть готовым к любому развитию событий.
На рынке представлены следующие виды отопительного оборудования:
- котлы, работающие на электричестве. Это самый дорогой вид топлива, а значит, сэкономить не выйдет. Но такие котлы автономны и безопасны. Можно оставить его работать, уехав из дома на несколько дней, если в вашем месте жительства редко отключают электричество.
Для бесперебойной работы электрокотел нуждается в стабильном источнике энергии;
- газовый котел – самый экономичный вариант, ведь этот вид топлива довольно дешевый. Но использовать его могут лишь те, у кого к дому подведен газопровод. Газовые котлы отличаются высокой производительностью при небольших размерах;
- котлы, работающие на дизеле или отработанном масле, так же весьма недороги в силу доступности топлива. Основное неудобство – потребуется продумать, где будет находиться бак с топливом, который занимает немало места;
- твердотопливные котлы с автоматическим и ручным способом загрузки топливных материалов. Агрегаты, поддерживающие автоматическую подачу горючего — пеллет или топливных брикетов, могут довольно долго работать автономно, но стоят дороже.
Обратите внимание, установлен ли в котле ТЭН, благодаря ему котел будет поддерживать установленную температуру еще какое-то время после протопки.
Использование котла, который может работать сразу на нескольких видах топлива, обеспечит возможность переключаться с одного режима на другой в зависимости от обстоятельств, добиваясь тем самым оптимального прогрева помещения и экономичного расхода топлива.
Если при выборе оборудования и последующем расчете характеристик котла отопления для частного дома, у вас возникли трудности, всегда можно обратиться к консультантам «Теплодар», которые помогут подобрать оптимальное решение для вашего дома.
Расчет рабочих параметров системы отопления
После того, как был выбран тип котла, можно приступать к расчету системы отопления частного дома. Для обустройства системы отопления необходимо вычислить требуемую мощность котла и другие важные параметры. Расчет отопления для частного дома не вызовет трудностей даже у человека, который далек от вопросов теплоснабжения, поскольку выполняется он по довольно простой формуле.
По этой формуле можно рассчитать требуемую мощность котла, исходя из информации о площади комнат.
Важно: при определении суммарной площади комнат для расчета необходимо учитывать не только те помещения, где будут установлены радиаторы, но все помещения, которые имеют хотя бы одну внешнюю стену, соприкасающуюся с внешней средой.
То есть, чтобы просчитать систему обогрева, нужно сложить площади комнат с внешними стенами и добавить небольшой запас мощности к полученному результату. Второй параметр, нужный для расчетов, – это поправка на особенности климата. Ее высчитывают, исходя из того, в каком регионе и, соответственно, климатической зоне находится отапливаемый дом. Так, для центральных регионов с довольно мягкими зимами коэффициент климатической мощности составит 1,3 – 1,6 кВт, для южных и того меньше – 0,8 – 0,95 кВт, а вот для северных – 1,6 – 2,2 кВт.
Зная площадь всех комнат с внешними стенами и коэффициент климатической мощности, можно выполнить расчет. Допустим, общая площадь комнат в нашем доме составляет 100 м2, а расположен он в зоне с умеренным климатом:
Nk=100 × 1,3 / 10=13 кВт
Значит, нам потребуется котел мощностью в 15-16 кВт. Небольшой запас мощности закладывают на случай увеличения площади дома за счет пристроек или для особенно «суровой» зимы.
Если вы сомневаетесь в точности расчетов, то всегда можете подобрать котел, обратившись к менеджерам компании «Теплодар». Достаточно лишь назвать площадь помещения, вид топлива и дополнительные функции, и специалист подберет для вас варианты, подходящие под эти требования. Также можно ограничить подборку по цене.
Как определить, сколько секций должно быть у радиаторов отопления?
Помимо определения мощности котла, расчет отопительной системы включает также вычисление оптимального количества секций у батарей отопления. Без этой информации можно ошибиться с покупкой, и тогда даже самый мощный котел не справится со своими задачами.
Но не стоит пугаться: посчитать, сколько секций необходимо, еще проще, чем вычислить мощность котла. Нужно лишь взять площадь комнаты, где планируется установить батарею, умножить эту цифру на сто. А потом разделить на мощность одной батареи отопления.
Поскольку, как правило, одна батарея отапливает только одну комнату, складывать площадь всех жилых помещений не потребуется. Исключением может стать ситуация, когда комната, где будет установлена батарея, соседствует с другой неотапливаемой комнатой. Тогда для вычисления количества секций нужно использовать их суммарную площадь.
Почему площадь нужно делить на сто? Это число появилось в формуле благодаря требованиям СНиПов, где указано, что на каждый квадратный метр площади жилого помещения необходимо 100 Вт мощности.
Мощность секции радиатора — параметр индивидуальный. Он зависит от того, из какого материала выполнен конкретный радиатор. Если информации о радиаторе нет, либо владелец дома пока не определился с выбором, можно использовать для расчета значение в 200 Вт, это среднестатистическая мощность, которой обладает одна секция большинства современных радиаторов отопления.
Имея все перечисленные выше данные, можно приступать к подбору батарей. Допустим, нам необходимо рассчитать радиатор для гостиной площадью в 25 м2
n=25 × 100|180=13,88=14
То есть нам понадобится радиатор с четырнадцатью секциями. Если в продаже отсутствуют подобные модели, то можно выбрать батарею с максимально близким числом секций, но в большую сторону. Большее количество секций необходимо для запаса мощности.
Важно: если комната, где будет размещен радиатор, угловая, либо расположена в торце здания, в расчете необходимо использовать коэффициент 1,2. На него нужно умножить получившееся число. То есть в нашем случае для угловой комнаты следует выбирать батарею с семнадцатью секциями.
Радиаторы из какого материала лучше выбрать?
От материалов, применяемых при изготовлении батареи отопления, зависит не только стоимость обустройства отопительного контура дома, но и конструктивные характеристики системы отопления.
- Самый доступный вариант – это батареи из стали. Они дешевы, но имеют небольшую мощность, поэтому плохо справляются с прогревом просторных помещений.
- Чугунные батареи долговечны и надежны в эксплуатации. Кроме того, они служат украшениям интерьера, благодаря своему эстетичному внешнему виду. Батареи из чугуна – отличный выбор, если у вашего дома кирпичные стены. А вот стены деревянного или шлакоблочного строения могут не справиться с нагрузкой: такие радиаторы очень тяжелые.
- Также в продаже можно встретить алюминиевые и биметаллические радиаторы.
Батареи из алюминия – не лучший вариант в многоквартирных домах, так как они подвержены преждевременному износу из-за низкого качества теплоносителя в системе. Но в загородном доме такие радиаторы будут служить долго. Главное – использовать только чистую воду.
- При покупке радиатора стоит обратить внимание на анодированные модели, которые имеют повышенную защиту от коррозии, такие радиаторы стоят дороже, но имеют более долгий срок службы. Срок эксплуатации может достигать 30-ти лет, а значит, не придется тратиться на новые батареи и ремонтные работы в ближайшем будущем.
Широкий выбор радиаторов самых разных моделей позволит не только купить батарею с нужным количеством секций, но и подобрать прибор отопления, который максимально впишется в интерьер комнаты.
Подводя итоги
Для того чтобы в доме всегда царила атмосфера уюта и тепла, не стоит пренебрегать тщательным расчетом параметров системы отопления и экономить на котле или радиаторах. Приобретая качественное оборудование, вы сможете сэкономить на отоплении, что окупит изначальные вложения с лихвой. При выборе отопительного котла следует руководствоваться тем, какой вид топлива доступен в населенном пункте, где находится дом. Чтобы быть готовым к любым непредвиденным ситуациям, лучше выбрать котел, который можно переоборудовать для работы на другом виде топлива. Так, твердотопливные котлы «Теплодар» можно без дополнительных слесарных работ оснастить газовой или пеллетной горелкой.
Используя полученные из статьи знания, вы можете легко и быстро выполнить расчет отопительного контура и на основании полученных данных выбрать радиатор и батареи отопления. Эта простая формула для расчетов подойдет как для жилых помещений, так и для гаражей, придомовых построек и даже технических помещений и магазинов.
Калькулятор расчета отопления по площади
На сайте компании «Еврострой Инжиниринг» представлен калькулятор отопления дома: специальная программа позволит рассчитать параметры системы обогрева и определить требуемое количество радиаторов. Расчет проводится по нескольким направлениям, так как для определения требуемой мощности нужно знать архитектурные параметры здания и объемы теплопотерь. Программа позволит упростить и ускорить расчеты, она основана на всестороннем анализе характеристик частного дома и возможном объеме теплопотерь.
Параметры расчета отопления дома на калькуляторе
Чтобы узнать требуемую мощность отопительного котла, количество труб и радиаторов, нужно определить следующие параметры:
-
Площадь здания и количество этажей. По стандартной формуле на 10 кв. метров площади помещения потребуется 1 кВт мощности оборудования. Однако также необходимо учитывать количество комнат, высоту потолков, количество и размеры окон.
-
Объем теплопотерь. Обычно теплопотери дома варьируются в пределах от 50 до 150 Вт/кв.м, они зависят от утепленности здания, типа установленных стеклопакетов. Верхние этажи здания теряют больше тепла, чем нижние.
-
Температурный режим.
Стандартным вариантом для расчетов является европейский режим 75/65/20, на него ориентированы западные отопительные котлы.
-
Мощность радиаторов и количество секций. Калькулятор расчета отопления по площади радиаторов позволит определиться с предстоящими затратами на покупку и установку оборудования. Эффективность теплопередачи зависит от выбранного типа радиаторов.
-
Гидравлические расчеты. В зависимости от требуемого уровня давления рассчитывается оптимальный диаметр труб и параметры работы циркуляционного насоса. Правильно рассчитанное давление обеспечит стабильную циркуляцию теплоносителя по всем комнатам и равномерное распределение тепла.
Результатами расчетов станут оптимальная мощность отопительного котла для комфортной температуры во всех комнатах, количество, тип и площадь радиаторов, оптимальный диаметр трубопровода. Эти данные необходимы для закупки и монтажа оборудования, а также для расчета предстоящих затрат на ежегодный обогрев. Проведение расчетов требует специальных знаний о работе инженерных систем, поэтому владельцу загородного дома проще воспользоваться готовой программой и указать нужные параметры.
Применение онлайн-калькулятора
Монтаж системы отопления потребует немалых затрат, поэтому недопустимы любые ошибки в проектных расчетах. Предлагаемый онлайн-калькулятор отопления позволит заранее оценить предстоящие затраты: программа разработана для расчета отопления дач с осенне-весенним отоплением и загородных домов с капитальным зимним обогревом.
Для получения нужных данных проведите дома базовые замеры и введите данные в поля программы. Расчет проводится мгновенно, вы получите всю необходимую информацию по выбору оборудования. Онлайн-программа разработана на основе существующих стандартов отопления с учетом климатических особенностей Московской области. Для других регионов необходимо применять региональные коэффициенты, которые рассчитываются по средней температуре зимой, влажности и другим параметрам.
Данные, полученные с помощью калькулятора, в любом случае окажутся только приблизительными. Для точного расчета необходимо вызвать на объект специалиста компании «Еврострой Инжиниринг», при проектировании учитываются конкретные особенности каждого здания. Проектирование займет немного времени, и вы узнаете стоимость предстоящей закупки оборудования и его монтажа.
Расчет отопления по площади помещения калькулятор: количество секций на радиаторе, для батарей, тепло в квартире
Главная / Радиаторы / Как рассчитать радиаторы отопления на площадь квартиры
Как рассчитать радиаторы отопления так, чтобы температура в квартире была предельно комфортной — вопрос, который возникает у каждого, кто решился на ремонт. Слишком малое количество секций не будет полностью прогревать помещение, а излишек только повлечёт за собой слишком большие траты на коммунальные услуги. Итак, что необходимо учитывать, чтобы правильно подсчитать размеры батарей?
Как рассчитать радиаторы отопления на площадь квартиры
Предварительная подготовка
Что необходимо учитывать для рассчета мощности радиатора отопления на комнату:
- определить температурный режим и потенциальные термопотери;
- разработать оптимальные технические решения;
- определить тип теплового оборудования;
- установить финансовые и тепловые критерии;
- учесть надёжность и технические параметры обогревательных приборов;
- составить схемы теплопровода и расположение батарей для каждого помещения;
Без помощи специалистов и дополнительных программ рассчитать количество секций радиаторов отопления достаточно сложно. Чтобы расчёт был наиболее точен, не обойтись без тепловизора или специально установленных для этого программ.
Необходимая мощность радиаторов отопления
Что будет, если провести вычисления неправильно? Основное последствие — более низкая температура в помещениях, а следовательно, и эксплуатационные условия не будут соответствовать желаемому. Слишком мощные отопительные приборы приведут к избыточным тратам как на сами приборы и их монтаж, так и на коммунальные услуги.
Самостоятельные подсчёты
Можно приблизительно подсчитать, какой должна быть мощность батарей, использовав только рулетку для измерения длины и ширины стен и калькулятор. Но точность таких вычислений крайне мала. Погрешность будет составлять 15-20%, но такое вполне допустимо.
Формула для расчета
Вычисления в зависимости от типа отопительных приборов
При выборе модели учитывайте, что тепловая мощность зависит от материала, из которого они сделана. Методы вычисления размеров секционных батарей не отличаются, а вот итоги выйдут разными. Есть среднестатистические значения. На них и стоит ориентироваться, выбирая оптимальное число отопительных приборов. Мощности отопительных приборов с секциями в 50 см:
- батареи из алюминия — 190 Вт;
- биметаллические — 185 Вт;
- чугунные приборы обогрева — 145 Вт;
Таблица для расчета количества секций батареи
Чтобы правильно рассчитать радиаторы отопления по площади комнаты, важно знать не только мощность, но и сколько квадратов обогревает одна секция, значение этого параметра зависит от металла:
- алюминий — 1,9-2 м кв.;
- алюминий и сталь — 1,8 м кв.;
- чугун — 1,4-1,5 м кв;
Вот пример вычисления количества секций алюминиевых радиаторов отопления. Допустим, что размеры комнаты 16 м. кв. Выходит, что на помещение такого размера нужно 16м2/2м2 = 8 шт. По такому же принципу считайте для чугунных или биметаллических приборов. Важно только точно знать норму — приведённые выше параметры верны для моделей высотой в 0,5 метра.
Виды радиаторов отопления
На данный момент выпускаются модели от 20 до 60 см. Соответственно площадь, которую способна обогреть секция, будет отличаться. Самые маломощные модели — бордюрные, высотой в 20 см. Если вы решили приобрести тепловой агрегат нестандартных размеров, то в вычислительную формулу придётся вносить корректировку. Ищите необходимые данные в техпаспорте.
При внесении корректировок стоит учитывать, что размер батарей напрямую влияет на теплоотдачу. Следовательно, чем меньше высота при той же ширине, тем меньше площадь, а вместе с ними и мощность. Для верных подсчётов найдите соотношение высот выбранной модели и стандартной, а уже с помощью полученных данных подкорректируйте результат.
Расчитываем, насколько сильно должна греть батарея
Допустим, вы выбрали модели высотой 40 см. В этом случае расчёт количества секций алюминиевых радиаторов отопления на площадь комнаты будет выглядеть следующим образом:
- воспользуемся предыдущими подсчётами: 16м2/2м2 = 8штук;
- посчитайте коэффициент 50см/40см = 1,25;
- подкорректируйте вычисления по основной формуле — 8шт*1,25 = 10 шт.
Расчёт количества радиаторов отопления по объёму начинается в первую очередь со сбора необходимой информации. Какие параметры нужно учесть:
- Площадь жилья.
- Высота потолков.
- Число и площадь дверных и оконных проёмов.
- Температурные условия за окном в период отопительного сезона.
Теплопотери
Нормы и правила, установленные для мощности отопительных проборов, регламентируют минимально допустимый показатель на кв. метр квартиры — 100 Вт.
Расчёт радиаторов отопления по объему помещения будет более точен, чем тот, в котором за основу берётся только длина и ширина.
Итоговые результаты корректируются в зависимости от индивидуальных характеристик конкретного помещения. Делается это посредством умножения на коэффициент корректировки.
При вычислении мощности отопительных приборов берётся среднестатистическая высота потолков — 3 м. Для квартир с потолком 2,5 метра этот коэффициент составит 2,5м/3м = 0,83, для квартир с высокими потолками 3,85 метров — 3,85м/3м = 1,28. Угловые комнаты потребуют внесения дополнительных корректировок. Итоговые данные умножаются на 1,8.
Расчёт количества секций радиатора отопления по объему помещения должен проводиться с корректировкой, если в комнате одно окно большого размера или сразу несколько окон (коэффициент 1,8).
Радиаторы отопления с нижним подключением
Нижнее подключение также потребует внести свои корректировки. Для такого случая коэффициент составит 1,1.
- В районах с экстремальными погодными условиями, где зимние температуры достигают рекордно низких показателей, мощность должна быть увеличена в 2 раза.
- Пластиковые стеклопакеты, наоборот, потребуют корректировку в сторону уменьшения, за основу берётся коэффициент 0,8.
- В выше приведённых данных приведены усреднённые значения, поскольку не были дополнительно учтены:
- толщина и материал стен и перекрытий;
- площадь остекления;
- материал напольного покрытия;
- наличие или отсутствие утеплителя на полу;
- занавески и гардины в оконных проёмах.
Дополнительные параметры для более точных вычислений
Работа с тепловизором
Точный расчёт количества радиаторов отопления на площадь не обойдётся без данных из технических документов. Это важно, чтобы точнее определить значение теплопотерь. Лучше всего определить уровень потери тепла с помощью тепловизора. Прибор быстро определит самые холодные области в помещении.
Всё было бы в разы легче, если каждая квартира была построена по стандартной планировке, но это далеко не так. В каждом доме или городской квартире свои особенности. С учётом множества характеристик (числа оконных и дверных проёмов, высоты стен, площади жилья и пр.) резонно возникает вопрос: как же рассчитать количество радиаторов отопления?
Расчет радиаторов отопления по площади
Особенности точной методики в том, что для вычислений необходимо больше коэффициентов. Одно из важных значений, которое нужно вычислить — это количество тепла. Формула отлична от предыдущих и выглядит следующим образом: КТ = 100 Вт/м2*П*К1*К2*К3*К4*К5*К6*К7.
Подробнее о каждом значении:
- КТ — количество тепла, которое нужно для обогрева.
- П — размеры комнаты м2.
- К1 — значение этого коэффициента учитывает качество остекления окон: двойное — 1,27; пластиковые окна с двойным стеклопакетом — 1,0; с тройным — 0,85.
- К2 — коэффициент, учитывающий уровень теплоизоляционных характеристик стен: низкая — 1,27; хорошая (например двухслойная кирпичная кладка) — 1,0; высокая — 0,85.
- К3 — это значение учитывает соотношение площадей оконных проёмов и полов: 50% — 1,2; 40% — 1,1; 30% — 1,0; 20% — 0,9; 10% — 0,8.
- К4 — коэффициент, зависящий от среднестатистических температурных показателей воздуха в зимнее время года: — 35 °С — 1,5; — 25 °С — 1,3; — 20 °С — 1,1; — 15 °С — 0,9; -10 °С — 0,7.
- К5 зависит от числа внешних стен здания, данные этого коэффициента таковы: одна — 1,1; две — 1,2; три — 1,3; четыре — 1,4.
- К6 рассчитывается, исходя из типа помещения, находящегося этажом выше: чердак — 1,0; чердачное отапливаемое помещение — 0,9; отапливаемая квартира — 0,8.
- К7 — последний из корректировочных значений и зависит от высоты потолка: 2,5 м — 1,0; 3,0 м — 1,05; 3,5 м — 1,1; 4,0 м — 1,15; 4,5 м — 1,2.
Описанный расчёт секций батарей отопления по площади — наиболее точный, поскольку учитывает значительно больше нюансов. Полученное в ходе этих подсчётов число делится на значение теплоотдачи. Итоговый результат округляется до целого числа.
Корректировка с учётом температурного режима
В техпаспорте отопительного прибора указана максимальная мощность. Например, при температуре воды в теплопроводе 90°С во время подачи и 70°С в обратном режиме в квартире будет +20°С. Такие параметры обычно обозначают так: 90/70/20, но самые распространённые мощности в современных квартирах — 75/65/20 и 55/45/20.
Параметры теплоносителя системы отопления.
Для правильного расчёта необходимо для начала высчитать температурный напор — это разница между температурой самой батареи и воздуха в квартире. Учтите, что для вычислений берётся усреднённое значение между температурами подачи и обратки.
Как рассчитать количество секций алюминиевых радиаторов с учётом выше перечисленных параметров? Для лучшего понимания вопроса будут произведены вычисления для батарей из алюминия в двух режимах: высокотемпературном и низкотемпературном (расчёт для стандартных моделей высотой 50 см). Размеры комнаты те же — 16 м кв.
Одна секция алюминиевого радиатора в режиме 90/70/20 обогревает 2 кв метра., следовательно, для полноценного обогрева помещения понадобится 16м2/2м2 = 8 шт. При вычислении размера батарей для режима 55/45/20 нужно для начала подсчитать температурный напор. Итак, формулы для обеих систем:
- 90/70/20 — (90+70)/2-20 = 60°С;
- 55/45/20 — (55+45)/2-20 = 30°С.
Расчитываем количество секций в радиаторе отопления
Следовательно, при низкотемпературном режиме нужно увеличить размеры отопительных приборов в 2 раза. С учётом данного примера на помещении 16 кв. метров нужно 16 алюминиевых секций.
Учтите, что для чугунных приборов понадобится 22 секции при той же площади помещения и при таких же температурных системах.
Подобная батарея получится слишком большой и массивной, поэтому чугун меньше всего подходит для низкотемпературных контструкций.
С помощью этой формулы можно легко вычислить, сколько необходимо секций радиаторов на комнату с учётом желаемого температурного режима. Чтобы зимой в квартире было +25°С, просто поменяйте температурные данные в формуле теплового напора, а полученный коэффициент подставьте в формулу вычисления размера батарей. Допустим, при параметрах 90/70/25 коэффициент будет таким: (90+70)/2 — 25 = 55°С.
Далее нужно подсчитать соотношение 60°С/55°С = 1,1. В итоге, чтобы добиться температуры в +25 °С для помещения с высокотемпературным режимом понадобится 8шт*1,1 = 8,8. С округлением получится 9 штук.
Если не хочется тратить время на расчёт радиаторов отопления, можно воспользоваться онлайн-калькуляторами или специальными программами, установленными на компьютер.
Как пользоваться онлайн-калькулятором
Он-лайн калькулятор для расчета мощности радиаторов
Посчитать, сколько секций радиаторов отопления на кв. метр понадобится, можно с помощью специальных калькуляторов, которые всё посчитают в мгновение ока. Такие программы можно найти на официальных сайтах некоторых производителей. Воспользоваться этими калькуляторами легко.
Просто введите в поля все соответствующие данные и вам моментально будет выведен точный результат. Чтобы вычислить, сколько секций радиаторов отопления нужно на квадратный метр, надо вводить данные (мощность, температурный режим и т.д.) для каждой комнаты отдельно.
Если же помещения не разделены дверями, сложите их общие размеры, а тепло будет распространяться по обоим помещениям.
Интерфейс калькулятора отопления.
Во избежание неточностей при вычислениях, внимательно вводите все параметры и проверьте, насколько точные данные вы указали в соответствующих полях. Лучше несколько раз перепроверить, чем потом испытывать на себе последствия своих ошибок в виде слишком низкой или высокой температуры в доме.
Подведение итогов
Итак, из выше приведённых формул понятно, как правильно сделать расчёт алюминиевых (чугунных, биметаллических и др.) радиаторов для квартиры. Как видите, дело это не такое уж и сложное. Главное, внимательность и точность. Чтобы получить максимально правильные данные, используйте специальное оборудование.
Фотогалерея (11 фото)
25.11.2016
Источник: http://gopb.ru/radiatory/kak-rasschitat-radiatory-otopleniya-na-ploshhad-kvartiry/
Калькулятор расчета секций радиаторов: параметры для введения в таблицу, вычисление мощности отопления
Отопление
09.10.2018
5 тыс.
3.4 тыс.
7 мин.
Микроклимат в квартире зависит не только от внутренних, но и от многих внешних факторов, ведь даже в самом близкорасположенном от централизованной или автономной котельной доме может быть недостаточно тепло, если он стоит на розе ветров или его окна выходят на северную сторону. Кроме того, на оптимальное количество секций в радиаторах отопления влияет и схема их врезки в общую магистраль.
Автоматический расчет отопления по объему помещения и другим параметрам производится на основе подробного анализа семнадцати основных позиций, которые оказывают прямое воздействие на микроклимат в жилом помещении. В этот перечень входят следующие показатели:
- 1. Общая площадь квартиры или отдельной ее комнаты, если установка или замена отопительных приборов и примыкающим к ним элементам разводки будет осуществляться только в этой зоне.
- 2. Высота потолков в квартире, которая условно делится на 5 основных категорий: низкую — до 2,7 м, ниже средней — от 2,8 до 3 м, среднюю — от 3,1 до 3,5 м, выше средней — от 3,6 до 4 м, большую — свыше 4,1 м.
- 3. Общее количество наружных стен, под которым подразумевается, является ли комната угловой или нет.
- 4. Направление, в сторону которого смотрят окна. Всего специалисты выделяют две категории вместо четырех привычных: первая — северная, северо-восточная и восточная сторона, вторая — южная, юго-западная и западная.
- 5. Расположение дома по отношению к зимней розе ветров, что особенно важно для высотных зданий, построенных в местности с более низкими сооружениями. В этой категории принято выделять три основных параметра: наветренную, подветренную и расположенную параллельно направлению ветра сторону.
- 6. Максимально низкие температуры внешней среды в зимнее время года, характерные для конкретного региона проживания. Всего выделяется 7 температурных групп: не более -10 градусов, от -10 до -14, от -15 до -19 градусов, от -20 до -24, от -25 до -29, от -30 до -34, а также -35 и ниже.
- 7. Утепление наружных стен. Как правило, в новых домах оно полноценное, в то время как в типовых панельных многоэтажках этот уровень является критичным, поэтому его относят к категории «Утепление отсутствует». Если же хозяева проводили процедуру утепления собственными силами, привлекая специализированные строительные бригады альпинистов, или на повестке дня стоит вопрос о расчете количества батарей отопления в частном доме, то тогда в калькуляторе рекомендуется выбирать среднюю или полноценную степень качества наружной обшивки.
- 8. Характеристики объекта, расположенного под квартирой. В этом случае выделяется три категории: грунтовый пол или неотапливаемый объект, утепленный пол по грунту или над нежилым помещением без отопления и помещение с полноценным отоплением.
- 9. Данные о верхнем объекте: неотапливаемый чердак или нежилое помещение без утепления и обогрева, чердак с утеплением или любое другое помещение (чердачная котельная, фитнес-зал, бассейн и пр.), жилое отапливаемое помещение.
- 10. Варианты остекления окон и характеристики их рам. В настоящее время ведется учет по четырем основным группам: старые оконные рамы с обычным (двойным) остеклением, двойной стеклопакет с трехкамерным профилем, тройной стеклопакет с трех- или пятикамерным профилем, полное отсутствие остекления.
- 11. Общее количество окон в помещении, где будет устанавливаться радиатор отопления, или их полное отсутствие, что также бывает.
- 12. Высота оконного блока (вводится вручную в метрах).
- 13. Ширина блока.
- 14. Двери, ведущие на балкон или на улицу, и их количество.
- 15. Оптимальная схема установки радиаторов отопления. На выбор предлагается 6 базовых вариантов: диагональный (верхняя подача / нижняя обратка), односторонний (верх / низ), нижний последовательный, диагональный (нижняя подача / верхняя обратка), односторонний с другим вариантом подачи (низ / верх), седельный, который считается самым неэффективным и применяется в том случае, если особенности планировки не предполагают другого типа врезки в основную магистраль.
- 16. Расположение отопительного прибора: открытое, с верхним размещением подоконника, столешницы, полок и других элементов, с верхним расположением стеновой ниши, с перекрывающим декоративным экраном, с полной «зашивкой» батареи в декоративный кожух ли нишу.
- 17. Тип устанавливаемых радиаторов: цельная (неразборная) конструкция — ведется общий расчет теплоотдачи радиатора батарей отопления, необходимой для поддержания оптимальной температуры в помещении зимой, и разборная система — применение таких батарей предполагает проведение расчета необходимого количества секций для полноценного отопления комнаты.
Рассчитать количество радиаторов отопления на калькуляторе — дело простое, но, чтобы перестраховаться, необходимо проводить и ручные вычисления, учитывая все характеристики и особенности помещения.
Следует отметить, что такая формула будет актуальной для зон с умеренным климатом, а для более суровых зимних условий расчет мощности радиаторов отопления ведется по завышенным показателям, соответствующим норме в 150−200 Вт. В этом случае для отопления комнаты в 20 квадратных метров понадобится батарея на 3000−4000 Вт.
Мощностный запас при расчете можно делать, но совсем небольшой, особенно если квартира будет отапливаться от индивидуального котла, ведь тогда в значительной мере возрастают расходы.
Что же касается определения числа секций, то оно напрямую зависит от типа выбранных батарей. К примеру, средняя мощность одной секции обычного радиатора из биметалла составляет около 170 Вт.
И если дом располагается в умеренной климатической зоне, то 10 секций для обогрева 20-метрового помещения будет вполне достаточно (1600/170=9,41=10 секций).
Как округлять полученный результат (в большую или меньшую сторону) — выбор хозяина, главное — учитывать схему подключения радиатора к магистральным трубам, которая имеет огромное значение. Самым распространенным на сегодняшний день является боковой подвод одностороннего, диагонального и седельного типа, каждому из которых свойственны свои требования по расчету батарейных секций.
К примеру, односторонний вариант, который применяется чаще всего в квартирах с централизованным отоплением, где батареи располагаются в непосредственной близости от стояков, не предполагает установки длинных «гармошек», так как эффективность работы крайних секций будет стремиться к нулю из-за неравномерного распределения подающейся горячей воды. Максимальное количество секций в таких схемах не должно превышать 10 штук.
Самым эффективным вариантом врезки в общую магистраль, а также к индивидуальному газовому или электрическому водонагревателю считается диагональная схема, которая осуществляется посредством подачи в верхнее отверстие с одной стороны и выхода из нижнего — с другой. Кроме того, возможна и зеркальная схема, когда подачу подводят снизу, а обратку выводят из верхнего отверстия, ведь направление в этом случае не имеет особого значения.
Основное преимущество такого подключения в том, что горячая вода проходит через все секции, задерживаясь в каждой из них. А для того чтобы по максимуму использовать этот потенциал, рекомендуется подключать по диагонали только многосекционные «гармошки», где количество секций превышает 12.
Расчет отопления дома расчет тепловых потерь (часть 1)
Обращать внимание следует и на материал, из которого был построен дом, помня о том, что на обогрев панельного сооружения необходимо больше тепла, чем на поддержку оптимальной температуры в кирпичном здании.
Более точные данные можно найти в таблицах СНиП, согласно которым в первом случае на один кубический метр воздуха понадобится 41 Вт, в то время как во втором этот показатель снижается до 34 Вт.
При большой квадратуре и высоте потолков в жилом помещении эта разница будет серьезно ощутима.
На тепло в доме влияет и материал изготовления отопительных приборов. То есть радиаторы одинакового размера могут демонстрировать разную эффективность работы, если они были сделаны из отличных друг от друга материалов, и этот момент также обязательно следует учитывать.
В настоящее время в многоквартирных и частных домах принято устанавливать батареи трех типов. В этот перечень входят:
- Радиаторы из специального алюминиевого сплава, одна секция которых обладает мощностью в 190 Вт (показатель соответствует приборам с 50-сантиметровым осевым расстоянием).
- Биметаллические радиаторы с мощностью секции в 185 Вт.
- Чугунные батареи, мощность одной секции которых не превышает 145 Вт.
Расчет батарей отопления Правила и ошибки Свежие идеи
Зная потенциальную мощность одной секции прибора для отопления, можно легко вычислить площадь, которую она может обогреть. У стандартных алюминиевых батарей с осевой величиной в 50 см этот показатель соответствует 1,9 кв. м, в то время как у биметаллических и чугунных приборов он равен 1,85 и 1,45. Поэтому для отопления комнаты в 20 квадратов понадобится такое количество секций:
- Алюминиевые батареи: 20/1,9=10,53=11 секций.
- Биметаллические: 20/1,85=10,81=11 секций.
- Чугунные: 20/1,45=13,79=14 секций.
В подобных ситуациях вычисления выполняются по индивидуальной схеме. За основу для таких расчетов следует брать рекомендации, приведенные в прилагающемся к прибору отопления техническом паспорте (раздел «Установка и эксплуатация»).
Расчет батарей отопления. Правила и ошибки.
Источник: https://oventilyacii.ru/otoplenie/kalkulyator-rascheta-sektsij-radiatorov-otopleniya-po-ploshhadi.html
калькулятор расчета: количество секций радиатора для обогрева помещения — Тепло Проект
Биметаллические радиаторы становятся сегодня все популярней. Это достойная замена безнадежно устаревшему «чугуну». Приставка «би» означает «два», т.е. при изготовлении радиаторов используются два металла — сталь и алюминий.
Представляют собой алюминиевый каркас, внутри которого находится стальная труба. Такое сочетание является само по себе оптимальным.
Алюминий гарантирует высокую теплопроводность, а сталь — длительный срок эксплуатации и способность с легкостью выдерживать перепады давления теплосети.
Цены на популярные биметаллические радиаторы отопленияСовместить, казалось бы несовместимое, стало возможно благодаря особой технологии производства. Биметаллические радиаторы изготавливаются методом точечной сварки или литья под давлением.
Плюсы биметаллических радиаторов отопленияЕсли говорить о преимуществах, то у биметаллических радиаторов их много. Рассмотрим основные из них.
- длительный срок «жизни». Высокое качество сборки и надежный «союз» двух металлов превращает радиаторы в «долгожителей». Они способны исправно служить до 50 лет;
- прочность. Стальная сердцевина не боится скачков давления, свойственным нашим отопительным системам;
- высокая теплоотдача. Благодаря наличию алюминиевого корпуса биметаллический радиатор быстро нагревает помещение. В некоторых моделях данный показатель достигает 190 Вт;
- устойчивость к образованию ржавчины. С теплоносителем контактирует только сталь, а значит, биметаллическому радиатору не страшна коррозия. Это качество становится особенно ценным при проведении сезонных чисток и сбрасывании воды;
- приятная «внешность». Биметаллический радиатор внешне намного привлекательнее своего чугунного предшественника. Скрывать его от посторонних глаз занавесками или специальными экранами нет необходимости. Кроме того, радиаторы отличаются по цветовому оформлению и дизайну. Вы можете выбрать то, что нравится именно вам;
- небольшой вес. Значительно упрощает процесс монтажа. Теперь установка батареи не потребует больших затрат сил и времени;
- компактный размер. Биметаллические радиаторы ценятся за небольшой размер. Они достаточно компактны и легко вписываются в любой интерьер.
Корректировка результатов
Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла.
Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п.
Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.
Количество радиаторов зависит от величины потерь тепла
Окна
На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:
- соотношение площади окна к площади пола:
- 10% — 0,8
- 20% — 0,9
- 30% — 1,0
- 40% — 1,1
- 50% — 1,2
- остекление:
- трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
- обычный двухкамерный стеклопакет — 1,0
- обычные двойные рамы — 1,27.
Стены и кровля
Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.
Степень теплоизоляции:
- кирпичные стены толщиной в два кирпича считаются нормой — 1,0
- недостаточная (отсутствует) — 1,27
- хорошая — 0,8
Наличие наружных стен:
- внутреннее помещение — без потерь, коэффициент 1,0
- одна — 1,1
- две — 1,2
- три — 1,3
На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).
Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора
Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.
Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.
Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.
Климатические факторы
Можно внести корректировки в зависимости от средних температур зимой:
- -10оС и выше — 0,7
- -15оС — 0,9
- -20оС — 1,1
- -25оС — 1,3
- -30оС — 1,5
Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.
Виды обогревающих устройств основные характеристики
До приобретения элементов отопительной системы необходимо не просто произвести их расчёт, а просчитать всю систему, чтобы отдельные её составляющие взаимно соответствовали по всем показателям. К таким элементам относятся:
- котлы отеплительной сети;
- радиаторы;
- трубопроводы;
- циркулярный насос, если таковой предусмотрен проектом;
- бачок расширительный – в настоящее время используются, как правило, мембранные агрегаты.
Что нужно знать при выборе радиаторов
Приобретая батареи отопительной системы, нужно учесть такие параметры:
- Выполнить расчёт количества секций радиаторов отопления, исходя из числа отапливаемых помещений в доме.
- Максимально допустимое рабочее давление.
- Мощность.
- Конструктивные особенности, которые могут оказать влияние на порядок монтажа отопительной сети и необходимые для этого комплектующие изделия.
В настоящее время строительный рынок предлагает следующие основные виды теплообменников для отопительных систем.
Чугунные
Они изготавливаются способом литья, и по сей день считаются самыми выгодными в эксплуатационном отношении. Могут выпускаться в навесном и опорном варианте – на ножках. Долговечность составляет до 30 лет;
Чугун, обладая прекрасными литьевыми свойствами, издавна использовался для выпуска художественных изделий, это свойство применяется и для изготовления радиаторов для обогрева помещений.
Кроме того, литые изделия из чугуна массивны и способны долгое время сохранять тепло, что является идеальным свойством для систем обогрева. Место их установки – вдоль стен помещения.
Стальные
- Производятся в нескольких модификациях. Обычно состоят из штампованных листовых деталей, в ряде случаев соединяемых сваркой;
- для производства теплообменников применяется металл толщиной до 1,5 миллиметров, поэтому тепловая ёмкость изделия невелика, но это качество даёт возможность регулировки температуры в течение короткого времени.
- Стальные образцы панельного типа характерны большим количеством различных типоразмеров, что даёт возможность подбора обогревателя в любых условиях монтажа.
Алюминиевые
Радиаторы из алюминиевых сплавов в секционном исполнении имеют небольшим весом, просты в монтаже. Обладая высокой теплопроводностью, эффективно передают тепло от системы отопления во внешнее пространство. Их недостатком является повышенная способность осаждать на поверхности ржавчину из теплоносителя.
Поэтому, при желании использовать такие изделия в качестве теплообменников нужно тщательно подбирать соответствующий носитель энергии. Специалистами срок службы алюминиевых радиаторов оценивается в 3-5 лет при прочих равных условиях. Только используя специальные растворы, можно увеличить его ещё на 2-3 года.
В общем, радиаторы из этого материала – это объект постоянного внимания.
К положительным сторонам этих изделий можно отнести презентабельный внешний вид и простоту ухода за ними.
Биметаллические
Такие устройства для передачи тепла объединяют в себе лучшие свойства стальных и алюминиевых изделий. Их внутренняя часть в местах контакта с теплоносителем, изготавливается из нержавеющей стали. Это предопределяет длительный срок устройства, поскольку основной материал устойчив к агрессивным средствам и не склонен адсорбировать элементы ржавчины. Наружная же часть проявляет свои лучшие качества, соответствующие материалу изготовления. Она имеет презентабельный внешний вид, легко поддаётся уходу и чистке.
Поскольку внутренняя часть из нержавеющей стали изготавливается из тонкостенного металла, её низкая теплопроводность не сказывается на работе прибора отрицательно.
Медные теплообменники
Применение этого материала для изготовления устройств теплопередачи в схемах отопления известно давно. Но настоящий ренессанс такие изделия получили только в последнее время. Дело в том, что для систем обогрева применяется только чистая рафинированная медь, а сейчас её получение обеспечивается сравнительно недорогими технологическими методами.
- Достаточно сказать, что при одинаковых характеристиках, медный радиатор весит в разы меньше, а теплопередача от него в разы выше.
- Это способствует значительному снижению затрат на энергоресурсы для отопления зданий жилого и промышленного назначения.
- Медь имеет достаточно высокие показатели механической прочности, что позволяет использовать трубы из неё при температуре до 150 градусов при давлении в 16 атмосфер.
- Кроме того, отопительные системы из меди имеют презентабельный внешний вид.
Цель расчетов
Источник: https://www.tproekt.com/kalkulator-rasceta-kolicestvo-sekcij-radiatora-dla-obogreva-pomesenia/
Калькулятор расчета количества секций радиаторов отопления и необходимые пояснения
В подавляющем числе случаев основными приборами конечного теплообмена в системах отопления остаются радиаторы. Значит, важно не только правильно заранее рассчитать требуемую тепловую мощность котла отопления, но и правильно расставить приборы теплообмена в помещениях дома или квартиры, чтобы обеспечить комфортный микроклимат в каждом из них.
Калькулятор расчета количества секций радиаторов отопления
В этом вопросе поможет калькулятор расчета количества секций радиаторов отопления, который размещен ниже. Он также позволяет определить необходимую суммарную тепловую мощность радиатора, если тот является неразборной моделью.
Если в ходе расчетов будут возникать вопросы, то ниже калькулятора размещены основные пояснения по его структуре и правилам применения.
Калькулятор расчета количества секций радиаторов отопленияПерейти к расчётам
Некоторые разъяснения по работе с калькуляторомЧасто можно встретить утверждение, что для расчета требуемой тепловой отдачи радиаторов достаточно принять соотношение 100 Вт на 1 м² площади комнаты.
Однако, согласитесь, что такой подход совершенно не учитывает ни климатических условий региона проживания, ни специфики дома и конкретного помещения, ни особенностей установки самих радиаторов.
А ведь все это имеет определенное значение.
В данном алгоритме за основу также взято соотношение 100 Вт/м², однако, введены поправочные коэффициенты, которые и внесут необходимые коррективы, учитывающие различные нюансы.
— Площадь помещения – хозяевам известна.
— Количество внешних стен – чем их больше, тем выше теплопотери, которые необходимо компенсировать дополнительной мощностью радиаторов. В угловых квартирах часто комнаты имеют по две внешних стены, а в частных домах встречаются помещения и с тремя такими стенами. В то же время бывают и внутренние помещения, в которых теплопотери через стены практически отсутствуют.
— Направление внешних стен по сторонам света. Южная или юго-западная сторона будет получать какой-никакой солнечный «заряд», а вот стены с севера и северо-востока Солнца не видят никогда.
— Зимняя «роза ветров» – стены с наветренной стороны, естественно, выхолаживаются намного быстрее. Если хозяевам этот параметр неизвестен, то можно оставить без заполнения – калькулятор рассчитает для самых неблагоприятных условий.
— Уровень минимальных температур – скажет о климатических особенностях региона. Сюда должны вноситься не аномальные значения, а средние, характерные для данной местности в самую холодную декаду года.
— Степень утепления стен. По большому счету, стены без утепления – вообще не должны рассматриваться. Средний уровень утепления будет соответствовать, примерно, стене в 2 кирпича из пустотного керамического кирпича. Полноценное утепление – выполненное в полном объеме на основании теплотехнических расчетов.
— Немалые теплопотери происходят через перекрытия – полы и потолки. Поэтому важное значение имеет соседство помещения сверху и снизу – по вертикали.
— Количество, размер и тип окон – связь с теплотехническими характеристиками помещения очевидна.
— Количество входных дверей (на улицу, в подъезд или на неотапливаемый балкон) – любое открытие будет сопровождаться «порцией» поступающего холодного воздуха, и это необходимо каким-то образом компенсировать.
— Имеет значение схема врезки радиаторов в контур – теплоотдача от этого существенно изменяется. Кроме того, эффективность теплообмена зависит и от степени закрытости батареи на стене.
— Наконец, последним пунктом будет предложено ввести удельную тепловую мощность одной секции батареи отопления.
В результате будет получено требуемое количество секций для размещения в данном помещении.
Если расчет проводится для неразборной модели, то этот пункт оставляют незаполненным, а результирующее значение берут из второй строки расчета – она покажет необходимую мощность радиатора в кВт.
В расчетное значение уже заложен необходимый эксплуатационный резерв.
Что необходимо еще знать про радиаторы отопления?
При выборе этих приборов теплообмена следует учитывать ряд важных нюансов. Подробнее об этом можно узнать в публикациях нашего портала, посвящённых стальным, алюминиевым и биметаллическим радиаторам отопления.
Источник: https://stroyday.ru/kalkulyatory/sistemy-otopleniya/kalkulyator-rascheta-kolichestva-sekcij-radiatorov-otopleniya.html
Калькулятор расчета количества секций радиаторов
Калькулятор радиаторов отопления предназначен для расчета количества секций радиатора, обеспечивающих необходимый тепловой поток, возмещающий теплопотери рассчитываемого помещения и поддержания на заданном уровне температуры, отвечающей условиям теплового комфорта и/или требованиям технологического процесса. Расчет производится с учетом теплопотерь ограждающих конструкций, а также особенностей системы отопления.
Для более точного расчета обратитесь к производителям выбранной модели радиатора.
Вопросы отопления являются основополагающими как для частного хозяйства, так и квартир в многоэтажном доме. Особенно они актуальны для РФ, большая часть территории которой находится в зоне пониженных температур. Для создания оптимальных и благоприятных температурных условий в помещениях разрабатывается множество материалов с усиленными теплоизоляционными свойствами.
Каждый год на рынках появляются высокотехнологичные и эффективные системы теплоснабжения. Но особое внимание всегда уделяется радиаторам, поскольку они являются конечным звеном в отопительной цепи. Отдаваемое ими тепло служит главным критерием работы всей системы теплоснабжения.
Несмотря на важность роли, которая отведена радиаторам отопления, они остаются самыми консервативными элементами в строительной индустрии.
Инновационные нововведения в этой сфере появляются редко, хотя исследователи постоянно работают над совершенствованием конструкций изделий.
В современном тепловом обеспечении зданий и сооружений используется 4 основных типов, и данный калькулятор подскажет как рассчитать сколько необходимо радиаторов отопления на 1 м2.
Их классификация предопределяется материалами изготовления, в соответствии с которыми они подразделяются на:
- Стальные
- Чугунные
- Алюминиевые
- Биметаллические
Каждая из моделей обладает уникальными свойствами и существенными недочетами
Стальные радиаторы подразделяются на панельные и трубчатые. Панельные, именуемые также конвекторами, обладают КПД, достигающим 75%. Это высокий показатель эффективной работы всей системы.
Другое их достоинство – дешевизна. Панели обладают малой энергетической емкостью, что позволяет снижать расходы теплового носителя.
К недостаткам относится низкая стойкость против коррозии после слива воды.
Изделия просты в эксплуатации. По мере необходимости нагревательные панели могут легко наращиваться до 33 штук. Относительно низкая стоимость делает их самыми распространенными продуктами в модельном ряду.
Российские бренды сейчас занимают лидирующие позиции на внутреннем рынке. Импорт зарубежной продукции достаточно дорогой, а российские производители уже наладили выпуск панельных систем радиаторов, которые по качеству не уступают зарубежным аналогам.
Трубчатые системы радиаторов по конструкции состоят из стальных труб, в которых циркулирует теплоноситель. Данные приборы достаточно технологически сложны для промышленного производства. Это сказывается на цене конечной продукции.
Трубчатые радиаторы полностью сохраняют все преимущества панельных, но по сравнению с ними имеют более высокое рабочее давление 9-16 бар против 7-10 бар.
По показателям тепловой мощности (120 – 1600 Вт) и максимальной температуре нагрева воды (120 градусов) обе модели сопоставимы друг с другом.
Если вы не знаете как правильно рассчитать количество радиаторов, воспользуйтесь онлайн калькулятором.
Алюминиевые отопительные приборы изготовлены из одноименного материала или его сплавов. Подразделяются они на литые и экструзионные.
Эта разновидность чаще всего применяется в системах автономного теплоснабжения в индивидуальных хозяйствах. Для централизованного отопления данный вид не подходит, так как чувствителен к качеству теплоносителя.
Они могут быстро выйти из строя, если в воде есть агрессивные примеси и не выдерживают сильных давлений.
Алюминиевые радиаторы не подходят для централизованного отопления
Радиаторы, изготовленные путем литья, отличаются широкими каналами для теплоносителя и упрочненными стенками увеличенной толщины. Имеют несколько секций, число которых можно увеличивать или снижать.
Экструзионный метод изготовления приборов основан на механическом выдавливании элементов из алюминиевого сплава. Весь процесс относительно дешевый, но конечный продукт имеет цельный вид. Количество секций не подлежит изменению.
Алюминиевые радиаторы обладают очень высокой теплоотдачей, быстро нагревают помещение и просты при монтаже, так как имеют небольшой вес.
Но алюминий вступает в химические реакции с теплоносителем, поэтому ему требуется хорошо очищенная вода. Слабое место – стыковки секций с трубными соединениями. Со временем возможны протечки. Они не ударопрочные.
По давлению, температурному режиму и другим характеристикам коррелируют со стальными радиаторами.
Чугунные радиаторы являются самым традиционным элементом теплоснабжения. За долгие годы они практически не видоизменялись, но сохранили свою популярность и просты по форме и дизайну. Долговечны, надежны, хорошо держат тепло.
Могут долго сопротивляться коррозии и воздействию химических реагентов. По температурному режиму не уступают другим приборам аналогичной комплектации. По давлению и мощности – превосходят, но сложны в установке и транспортировке.
Биметаллические устройства обычно имеют трубчатый стальной сердечник и алюминиевый корпус. Такие отопительные устройства выдерживают высокое давление. В целом, они отличаются повышенной надежностью и прочностью.
При низкой инерционности обладают высокой теплоотдачей и низким расходом воды, не боятся гидравлических ударов. По базовым показателям в 1,5-2 раза превосходят аналогичные устройства. Главный недостаток – высокая цена.
Общие сведения по результатам расчетов
- Количество секций радиатора
- Кол-во тепла, необходимое для обогрева
- Кол-во тепла, выделяемое радиатором
- Кол-во тепла, выделяемое одной секцией
— Расчетное кол-во секций радиатора, с обеспечением необходимого теплового потока для достаточного обогрева помещения при заданных параметрах.
— Общие теплопотери помещения с учетом особенностей данного помещения и особенностей функционирования системы отопления.
— Общий тепловой поток от всех секций радиатора, выделяемый в помещение при заданной температуре теплоносителя.
— Фактический тепловой поток, выделяемый одной секцией радиатора с учетом особенностей системы отопления.
Калькулятор работает в тестовом режиме.
Источник: https://stroy-calc.ru/raschet-sekciy-radiatora
Расчет чугунных радиаторов, расчет количества чугунных радиаторов
В данный момент заявку на расчет отопления Вы сможете отправить на
Email: [email protected]
|
|
Расчет производится в течении 1-2 дней, т.к. загрузка наших инженеров очень большая!
Результаты расчета и советы по построению отопления отправляются в ответ на запрос, на Ваш Email!
Расчет мы производим совершенно бесплатно! В замен просим рассказать о нас Вашим друзьям в социальных сетях!
Спасибо!
Получить профессиональный расчет радиаторов отопления БЕСПЛАТНО!Отправить заявку для расчета радиаторов отопления профессионалами, расчет абсолютно БЕСПЛАТНЫЙ!
От вас требуется сообщить параметры вашей квартиры:
- Кол-во кв/м.
- Количество этажей в доме
- Ваш этаж
- Угловая квартира? (Да/Нет)
- …
ОТПРАВИТЬ ЗАЯВКУ
Перед тем как менять отопление в квартире или частном доме, воспользуйтесь для расчета чугунных радиаторов нашим онлайн калькулятором!
Чугунный калькуляторы применяются очень давно, они очень надежны и имеют просто колоссальную теплоотдачу по сравнению с другими видами радиаторов. Их явным преимуществом как раз и является высокая теплоотдача и способность выдерживать очень высокие давления в системе отопления.
Расчет количества чугунных радиаторов происходит по аналогии с другими радиаторами, полная инструкция описана на главной страничке.
Чугунные радиаторы отопления расчет позволяет безошибочно определить сколько нужно секций для вашего помещения, дополнительные параметры позволят сделать рассчет максимально точным!
Как правильно рассчитать мощность и количество секций радиаторов отопления
Содержание статьи:
Мы строим или реконструируем частный дом, ввязались в капремонт квартиры. Оборудуем офис, теплый гараж, отапливаемое помещение иного назначения. Продумали систему отопления, подобрали основное оборудование: котел и его обвязку, бойлер, системы теплого пола. Либо, если это квартира, решили заменить существующий отопительный прибор более эстетичным и эффективным, может быть, добавить несколько дополнительных секций старой батарее. Будем считать, что мы уже сделали выбор типа греющих приборов: наборные секционные чугунные, алюминиевые батареи, биметаллические приборы либо готовые панельные стальные радиаторы. Не забудем о том, что батареи должны выдерживать давление теплоносителя в системе, которое в многоэтажном здании на порядок выше, чем в коттедже. Для достижения теплового комфорта нам важно корректно выполнить расчет радиаторов отопления.
Видео-советы по расчету необходимой мощности батарей
Принципы расчета
Чтобы обеспечить необходимую температуру в помещении, расчет мощности радиаторов отопления и всей системы целиком должен учитывать теплопотери из каждого помещения и климатические условия региона. Теплотехники при изготовлении проекта определяют тепловой баланс наружных стен, крыши, цокольной части здания, оконных и дверных конструкций. Также учитывается воздухообмен в системе вентиляции, высота помещений, движение воздушных потоков и множество иных факторов. Основополагающий документ, предписывающий принципы проектирования системы отопления — СНиП 2.04.05-91. Проектировщики пользуются еще рядом нормативных актов (общим числом до двух десятков), регламентирующих устройство отопления для зданий и помещений различного назначения.
Точный расчет секций радиаторов отопления по всем правилам довольно сложен, и сделать его самостоятельно, не обладая специальными знаниями, непросто. При строительстве серьезного загородного дома имеет смысл обратиться к специалистам и заказать полный проект отопления: заложенные в него рациональные решения, тепловой комфорт и оптимальный расход топлива оправдают затраты. Если такой возможности нет, можно сделать ориентировочный расчет батарей отопления самостоятельно.
Что такое тепловая мощность радиаторов отопления
Тепловая мощность, теплоотдача или тепловой поток отопительного прибора указывает на количество тепловой энергии (в киловаттах или ваттах), которое радиатор или один модульный элемент (секция) способен передать в помещение за единицу времени (час). Реже встречается обозначение в калориях/час. Один ватт равен 0,86 калорий. Величина теплоотдачи зависит не только от конструкции радиатора, его размеров, материала, из которого он изготовлен. Не меньшее значение имеют параметры теплоносителя: его температура и скорость, с которой жидкость протекает через батареи. Для большинства отопительных приборов указывается тепловая мощность при стандартных значениях температуры теплоносителя в 60/80 °C. Соответственно, когда эксплуатационные службы от щедрот бюджетных поддадут жару и запустят в систему кипяток (редко, но бывает), теплоотдача повысится. Пойдет чуть теплая водичка с малой скоростью (это бывает гораздо чаще) — понизится. Существенно влияет на величину теплового потока и способ подсоединения прибора.
Следует обратить внимание, что не все схемы подключения обеспечивают полную теплоотдачу отопительного прибора. Наиболее распространена стандартная боковая (1), для иных случаев (3, 4) при расчете вводят понижающий коэффициент.
Теплоотдача одной секции в традиционном чугунном радиаторе советского образца — 160 Вт. Чтобы определить общую мощность батареи, умножаем эту цифру на количество секций.
Алюминиевые радиаторы также являются секционными. Тепловой поток зависит от модели, но при стандартной межосевой высоте в 500 мм составляет в среднем 200 Вт для одной секции. То есть таких алюминиевых секций потребуется примерно на 20% меньше, чем чугунных.
Конструкция алюминиевого радиатора. В стандартном варианте величина А составляет 500 мм. Следует обратить внимание на расстояния от внешних граней прибора до пола и подоконника. Если они будут меньше указанных, теплоотдача несколько понизится
Панельные стальные радиаторы неразборны и имеют фиксированную величину теплоотдачи. В качестве примера: в зависимости от конструкции панель стандартной высоты и длины в 800 мм может давать тепловой поток от 700 до 1500 Вт.
Упрощенный расчет
В центральных регионах России для отопления жилой комнаты с одной наружной стеной в типовом панельном доме понадобится примерно 100 Вт тепловой энергии на один квадратный метр площади. Это очень ориентировочная цифра. Если квартира расположена на первом или последнем этаже, стоит добавить примерно 20%. Для угловой комнаты увеличить цифру в полтора раза. Не забудем, что имеется зависимость от схемы подключения, при необходимости учтем поправочный коэффициент. Это батарея из десяти чугунных секций. Естественно, для Якутии и Краснодарского значение теплоотдачи на единицу площади будет существенно отличаться. Таким образом, для московской области на комнату площадью 16 м2 в стандартной «панельке» потребуется 1600 Вт.
Современный дом со стенами из «теплых» ячеистых блоков, да еще и с «термошубой», энергоэффективным остеклением будет иметь гораздо меньшие теплопотери и необходимая мощность радиатора также должна быть ниже. Некоторые продавцы отопительного оборудования облегчают потенциальным покупателям выбор, размещая на своем сайте калькулятор для расчета количества секций радиаторов отопления. С помощью подобного онлайн-сервиса реально сделать более-менее точный расчет радиатора отопления на комнату.
План расположения радиаторов, одна из множества страничек «правильного» проекта системы отопления. Для каждого помещения указана расчетная величина теплопотерь (цифры в прямоугольнике). При строительстве дорогих апартаментов экономить на проектных работах не стоит
Нужен ли запас мощности
Желательно. Не всегда вы получите от ЖЭС теплоноситель нужной температуры, поэтому стоит увеличить мощность батареи на 20-25%. На входе желательно поставить теплорегулятор: термостат или обычный шаровый кран.
«Правильный» монтаж радиатора (5). Термостатический клапан (4) обеспечит постоянное поддержание заданной температуры в комнате, соединительные детали (1-3) помогут быстро снять и установить обратно батарею. Байпас (перемычка между подводящей и отводящей трубой) даст возможность теплоносителю циркулировать по стояку и при снятом приборе, чтобы не ущемить интересы соседей по дому
Низкотемпературные системы отопления и расчет радиаторов
В Европе превалируют, а в России все чаще применяются современные низкотемпературные системы отопления. Они строятся на основе энергоэффективных конденсационных отопительных котлов, тепловых насосов. Чтобы получить максимальный экономический эффект, для радиаторного отопления, как и для теплых полов, используют теплоноситель с низкой температурой — 40-55 °C. Теплоотдача радиаторов снижается примерно в 1,8 раза. Соответственно, они должны иметь большую мощность и габариты. Несмотря на удорожание системы, такой подход обоснован: рационально спроектированная, правильно смонтированная и грамотно настроенная низкотемпературная система позволяет достигать существенной экономии газа. А тепловые насосы вовсе не нуждаются в топливе. Для расчета таких систем все известные производители указывают теплоотдачу приборов для различных параметров теплоносителя. Расчет количества радиаторов отопления также должен учитывать влияние теплых полов.
Соотношение КПД традиционных и современных конденсационных газовых котлов. Чтобы достичь указанной экономии, в радиаторах также должен циркулировать теплоноситель с невысокой температурой. Соответственно, теплоотдача приборов должна приниматься исходя из показателей в 40-55°C
В заключение скажем, что отопительный прибор не должен быть чем-либо закрыт: плотные шторы, сплошной декоративный экран, вплотную придвинутая мебель значительно снизят его эффективность. Если модная столешница-подоконник полностью закрывает батарею сверху, теплый воздух минует поверхность оконного стекла, и оно может излишне холодным и «плакать». В этом случае следует расположить в подоконнике вентиляционные решетки.
Понравилась статья? Поделитесь с друзьями:
Расчет количества секций радиаторов отопления
Онлайн калькулятор для расчета количества секций радиаторов отопления, введите свои данные в соответствующие поля и нажмите кнопку «Рассчитать».
Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках
Установите ползунком значение площади помещения, м²
Сколько внешних стен в помещении?
однадветричетыре
В какую сторону света смотрят внешние стены
Север, Северо-Восток, ВостокЮг, Юго-Запад, Запад
Укажите степень утепленности внешних стен
Внешние стены не утепленыСредняя степень утепленияВнешние стены имеют качественное утепление
Укажите среднюю температуру воздуха в регионе в самую холодную декаду года
– 35 °С и нижеот – 25 °С до – 35 °Сдо – 20 °Сдо – 15 °Сне ниже – 10 °С
Укажите высоту потолка в помещении
до 2,7 м2,8 ÷ 3,0 м3,1 ÷ 3,5 м3,6 ÷ 4,0 мболее 4,1 м
Что располагается над помещением?
холодный чердак или неотапливаемое и не утепленное помещениеутепленные чердак или иное помещениеотапливаемое помещение
Укажите тип установленных окон
Обычные деревянные рамы с двойным остеклениемОкна с однокамерным (2 стекла) стеклопакетомОкна с двухкамерным (3 стекла) стеклопакетом или с аргоновым заполнением
Укажите количество окон в помещении
Укажите высоту окна, м
Укажите ширину окна, м
Выберите схему подключения батарей
Укажите особенности установки радиаторов
Радиатор располжен открыто на стене или не прикрыт подоконникомРадиатор полностью прикрыт сверху подоконником или полкойРадиатор установлен в стеновой нишеРадиатор частично прикрыт фронтальным декоративным экраномРадиатор полностью закрыт декоративным кожухом
Ниже будет предложено ввести паспортную мощность одной секции выбранной модели радиатора.
Если целью расчетов стоит определение потребной суммарной тепловой мощности для отопления комнаты (например, для выбора неразборных радиаторов) то оставьте поле пустым
Введите паспортную тепловую мощность одной секции выбранной модели радиатора
Цены на радиаторы отопления
радиатор отопления
Рекомендации по подготовке данных для расчета, формул и калькулятора
Расчетом радиаторов отопления принято называть определение оптимальной мощности отопительного прибора, необходимой для создания теплового комфорта в пределах жилого помещения или всей квартиры и выбора соответствующего секционного радиатора в качестве основного функционального элемента существующих систем отопления.
Расчет радиаторов с помощью калькулятора
Для ориентировочных расчетов достаточно использовать простые алгоритмы, называемые калькулятором расчета радиаторов или батарей отопления.С их помощью даже специалистам не удается подобрать необходимое количество секций радиатора для обеспечения комфортного микроклимата в своем доме.
Назначение населенных пунктов
Нормативная документация по отоплению (СНиП 2.04.05-91, СНиП 3.05-01-85), строительной климатологии (СП 131.13330.2012) и тепловой защите зданий (СНиП 23-02-2003) требует наличия Предпосылки для следующих условий от отопительного оборудования:
- Обеспечение полной компенсации тепловых потерь жилья в холодное время;
- Поддержание в помещениях частного дома или здания общественного назначения номинальных температур, регулируемых санитарными и строительными нормами.В частности, для ванной требуется температурная оснастка в пределах 25 градусов С, а для жилой – существенно ниже, всего 18 градусов С.
Понятие теплого комфорта следует трактовать не только как положительную температуру произвольного значения, но и как предельно допустимое значение. Нет смысла монтировать батареи с двумя десятками секций для обогрева небольших на площади детской спальни, если для свежего воздуха (слишком нагретые радиаторы «сжигают» кислород вокруг себя) приходится открывать окно.
Батарея отопления, собранная с лишними секциями
С помощью калькулятора для расчета системы отопления определяется тепловая мощность радиатора для эффективного обогрева жилого помещения или подсобного помещения в заданном температурном диапазоне, после чего формат радиатора отрегулирован.
Методика расчета площади
Алгоритм расчета радиаторов отопления по площади заключается в сопоставлении тепловой мощности прибора (указывается производителем в паспорте изделия) и площади помещения, в котором осуществляется отопление. планируется.При постановке задачи, как рассчитать количество радиаторов отопления, в первую очередь определяется количество тепла, которое необходимо получить от отопительных приборов для отопления жилья в соответствии с санитарными нормами. Для этого теплотехники ввели так называемый показатель тепловой мощности на квадратный или кубический метр площади помещения. Его усредненные значения определены для нескольких климатических регионов, в частности:
- регионов с умеренным климатом (Москва и Моск.Площадь) – от 50 до 100 Вт / кв. м;
- участков Урала и Сибири – до 150 Вт / кв. м;
- для районов Севера – уже нужно от 150 до 200 Вт / кв.м.
Расчет мощности радиаторов отопления по показателю площади рекомендуется только для стандартных помещений с высотой потолков не более 2,7-3,0 метра. При превышении нормативных параметров высоты необходимо перейти к процедуре вычислителя аккумуляторного вычислителя по объему, в котором для определения количества секций радиатора было введено понятие количества тепловой энергии на обогрев одного кубометра воды. жилой дом.Для панельного дома средний показатель принят равным 40-41 Вт / куб. метр.
Последовательность теплотехнических расчетов отопления частного жилища по отапливаемой площади следующая:
- Расчетная площадь помещения S, выраженная в квадратных метрах;
- Полученное значение S S Square умножается на показатель тепловой мощности, принятый для данного климатического региона. Для упрощения расчетов ее часто принимают равной 100 Вт на квадратный метр.В результате умножения s на 100 Вт / кв. Счетчик получается количество тепла Q POM, необходимое для обогрева помещения;
- Полученное значение P PPC необходимо разделить на показатель мощности радиатора (теплоотдачи) Q доволен.
Для каждого типа АКБ производитель заявляет, что паспортное значение Q кардинально зависит от материала изготовления и размеров секций.
- Определяется необходимое количество секций радиатора по формуле:
N = Q Pom / Q доволен.Полученный результат округляется в большую сторону.
Параметры радиаторов теплообмена
На рынке секционных батарей для отопления жилого дома широко представлены изделия из чугуна, стали, алюминия и биметаллические модели. В таблице представлены показатели теплоотдачи наиболее популярных секционных обогревателей.
Значения параметров теплоотдачи современных секционных радиаторов
Модель радиатора, материал изготовления | Теплопередача, Вт. |
---|---|
Чугун М-140 (проверено десятилетиями «Хармошка») | 155 |
Viadrus kalor 500/70? | 110 |
Виадрус Калор 500/130? | 191 |
Стальные радиаторы kermi. | до 13173. |
Радиаторы стальные арбония | до 2805. |
Биметаллическое основание рифара. | 204 |
Риффар Альп. | 171 |
Алюминий Royal Termo Optimal | 195 |
Роялтермо Эволюшн | 205 |
Биметаллический Royaltermo Biliner. | 171 |
Сравнивая таблицы чугунных и биметаллических батарей, наиболее адаптированных к параметрам центрального отопления, нетрудно отметить их идентичность, что облегчает расчеты при выборе способа отопления жилого дома.
Идентичность чугунных и биметаллических батарей при расчете мощности
Паспортные значения отопительных приборов указаны для температуры 70-90 градусов С. В системах центрального отопления теплоноситель редко нагревается выше 60-80 градусов С, поэтому теплоотдача, например, чугунной «гармошки» в помещении высотой 2,7 метра, не превышает 60 Вт.
Уточняющие коэффициенты
Для уточняющей настройки калькулятора определения числа секций для обогрева помещения по упрощенной формуле N = Q Pom / Q вводятся поправочные коэффициенты, учитывающие различные факторы, влияющие на теплообмен внутри частного жилища. Тогда значение Q. POM определяется по уточненной формуле:
Q Pom = S * 100 * K 1 * до 2 * до 3 * до 4 * до 5 * до 6.
В данной формуле поправочные коэффициенты учитывают следующие факторы:
- К 1 – для учета способа остекления окон. Для обычного остекления до 1 = 1,27, для стеклопакета до 1 = 1,0, для тройного до 1 = 0,85;
- К 2 учитывает отклонение высоты потолка от стандартного размера 2.7 метров. К 2 определяется деление размера по высоте 2,7 м. Например, для комнаты высотой 3 метра коэффициент при 2 = s, 0 / 2,7 = 1,11;
- К 3 регулирует теплоотдачу в зависимости от места установки секций радиатора.
Значения поправочного коэффициента К3 в зависимости от схемы установки АКБ
- К 4 коррелирует расположение наружных стенок с интенсивностью теплоотдачи.Если внешняя стена всего одна, то К = 1,1. Для углового помещения уже есть две наружные стены, соответственно К = 1,2. Для отдельного помещения с четырьмя внешними стенами К = 1,4.
- К 5 необходимо скорректировать в случае помещения выше расчетного помещения: если сверху холодный чердак, то К = 1, для отапливаемого чердака до = 0,9 и для отапливаемого сверху К \ u003d 0,8;
- К 6 вносит коррективы в соотношение окон и пола. Если площадь окон составляет всего 10% от площади пола, то К = 0.8. Для окон витражного типа площадь до 40% площади пола К = 1,2.
Как устроена радиаторная система отопления, рассказывает видео ниже.
1.
2.
3.
При проектировании системы теплоснабжения частного дома или квартиры, расположенной в новостройке, необходимо знать, как рассчитать мощность радиаторов отопления, чтобы определить необходимое количество секций для каждое помещение и подсобные помещения.В статье представлено несколько несложных расчетов.
Особенности населенного пункта
Расчет мощности радиатора отопления связан с рядом проблем. Дело в том, что на протяжении всего отопительного сезона температура за окном постоянно меняется, и соответственно различаются теплопотери. Так что при 30 градусах мороза и сильном северном ветре они будут намного больше, чем при – 5 градусах, да еще при безветренной погоде.Многие собственники недвижимости обеспокоены тем, что неверно рассчитанная тепловая мощность радиаторов отопления может привести к тому, что в доме будет холодно в морозы, а в теплую погоду придется целые сутки держать оттоки и таким образом получать улица (подробнее: “”).
Однако есть понятие, которое называется температурным графиком. Благодаря чему температура теплоносителя в системе отопления меняется в зависимости от погоды на улице. При повышении температуры воздуха на улице теплоотдача увеличивается каждой из секций батареи. А если так, то относительно любого отопительного оборудования можно говорить о средней величине теплоотдачи.
Что касается жильцов частных домовладений, то после установки современного электрического или газового теплоснабжения или отопления с помощью тепловых насосов им не стоит беспокоиться, какой температуры имеет теплоноситель, циркулирующий в контуре отопительного сооружения.
Тепловое оборудование, созданное с использованием новейших технологий, позволяет управлять им с помощью термостатов и регулировать емкость аккумулятора в соответствии с потребностями. Наличие современного котла не требует контроля за температурой теплоносителя, но для установки радиаторов отопления все же потребуется расчет мощности.
Порядок расчета мощности радиаторов отопления
Все расчеты, связанные с обустройством отопительной конструкции, неразрывно связаны с таким понятием, как тепловая мощность.Вариантов, как рассчитать мощность радиатора отопления, существует несколько. Следует отметить, что у приборов известных и хорошо зарекомендовавших себя производителей этот параметр всегда указывается в прилагаемых к ним документах (читайте также: «»).Для расчета биметаллических радиаторов отопления или чугунных батарей, исходя из тепловой мощности, необходимо необходимое количество тепла разделить на величину 0,2 кВт. В результате количество секций, которые будут закуплены, чтобы обеспечить обогрев помещения (подробнее: «).
Если чугунные радиаторы (см. Фото) не имеют кранов для промывки, специалисты рекомендуют учитывать 130-150 Вт на секцию, приведенную. Даже когда они изначально отдают тепла больше, чем требовалось, появившиеся в них загрязнения снизят теплоотдачу.
Как показала практика, аккумулятор желательно монтировать с запасом около 20%. Дело в том, что при наступлении сильных холодов в доме не будет излишнего тепла.Это также поможет бороться с удушением, вызываемым сильным тепловым насосом, на подводке для глаз. Покупка ненужных нескольких секций и регулятора не сильно повлияет на семейный бюджет, а тепло в доме в мороз будет обеспечено.
Необходимая тепловая мощность радиатора
При расчете батареи отопления обязательно нужно знать необходимую тепловую мощность, чтобы в доме было комфортно жить. Как рассчитать мощность радиатора отопления или других отопительных приборов для теплоснабжения квартиры или дома, интересует многих потребителей.- Метод по СНиП предполагает, что на одну «квадратную» площадь требуется 100 Вт.
Но в этом случае следует учесть ряд нюансов:
– теплопотери зависят от качества теплоизоляции. Например, для отопления энергоэффективного дома с системой рекуперации тепла со стенами из сип-панелей тепловая мощность потребуется более чем в 2 раза;
– Создатели санитарных норм и правил при их разработке ориентировались на стандартную высоту потолка 2.5-2,7 метра, а ведь этот параметр может быть 3 или 3,5 метра;
– Данная опция, позволяющая рассчитать мощность радиатора отопления и теплоотдачу, актуальна только при условии примерной температуры в квартире 20 ° С и на улице – 20 ° С. Аналогичная картина есть. характерно для населенных пунктов, расположенных в европейской части России. Если дом в Якутии, тепла потребуется гораздо больше. - Методика расчета, основанная на объеме, не считается сложной.На каждый кубометр помещения требуется 40 Вт тепловой мощности. Если размер комнаты 3х5 метров, а высота потолков 3 метра, то на тепло уйдет 3х5х3х40 = 1800 Вт. И хотя погрешности, связанные с высотой помещения в этом варианте устранены, он все равно не точен.
- Усовершенствованный метод вычисления объема с учетом большего количества переменных дает более реалистичный результат. Базовое значение все равно остается прежним – 40 ватт на кубический метр объема.Смотрите также: “”.
При уточнении расчета тепловой мощности радиатора и необходимой величины теплоотдачи следует учитывать, что:
– одна дверь наружу потребляет 200 ватт, а каждое окно – 100 ватт;
– если квартира угловая или торцевая, используется поправочный коэффициент 1,1 1,3, в зависимости от типа материала стен и их толщины;
– Для частных домохозяйств коэффициент 1,5;
– Для южных регионов коэффициент 0.7 – принято 0,9, а для Якутии и Чукотки – поправка от 1,5 до 2.
В качестве примера взята угловая комната с одним окном и дверью в частном кирпичном доме с трехметровым потолком на севере России. Средняя температура за зимним окном в январе – 30,4 ° С. См. Также: «».Порядок расчетов следующий:
- определите размер помещения и необходимую мощность – 3х5х3х40 = 1800 Вт;
- окно и дверь увеличивают результат на 300 Вт, итого получается 2100 Вт;
- с учетом углового расположения и того, что частный дом будет 2100х1.3х1,5 = 4095 Вт;
- умножаем прежнюю сумму на региональный коэффициент 4095х1,7 и получаем 6962 Вт.
Рассчитать количество радиаторов отопления в районе можно с помощью калькулятора, размещенного на любом участке. Но данные не будут точными. Калькуляторов (программ) расчета секций радиаторов отопления много, но точную информацию можно получить только в том случае, если вы будете рассчитывать вручную индивидуально для каждого помещения.
Упрощенные варианты расчета радиаторов отопления в доме
Первый метод: расчет по объему
Прописано в положениях СНиП и распространяется на панельные дома, правила предложены в качестве нормы принимать тепловую мощность 41 Вт на 1 кубометр отапливаемого помещения. Для расчета количества необходимых секций достаточно разделить объем помещения на мощность одной секции установленных радиаторов (этот параметр указывается производителем в сопроводительной технической документации).
Второй способ: расчет по площади помещения
Данный метод расчета ориентирован на помещения с потолками до 2500 мм, а в норме принимается мощность 100 Вт на квадратную площадь. Для расчета количества секций необходимо площадь помещения разделить на мощность одной секции (указывается в технической документации радиаторов).
Примерный расчет количества секций радиатора для модельного помещения
N = S / P * 100 Где:
- Н. – количество разделов (дробная часть округляется по правилам математического округления))
- S. – Комнатная площадь в М
- P. – теплообмен 1 секция, Вт
Для этих вариантов расчета применим ряд поправок. Например, если в комнате есть балкон, или больше двух окон, или она находится на углу здания, то к полученным участкам рекомендуется добавить еще 20%.Если расчет получен по дробному числу конечного результата (количества секций), то его следует округлить до целой стороны.
Примечание: полученное значение рассчитано для идеальных условий. То есть в доме нет дополнительной теплоотдачи, эффективно работает сама система отопления, окна и двери плотно закрываются, а также отапливаются соседние помещения. В реальных условиях разделов может потребоваться больше .
Точный расчет необходимого количества секций радиаторов
Выше представлены упрощенные методы расчета радиаторов отопления, актуальные для типовых квартир со стандартными параметрами.С их помощью получить адекватный результат для частных домов и квартир в современных новостройках нереально. Для этого воспользуйтесь специальной формулой:
CT = 100Вт / м2 * S * K1 * K2 * K3 * K4 * K5 * K6 * K7,
Там, где также берется базис 100 Вт на квадратный метр, общая площадь помещения дополняется коэффициентами, значения которых указаны ниже:
К1 – коэффициент, учитывающий остекление оконных проемов:
- для окон с обычным стеклопакетом: 1.27;
- для окон с двойным стеклопакетом: 1,0;
- для окон с тройным стеклопакетом: 0,85;
K2 – Коэффициент изоляции стены:
- низкая теплоизоляция: 1,27;
- хорошая теплоизоляция (кладка в две группы или слой утеплителя): 1,0;
- высокая степень теплоизоляции: 0,85;
К3 – соотношение площади окон и пола в помещении:
- 50%: 1.2;
- 40%: 1,1;
- 30%: 1,0;
- 20%: 0,9;
- 10%: 0,8;
К4 – коэффициент, учитывающий среднюю температуру воздуха в самую холодную неделю года:
- для -35 ° C: 1,5;
- для -25 ° C: 1,3;
- для -20 ° C: 1,1;
- для -15 ° C: 0,9;
- для -10 ° C: 0,7;
К5 – Корректирует потребность в тепле с учетом количества наружных стен:
- одностенная: 1.1;
- две стены: 1,2;
- три стены: 1,3;
- четыре стены: 1,4;
К6 – Учетный тип помещения, расположенного выше:
- холодный чердак: 1,0;
- отапливаемый чердак: 1,0;
- отапливаемых жилых помещений: 1,0;
К7 – коэффициент, учитывающий высоту потолков:
- на 2,5 м: 1,0;
- на высоте 3,0 м: 1,05;
- на высоте 3,5 м: 1.1;
- на высоте 4,0 м: 1,15;
- на высоте 4,5 м: 1,2;
Комфортные условия проживания зимой полностью зависят от обеспеченности жилого помещения. Если это новостройка, например, на даче или заповедном участке, нужно знать, как рассчитать радиаторы отопления для частного дома.
Все операции сводятся к подсчету количества секций радиаторов и подчиняются четкому алгоритму, поэтому нет необходимости быть квалифицированным специалистом – каждый человек сможет произвести достаточно точный теплотехнический расчет своего жилища.
Зачем нужен точный расчет
Тепловыделение устройств теплоснабжения зависит от материала изготовления и площади отдельных секций. От правильного расчета зависит не только тепло в доме, но и сбалансированность и эффективность системы в целом: недостаточное количество установленных секций радиаторов не обеспечит должного тепла в помещении, а ненужное количество секций ударит. карман.
Для расчета необходимо определить тип аккумуляторов и систему теплоснабжения.Например, расчет радиаторов теплоснабжения из алюминия для частного дома отличается от других элементов системы. Радиаторы бывают чугунные, стальные, алюминиевые, анодированные и биметаллические:
- Самая известная чугунная батарея, так называемая «гармошка». Они прочные, коррозионностойкие, имеют мощность секций 160 Вт при высоте 50 см и температуре воды 70 градусов. Существенным недостатком этих устройств является неприглядный внешний вид, но современные производители выпускают гладкие и довольно эстетичные чугунные батареи, сохраняя при этом все преимущества материала и делая их конкурентоспособными.
- Алюминиевые радиаторы по тепловой мощности превосходят чугунные изделия, они долговечны, имеют небольшой собственный вес, что дает преимущество при установке. Единственное отсутствие подверженности кислородной коррозии. Для его устранения применяется производство радиаторов из анодированного алюминия.
- Стальные устройства не обладают достаточной тепловой мощностью, не подлежат разборке и увеличению сечения при необходимости, коррозия подвержена коррозии, поэтому не пользуются популярностью.
- Биметаллические радиаторы отопления представляют собой сочетание стальных и алюминиевых деталей. Охлаждающие жидкости и крепеж в них представляют собой стальные трубы и резьбовые соединения, покрытые алюминиевым кожухом. Недостаток – довольно высокая стоимость.
По типу системы теплоснабжения различают однотрубное и двухтрубное соединение нагревательных элементов. В многоэтажных жилых домах в основном применяется однотрубная схема системы теплоснабжения.Недостатком здесь является довольно значительная разница температуры поступающей и исходящей воды на разных участках системы, что свидетельствует о неравномерном распределении тепловой энергии на батареях прибора.
Для равномерного распределения тепловой энергии в частных домах может применяться двухтрубная система теплоснабжения, когда горячая вода подается по одной трубе, а охлажденная выводится по другой.
Кроме того, точный расчет количества отопительных батарей в частном доме зависит от схемы установки приборов, высоты потолка, площади оконных проемов, количества наружных стен, типа помещение, закрытость инструментов декоративными панелями и другие факторы.
Помните! Необходимо правильно рассчитать необходимое количество радиаторов отопления в частном доме, чтобы гарантировать достаточное количество тепла в помещении и обеспечить экономию средств.
Виды расчетов отопления для частного дома
Вид расчета радиаторов отопления для частного дома зависит от поставленной цели, то есть от того, как именно вы хотите рассчитать батареи отопления для частного дома.Существуют упрощенные и точные методы, как по площадям, так и по объему рассчитываемого пространства.
По упрощенной или предварительной методике расчеты сводятся к умножению площади помещения на 100 Вт: нормативное значение достаточной тепловой энергии на метр в квадрате, при этом формула расчета примет следующее форма:
Q = s * 100, где
Q – требуемая мощность нагрева;
S – расчетная площадь помещения;
Расчет необходимого количества секций сборно-разборных радиаторов ведется по формуле:
Н = q / qx, где
N – необходимое количество секций;
QX – Удельная мощность раздела паспорта изделия.
Поскольку эти формулы для высоты помещения составляют 2,7 м, для остальных значений требуется ввести коэффициенты поправки. Расчеты сводятся к определению количества тепла на 1 м3 размера помещения. Упрощенная формула выглядит так:
Q = s * h * qy, где
H – высота этажа от пола до потолка;
QY – средний показатель тепловой мощности в зависимости от типа ограждения, для кирпичных стен – 34 Вт / м3, для панельных – 41 Вт / м3.
Эти формулы не могут гарантировать комфортные условия. Поэтому требуются точные расчеты, учитывающие все сопутствующие особенности постройки.
Точный расчет отопительных приборов
Наиболее точная формула необходимой тепловой мощности следующая:
Q = s * 100 * (К1 * К2 * … * КН-1 * КН), где
K1, k2 … kn – коэффициенты, зависящие от различных условий.
Какие условия влияют на микроклимат в помещении? Для точных расчетов учитывается до 10 показателей.
К1 – показатель, зависящий от количества внешних стен, чем больше поверхность контактирует с внешней средой, тем больше потери тепловой энергии:
- с одной внешней стенкой, показатель равен единице;
- , если две внешние стены равны 1,2;
- , если три внешние стены – 1,3;
- если все четыре стены внешние (то есть здание однокомнатное) – 1,4.
К2 – учитывает ориентацию здания: считается, что комнаты хорошо утеплены, если они расположены в южном и западном направлении, здесь К2 = 1.0, и наоборот мало – когда окна выходят на север или восток – К2 = 1,1. С этим можно поспорить: в восточном направлении комната еще с утра прогревается, поэтому целесообразнее применить коэффициент 1,05.
К3 – показатель утепления наружных стен, зависит от материала и степени теплоизоляции:
- для наружных стен в два кирпича, а также при использовании утеплителя для неизолированных стен показатель равен единице;
- для шпунтовых стен – К3 = 1.27;
- при утеплении корпуса на основании теплотехнических расчетов по СНИП – К3 = 0,85.
К4 – коэффициент, учитывающий самые низкие температуры холодного периода года для конкретного региона:
- до 35 ° С К4 = 1,5;
- от 25 ° С до 35 ° С К4 = 1,3;
- до 20 ° С К4 = 1,1;
- до 15 ° С К4 = 0,9;
- до 10 ° С К4 = 0,7.
К5 – зависит от высоты перекрытия от пола до потолка.За стандартную высоту принята H = 2,7 м с показателем, равным единице. Если высота помещения отличается от стандартной, вводится поправочный коэффициент:
- 2,8-3,0 м – К5 = 1,05;
- 3,1-3,5 м – К5 = 1,1;
- 3,6-4,0 м – К5 = 1,15;
- более 4 м – К5 = 1,2.
К6 – показатель, учитывающий характер помещения, расположенного сверху. Полы жилых домов всегда утеплены, комнаты сверху могут быть отапливаемыми или холодными, а это неизбежно скажется на микроклимате расчетного помещения:
- для холодного чердака, а также если помещение не отапливается, показатель будет равен единице;
- с утепленной мансардой или крышей – К6 = 0.9;
- , если отапливаемое помещение расположено сверху – К6 = 0,8.
К7 – индикатор, учитывающий тип оконных блоков. Конструкция окна существенно влияет на теплопотери. В этом случае значение коэффициента К7 определяется следующим образом:
- так как окна из дерева с двойным остеклением недостаточно защищают комнату, то самый высокий показатель – К7 = 1,27; Стеклопакеты
- обладают отличными защитными свойствами от теплопотерь, при однокамерном лобовом стекле из двух стекол К7 приравнивается к одному;
- Superior однокамерные стеклянные окна с аргоновым заполнением или двойное остекление, состоящее из трех стекол К7 = 0.85.
К8 – коэффициент, зависящий от площади остекления оконных проемов. Теплопотери зависят от количества и площади установленных окон. Отношение площади окон к площади помещения необходимо устанавливать таким образом, чтобы коэффициент имел меньшие значения. В зависимости от отношения площади окон к площади помещения определяется желаемый показатель:
- менее 0,1 – k8 = 0,8;
- с 0,11 до 0.2 – к8 = 0,9;
- от 0,21 до 0,3 – k8 = 1,0;
- от 0,31 до 0,4 – К8 = 1,1;
- от 0,41 до 0,5 – К8 = 1,2.
К9 – с учетом схемы подключения устройства. В зависимости от способа подключения горячей и отвода холодной воды зависит отдача тепла. Этот фактор необходимо учитывать при установке и определении необходимой площади приборов теплоснабжения. С учетом схемы подключения:
- при диагональном расположении патрубков подача горячей воды осуществляется сверху, обратка – снизу с другой стороны батареи, а показатель равен единице;
- при подключении подачи и возврата с одной стороны и сверху, и снизу одна секция К9 = 1.03;
- примыкание труб с двух сторон подразумевает подачу, а обратное – обратное, при этом коэффициент К9 = 1,13;
- вариант диагонального подключения, когда подача производится снизу, обратка сверху К9 = 1,25;
- вариант одностороннего подключения с нижним, обратным обратным и односторонним нижним подключением К9 = 1,28.
К10 – коэффициент, зависящий от степени замкнутости инструментов с декоративными панелями.Открытость устройств для свободного обмена с пространством комнаты имеет важное значение, поскольку создание искусственных преград снижает теплопередачу батарей.
Доступные или искусственно созданные барьеры могут заранее снизить возврат батареи из-за ухудшения теплообмена с помещением. В зависимости от этих условий коэффициент составляет:
- при открытом положении радиатора на стене со всех сторон 0,9;
- , если устройство накрыто поверх одного;
- , когда радиаторы накрываются поверх стенных ниш1.07;
- , если устройство прикрыто подоконником и декоративным элементом 1.12;
- , когда радиаторы полностью закрыты декоративным кожухом 1,2.
Кроме того, существуют особые стандарты размещения нагревательных приборов, которые необходимо соблюдать. То есть аккум не меньше чем на:
- 10 см от низа подоконника;
- 12 см от пола;
- 2 см от поверхности наружной стены.
Подставив все необходимые показатели, можно получить достаточно точное значение необходимого теплового помещения помещения. Разделяя результаты, полученные на пути передачи тепла одной секции выбранного устройства, и округляя до целого числа, мы получаем необходимое количество секций. Теперь вы можете, не опасаясь последствий, подобрать и установить необходимое оборудование с необходимым тепловым воздействием.
Методы упрощения расчетов
Несмотря на кажущуюся простоту формулы, на самом деле практический расчет не так прост, особенно если количество рассчитываемых комнат большое.Упростить расчеты поможет использование специальных калькуляторов, размещенных на сайтах некоторых производителей. Достаточно ввести все необходимые данные в соответствующие поля, после чего можно получить точный результат. Можно использовать табличный метод, так как алгоритм расчета достаточно простой и однообразный.
Все о стальных радиаторах отопления: расчет мощности (таблица), определение с учетом теплопотерь, процентное увеличение и расчет по площади помещения, а также как выбрать панельные батареи.
Судя по тому, насколько правильно и грамотно произведена мощность стального радиатора, от него можно ожидать тепла.
В этом случае необходимо учитывать, чтобы технические параметры системы отопления и ТЭНа совпадали.
Поселок
Чтобы теплоотдача стальных радиаторов отопления была максимальной, можно воспользоваться расчетом их мощностей, исходя из размеров помещения.
Если взять в качестве примера комнату площадью 15 м2 и потолками высотой 3 м, то, рассчитав ее объем (15×3 = 45) и умножив количество ВП (СНиП – 41 Вт / м3 для панельных домов и 34 Вт / м3 для кирпича), получится, что потребляемая мощность 1845 Вт (панельный дом) или 1530 Вт (кирпич).
После этого достаточно проследить, чтобы расчет мощности стальных радиаторов отопления (можно обратиться к таблице, которую предоставляет производитель) соответствовал полученным параметрам. Например, при покупке обогревателя типа 22 нужно отдать предпочтение конструкции, имеющей высоту 500 мм, а длину 900 мм, которая характеризуется мощностью 1851 Вт.
В случае замены старых батарей на новые или перестройки всей системы отопления необходимо досконально ознакомиться с требованиями СНиП.Избавит от возможных недостатков и нарушений при монтажных работах.
Стальные радиаторы отопления: Расчет мощности (таблица)
Определение мощности с учетом теплопотерь
Кроме материалов, относящихся к материалу, из которого построен многоквартирный дом и указанных в СНиП, в расчетах могут использоваться температурные параметры на улице. Этот метод основан на теплопотери в помещении.
Для каждой климатической зоны определяется коэффициент в соответствии с холодными температурами:
- при -10 ° C – 0.7;
- -15 ° С – 0,9;
- при – 20 ° С – 1,1;
- -25 ° С – 1,3;
- до – 30 ° C – 1,5.
Теплоотдачу стальных радиаторов отопления (таблица предоставляется производителем) необходимо определять с учетом количества наружных стен. Так если в комнате он один, то результат, полученный при расчете стальных радиаторов отопления по площади, нужно умножить на коэффициент 1,1, если их два или три, то он равен 1.2 или 1.3.
Например, если температура за окном составляет 25 ° C, то при расчете стального радиатора типа 22 и требуемых 1845 Вт (панельный дом) в помещении, где 2 внешние стены, будет следующий результат:
- 1845×1,2×1,3 = 2878,2 Вт. Этот показатель соответствует панельным конструкциям 22-го типа высотой 500 мм и длиной 1400 мм, имеющим мощность 2880 Вт.
Так подбираются радиаторы панельного отопления (расчет по площади с учетом коэффициента теплопотерь).Такой подход к выбору мощности батареи панели обеспечит максимально эффективную работу.
Чтобы сделать калькулятор стальных радиаторов отопления на участке было проще, онлайн калькулятор сделает это за считанные секунды, достаточно внести в него необходимые параметры.
Увеличение мощности в процентах
Учитывать теплопотери можно не только по стенам, но и по окнам.
Например, перед выбором стального радиатора отопления следует увеличить расчет площади на определенное число процентов, в зависимости от количества окон в комнате:
Учет подобных нюансов перед установкой панельных аккумуляторов из стали позволяет правильно выбрать нужную модель.Это сэкономит средства на его эксплуатации при максимальной теплоотдаче.
Поэтому следует не только думать о том, как выбрать стальные радиаторы отопления по площади помещения, но и учитывать его теплопотери и даже расположение окон. Такой комплексный подход позволяет учесть все факторы, влияющие на температуру в квартире или доме.
Термодинамический веб-калькулятор
Введение
Оценка количества тепла, которое может выделяться, требуется для оценки потенциальной серьезности теплового разгона литий-ионных батарей.Здесь мы используем термодинамические свойства задействованных материалов, чтобы обеспечить теплоту реакции для ограничения потенциального тепловыделения и для использования в моделях теплового разгона для прогнозирования последствий сценариев злоупотребления.
Фон
С начала 1990-х и до того момента, когда этот калькулятор был разработан в начале 2020-х, в большинстве коммерческих литий-ионных аккумуляторов использовались графитовый отрицательный электрод (анод) с положительным электродом (катодом) из слоистого оксида металла и органический электролит, состоящий из смешанный карбонатный растворитель и соль (обычно LiPF 6 ).Наибольший вклад в тепловое неуправляемое тепловыделение внутри ячеек происходит за счет реакций этих электродных материалов с органическими растворителями. Количество химического тепла, которое может выделяться в результате этих термических реакций разгона, увеличивается с увеличением состояния заряда (SOC), поскольку тепловыделение пропорционально количеству реакционноспособных электродных материалов, а именно литированного графита в аноде (LiC 6 ) и делитированного слоистый оксид металла в катоде (МО 2 ).
Подробные модели теплового разгона показывают, что быстрое тепловыделение от катода в присутствии органических электролитов является основной причиной теплового разгона, но тепловыделение от литиированного анода, реагирующего с электролитом, также необходимо учитывать для точного прогнозирования максимальной температуры катода. элемент, который требуется для разумного прогнозирования каскадных отказов между ячейками в больших аккумуляторных системах.Когда литированный графит реагирует с жидким этиленкарбонатом (ЭК) из электролита с образованием твердого покрытия и газов, прогнозируемая экзотермическая теплота реакции по термодинамике составляет -281,4 кДж / моль лития в графите. 1 Однако теплота реакции, связанная с катодами из слоистого оксида металла, представляет собой более сложный многоступенчатый процесс, связанный с более широким спектром материалов.
Цель
Этот веб-калькулятор оценивает теплоту реакции, связанную с тепловым выходом катодных материалов из слоистого оксида металла, на основе термодинамики, лежащей в основе конкретных металлических составов, степеней делитирования и сосуществующих органических материалов (например.г. растворитель электролита). В этом калькуляторе реализованы методы, описанные в недавнем обзоре 2 для катодов формы Li x MO 2 , где x – степень литиирования, (1-x) – степень делитирования, определяющая количество реактивный материал, а М представляет собой металл или смесь металлов в слоистом оксиде металла. В другой недавней статье показано, как эти термодинамические расчеты в целом согласуются с широким диапазоном литературных калориметрических данных. 3
Возможности
Этот калькулятор предсказывает общую и ступенчатую теплоту реакции для катодных материалов, где пользователь указывает интересующий органический растворитель, степень литирования x и состав металла M как некоторую смесь Ni, Co, Mn и / или Al. . Этилметилкарбонат (EMC) является растворителем по умолчанию, представляющим типичные смеси растворителей электролита. 2 Пошаговая версия этих расчетов предполагает начальный твердофазный переход без изменения массы с последующими дополнительными фазовыми изменениями, которые высвобождают кислород, который может реагировать с растворителями электролита или другими органическими веществами с выделением дополнительного тепла. 2,3 Для удобства результаты этого термодинамического калькулятора представлены в обобщенной форме, за которой следует необязательная подробная форма, которая включает несколько типов единиц (на основе массы и молей), с окислением электролита или без него. Этот калькулятор не учитывает эффекты тепловыделения вне элемента во время теплового разгона, вызванного реакциями воспламенения выходящего электролита и газообразных продуктов разложения с кислородом воздуха. Дополнительный ввод массы катода позволяет оценить максимальное тепловыделение всего элемента от разложения как катода, так и анода с электролитом.
Благодарности
Сэмюэл Робертс-Бака за помощь в реализации этих расчетов в виде веб-инструмента выражает признательность.
Sandia National Laboratories – это многофункциональная лаборатория, управляемая и управляемая National Technology and Engineering Solutions of Sandia, LLC., 100-процентной дочерней компанией Honeywell International, Inc. для Национального управления ядерной безопасности Министерства энергетики США по контракту DE- NA-0003525.На этом сайте описаны объективные технические результаты и анализ. Любые субъективные взгляды или мнения, которые могут быть выражены на веб-сайте, не обязательно отражают точку зрения Министерства энергетики США или правительства США.
Артикул:
- Шурц, Р. К., Дж. Д. Энгерер и Дж. К. Хьюсон (2018). «Прогнозирование высокотемпературного разложения литированного графита: I.Обзор явлений и комплексная модель ». Журнал Электрохимического общества 165 (16): A3878-A3890.
- Шурц, Р. К. и Дж. К. Хьюсон (2020). «Материаловедческие прогнозы теплового разгона в слоистых металлооксидных катодах: обзор термодинамики». Журнал Электрохимического общества 167 (9): 0
- .
- Шурц, Р. К. (2020). «Термодинамическая переоценка калориметрии катода литий-ионной батареи» Журнал Электрохимического общества 167 (14): 140544.
История выпусков
- Название: «Вычислитель теплоты термодинамической реакции для слоистых металлооксидных катодов в органических электролитах» (сентябрь 2020 г.). Электронная таблица Excel размещена для расчета тепловыделения при тепловом неуправляемом выходе катодных материалов. Подходит для расчетов, аналогичных тем, которые использовались в [3]. 3 для сравнения с калориметрическими измерениями.
- Заголовок: «Веб-калькулятор термодинамики литий-ионных аккумуляторов» (февраль 2021 г.).Первый выпуск веб-калькулятора. Вывод похож на электронную таблицу. Включает возможность сообщать о тепловыделении для полной ячейки (катод + анод), когда указана масса катода.
Возможные улучшения в будущем:
- Включить дополнительные реакции разложения электродов
- Разрешить пользователю указывать ампер-часы в качестве альтернативы степени лития.
- Включите кривые, которые преобразуют напряжение в степень лития на обоих электродах
- Оценить максимальное повышение температуры, ожидаемое для полной ячейки при тепловом разгоне, когда пользователь предоставляет необходимые составы.
- Включить возможность создания графиков на веб-сайте
- Включите дополнительные металлические элементы для слоистых оксидов металлов
- Включите термодинамическое тепловыделение при разложении катодов, кроме слоистых оксидов металлов (например,г. оксид лития-марганца, фосфат лития-железа и др.)
- Включите термодинамическое тепловыделение при разложении анодов, кроме литированного графита
- Включить оценочные кинетические параметры разложения электродных материалов
и копия 2021, Sandia National Laboratories SAND2021-1909 W
Как рассчитать количество батарей для отопления.Расчет радиаторов отопления: варианты и приемы.
При модернизации системы отопления, помимо замены труб, меняют еще и радиаторы. И сегодня они из разных материалов, разных форм и размеров. Что не менее важно, они имеют разное тепловыделение: количество тепла, которое может передаваться воздуху. И это обязательно учитывается при расчете сечений радиаторов отопления.
В помещении будет тепло, если уходит тепло.Поэтому в расчетах берутся теплопотери помещения (они зависят от климатической зоны, от материала стен, утеплителя, площади окон и т. Д.). Второй параметр – тепловая мощность одной секции. Это количество тепла, которое он может произвести при максимальных параметрах системы (90 ° C на входе и 70 ° C на выходе). Эту характеристику необходимо указать в паспорте, она часто присутствует на упаковке.
Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещения и системы отопления
Один важный момент: делая расчеты самостоятельно, имейте в виду, что большинство производителей указывают максимальный показатель, который они получили при идеальных условиях.Поэтому производите любое округление в большую сторону. В случае низкотемпературного нагрева (температура на входе ниже 85 ° C) они ищут тепловую мощность по соответствующим параметрам или пересчитывают (описано ниже).
Расчет площади
Это простейшая методика, позволяющая приблизительно оценить количество секций, необходимых для обогрева помещения. На основании множества расчетов выведены нормы средней мощности обогрева одного квадрата площади. Для учета климатических особенностей региона в СНиП прописаны две нормы:
- для регионов средней полосы России от 60 Вт до 100 Вт;
- для участков выше 60 ° мощность нагрева на квадратный метр составляет 150-200 Вт.
Почему в норме дан такой большой разброс? Чтобы можно было учесть материалы стен и степень утепления. Для бетонных домов берутся максимальные значения; для домов из кирпича можно использовать средние значения. Для утепленных домов – минимум. Еще одна важная деталь: эти нормы рассчитаны на среднюю высоту потолка – не выше 2,7 метра.
Зная площадь помещения, умножьте его норму расхода тепла, наиболее подходящую для ваших условий.Получите полную потерю тепла в помещении. В технических характеристиках выбранной модели радиатора найдите тепловую мощность одной секции. Разделите общие тепловые потери на мощность, получите их количество. Это несложно, но для наглядности приведем пример.
Пример расчета количества секций радиаторов по площади помещения
Угловая комната 16 м 2, в среднем переулке, в кирпичном доме. Установите батареи тепловой мощностью 140 Вт.
Для кирпичного дома потери тепла принимаем за середину диапазона.Так как комната угловая, лучше брать большее значение. Пусть будет 95 ватт. Тогда получается, что на обогрев помещения требуется 16 м 2 * 95 Вт = 1520 Вт.
Теперь рассмотрим количество: 1520 Вт / 140 Вт = 10,86 шт. Круглая, получается 11 шт. Нужно будет установить так много секций радиатора.
Расчет батарей отопления на площадь прост, но далек от идеала: не учитывается полностью высота потолков. Для нестандартных высот используется другой прием: по объему.
Подсчет аккумуляторов по объему
В СНиП есть нормы на обогрев одного кубометра помещения. Даны для разных типов построек:
- на 1 м 3 кирпича требуется 34 Вт тепла;
- для панели – 41 Вт
Данный расчет секций радиатора аналогичен предыдущему, только теперь нам нужна не площадь, а другие по объему и нормам. Умножаем объем на норму, полученный показатель делим на мощность одной секции радиатора (алюминиевой, биметаллической или чугунной).
Формула для расчета количества секций по объему
Пример расчета объема
Например, рассчитываем, сколько секций нужно в комнате площадью 16 м 2 и высотой потолка 3 метра. Здание кирпичное. Берем радиаторы такой же мощности: 140 Вт:
- Найдите объем. 16 м 2 * 3 м = 48 м 3
- Считаем необходимое количество тепла (норма для кирпичных домов 34 Вт).48 м 3 * 34 Вт = 1632 Вт.
- Определяем сколько секций нужно. 1632 Вт / 140 Вт = 11,66 шт. Круглый, получаем 12 шт.
Теперь вы знаете два способа рассчитать количество радиаторов на комнату.
Отвод тепла в одной секции
Сегодня ассортимент радиаторов большой. При внешнем сходстве большинства тепловые характеристики могут существенно различаться. Они зависят от материала, из которого они изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.
Следовательно, точно сказать, сколько кВт приходится на 1 секцию алюминиевого (чугунного биметаллического) радиатора, можно сказать только для каждой модели. Эти данные указывает производитель. Ведь разница в размерах существенная: одни из них высокие и узкие, а другие низкие и глубокие. Силовые секции одинаковой высоты от одного производителя, но разных моделей могут отличаться на 15-25 Вт (см. Таблицу ниже STYLE 500 и STYLE PLUS 500). Еще более заметные отличия могут быть у разных производителей.
Тем не менее, для предварительной оценки того, сколько секций батарей нужно для обогрева помещения, были выведены средние значения тепловой мощности для каждого типа радиаторов. Их можно использовать для приблизительных расчетов (приведены данные для аккумуляторов с межосевым расстоянием 50 см):
- Биметалл – одна секция излучает 185 Вт (0,185 кВт).
- Алюминий – 190 Вт (0,19 кВт).
- Чугун – 120 Вт (0,120 кВт).
Точнее, сколько кВт в одной секции биметаллического, алюминиевого или чугунного радиатора можно у вас, когда выбираете модель и определяете размеры.В чугунных батареях может быть большая разница. Они бывают с тонкими или толстыми стенками, из-за чего их тепловая мощность значительно меняется. Выше средние значения для батареек знакомой формы (гармошки) и близких к ней. Радиаторы в стиле ретро имеют значительно меньшую тепловую мощность.
Это технические характеристики чугунных радиаторов турецкой компании Demir Dokum. Разница более чем существенная. Она может быть еще больше
На основании этих значений и средних норм в СНиП получено среднее количество секций радиатора на 1 м 2:
- биметаллические секции плавки 1.8 м 2;
- алюминий – 1,9-2,0 м 2;
- чугун – 1,4-1,5 м 2;
- биметаллический 16 м 2 / 1,8 м 2 = 8,88 шт., Округлый – 9 шт.
- алюминий 16 м 2/2 м 2 = 8 шт.
- чугун 16 м 2 / 1,4 м 2 = 11,4 шт, округлый – 12 шт.
Эти расчеты являются приблизительными. По ним можно приблизительно оценить стоимость покупки отопительных приборов. Вы можете точно рассчитать количество радиаторов на комнату, выбрав модель, а затем пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.
Расчет секций радиаторов в зависимости от реальных условий
Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции аккумулятора указана для идеальных условий. Аккумулятор будет выделять столько тепла, если его охлаждающая жидкость имеет температуру + 90 ° C на входе, + 70 ° C на выходе и + 20 ° C в помещении. То есть температурный напор системы (еще ее называют «дельта-система») будет 70 ° C. Что делать, если в вашей системе на входе температура выше + 70 ° C? или вам нужна комнатная температура + 23 ° C? Пересчитайте заявленную мощность.
Для этого необходимо рассчитать температурный напор вашей отопительной системы. Например, на подаче у вас + 70 ° C, на выходе 60 ° C, а в помещении вам нужна температура + 23 ° C. Находим дельту вашей системы: это среднее арифметическое значений температур. на входе и выходе за вычетом температуры в помещении.
Для нашего случая получается: (70 ° C + 60 ° C) / 2 – 23 ° C = 42 ° C. Дельта для таких условий составляет 42 ° C.Далее находим это значение в таблице преобразования (находится ниже) и заявленная мощность умножается на этот коэффициент. Мы узнаем мощность, которую этот раздел может выдать для ваших условий.
Находим в столбцах, окрашенных в синий цвет, линию с дельтой 42 ° C. Это соответствует коэффициенту 0,51. Теперь рассчитаем тепловую мощность 1 секции радиатора для нашего корпуса. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получим: 185 Вт * 0.51 = 94,35 Вт. Почти вдвое меньше. Именно эту мощность нужно подменить при выполнении расчета сечений радиаторов. Только с учетом индивидуальных параметров в комнате будет тепло.
Существует несколько методов расчета количества радиаторов, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество радиаторов, необходимое для их компенсации.
Существуют разные методы расчета.Самые простые дают приблизительные результаты. Тем не менее, их можно использовать, если помещения стандартные или применяются коэффициенты, позволяющие учесть существующие «нестандартные» условия каждой конкретной комнаты (угловая комната, выход на балкон, окно через стену и т. Д.). Есть более сложный расчет по формулам. Но по сути это одни и те же коэффициенты, только собранные в одну формулу.
Есть еще один способ. Он определяет фактическую потерю. Реальные потери тепла определяет специальный прибор – тепловизор.И исходя из этих данных, сколько радиаторов нужно для их компенсации. Что еще лучше с этим методом, так это то, что на изображении тепловизора вы можете четко видеть, где тепло уходит наиболее активно. Это может быть дефект в работе или стройматериалах, трещина и т. Д. Так что заодно можно поправить положение.
Расчет радиаторов отопления по площади
Самый простой способ. Рассчитайте количество тепла, необходимое для обогрева, исходя из площади помещения, в котором будут установлены радиаторы.Вы знаете площадь каждого помещения, а потребность в тепле можно определить по СНиПа:
.- на среднеклиматическую полосу для обогрева 1м2 жилого помещения требуется 60-100Вт;
- для областей с температурой выше 60 ° C требуется 150-200 Вт.
Исходя из этих стандартов, вы можете рассчитать, сколько тепла потребуется вашей комнате. Если квартира / дом находится в средней климатической зоне, для обогрева площади 16м 2 потребуется 1600Вт тепла (16 * 100 = 1600).Так как нормы средние, а погода не балует постоянством, считаем, что 100Вт требуется. Хотя, если вы живете на юге средней климатической зоны и у вас мягкие зимы, рассмотрите вариант 60 Вт.
Запас мощности в отоплении нужен, но не очень большой: с увеличением количества необходимой мощности количество радиаторов увеличивается. И чем больше радиаторов, тем больше охлаждающей жидкости в системе. Если для подключенных к центральному отоплению это не критично, то для тех, кто имеет или планирует индивидуальное отопление, большой объем системы означает большие (дополнительные) затраты на подогрев теплоносителя и большую инерционность системы ( установленная температура поддерживается менее точно).И возникает закономерный вопрос: «Зачем платить больше?».
Рассчитав потребность помещения в тепле, можно узнать, сколько секций нужно. Каждый из отопительных приборов может выделять определенное количество тепла, которое указано в паспорте. Возьмите найденную потребность в тепле и разделите на мощность радиатора. В результате получается необходимое количество секций для компенсации потерь.
Рассчитываем количество радиаторов для одного помещения. Мы определили, что требуется 1600 Вт. Пусть мощность одной секции 170Вт.Получается 1600/170 = 9411 штук. Вы можете округлить в большую или меньшую сторону по своему усмотрению. Меньший можно закруглить, например, на кухне – дополнительных источников тепла достаточно, а больший лучше в комнате с балконом, большим окном или в угловой комнате.
Система простая, но недостатки очевидны: высота потолков может быть разной, не учитывается материал стен, окон, утеплитель и целый ряд факторов.Так что расчет количества секций радиаторов отопления по СНиП приблизительный. Для точного результата необходимо внести коррективы.
Как рассчитать секции радиатора по объему помещения
В данном расчете учитывается не только площадь, но и высота потолков, ведь нужно нагреть весь воздух в помещении. Так что такой подход оправдан. И в этом случае техника аналогична. Определяем объем комнаты, а потом по нормам узнаем, сколько тепла нужно для ее обогрева:
Рассчитываем все для одной комнаты площадью 16м 2 и сравниваем результаты.Пусть высота потолка 2,7м. Объем: 16 * 2,7 = 43,2м 3.
- В панельном доме. Тепло, необходимое для обогрева, составляет 43,2м 3 * 41В = 1771,2Вт. Если взять все те же секции мощностью 170Вт, то получим: 1771Вт / 170Вт = 10,418шт (11шт).
- В кирпичном доме. Тепло необходимо 43,2м 3 * 34Вт = 1468,8Вт. Считаем радиаторы: 1468,8Вт / 170Вт = 8,64шт (9шт).
Как видите, разница довольно большая: 11шт и 9шт. Причем при расчете площади получено среднее значение (если округлить в одну сторону) – 10 шт.
Корректировка результатов
Чтобы получить более точный расчет, необходимо учесть как можно больше факторов, уменьшающих или увеличивающих теплопотери. Это из чего сделаны стены и насколько хорошо они утеплены, насколько велики окна и какое на них остекление, сколько стен в комнате выходят на улицу и т. Д. Для этого есть коэффициенты, по которым нужно умножить найденные значения теплопотерь помещения.
Окно
На окна приходится от 15% до 35% теплопотерь.Конкретный показатель зависит от размера окна и от того, насколько хорошо оно утеплено. Следовательно, есть два соответствующих коэффициента:
- отношение площади окна к площади пола:
- 10% – 0,8
- 20% – 0,9
- 30% – 1,0
- 40% – 1,1
- 50% – 1,2
- остекление:
- трехкамерный стеклопакет или аргон в двухкамерном стеклопакете – 0,85
- Обычный двухкамерный стеклопакет – 1,0
- стеклопакеты обычные – 1.27.
Стены и кровля
Для учета потерь важны материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот шансы на эти факторы.
Степень изоляции:
- Кирпичные стены толщиной в два кирпича считаются нормой – 1,0
- Недостаточно (отсутствует) – 1,27
- хорошо – 0,8
Наружные стены:
- интерьер без потерь, коэффициент 1.0
- один – 1,1
- два – 1,2
- три – 1,3
На количество теплопотерь влияет обогревается или нет, помещение располагается сверху. Если жилое отапливаемое помещение находится сверху (второй этаж дома, другая квартира и т. Д.), Понижающий коэффициент составляет 0,7, если отапливаемый чердак – 0,9. Принято считать, что неотапливаемый чердак не влияет на температуру в и (коэффициент 1,0).
Если расчет производился по площади, а высота потолков нестандартная (принимают высоту 2.7 м в качестве стандарта), затем используйте пропорциональное увеличение / уменьшение с помощью коэффициента. Считается легким. Для этого разделите реальную высоту потолка в комнате на стандартную 2,7 м. Получите желаемое соотношение.
Рассчитаем для примера: пусть высота потолка 3,0 м. Получаем: 3,0м / 2,7м = 1,1. Это означает, что количество секций радиатора, которое рассчитывается по площади для этого помещения, нужно умножить на 1,1.
Все эти нормы и коэффициенты определены для квартир.Чтобы учесть теплопотери дома через крышу и цоколь / фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома равен 1,5.
Климатические факторы
Можно вносить корректировки в зависимости от средних температур зимой:
- -10 о С и выше – 0,7
- -15 о С – 0,9
- -20 ° С – 1,1
- -25 ° С – 1,3
- -30 ° С – 1,5
Внеся все необходимые настройки, вы получите более точное количество радиаторов, необходимое для обогрева помещения с учетом параметров помещения.Но это далеко не все критерии, влияющие на мощность теплового излучения. Есть и технические тонкости, о которых мы поговорим ниже.
Расчет разных типов радиаторов
Если вы собираетесь устанавливать секционные радиаторы стандартного размера (с осевым расстоянием 50 см по высоте) и уже выбрали материал, модель и желаемый размер, то с расчетом их количества сложностей возникнуть не должно. У большинства авторитетных компаний, поставляющих хорошее отопительное оборудование, есть технические данные на все модификации на сайте, среди которых есть тепловая мощность.Если указывается не мощность, а расход теплоносителя, то преобразовать в мощность несложно: расход теплоносителя 1 л / мин примерно равен мощности 1 кВт (1000 Вт).
Осевое расстояние радиатора определяется высотой между центрами отверстий для подачи / отвода охлаждающей жидкости
Чтобы облегчить жизнь клиентам, многие сайты устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к занесению данных о вашем помещении в соответствующие поля.И на выходе у вас готовый результат: количество секций этой модели в штуках.
Но если просто подумать о возможных вариантах, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчета количества секций биметаллических радиаторов отопления от расчета из алюминия, стали или чугуна ничем не отличается. Только тепловая мощность одной секции может быть разной.
- алюминий – 190 Вт
- биметаллический – 185Вт
- чугун – 145Вт.
Если вам просто интересно, какой материал выбрать, вы можете использовать эти данные. Для наглядности представляем простейший расчет секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.
При определении количества биметаллических нагревательных приборов стандартного размера (межосевое расстояние 50 см) предполагается, что одна секция может обогреть 1 штуку.8м 2 площади. Тогда для комнаты 16м 2 нужно: 16м 2 / 1,8м 2 = 8,88шт. Округляем – нам нужно 9 разделов.
Аналогично считаем для чугунных или стальных бараков. Нужны только нормы:
- Радиатор биметаллический – 1,8 м 2
- алюминий – 1,9-2,0 м 2
- чугун – 1,4-1,5 м 2.
Это данные для секций с межосевым расстоянием 50 см. Сегодня в продаже есть модели разной высоты: от 60 см до 20 см и даже ниже. Модели 20см и ниже называются бордюрами.Естественно, их мощность отличается от указанной нормативной, и если вы планируете использовать «нестандартную», вам придется внести коррективы. Либо ищите паспортные данные, либо рассчитывайте сами. Мы исходим из того, что теплоотдача теплового устройства напрямую зависит от его площади. С уменьшением высоты уменьшается площадь устройства, а значит, пропорционально уменьшается мощность. То есть нужно найти соотношение высот выбранного радиатора со стандартным, а затем использовать этот коэффициент для корректировки результата.
Для наглядности рассчитаем алюминиевые радиаторы по площади. Помещение то же: 16м2. Считаем количество секций стандартным размером: 16м 2 / 2м 2 = 8шт. Но мы хотим использовать небольшие секции высотой 40 см. Находим соотношение радиаторов выбранного размера к стандартным: 50см / 40см = 1,25. А теперь регулируем количество: 8шт * 1,25 = 10шт.
Корректировка в зависимости от режима системы отопления
Производители в паспортных данных указывают максимальную мощность радиаторов: в высокотемпературном режиме использования – температура теплоносителя в подаче 90 ° С, в обратном – 70 ° С (обозначается 90/70). корпус в комнате должен быть 20 ° С.Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средней мощности 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что расчет нужно откорректировать.
Для учета режима работы системы необходимо определить температурный напор системы. Температурный напор – это разница между температурой воздуха и обогревателей. В этом случае температура отопительных приборов считается средним арифметическим между значениями подачи и возврата.
Для наглядности рассчитаем чугунные радиаторы отопления на два режима: высокотемпературный и низкотемпературный, стандартные размеры секций (50см). Помещение то же: 16м2. Одна чугунная секция в высокотемпературном режиме 90/70/20 нагревает 1,5м2. Следовательно нам потребуется 16м 2 / 1,5м 2 = 10,6 шт. Округление – 11 шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь находим температурный напор для каждой из систем:
- высокотемпературный 90/70 / 20- (90 + 70) / 2-20 = 60 о С;
- низкая температура 55/45/20 – (55 + 45) / 2-20 = 30 о С.
То есть при использовании низкотемпературного режима работы потребуется вдвое больше секций для обогрева помещения. Для нашего примера для комнаты площадью 16 м 2 требуется 22 секции чугунных радиаторов. Получается большая батарея. Это, кстати, одна из причин, по которой данный вид отопительных приборов не рекомендуется использовать в сетях с низкими температурами.
С помощью этого расчета вы можете учесть желаемую температуру воздуха. Если вы хотите, чтобы в комнате было не 20 ° C, а, например, 25 ° C, просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент.Сделаем расчет для тех же чугунных радиаторов: параметры будут 90/70/25. Считаем температурный напор для этого случая (90 + 70) / 2-25 = 55 ° С. Теперь находим соотношение 60 ° С / 55 ° С = 1,1. Для обеспечения температуры 25 ° С нужно 11шт * 1,1 = 12,1шт.
Зависимость мощности радиатора от подключения и расположения
Помимо всех параметров, описанных выше, теплоотдача радиатора различается в зависимости от типа подключения.Оптимальным считается диагональное соединение с потоком сверху, в этом случае потери тепловой мощности отсутствуют. Наибольшие потери наблюдаются при боковом подключении – 22%. Все остальные средние по эффективности. Примерно процентные потери показаны на рисунке.
Фактическая мощность радиатора также уменьшается при наличии препятствий. Например, если сверху свисает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери составляют 3-5%.При установке сетчатого экрана, не доходящего до пола, потери примерно такие же, как и при нависании подоконника: 7-8%. Но если экран полностью закрывает весь нагревательный прибор, его теплоотдача снижается на 20-25%.
Определение количества радиаторов для однотрубных систем
Есть еще один очень важный момент: все вышесказанное справедливо для случая, когда охлаждающая жидкость с одинаковой температурой поступает на ввод каждого из радиаторов.Считается намного сложнее: там при каждом последующем нагревателе вода течет все более и более холодной. А если вы хотите рассчитать количество радиаторов для однотрубной системы, вам нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей – определить мощность радиаторов как для двухтрубной системы, а затем, пропорционально падению тепловой мощности, добавить секции для увеличения теплопередачи батареи в целом.
Проиллюстрируем на примере.На схеме изображена однотрубная система отопления с шестью радиаторами. Количество аккумуляторов определялось для двухтрубной разводки. Теперь вам нужно внести коррективы. Для первого обогревателя все осталось по-прежнему. Второй – с охлаждающей жидкостью с более низкой температурой. Определяем% падения мощности и увеличиваем количество секций на соответствующее значение. На картинке получается так: 15кВт-3кВт = 12кВт. Находим процент: перепад температуры 20%. Соответственно, для компенсации увеличиваем количество радиаторов: если бы нужно было 8 штук, было бы на 20% больше – 9 или 10 штук.Здесь пригодится знание комнаты: если это спальня или детская, округлить вверх, если гостиная или другая подобная комната, округлить вниз. Учитывайте расположение относительно сторон света: на севере круглая к большему, на юге – к меньшему.
Этот способ явно не идеален: ведь получается, что последняя батарея в ветке просто должна быть огромной: судя по схеме на ее ввод подается теплоноситель с удельной теплоемкостью, равной его мощности, а на практике убрать все 100% нереально.Поэтому при определении мощности котла для однотрубных систем обычно берут определенный запас, ставят запорную арматуру и подключают радиаторы через байпас так, чтобы можно было регулировать теплопередачу, и тем самым компенсировать падение температуры теплоносителя. охлаждающая жидкость. Все это подразумевает одно: количество и / или размеры радиаторов в однотрубной системе необходимо увеличивать, а по мере удаления от начала ответвления ставить все больше и больше секций.
Сводка
Примерный расчет количества секций радиаторов прост и быстр.Но уточнение, зависящее от всех особенностей помещения, размеров, типа подключения и расположения, требует внимания и времени. Но вы точно можете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.
Правильный расчет радиаторов отопления – довольно важная задача для каждого домовладельца. При использовании недостаточного количества секций помещение не будет прогреваться в зимние холода, а покупка и эксплуатация слишком больших радиаторов повлечет за собой неоправданно высокие затраты на отопление.Поэтому при замене старой системы отопления или установке новой нужно знать, как рассчитать радиаторы отопления. Для стандартных помещений можно использовать простейшие расчеты, но иногда возникает необходимость учитывать различные нюансы, чтобы получить максимально точный результат.
Расчет по площади
Предварительный расчет можно сделать, ориентируясь на площадь помещения, для которого покупаются радиаторы. Это очень простой расчет, который подходит для помещений с низкими потолками (2.40-2,60 м). Согласно строительным нормам, для отопления потребуется 100 ватт тепловой мощности на квадратный метр площади.
Рассчитываем количество тепла, которое потребуется для всего помещения. Для этого площадь умножаем на 100 Вт, т.е. на комнату 20 кв. м. расчетная тепловая мощность составит 2000 Вт (20 кв.м X 100 Вт) или 2 кВт.
Правильный расчет радиаторов отопления необходим для обеспечения достаточного количества тепла в доме
Этот результат необходимо разделить на теплоотдачу одной секции, указанную производителем.Например, если она равна 170 Вт, то в нашем случае необходимое количество секций радиатора будет:
2000 Вт / 170 Вт = 11,76, т.е. 12, так как результат нужно округлить до ближайшего целого числа. Округление обычно осуществляется в сторону увеличения, однако для помещений, в которых теплопотери ниже средних, например, для кухни, можно округлить в меньшую сторону.
Обязательно учитывайте возможные потери тепла в зависимости от конкретной ситуации. Конечно, комната с балконом или расположенная в углу здания быстрее теряет тепло.В этом случае следует увеличить значение расчетной тепловой мощности для помещения на 20%. Примерно на 15-20% следует увеличить расчеты, если вы планируете прятать радиаторы за экраном или монтировать их в нише.
Расчеты в зависимости от объема помещения
Более точные данные можно получить, рассчитав сечения радиаторов отопления с учетом высоты потолка, т.е.по объему помещения. Принцип здесь примерно такой же, как и в предыдущем случае.Сначала рассчитывается общая потребность в тепле, затем рассчитывается количество секций радиатора.
Если радиатор закрыт экраном, необходимо увеличить потребность помещения в тепловой энергии на 15-20%
Согласно рекомендациям СНИП, для обогрева каждого кубометра жилой площади в панельном доме требуется 41 Вт тепловой мощности. Умножив площадь комнаты на высоту потолка, получаем общий объем, который умножаем на это нормативное значение.Для квартир с современными стеклопакетами и внешней изоляцией тепла потребуется меньше, всего 34 Вт на кубометр.
Например, рассчитываем необходимое количество тепла для комнаты площадью 20 кв.м. с высотой потолков 3 метра. Объем помещения составит 60 кубометров (20 кв.м. X 3 м.). Расчетная тепловая мощность в этом случае будет равна 2460 Вт (60 кубометров X 41 Вт).
А как посчитать количество радиаторов? Для этого необходимо разделить данные, полученные по теплоотдаче одного участка, указанного производителем.Если взять, как в предыдущем примере, 170 Вт, то для комнаты вам потребуется: 2460 Вт / 170 Вт = 14,47, т.е. 15 секций радиатора.
Производители стремятся указывать чрезмерные показатели теплоотдачи своей продукции, предполагая, что температура теплоносителя в системе будет максимальной. В реальных условиях это требование соблюдается редко, поэтому стоит ориентироваться на минимальные показатели теплоотдачи одной секции, которые отражены в паспорте изделия. Это сделает расчеты более реалистичными и точными.
Что делать, если нужен очень точный расчет?
К сожалению, не каждую квартиру можно считать стандартной. Тем более это касается частных жилых домов. Возникает вопрос: как рассчитать количество радиаторов отопления с учетом индивидуальных условий их эксплуатации? Для этого вам нужно будет учесть множество различных факторов.
При расчете количества секций обогрева необходимо учитывать высоту потолка, количество и размер окон, наличие утеплителя стен и т. Д.
Особенность этого метода в том, что при расчете необходимого количества тепла используется ряд факторов, учитывающих характеристики конкретного помещения, которые могут повлиять на его способность накапливать или отдавать тепловую энергию. Формула для расчетов следующая:
ТТ = 100Вт / кв.м. * P * K1 * K2 * K3 * K4 * K5 * K6 * K7 , где
CT – количество тепла, необходимое для конкретного помещения;
П – площадь номера, кв.м .;
К1 – коэффициент, учитывающий остекление оконных проемов:
- для окон с обычным стеклопакетом – 1,27;
- для стеклопакетов – 1,0;
- для окон с тройным остеклением – 0,85.
К2 – коэффициент теплоизоляции стен:
- низкая степень теплоизоляции – 1,27;
- хорошая теплоизоляция (кладка в два кирпича или слой утеплителя) – 1,0;
- высокая степень теплоизоляции – 0.85.
К3 – соотношение площади окон и пола в комнате:
- 50% – 1,2;
- 40% – 1,1;
- 30% – 1,0;
- 20% – 0,9;
- 10% – 0,8.
К4 – коэффициент, позволяющий учитывать среднюю температуру воздуха в самую холодную неделю года:
- на -35 градусов – 1,5;
- для -25 градусов – 1,3;
- для -20 градусов – 1,1;
- для -15 градусов – 0.9;
- для -10 градусов – 0,7.
К5 – регулирует потребность в тепле с учетом количества внешних стен:
- одностенная – 1,1;
- две стены – 1,2;
- трехстенный – 1,3;
- четыре стены – 1.4.
К6 – с учетом типа помещения, расположенного выше:
- холодный чердак – 1,0;
- отапливаемый чердак – 0,9;
- отапливаемая жилая – 0,8
К7 – коэффициент, учитывающий высоту потолков:
- на 2.5 м – 1,0;
- на 3,0 м – 1,05;
- на 3,5 м – 1,1;
- на 4,0 м – 1,15;
- на 4,5 м – 1,2.
Такой расчет количества радиаторов отопления включает практически все нюансы и основан на достаточно точном определении потребности помещения в тепле.
Осталось результат разделить на величину теплоотдачи одной секции радиатора и округлить результат до целого числа.
Некоторые производители предлагают более простой способ получить ответ.На их сайтах вы можете найти удобный калькулятор, специально предназначенный для этих расчетов. Для использования программы нужно ввести необходимые значения в соответствующие поля, после чего отобразится точный результат. Или вы можете использовать специальное программное обеспечение.
Одним из важнейших вопросов создания комфортных условий проживания в доме или квартире является надежная, правильно рассчитанная и смонтированная, сбалансированная система отопления. Именно поэтому создание такой системы – важнейшая задача при организации строительства собственного дома или при капитальном ремонте в многоквартирном доме.
Несмотря на современное разнообразие систем отопления различных типов, проверенная схема по-прежнему остается лидером по популярности: контуры труб с циркулирующим по ним теплоносителем и теплообменников – радиаторов, установленных в помещениях. Казалось бы, все просто, батареи стоят под окнами и обеспечивают необходимый обогрев … Однако необходимо знать, что теплоотдача от радиаторов отопления должна соответствовать как площади помещения, так и площади. ряд других конкретных критериев.Теплотехнические расчеты по требованиям СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее, осуществить это можно самостоятельно, естественно, с приемлемым упрощением. В данной публикации будет рассказано, как самостоятельно рассчитать батареи отопления на площадь отапливаемого помещения с учетом различных нюансов.
Но, для начала, нужно хотя бы вкратце ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть результаты расчетов.
Кратко о существующих типах радиаторовСовременный ассортимент радиаторов в продаже включает следующие типы:
- Радиаторы стальные панельной или трубчатой конструкции.
- Аккумуляторы чугунные.
- Радиаторы алюминиевые нескольких модификаций.
- Биметаллические радиаторы.
Этот тип радиатора не приобрел особой популярности, несмотря на то, что некоторым моделям придают очень элегантный дизайн.Проблема в том, что недостатки таких теплопередающих устройств значительно превышают их достоинства – невысокая цена относительно небольшая масса и простота монтажа.
Тонкие стальные стенки таких радиаторов недостаточно теплоемки – быстро нагреваются, но так же быстро остывают. Проблемы могут возникнуть с гидроударами – сварные стыки листов иногда протекают. Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, а срок службы таких аккумуляторов невелик – обычно производители дают им довольно короткую гарантию на продолжительность эксплуатации.
Стальные радиаторы в подавляющем большинстве случаев представляют собой цельную конструкцию, и они не позволяют изменять теплоотдачу путем изменения количества секций. У них есть паспортная тепловая мощность, которую сразу нужно подбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – у некоторых трубчатых радиаторов есть возможность изменять количество секций, но обычно это делается на заказ, при изготовлении, а не дома.
Радиаторы чугунныеПредставители этого типа батарей, наверное, знакомы каждому с раннего детства – именно такие гармошки раньше устанавливались буквально повсюду.
Возможно, такие батареи МС-140-500 не отличались особым изяществом, но прослужили не одно поколение жителей. Каждая секция такого радиатора обеспечивала теплоотдачу 160 Вт. Радиатор сборный, и количество секций в принципе ничем не ограничивалось.
В настоящее время в продаже много современных чугунных радиаторов. Они уже отличаются более элегантным внешним видом, гладкими гладкими внешними поверхностями, облегчающими уборку.Также доступны эксклюзивные варианты, с интересным рельефным рисунком литья чугуна.
При этом такие модели полностью сохраняют основные достоинства чугунных аккумуляторов:
- Высокая теплоемкость чугуна и массивность аккумуляторов способствуют длительной сохранности и высокой теплоотдаче.
- Аккумуляторы чугунные, при правильной сборке и качественной герметизации стыков не боятся ударов воды, перепадов температур.
- Толстые чугунные стенки мало подвержены коррозии и абразивному износу.Может использоваться практически любой теплоноситель, поэтому такие батареи одинаково хороши как для автономных систем, так и для систем центрального отопления.
Если не брать во внимание внешние данные старых чугунных аккумуляторов, то одним из недостатков является хрупкость металла (недопустимы акцентированные удары), относительная сложность монтажа, связанная скорее с массивностью. К тому же никакие стеновые перегородки не смогут выдержать вес таких радиаторов.
Радиаторы алюминиевыеАлюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность.Они относительно недорогие, имеют современный, довольно элегантный внешний вид и обладают отличным теплоотводом.
Качественные алюминиевые аккумуляторы способны выдерживать давление от 15 и более атмосфер, высокую температуру охлаждающей жидкости около 100 градусов. При этом тепловая отдача от одной секции в некоторых моделях иногда достигает 200 Вт. Но при этом они имеют небольшой вес (вес секции – обычно до 2 кг) и не требуют большого объема охлаждающей жидкости (емкость – не более 500 мл).
Алюминиевые радиаторы продаются как многоярусные батареи, с возможностью изменения количества секций, так и монолитные изделия, рассчитанные на определенную мощность.
Недостатки алюминиевых радиаторов:
- Некоторые типы алюминия очень чувствительны к кислородной коррозии, в этом случае существует высокий риск газообразования. Это предъявляет особые требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
- Некоторые алюминиевые радиаторы неразъемной конструкции, секции которых изготавливаются по технологии экструзии, при определенных неблагоприятных условиях могут протекать на стыках.При этом провести ремонт просто невозможно, и менять придется всю батарею целиком.
Из всех алюминиевых батарей высочайшего качества изготавливаются с использованием анодного окисления металлов. Эти изделия практически не боятся кислородной коррозии.
Внешне все алюминиевые радиаторы примерно одинаковы, поэтому нужно внимательно читать техническую документацию, делая выбор.
Биметаллические радиаторы отопленияТакие радиаторы по надежности оспаривают первенство с чугуном, а по тепловому КПД – с алюминием.Причина тому – их особый дизайн.
Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных одним и тем же стальным вертикальным каналом (поз. 2). Подключение к одиночному аккумулятору осуществляется качественными резьбовыми соединениями (поз. 3). Высокая теплоотдача обеспечивается внешней алюминиевой оболочкой.
Стальные внутренние трубы изготавливаются из металла, не подверженного коррозии, или имеют защитное полимерное покрытие.Что ж, алюминиевый теплообменник ни в коем случае не контактирует с охлаждающей жидкостью, и коррозия для него совершенно не проблема.
Таким образом, достигается сочетание высокой прочности и износостойкости с отличными тепловыми характеристиками.
Такие батареи не боятся даже очень больших скачков давления, высоких температур. По сути, они универсальны, подходят для любой системы отопления, но при этом демонстрируют наилучшие эксплуатационные характеристики в условиях высокого давления центральной системы – для контуров с естественной циркуляцией малопригодны.
Пожалуй, единственный их недостаток – высокая цена по сравнению с любыми другими радиаторами.
Для удобства восприятия помещена таблица, в которой приведены сравнительные характеристики радиаторов отопления. Легенда в нем:
- ТС – трубчатая стальная;
- Чг – чугун;
- Al – алюминий обыкновенный;
- AA – алюминий анодированный;
- BM – биметаллический.
Th | TS | Al | AA | BM | |
---|---|---|---|---|---|
Максимальное давление (атмосферы) | |||||
рабочий | 6-9 | 6–12 | 10-20 | 15-40 | 35 |
опрессовка | 12-15 | 9 | 15-30 | 25-75 | 57 |
разрушение | 20-25 | 18-25 | 30-50 | 100 | 75 |
Предел pH (pH) | 6,5-9 | 6,5-9 | 7-8 | 6,5-9 | 6,5-9 |
Подверженность коррозии: | |||||
кислород | нет | да | нет | нет | да |
паразитные токи | нет | да | да | нет | да |
электролитический пар | нет | слабый | да | нет | слабый |
Мощность сечения при h = 500 мм; Дт = 70 °, Вт | 160 | 85 | 175-200 | 216,3 | до 200 |
Гарантия, лет | 10 | 1 | 3–10 | 30 | 3–10 |
Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечивать обогрев до комфортной температуры и компенсировать неизбежные теплопотери вне зависимости от погоды на улице.
Базовым значением для расчетов всегда является площадь или объем комнаты. Сами по себе профессиональные расчеты очень сложны и учитывают очень большое количество критериев. Но для бытовых нужд можно использовать упрощенные методы.
Самые простые способы расчетаПринято считать, что 100 Вт на квадратный метр площади достаточно для создания нормальных условий в стандартной гостиной. Таким образом, следует всего лишь посчитать площадь комнаты и умножить ее на 100.
Q = S × 100
Q – необходимый теплоотвод от радиаторов отопления.
S – площадь отапливаемого помещения.
Если вы планируете установить неразборный радиатор, то это значение станет ориентиром для выбора необходимой модели. В случае установки аккумуляторов, допускающих изменение количества секций, необходимо произвести еще один расчет:
N = Q / Qus
N – расчетное количество секций.
Qus – удельная тепловая мощность одной секции. Это значение обязательно указывается в техническом паспорте товара.
Как видите, эти расчеты предельно просты и не требуют специальных знаний математики – достаточно рулетки, чтобы обмерить комнату, и листа бумаги для расчетов. Кроме того, можно воспользоваться таблицей ниже – уже есть расчетные значения для помещений разной площади и удельной мощности нагревательных секций.
Таблица секций
Однако необходимо помнить, что эти значения приведены для стандартной высоты потолка (2,7 м) многоэтажного дома. Если высота помещения разная, то количество аккумуляторных секций лучше рассчитывать исходя из объема помещения. Для этого используется средний показатель – 41 Вт при номинальной мощности на 1 м³ объема в панельном доме или 34 Вт в кирпичном доме.
Q = S × ч × 40 (34)
, где х – высота потолка над уровнем пола.
Дальнейший расчет – не отличается от приведенного выше.
Детальный расчет с учетом особенностей помещенияА теперь перейдем к более серьезным расчетам. Описанная выше упрощенная процедура расчета может преподнести сюрприз владельцам дома или квартиры. Установленные радиаторы не создадут необходимый комфортный микроклимат в жилых помещениях. И причина тому – целый список нюансов, которые метод просто не учитывает.Между тем такие нюансы могут быть очень важны.
Итак, за основу снова берется площадь помещения и все те же 100 Вт на м². Но сама формула уже выглядит немного иначе:
Q = S × 100 × A × B × C × D × E × F × G × H × Я × Дж
Буквы от И до Коэффициенты J условно обозначаются с учетом особенностей помещения и установки в нем радиаторов.Рассмотрим их по порядку:
А – количество внешних стен в помещении.
Понятно, что чем выше площадь контакта помещения с улицей, то есть чем больше в помещении внешних стен, тем выше общие теплопотери. Эта зависимость учитывает коэффициент И :
- Одна наружная стенка – А = 1,0
- Две внешние стены – А = 1,2
- Три наружные стены – А = 1.3
- Все четыре стены внешние – А = 1,4
По – ориентация комнаты по сторонам света.
Максимальные теплопотери всегда наблюдаются в помещениях, не попадающих под прямые солнечные лучи. Это, конечно же, северная сторона дома, и сюда же можно включить и восточную – лучи Солнца приходят сюда только по утрам, когда солнце «еще не на полную мощность».
Южная и западная стороны дома всегда намного сильнее нагреваются солнцем.
Отсюда – значения коэффициента В :
- Помещение выходит на север или восток – Б = 1,1
- Южный или западный номер – В = 1, то есть может не учитываться.
C – коэффициент, учитывающий степень утепления стен.
Понятно, что потери тепла из отапливаемого помещения будут зависеть от качества теплоизоляции наружных стен. Значение коэффициента СО примите равным:
- Средний уровень – стены кладут в два кирпича, либо предусмотрено утепление их поверхности другим материалом – С = 1.0
- Наружные стены не утеплены – С = 1,27
- Высокий уровень теплоизоляции по теплотехническим расчетам – С = 0,85.
D – особенности климатических условий региона.
Естественно, что «под одну гребенку» сравнять все основные показатели необходимой тепловой мощности невозможно – они также зависят от уровня зимних отрицательных температур, характерных для той или иной местности.При этом учитывается коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение легко уточнить в местной гидрометеорологической службе.
- – 35 ° С и ниже – D = 1,5
- -25 ÷ – 35 ° С – D = 1,3
- до – 20 ° С – Д = 1,1
- не ниже – 15 ° С – Д = 0,9
- не ниже – 10 ° С – D = 0.7
E – коэффициент высоты потолка помещения.
Как уже упоминалось, 100 Вт / м² – это среднее значение для стандартной высоты потолка. Если он другой, следует ввести поправочный коэффициент. E :
- До 2,7 м – E = 10
- 2,8 – 3, 0 м – E = 105
- 3,1 – 3, 5 мес. E = 1, 1
- 3,6 – 4, 0 м – E = 1.15
- Более 4,1 м – E = 1,2
F– коэффициент, учитывающий тип помещения, расположенного выше.
Устройство системы отопления в помещениях с холодным полом – занятие бессмысленное, и хозяева всегда принимают меры в этом вопросе. Но зачастую тип помещения, расположенного наверху, от них зачастую не зависит. А между тем, если сверху будет жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:
- холодный чердак или неотапливаемое помещение – Ф = 1.0
- утепленная мансарда (в т.ч.- и утепленная крыша) – F = 0,9
- отапливаемое помещение – Ф = 0,8
G– коэффициент учета типа установленных окон.
Различные оконные конструкции неодинаково подвержены тепловым потерям. При этом учитывается коэффициент G:
- обыкновенные деревянные рамы с двойным остеклением – G = 1,27 Окна
- комплектуются однокамерным стеклопакетом (2 стекла) – G = 1.0
- однокамерный стеклопакет с аргоновым заполнением или стеклопакет (3 стекла) – G = 0,85
H – коэффициент площади остекления помещения.
Суммарная величина теплопотерь зависит также от общей площади окон, установленных в помещении. Эта величина рассчитывается исходя из отношения площади окон к площади комнаты. В зависимости от результата находим коэффициент N :
- Коэффициент меньше 0.1 – H = 0, 8
- 0,11 ÷ 0,2 – H = 0, 9
- 0,21 ÷ 0,3 – H = 1 0
- 0,31 ÷ 0,4 – H = 1 1
- 0,41 ÷ 0,5 – H = 1,2
I– коэффициент с учетом схемы подключения радиатора.
Теплопередача зависит от того, как радиаторы подключены к подающему и обратному трубопроводу. Это также следует учитывать при планировании монтажа и определении необходимого количества секций:
- а – подключение диагональное, подача сверху, обратка снизу – I = 1,0
- б – одностороннее соединение, поток сверху, возврат снизу – I = 1.03
- c – подключение двухстороннее, а подающая и обратная снизу – I = 1,13
- г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
- d – одностороннее соединение, подача снизу, обратка сверху – I = 1,28
- э – одностороннее нижнее соединение возврата и подачи – I = 1,28
J– коэффициент, учитывающий степень открытости установленных радиаторов.
Многое зависит от того, насколько открыты установленные батареи для свободного теплообмена с воздухом в помещении. Существующие или искусственно созданные преграды могут значительно снизить теплопередачу радиатора. При этом учитывается коэффициент Дж:
а – радиатор расположен открыто на стене или не прикрыт подоконником – Дж = 0,9
б – радиатор сверху прикрыт подоконником или полкой – Дж = 1.0
с – радиатор сверху прикрыт горизонтальным выступом пристенной ниши – Дж = 1,07
д – радиатор сверху прикрыт подоконником, а с лицевых сторон – детали, покрытые декоративным кожухом – Дж = 1,12
d – радиатор полностью прикрыт декоративным кожухом – Дж = 1,2
⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰
Ну вот наконец и все.Теперь вы можете подставить в формулу необходимые значения и соответствующие коэффициенты, и на выходе будет получена необходимая тепловая мощность для надежного обогрева помещения с учетом всех нюансов.
После этого остается либо выбрать неразборный радиатор с желаемой теплоотдачей, либо рассчитанное значение разделить на удельную теплоемкость одной секции аккумулятора выбранной модели.
Наверняка многим такой расчет кажется излишне громоздким, что легко запутать.Для облегчения расчетов предлагаем воспользоваться специальным калькулятором – в нем уже есть все необходимые значения. Пользователю нужно только ввести запрашиваемые начальные значения или выбрать нужные элементы из списков. Кнопка «рассчитать» сразу приведет к точному результату с округлением в большую сторону.
Помещения со стандартной высотой потолков
Расчет количества секций радиаторов отопления для типового дома производится исходя из площади комнат.Площадь комнаты в типовой постройке рассчитывается путем умножения длины комнаты на ее ширину. Чтобы обогреть 1 квадратный метр, требуется 100 Вт мощности нагревателя, а для расчета общей мощности нужно полученную площадь умножить на 100 Вт. Полученное значение означает общую мощность нагревателя. В документации на радиатор обычно указывается тепловая мощность одной секции. Чтобы определить количество секций, вам нужно разделить общую мощность на это значение и округлить результат в большую сторону.
Пример расчета:
Помещение шириной 3,5 метра и длиной 4 метра, с обычной высотой потолков. Мощность одной секции радиатора – 160 Вт. Необходимо найти количество разделов.
- Определяем площадь комнаты, умножив ее длину на ширину: 3,5 · 4 = 14 м 2.
- Находим суммарную мощность ТЭНов 14 · 100 = 1400 Вт.
- Находим количество секций: 1400/160 = 8.75. Округлите до большего значения и получите 9 секций.
Для помещений, расположенных в конце здания, расчетное количество радиаторов необходимо увеличить на 20%.
Помещения с высотой потолка более 3 метров
Расчет количества секций отопительных приборов для помещений с высотой потолка более трех метров проводится от объема помещения. Объем – это площадь, умноженная на высоту потолков. Для обогрева 1 кубометра помещения требуется 40 Вт тепловой мощности отопительного прибора, а его общая мощность рассчитывается умножением объема помещения на 40 Вт.Для определения количества секций это значение необходимо разделить на мощность одной секции по паспорту.
Пример расчета:
Помещение шириной 3,5 метра и длиной 4 метра, с высотой потолков 3,5 метра. Мощность одной секции радиатора – 160 Вт. Необходимо найти количество секций радиаторов.
Также можно воспользоваться таблицей:
Как и в предыдущем случае, для угловой комнаты эту цифру нужно умножить на 1.2. Также необходимо увеличить количество секций, если в помещении имеется один из следующих факторов:
- Находится в панельном или плохо изолированном доме;
- Расположен на первом или последнем этаже;
- Имеет более одного окна;
- Расположен рядом с неотапливаемыми комнатами.
В этом случае полученное значение необходимо умножить на коэффициент 1,1 для каждого из коэффициентов.
Пример расчета:
Угловая комната шириной 3.5 метров и длиной 4 метра, при высоте потолков 3,5 м. Находится в панельном доме на первом этаже, имеет два окна. Мощность одной секции радиатора – 160 Вт. Необходимо найти количество секций радиаторов.
- Находим площадь комнаты, умножив ее длину на ширину: 3,5 · 4 = 14 м 2.
- Объем помещения находим, умножив площадь на высоту потолков: 14 · 3,5 = 49 м 3.
- Находим полную мощность радиатора отопления: 49 · 40 = 1960 Вт.
- Находим количество секций: 1960/160 = 12,25. Округляем и получаем 13 секций.
- Умножьте полученную сумму на коэффициенты:
Угловая комната – коэффициент 1,2;
Панельный дом – коэффициент 1,1;
Два окна – коэффициент 1,1;
Цокольный этаж – коэффициент 1,1.
Таким образом, получаем: 13 · 1,2 · 1,1 · 1,1 · 1,1 = 20,76 сечения. Округляем до большего целого числа – 21 секция радиаторов отопления.
При расчетах следует учитывать, что разные типы радиаторов отопления имеют разную теплоемкость. При выборе количества секций радиатора отопления необходимо использовать именно те значения, которые соответствуют.
Для того, чтобы теплоотдача от радиаторов была максимальной, необходимо установить их в соответствии с рекомендациями производителя, соблюдая все расстояния, указанные в паспорте. Это способствует лучшему распределению конвективных потоков и снижает теплопотери.
Как рассчитать скорость разряда батареи
Обновлено 28 декабря 2020 г.
Автор: S. Hussain Ather
Знание того, как долго должна работать батарея, поможет сэкономить деньги и энергию. Скорость разряда влияет на срок службы батареи. Технические характеристики и особенности того, как электрические цепи с аккумуляторными источниками пропускают ток, являются основой для создания электроники и оборудования, связанного с электроникой. Скорость, с которой заряд проходит через цепь, зависит от того, как быстро источник батареи может передавать ток через нее, в зависимости от скорости разряда.k
, где H – номинальное время разряда в часах, C – номинальная емкость разряда в ампер-часах (также называемая рейтингом AH в ампер-часах), I – ток разряда в амперах, k – постоянная Пойкерта без размеров, а t – фактическое время разряда.
Номинальное время разряда батареи – это то, что производители батарей называют временем разряда батареи. Это число обычно указывается вместе с количеством часов, в которые рассчитывалась ставка.
Константа Пейкерта обычно находится в диапазоне от 1,1 до 1,3. Для батарей с абсорбирующим стеклянным матом (AGM) это число обычно составляет от 1,05 до 1,15. Он может варьироваться от 1,1 до 1,25 для гелевых аккумуляторов и обычно от 1,2 до 1,6 для залитых аккумуляторов. На BatteryStuff.com есть калькулятор для определения постоянной Пейкерта. {k-1}
, чтобы получить продукт Это как текущее время, умноженное на время, или скорость разряда.Это новый рейтинг AH, который вы можете рассчитать.
Емкость аккумулятора
Скорость разряда дает вам отправную точку для определения емкости аккумулятора, необходимой для работы различных электрических устройств. Продукт It – это заряд Q, в кулонах, выделяемый аккумулятором. Инженеры обычно предпочитают использовать ампер-часы для измерения скорости разряда, используя время t в часах и ток I в амперах.
Исходя из этого, вы можете понять емкость аккумулятора, используя такие величины, как ватт-часы (Втч), которые измеряют емкость аккумулятора или энергию разряда в ваттах, единицах мощности. Инженеры используют график Рагона для оценки емкости никелевых и литиевых батарей в ватт-часах. Графики Рагона показывают, как мощность разряда (в ваттах) падает с увеличением энергии разряда (Втч). Графики показывают эту обратную зависимость между двумя переменными.
Эти графики позволяют использовать химический состав батареи для измерения мощности и скорости разряда различных типов батарей, включая фосфат лития-железа (LFP), оксид лития-магнана (LMO) и никель-марганец-кобальт (NMC).
Уравнение кривой разряда батареи
Уравнение кривой разряда батареи, лежащее в основе этих графиков, позволяет определить время работы батареи, найдя обратный наклон линии. Это работает, потому что единицы ватт-часа, разделенные на ватт, дают вам часы работы. Представив эти концепции в форме уравнения, вы можете написать E = C x V avg для энергии E в ватт-часах, емкости в ампер-часах C и V avg среднее напряжение разряда.
Ватт-часов обеспечивает удобный способ преобразования энергии разряда в другие формы энергии, потому что умножение ватт-часов на 3600 для получения ватт-секунд дает энергию в джоулях. Джоули часто используются в других областях физики и химии, таких как тепловая энергия и тепло для термодинамики или энергия света в лазерной физике.
Наряду со скоростью разряда полезны несколько других измерений. Инженеры также измеряют мощность в единицах C , что представляет собой емкость в ампер-часах, деленную точно на один час.Вы также можете напрямую преобразовать ватты в амперы, зная, что P = I x V для мощности P в ваттах, тока I в амперах и напряжения В в вольтах для батареи. .
Например, батарея на 4 В с номиналом 2 ампер-часа имеет емкость 2 Вт-ч в ватт-часах. Это измерение означает, что вы можете потреблять ток при 2 ампера в течение одного часа или вы можете потреблять ток при одном усилителе в течение двух часов. Соотношение между током и временем зависит друг от друга, что определяется номиналом ампер-часов.
Калькулятор разряда батареи
Использование калькулятора разряда батареи может дать вам более глубокое понимание того, как различные материалы батареи влияют на скорость разряда. Углеродно-цинковые, щелочные и свинцово-кислотные батареи обычно снижают эффективность, если они разряжаются слишком быстро. Расчет скорости разряда позволяет вам это количественно оценить.
Разряд батареи предоставляет вам методы расчета других величин, таких как емкость и константа скорости разряда.Для данного заряда, выделяемого батареей, емкость батареи (не путать с емкостью, как обсуждалось ранее) C определяется как C = Q / V для данного напряжения V . Емкость, измеряемая в фарадах, измеряет способность батареи накапливать заряд .
Конденсатор, включенный последовательно с резистором, позволяет рассчитать произведение емкости и сопротивления цепи, которое дает постоянную времени τ как τ = RC.Постоянная времени в этой схеме показывает время, которое требуется конденсатору, чтобы потреблять около 46,8% своего заряда при разрядке через цепь. Постоянная времени также является реакцией схемы на постоянное входное напряжение, поэтому инженеры часто используют постоянную времени в качестве частоты среза для схемы
Приложения для зарядки и разрядки конденсаторов
Когда конденсатор или аккумулятор заряжается или разряжается, вы можете многие приложения в электротехнике.Лампы-вспышки или лампы-вспышки излучают интенсивные вспышки белого света в течение коротких периодов времени от поляризованного электролитического конденсатора. Это конденсаторы с положительно заряженным анодом, который окисляется, образуя металлический изолятор как средство хранения и производства заряда.
Свет лампы исходит от электродов лампы, подключенных к конденсатору с большим напряжением, поэтому их можно использовать для фотосъемки со вспышкой в фотоаппаратах. Обычно они состоят из повышающего трансформатора и выпрямителя.Газ в этих лампах сопротивляется электричеству, поэтому лампа не будет проводить электричество, пока не разрядится конденсатор.
Помимо простых батарей, скорость разряда находит применение в конденсаторах стабилизаторов питания. Эти кондиционеры защищают электронику от скачков напряжения и тока, устраняя электромагнитные помехи (EMI) и радиочастотные помехи (RFI). Они делают это через систему резистора и конденсатора, в которой скорость зарядки и разрядки конденсатора предотвращает возникновение скачков напряжения.
Расчет отопления частного дома на качественное отопление. Расчет отопительных батарей по площади Расчет материалов на отопление частного дома
Водяная система отопления стала популярной как основной способ обогрева частного дома. Водяное отопление можно дополнить такими приборами, как водонагреватели, работающие от электричества. Некоторые устройства и системы отопления появились на отечественном рынке совсем недавно, но уже успели завоевать популярность.Сюда входят инфракрасные обогреватели, масляные радиаторы, система теплого пола и другие. Для обогрева местного типа часто используется такой прибор, как камин.
Однако в последнее время камины выполняют больше декоративную функцию, чем тепловые. От того, насколько правильно был выполнен проект и расчет отопления частного дома, а также системы водяного отопления, зависит ее долговечность и эффективность при эксплуатации. Во время эксплуатации такой системы отопления необходимо придерживаться определенных правил, чтобы работать максимально эффективно и результативно.
Система отопления частного дома – это не только такие комплектующие, как котлы или радиаторы. В систему отопления водяного типа входят такие элементы:
- Насосы;
- Автоматика;
- Трубопровод;
- Охлаждающая жидкость;
- Устройства для регулировки.
Для расчета отопления частного дома нужно руководствоваться такими параметрами, как мощность отопительного котла. Для каждой из комнат дома также необходимо рассчитать мощность радиаторов отопления.
Выбор котла
Котел бывает нескольких типов:
- Жидкотопливный котел;
- Газовый котел;
- Котел твердотопливный;
- Комбинированный котел.
Выбор котла, который будет использовать схему отопления жилого дома, должен зависеть от того, какой вид топлива является наиболее доступным и недорогим.
Помимо стоимости топлива, необходимо будет не реже одного раза в год проводить профилактический осмотр котла.Лучше всего для этих целей вызвать специалиста. Также необходимо будет провести профилактическую очистку фильтра. Самыми простыми в эксплуатации считаются котлы, работающие на газе. Они также довольно дешевы в обслуживании и ремонте. Газовый котел подходит только в тех домах, у которых есть выход на газовую магистраль.
Газ – это вид топлива, не требующий индивидуального транспорта или складских помещений. Помимо этого преимущества, многие газовые котлы современного типа могут похвастаться довольно высоким показателем КПД.
Котлы этого класса отличаются высокой степенью безопасности. Современные котлы устроены таким образом, что им не нужно выделять для котельной особое помещение. Современные котлы отличаются красивым внешним видом и способны удачно вписаться в интерьер любой кухни.
На сегодняшний день особой популярностью пользуются полуавтоматические котлы, работающие на топливном топливе. Правда, у таких котлов есть один недостаток, который заключается в том, что необходимо загружать топливо один раз в сутки.Многие производители выпускают такие котлы, которые полностью автоматизированы. В таких котлах загрузка твердого топлива отключена.
Сделать расчет системы отопления частного дома можно также в случае, если котел работает на электричестве.
Однако такие котлы несколько проблематичнее. Помимо основной проблемы, которая заключается в том, что электричество сейчас довольно дорогое, они еще могут перезагрузить сеть. В небольших поселках один дом выдает в среднем до 3 кВт в час, а для котла этого мало, и нужно учитывать, что сеть будет загружена не только работой котла.
Жидкотопливный котел может быть установлен для организации системы отопления частного дома. Недостаток таких котлов в том, что они могут вызывать претензии с точки зрения экологии и безопасности.
Расчет мощности котла
Прежде чем рассчитывать отопление в доме, необходимо это сделать с расчетом мощности котла. От мощности котла, в первую очередь, будет зависеть эффективность всей системы отопления.Главное в этом вопросе – не переборщить, так как слишком мощный котел будет потреблять больше топлива, чем необходимо. А если котел будет слишком слабым, он не сможет нормально прогреть дом, а это негативно скажется на комфорте в доме. Поэтому расчет системы отопления загородного дома – это важно. Выбрать котел необходимой мощности можно, если параллельно рассчитывать удельные теплопотери здания за весь период отопления. Расчет отопления дома – удельные теплопотери по следующей методике:
q Дом = Q Год / F H
В.Это поток тепла за весь период нагрева;
Fh – отапливаемая площадь дома;
Чтобы рассчитать отопление загородного дома – потребление энергии, которое потребуется на отопление частного дома, вам необходимо воспользоваться следующей формулой и таким средством, как калькулятор:
Q год = β h *)
Я полностью переоборудовал дом на электричество. Вот как это работало – и сколько это стоило
Барри Корица – генеральный директор калифорнийской компании Cinnamon Energy Systems.
***
Я пишу это в Сан-Хосе, под марсианским красным небом, иногда падающим легким пеплом и слабым запахом дыма в воздухе. Выработка солнечной энергии снизилась на 60 процентов, несмотря на то, что горящие пожары находятся по крайней мере в 50 милях отсюда.
Некоторые говорят, что это новая норма. По всей вероятности, ситуация будет ухудшаться, поскольку мы будем испытывать больше экстремальных погодных явлений и повышения уровня моря из-за таяния ледяных щитов. Многие люди в Калифорнии буквально бессильны, поскольку наша коммунальная инфраструктура не успевает за последствиями изменения климата, усиленными растущими потребностями нашего общества в электроэнергии.
К счастью, с доступными в настоящее время солнечными батареями, технологиями с тепловым насосом каждое двухэтажное здание с солнечной крышей может быть чистым генератором энергии – по сути, с отрицательным выбросом углерода. Более того, с подключенными к сети батареями здания могут легко обеспечить отказоустойчивость, в которой нуждается наша сеть во время перебоев в подаче электроэнергии и отключений электроэнергии.
Если не считать альтруизма, генерация дешевле, чем консервация существующих зданий. Более рентабельно добавлять солнечные батареи и аккумуляторы, чем повышать эффективность оболочки здания или заменять существующее оборудование HVAC до его окончания на новое высокоэффективное оборудование.
Пора сжечь мост к природному газу
Бывший министр энергетики США Эрнест Монис позиционировал природный газ как мост к возобновляемым источникам энергии. Мы перешли этот мост; местные возобновляемые источники энергии теперь дешевле природного газа для всех применений, кроме промышленного тепла и дальних перевозок.
Человечество столкнулось с чрезвычайной ситуацией, связанной с изменением климата, «готовой всеми руками». Поскольку солнечные батареи и накопители на крыше могут быть установлены быстро и недорого, мы не должны останавливаться на нулевом выбросе углерода – мы должны стремиться сделать все здания углеродно-отрицательными как можно быстрее.
Экономика клиентов для использования возобновляемых источников энергии на месте является убедительной. Рассмотрим дом, в котором для отопления помещений используется 1 000 термов природного газа в год; по 2 доллара за терм, что дает 2 000 долларов в год. Существующие тепловые насосы потребляют 8 300 киловатт-часов в год для обеспечения того же количества тепла; по цене 0,30 доллара за киловатт-час, что эквивалентно примерно 2500 долларам за электроэнергию.
Однако с солнечной батареей на крыше в уравнении со средней ставкой 0,10 долл. США / кВтч годовые эксплуатационные расходы на тепловой насос составят 830 долл. США.Аналогичная энергетическая математика также показывает, что водонагреватель с тепловым насосом превосходит водонагреватель, работающий на природном газе.
Преодоление нашей зависимости от ископаемого топлива является сложной задачей, поскольку на здания приходится 28 процентов общего потребления энергии в Калифорнии. К сожалению, существует ограниченная литература о реальных примерах электрификации существующих зданий. Является ли модернизация электрификации практичной, рентабельной и удобной? Могут ли здания ежегодно вырабатывать всю необходимую энергию?
Чтобы выяснить это, я приступил к проекту по полностью переоборудованию 50-летнего дома в Сан-Хосе на электричество.Больше никаких ископаемых видов топлива.
По пути я наткнулся на несколько камней преткновения, но также получил несколько очень положительных сюрпризов. Следующее обсуждение разбивает опыт электрификации зданий на три основных этапа: подготовка, создание и преобразование.
Подробности показаны в следующей таблице и в обсуждении ниже.
Приготовление: Низко висящие фрукты
Принято считать, что начать с энергоаудита. Я использую программы энергоаудита более 40 лет, в том числе программу советника по энергетике в домашних условиях Министерства энергетики США.К сожалению, в этих программах редко учитываются местные тарифы на коммунальные услуги, стимулы для использования солнечной энергии и накопления, а также снижение затрат на солнечную энергию и накопление, а также новые технологии тепловых насосов и бытовой техники.
Мой противоположный совет – провести энергоаудит и вместо этого сосредоточиться на низко висящих фруктах – как правило, на светодиодном освещении; герметизация протекающих окон, дверей и воздуховодов; и эффективное управление электроприборами при самых низких тарифах на электроэнергию.
Тем не менее, есть некоторые продукты и услуги, которые предоставляют отчеты о потреблении электроэнергии в реальном времени; Эти услуги весьма полезны для выявления и последующего сокращения потребления электроэнергии в зданиях.
Для этого проекта не имело экономического смысла повторно утеплять стены или модернизировать оставшиеся стеклопакеты. Тем не менее, старая изоляция чердака была вакуумирована и добавлено 18 дюймов выдувной целлюлозы, что повысило значение R с менее 7 до 60.
Заменить все лампы накаливания и КЛЛ светодиодами было несложно. . Старый односкоростной насос для бассейна был заменен новым насосом с регулируемой скоростью, который настолько тих, что его можно использовать ночью, когда тарифы на электроэнергию были низкими.Устранение энергетических нагрузок вампиров, использование понижающего термостата и работы приборов в непиковое время дало дополнительную экономию.
Производство: солнечная энергия и накопители
После того, как простые и дешевые меры по повышению энергоэффективности будут реализованы, почти в каждом случае следующим шагом будет производство электроэнергии с помощью солнечной энергосистемы на крыше. Окупаемость этих систем происходит быстрее, чем при обновлении функциональной техники, добавлении дополнительной изоляции стен или замене дверей и окон.
Поскольку данных о предыдущем потреблении энергии в доме не было, было подсчитано, что около 10 кВт фотоэлектрических панелей на крыше приведет к нулевым счетам за электроэнергию, включая HVAC, нагрев воды, приготовление пищи, насосы для бассейнов и один электромобиль. Я также установил 20 кВтч накопителя энергии и два инвертора (один с возможностью зарядки электромобилей).
Текущие тарифы на электроэнергию составляют $ 0,48 / кВтч с 16 до 21:00. и 0,17 долл. США / кВтч в остальное время. Сохраняя солнечную энергию в батарее в течение дня (вместо того, чтобы продавать ее обратно в сеть по более низким дневным тарифам), а затем используя эту энергию в ночное время, потребители батарей могут эффективно избежать высоких пиковых тарифов на электроэнергию.Кроме того, есть очевидное преимущество наличия резервного питания для основных нагрузок в доме во время отключений электроэнергии, вызванных отказами коммунального оборудования, пожарами и отключениями электроэнергии в целях общественной безопасности.
Модернизация: замена всех газовых приборов.
Покупка новых высокоэффективных приборов для замены существующих функциональных приборов редко бывает рентабельной. Лучше подождать, пока старые приборы не умрут, кроме случаев, когда эффективность существующего прибора крайне низка или есть другие причины (например, комфорт, шум или непреодолимое чувство вины за окружающую среду).
В рамках подготовки к этому проекту полной электрификации первоначальная основная сервисная панель на 200 А была модернизирована до новой сервисной панели, «готовой к использованию солнечной энергии». Поскольку эта работа проводилась одновременно с установкой солнечных батарей и солнечных батарей, на эту модернизацию распространялась федеральная налоговая льгота.
Хотя существующая газовая печь была в рабочем состоянии, компрессор кондиционера работал ненадежно, а воздуховоды в доме были в плохом состоянии. Для обеспечения как отопления, так и кондиционирования воздуха была установлена двухзонная система теплового насоса, а также два блока вентиляторов, новые воздуховоды и два термостата с подключением к Интернету.
Обратите внимание, что это была не «раздельная» бесканальная система, а скорее традиционная канальная система, в которой использовались существующие схемы вентиляционных отверстий в каждой комнате. При работе эту высокоэффективную инверторную систему отопления, вентиляции и кондиционирования практически невозможно услышать. Кроме того, внешний компрессорный блок занимал меньше места, чем существующий цилиндрический компрессор кондиционера, а удаление старой газовой печи и системы вентиляции освободило дополнительное место в гараже.
В Сан-Хосе действует программа скидок, поощряющая установку водонагревателей с тепловым насосом.Существующий газовый водонагреватель на 65 галлонов был заменен на водонагреватель с тепловым насосом на 65 галлонов. Поскольку время использования обеспечивает дополнительные преимущества для стирки в непиковое время, газовая сушилка была заменена электрической сушилкой.
После того, как эти изменения были внесены в прибор, старинная газовая плита была единственным газовым прибором, оставшимся в доме. Вместо этой газовой плиты была установлена индукционная варочная панель, завершившая электрификацию дома. Однако остались два редко используемых уличных газовых прибора: газовый обогреватель для бассейна / спа и газовый гриль.Поскольку эти газовые приборы, загрязняющие окружающую среду, используются редко и не имеют убедительных электрических опций, их оставили на месте.
Извлеченные уроки
Дома, которые полностью электрифицированы – с тепловым насосом HVAC, водонагреватель с тепловым насосом, электрическая плита / духовка, электрическая сушилка, солнечная энергия, хранилище, EV – не могут обойтись меньшими электрическими услугами на 100 или 125 ампер. Затраты для отдельных потребителей могут варьироваться от 5000 долларов США за простое обновление электроснабжения до более чем 20 000 долларов США, если необходимо обновить подземную проводку или трансформаторы.Как правило, авансовые платежи за инженерные коммуникации и задержки составляют шесть месяцев и более. Города и штаты, планирующие электрифицировать существующие здания, должны найти способы упреждающей оптимизации и снижения затрат на модернизацию электроснабжения. Ни один домовладелец в здравом уме не будет ждать от трех до шести месяцев без отопления или горячей воды, чтобы обновить электричество. Они просто заменят вышедшие из строя газовые приборы на новые.
Технология тепловых насосов быстро развивается. Однако подрядчики HVAC могут не понимать проблем интеграции с солнечной энергией, накоплением и резервным питанием.Некоторые цитаты, которые я получил, рекомендуют природный газ или резервное электрическое тепло, а также более старую и менее эффективную технологию теплового насоса, которая не будет работать во время отключения электроэнергии. Установленный многозонный инверторный тепловой насос компактен и эффективен, а также имеет низкое потребление рабочего и пускового тока.
Сантехники иногда путают водонагреватели с тепловым насосом с водонагревателями мгновенного действия или обычными водонагревателями с электрическим баком (что на самом деле запрещено в некоторых регионах).Для установки водонагревателя с тепловым насосом может потребоваться дополнительная электрическая цепь на 30 А, что является электрической задачей, выходящей за рамки работы обычных сантехников.
Определить размер солнечной системы довольно просто, если использовать исторические данные об энергии. Более сложные инженерные расчеты необходимы для определения дополнительной солнечной мощности, необходимой при рассмотрении водонагревателя с тепловым насосом, системы HVAC или электромобиля. При проектировании аккумуляторной системы необходимо учитывать как мощность, доступную от аккумулятора, так и энергоемкость аккумулятора, и эти требования к мощности / энергии зависят от размера солнечной системы, а также от устройств, которые, как ожидается, будут работать во время отключения электроэнергии.
Хотя оборудование для полностью электрических домов является надежным, большинство программных и коммуникационных протоколов все еще находятся на начальной стадии. Эти системы (и соответствующие приложения для мобильных телефонов) редко общаются друг с другом. Самые большие проблемы в этом проекте связаны с настройкой этих приложений и обеспечением их надежного взаимодействия.
В этом проекте участвовали семь различных типов подрядчиков: изоляция, бассейн, электричество, солнечная энергия / накопление, HVAC, сантехника и столярные изделия.Домовладельцы, которые не знакомы с инженерными компромиссами, должны рассмотреть вопрос о найме консультанта, который разбирается в доступных вариантах оборудования, а также в местных нормах, тарифах на электроэнергию и льготах.
В этом проекте были значительно улучшены комфорт и безопасность. Электрическая система безопаснее; HVAC, водонагревание и приготовление пищи не создают выбросов или пожарной опасности; обогрев и охлаждение более тихие и комфортные; и резервное питание автоматическое, бесшумное и безопасное.
- После года эксплуатации становится ясно, что солнечная система на крыше мощностью 10 кВт была бы подходящим размером.Однако во время установки были установлены дополнительные панели, в результате чего мощность системы увеличилась до 12,8 кВт. По истечении первого года система произвела 17 404 кВтч, что превышает сумму в 7 788 кВтч согласно счету за коммунальные услуги. Если бы дома заряжались два электромобиля, а не один, то избытка энергии было бы намного меньше. 20 кВтч накопителя энергии обеспечили достаточную мощность, чтобы избежать пикового энергопотребления в 335 дней в году из 365. Только в очень жаркие, дымные или пасмурные дни было необходимо потреблять электроэнергию в часы пик.
Политические рекомендации
Ощутимые последствия изменения климата вынуждают Калифорнию электрифицировать здания и транспорт в более короткие сроки. Все газовые приборы нуждаются в замене, а также необходима недорогая и надежная электроэнергия. Модернизация существующих зданий с использованием солнечных батарей и хранилищ – самый быстрый и наименее затратный способ достижения этой цели. Поскольку дополнительные затраты на добавление большего количества солнечной энергии и накопителей относительно невысоки, поощрение снижения выбросов углерода в зданиях выгодно для окружающей среды, энергосистемы и плательщиков налогов.
Эффективные переходы такого масштаба ускоряются за счет благоприятной экономики потребителей. С финансовой точки зрения существует частный капитал как от собственников зданий, так и от банковского сектора. Однако этот переход откладывается и сдерживается действующими коммунальными предприятиями. Стремление коммунальных предприятий, принадлежащих инвесторам, генерировать увеличивающуюся прибыль, в корне противоречит потребности Калифорнии в быстром переходе на безопасную и доступную электроэнергию; Единственное решение – пересмотреть бизнес-модель коммунальных предприятий – задача не из легких.
Реальные результаты этого проекта предполагают три ключевых политики для улучшения экономики и ускорения электрификации зданий:
- Справедливая компенсация хост-клиентам
Потребители и инвесторы должны продолжать получать справедливую компенсацию как за энергию (кВтч), так и за мощность (кВт), которую они поставляют в сеть. Они должны получить компенсацию за инвестиции, которые они делают в солнечную энергию и накопители, тем более, что эти миллионы солнечных и аккумуляторных систем обеспечивают энергию и электроэнергию во время перебоев в подаче электроэнергии и отключений электроэнергии.Инвесторы в коммунальные услуги не должны использовать упущенную прибыль для увеличения затрат потребителей, особенно когда есть более быстрые и менее дорогие альтернативы налогоплательщикам.
- Избавьтесь от бумажной работы, упростите стимулы, автоматизируйте межсетевые соединения
Эти ненужные бюрократические расходы добавляют 30 процентов или более к проектам электрификации, особенно связанным с улучшениями, которые связаны с электрической сетью. Управление стимулами и взаимосвязями должно быть вырвано из рук существующих отраслей, которые явно выступают против этих мер самогенерирования и сохранения.Это смехотворно, что коммунальные предприятия, принадлежащие инвесторам, настолько сознательно и эффективно неправильно управляют программами стимулирования, что затраты на обработку этих документов часто превышают ценность самого стимула. Задержки подключения от четырех до шести месяцев типичны для аккумуляторных проектов, соразмерно сокращая финансовые выгоды для клиентов (пятимесячная задержка со счетом за электричество в 300 долларов означает, что дополнительные 1500 долларов идут коммунальному предприятию, а не экономятся клиентом).
- Модернизация жилой электрической инфраструктуры
Процесс обновления электроснабжения дома нарушен, и его необходимо отремонтировать.Когда у домовладельца умирает водонагреватель или печь, или он покупает электромобиль, или он хочет установить солнечную батарею на крыше, чтобы удовлетворить все (или более) свои электрические потребности, или он хочет установить аккумулятор для резервного питания и услуг по поддержке сети , они не могут ждать шесть месяцев и потратить до 20 000 долларов на свое коммунальное предприятие, чтобы дойти до обновления услуги. Эти дополнительные расходы и задержки часто полностью сводят на нет усилия домовладельцев по электрификации. Лучшим курсом действий для правительства была бы координация модернизации электроснабжения для групп близлежащих домов.Домовладельцам не пришлось бы ориентироваться в непрозрачном наборе коммунальных и городских правил для модернизации, можно было бы выбрать одного подрядчика для выполнения дорогостоящих подземных и воздушных электромонтажных работ в районе, а домовладельцы могли бы затем электрифицировать свои дома, когда это будет удобно.
Ускоряя переход Калифорнии к электрификации, мы можем избежать наихудших последствий глобального потепления, одновременно улучшая окружающую среду и экономику. Хорошая новость заключается в том, что для поддержки этих усилий по электрификации существуют как технологии, так и экономика.
Оценка углеродного следа аккумуляторных батарей общего назначения
С начала века в мире произошел взрыв в производстве возобновляемой энергии. Согласно Статистическому обзору мировой энергетики BP за 2018 год, мировое производство возобновляемой энергии в 2000 году составило 218 тераватт-часов (ТВтч). К 2018 году это число достигло 2480 ТВтч, при этом среднегодовой рост за последнее десятилетие составил в среднем 16%.
Столь быстрый рост возобновляемой энергетики был вызван снижением кривых затрат и поддерживался законодательством, направленным на сокращение выбросов в атмосферу, таких как углекислый газ.Но также потребовались коммунальные услуги, чтобы приспособиться к этому притоку прерывистой возобновляемой энергии.
Запас энергии
Поскольку возобновляемые источники, такие как ветер и солнечная энергия, могут внезапно изменять мощность без предупреждения, возможность хранения прерывистой энергии стала более важной. Исторически сложилось так, что гидроаккумулятор с гидроаккумулятором (PHES) был основным типом хранилища в масштабе сети. PHES включает перекачку воды вверх в резервуар, а затем позволяет этой воде течь обратно вниз через турбину по мере необходимости.
НаPHES по-прежнему приходится около 95% всех хранилищ в масштабе сети, но в последние годы это число снижается, поскольку решения для аккумуляторов стали более экономичными.
В декабре 2017 года самая большая на сегодняшний день аккумуляторная система хранения была подключена к сети в Южной Австралии. Запас энергии Хорнсдейла мощностью 100 мегаватт (МВт) был построен Tesla для поддержки соседней ветряной электростанции Хорнсдейл мощностью 315 МВт.
Это всего лишь примерно 1/30 мощности крупнейшего в мире объекта PHES.Однако Управление энергетической информации (EIA) недавно сообщило, что емкость аккумуляторных батарей увеличилась в четыре раза за последние четыре года. Ожидается, что в 2021 году во Флориде будет запущен проект по хранению солнечных батарей мощностью 409 МВт.
Уровень выбросов углерода при хранении аккумуляторов
По мере роста приложений для аккумуляторов возрастает интерес к выбросам углерода, связанным с этими приложениями. Обычные выбросы при производстве электроэнергии были охарактеризованы для множества источников энергии, но было проведено мало исследований, чтобы охарактеризовать выбросы, связанные с использованием батарей в приложениях для хранения.
Для этого мы можем рассмотреть в качестве примера Hornsdale Power Reserve. Он питается от литий-ионных аккумуляторов. Чтобы провести оценку жизненного цикла (ОЖЦ) выбросов углекислого газа этого проекта, нам необходимо рассмотреть 1). Выбросы, связанные с постройкой батарей; 2). Выбросы, связанные с зарядкой и разрядкой аккумуляторов во время нормальной работы; и 3). Выбросы, связанные с переработкой или утилизацией батарей.
Конечно, выбросы, связанные с нормальной работой объекта, будут зависеть от вида энергии, используемой для зарядки батарей.В случае Хорнсдейла это энергия ветра, которая имеет один из самых низких выбросов углерода среди всех источников электроэнергии.
В докладе IVL Шведского института экологических исследований за 2019 год были рассмотрены имеющиеся данные о выбросах углерода для литий-ионных аккумуляторов. В исследовании рассматривался обычно используемый аккумулятор NMC (батарея с примерно 30% никеля, 30% марганца и 30% кобальта в катоде).
В исследовании рассматривались три этапа изготовления батареи:
- Горнодобывающая промышленность
- Производство материалов для аккумуляторов
- Производство элементов и сборка аккумуляторных батарей
Авторы обнаружили, что производство материалов для аккумуляторных батарей обычно составляет наибольшую долю выбросов, которые они определили как 59 килограммов (кг) эквивалента CO2 (экв.) На киловатт-час (кВтч) емкости аккумулятора.Производство элементов и сборка аккумуляторных батарей потребляют больше электроэнергии, поэтому этот процесс сильно зависит от типа используемой электроэнергии. Для этого процесса авторы оценили диапазон от 0-60 кг CO2-экв / кВтч батареи, с диапазоном, считающимся 100% возобновляемой энергией, вплоть до энергии, полученной в основном из ископаемого топлива.
Таким образом, комбинация шагов привела к общему диапазону выбросов углерода в 59-119 кг CO2-экв / кВтч аккумулятор со средним значением 89 кг CO2-экв / кВтч. Это номер от колыбели до ворот.
По окончании срока службы аккумулятор следует утилизировать, что создает еще одно бремя выбросов парниковых газов. Авторы указали, что из-за потенциальных рисков поставки таких материалов для аккумуляторов, как литий, кобальт и никель, «переработка стала чем-то, что большинство стран считает необходимым для дальнейшего внедрения литий-ионных аккумуляторов сегодня и в будущем».
Утилизация по окончании срока службы не рассматривалась в этом исследовании, хотя в предыдущей версии этого исследования рассматривалась стадия утилизации.Эрик Эмильссон, один из соавторов исследования, объяснил причину, по которой они решили не включать переработку на этот раз:
«Методы, используемые для расчета рециркуляции, сильно различаются, что добавляет ненужные неопределенности в оценку. Основная проблема заключается в том, как добавляются кредиты от вторичных материалов (иногда случайно дважды) или не включаются вообще при моделировании производства. Помимо различий в моделировании, переработка автомобильных аккумуляторов все еще находится на начальной стадии из-за отсутствия доступных автомобильных аккумуляторов с истекшим сроком службы.”
В статье 2017 года авторы оценили несколько текущих технологий и после прогнозирования того, чем может закончиться отрасль по переработке литий-ионных аккумуляторов, остановились на уровне выбросов парниковых газов на этапе переработки 15 кг CO2-экв / кВтч аккумулятора.
Авторы также отметили, что ЕС принял Правила категорий экологического следа продукции (PEFCR). Исследование аккумуляторов PEFCR показало, что 12% выбросов парниковых газов от литий-ионных аккумуляторов происходит в конце срока их службы. При предыдущем среднем значении 89 кг CO2-экв / кВтч, 12% добавили бы еще 11 кг, что в сумме составит 100 кг CO2-экв / кВтч.
Последняя часть LCA касается нормальной работы аккумулятора. Вырабатывается электричество, которое используется для зарядки батареи, а затем батарея разряжается по мере потребления электроэнергии. Этот расчет состоит из двух компонентов: эффективности заряда / разряда батареи и источника электроэнергии.
Исследование PEFCR показало, что энергоэффективность литий-ионных батарей составляет 96%. Таким образом, при зарядке и разряде аккумулятора происходит потеря примерно 4%.
Имейте в виду, что этот след парниковых газов является одноразовой зарядкой аккумулятора. Таким образом, общий углеродный след ветряной электростанции будет зависеть от количества циклов, которые выполняет батарея. (Я несколько раз обращался к Хорнсдейлу и Тесле за рекомендациями по химическому составу батарей и количеству ожидаемых циклов, но ответа не получил).
Оценка площади основания
Согласно исследованию PEFCR, литий-ионные аккумуляторы рассчитаны примерно на 400 циклов.Это означает, что аккумулятор можно полностью зарядить и разрядить 400 раз, прежде чем емкость аккумулятора упадет до неприемлемого уровня (определяемого как 60%). Поскольку эта мощность со временем снижается, в исследовании PEFCR говорится, что «минимальная энергия, обеспечиваемая в течение всего срока службы, может быть рассчитана как 400-кратная средняя мощность за цикл (80% от начальной энергии)».
(После первоначальной попытки выполнить этот расчет я получил довольно много отзывов о том, что предполагаемое количество циклов должно быть намного больше, чем это.Таким образом, мы могли бы считать это нижней оценкой количества циклов. Я прослежу влияние, если мы предположим гораздо большее количество циклов).
Исследование PEFCR дает нам основу для оценки вклада литий-ионных батарей в углеродный след. Аккумуляторная система хранения Хорнсдейла имеет общую генерирующую мощность 100 мегаватт и 129 мегаватт-часов (МВтч) хранения энергии. Более 400 циклов заряда и разряда – при 80% начальной энергии – это 41.3 гигаватт-часа (ГВтч). При КПД батареи 96% это означает, что для того, чтобы батарея могла обеспечить такое количество энергии, необходимо выработать 43 ГВт-ч ветровой энергии.
Объем выбросов парниковых газов в течение жизненного цикла, связанных с производством электроэнергии, составил , по оценкам Национальной лаборатории возобновляемых источников энергии (NREL), . Для наземных ветряных электростанций, таких как ветряная электростанция Хорнсдейл, выбросы парниковых газов оцениваются в 30 г CO2-экв / кВтч. Гигаватт в миллион раз больше, чем киловатт, поэтому для 43 ГВтч это становится 1.3 миллиона килограммов углекислого газа только для ветрогенератора в течение 400 циклов срока службы батареи.
Батареи увеличивают занимаемую площадь. Для 129 МВт-ч аккумуляторной батареи (что составляет 129 000 кВт-ч) и общего углеродного следа батареи в 100 кг CO2-экв / кВтч, это добавляет еще 12,9 миллиона килограммов углекислого газа к углеродному следу ветряной электростанции.
Другими словами, исходя из 400 циклов, общий углеродный след, связанный с электричеством, использующим аккумуляторную батарею в этой ветряной электростанции, равен 1.3 миллиона плюс 12,9 миллиона = 14,2 миллиона кг углекислого газа, разделенные на 43 ГВт-ч электроэнергии, или 330 г CO2-экв / кВт-ч выбросы парниковых газов. Это в 11 раз больше выбросов углекислого газа по сравнению с ветроэнергетикой без накопителей, но все же намного ниже 970 г CO2-экв / кВтч выбросов парниковых газов, связанных с использованием энергии, работающей на угле.
Таким образом, сами батареи на протяжении всего срока службы имеют соответствующий профиль выбросов углерода в размере 300 г CO2-экв / кВтч выбросов парниковых газов с использованием допущений PEFCR.
Влияние большего количества циклов
Однако, как я указал, некоторые люди оспаривали то, что я использую только 400 циклов.Реальность такова, что у нас просто недостаточно долгосрочных данных, чтобы получить точную оценку. После того, как Хорнсдейл и Тесла не ответили на мои запросы, я обратился к другому источнику.
Калифорнийский поставщик литий-ионных аккумуляторов OneCharge сообщил мне в электронном письме, что их аккумуляторы служат не менее 3000 полных циклов, и это основа их гарантии. Они также указали, что химический состав батарей, которые они используют, не содержит кобальта, что могло бы повлиять на расчетные выбросы, связанные с горнодобывающим сырьем.
В любом случае мы можем повторить расчет, используя 3000 циклов для определения удара. Более 3000 циклов зарядки и разрядки – при 80% начальной энергии – это 310 гигаватт-часов (ГВтч). При КПД батареи 96% это означает, что для обеспечения такого количества энергии необходимо выработать 322,5 ГВтч энергии ветра.
Для 322,5 ГВтч, произведенных ветром, это равно 9,7 миллиона килограммов углекислого газа за 3000 циклов срока службы батареи – опять же, только для ветровой части.
Площадь основания самих аккумуляторов остается такой же, как и в примере с 400 циклами – 12,9 миллиона килограммов углекислого газа. Итого получается 9,7 миллиона плюс 12,9 миллиона = 22,6 миллиона кг углекислого газа, разделенные на 322,5 ГВт-ч электроэнергии, или 70 г CO2-экв / кВт-ч выбросов парниковых газов. Это все еще чуть более чем вдвое превышает углеродный след энергии ветра без накопителей, но находится в пределах диапазона большинства других возобновляемых источников энергии, которые составляют менее 100 г CO2-экв / кВтч.
Конечно, если количество циклов аккумулятора в конечном итоге станет еще выше или химический состав аккумуляторов в будущем улучшится так, что некоторые энергоемкие металлы не потребуются, то возможный углеродный след будет еще ниже.
В любом случае, кажется вероятным, что объемы выбросов парниковых газов в энергосистеме общего пользования, использующие литий-ионные батареи и береговую ветроэнергетику, будут где-то между 70 г CO2-экв / кВт · ч и 300 г CO2-экв / кВт · ч (с использованием наихудшего случая Руководство PEFCR). Судя по полученным мной отзывам, лучшая оценка, вероятно, ближе к нижнему пределу диапазона.
Источники
Производство литий-ионных аккумуляторных батарей для транспортных средств: статус 2019 по использованию энергии, выбросам CO2, использованию металлов, экологическому следу продукции и переработке, Эрик Эмильссон и Лисбет Даллёф.Опубликовано в ноябре 2019 г. Ссылка .
PEFCR – Правила для перезаряжаемых батарей с высокой удельной энергией для мобильных приложений. Опубликовано в феврале 2018 г. Ссылка .
.