Расчет котла для отопления дома калькулятор: Расчет котла отопления частного дома — онлайн калькулятор мощности котла

Содержание

Калькулятор расчета мощности котла

Для расчета мощности обогревательного котла, необходимо сперва рассчитать общие теплопотери помещения. Неправильно подобранная мощность котла введет к увеличению потребления энергоносителей и недостаточного обогрева помещения.

Калькулятор расчета мощности котла

Потребность в ГВС

НетДа

Наличие вентиляции

НетДа

Введите количество этажей:

12345

Перекрытие выше

Чердачные перекрытияСледующий этаж

Перекрытие ниже

Деревянные полы над подваломПредыдущий этажФундамент

Материал и толщина наружных стен

Укажите материал стен и толщинуКирпичная стена в 3 кирпича (76 см)Кирпичная стена в 2,5 кирпича (64 см)Кирпичная стена в 2 кирпича (51 см)Кирпичная стена в 1,5 кирпича (38 см)Кирпичная стена в 1 кирпич (25 см)Сруб из бревен ∅ 25 смСруб из бревен ∅ 20 смСруб из бруса толщиной 20 смСруб из бруса толщиной 15 смСруб из бруса толщиной 10 смКаркасная (доска+минвата+доска)-20 смПенобетон толщиной 20 см.

Пенобетон толщиной 30 см.Газобетон D400 толщиной 15 см.Газобетон D400 толщиной 20 см.Газобетон D400 толщиной 25 см.Газобетон D400 толщиной 30 см.Газобетон D400 толщиной 30 см. + 0,5 кирпичаГазобетон D400 толщиной 37.5 см.Газобетон D400 толщиной 40 см.Газобетон D500 толщиной 37.5 см.Газобетон D600 толщиной 32 см.Керамзитобетонные блоки (40 cм) + 1 кирпич (12 см)Термоблоки толщиной 25 см.Керамические блоки Супертермо, 57 смURSA PUREONE 34 RN, 10 см.

Тип окон

Укажите тип окон в помещенииОбычное окно с двойными рамамиСтеклопакет (толщина стекла 4 мм) – 4-16-4Стеклопакет (толщина стекла 4 мм) – 4-Ar16-4Стеклопакет (толщина стекла 4 мм) – 4-16-4КСтеклопакет (толщина стекла 4 мм) – 4-Ar16-4КДвухкамерный стеклопакет – 4-6-4-6-4Двухкамерный стеклопакет – 4-Ar6-4-Ar6-4Двухкамерный стеклопакет – 4-6-4-6-4КДвухкамерный стеклопакет – 4-Ar6-4-Ar6-4КДвухкамерный стеклопакет – 4-8-4-8-4Двухкамерный стеклопакет – 4-Ar8-4-Ar8-4Двухкамерный стеклопакет – 4-8-4-8-4КДвухкамерный стеклопакет – 4-Ar8-4-Ar8-4КДвухкамерный стеклопакет – 4-10-4-10-4Двухкамерный стеклопакет – 4-Ar10-4-Ar10-4Двухкамерный стеклопакет – 4-10-4-10-4КДвухкамерный стеклопакет – 4-Ar10-4-Ar10-4КДвухкамерный стеклопакет – 4-12-4-12-4Двухкамерный стеклопакет – 4-Ar12-4-Ar12-4Двухкамерный стеклопакет – 4-12-4-12-4КДвухкамерный стеклопакет – 4-Ar12-4-Ar12-4КДвухкамерный стеклопакет – 4-16-4-16-4Двухкамерный стеклопакет – 4-Ar16-4-Ar16-4Двухкамерный стеклопакет – 4-16-4-16-4КДвухкамерный стеклопакет – 4-Ar16-4-Ar16-4К

Онлайн калькулятор используется для предварительного расчета мощности котла. При окончательном выборе котла проконсультируйтесь со специалистом.

 

 

Было ли это полезно?

Как рассчитать мощность котла для отопления дома

В любой системе отопления, использующей жидкий теплоноситель, ее «сердцем» является котел. Именно здесь происходит преобразование энергетического потенциала топлива (твёрдого, газообразного, жидкого) или электричества в тепло, которое передаётся теплоносителю, и уже им разносится по всем отапливаемым помещениям дома или квартиры. Естественно, возможности любого котла не беспредельны, то есть ограничены его техническо-эксплуатационными характеристиками, указанными в паспорте изделия.

Как рассчитать мощность котла для отопления дома

Одной из ключевых характеристик является тепловая мощность агрегата. Проще говоря, он должен обладать способностью выработать в единицу времени такое количество тепла, которого было бы достаточно для полноценного обогрева всех помещений дома или квартиры. Подбор подходящей модели «на глаз» или по каким-то уж чересчур обобщенным понятиям может привести к ошибке в ту или иную сторону. Поэтому в данной публикации постараемся предложить читателю хоть и не профессиональный, но все же обладающий достаточно высокой степенью точности алгоритм, как рассчитать мощность котла для отопления дома.

Банальный вопрос – для чего знать необходимую мощность котла

Содержание статьи

Несмотря на то что вопрос действительно кажется риторическим, все же видится необходимость дать парочку пояснений. Дело в том, что некоторые хозяева домов или квартир все же умудряются допускать ошибки, впадая в ту или иную крайность. То есть приобретая оборудование или заведомо недостаточной тепловой производительности, в надежде сэкономить, или сильно завышенной, чтобы, по их мнению, гарантировано, с большим запасом обеспечить себя теплом в любой ситуации.

И то, и другое – совершенно неправильно, и негативно сказывается как на обеспечении комфортных условий проживания, так и на долговечности самого оборудования.

  • Ну, с недостаточностью теплотворной способности все более-менее ясно. При наступлении зимних холодов котел станет работать на полную свою мощность, и не факт, что при этом в помещениях будет комфортный микроклимат. Значит, придется «нагонять тепло» с помощью электрический обогревательных приборов, что повлечет лишние немалые расходы. А сам котел, функционирующий на пределе своих возможностей, вряд ли протянет долго. В любом случае уже через год-другой владельцы жилья однозначно осознают необходимость замены агрегата на более мощный. Так или иначе, цена ошибки получается весьма впечатляющей.

Какой бы котел отопления ни выбирался, его тепловая мощность должна отвечать определенной «гармонии» — полностью перекрывать потребности дома или квартиры с тепловой энергии и иметь разумный эксплуатационный запас

  • Ну а почему бы не приобрести котел с большим запасом, чем же это может помешать? Да, безусловно, качественный обогрев помещений будет обеспечен. Но теперь перечислим «минусы» такого подхода:

— Во-первых, котел большей мощности сам по себе может стоить значительно дороже, и назвать такую покупку рациональной – сложно.

— Во-вторых, с возрастанием мощности практически всегда увеличиваются габариты и масса агрегата. Это ненужные сложности при установке, «украденное» пространство, что бывает особо важно, если котел планируется разместить, например, на кухне или в другом помещении жилой зоны дома.

— В-третьих, можно столкнуться с неэкономичностью работы системы отопления – часть затраченных энергоресурсов будет расходоваться, по сути, впустую.

— В-четвертых, избыточная мощность – это регулярные длительные отключения котла, которые, кроме того, сопровождаются остыванием дымохода и, соответственно, обильным образованием конденсата.

— В-пятых, если мощное оборудование никогда не нагружается должным образом, на пользу ему это не идет. Подобное утверждение может показаться парадоксальным, но так оно и есть – износ становится выше, длительность безаварийной эксплуатации существенно снижается.

Цены на популярные отопительные котлы

Избыток мощности котла будет уместен лишь в том случае, если к нему планируется подключить систему подогрева воды для хозяйственных нужд – бойлер косвенного нагрева. Ну или тогда, когда в перспективе предполагается расширение системы отопления. Например, в планах хозяев – возведение жилой пристройки к дому.

Способы проведения расчета необходимой мощности котла

По правде говоря, проведение теплотехнических расчетов всегда лучше доверять специалистам – слишком уж много нюансов приходится принимать во внимание. Но, понятно, что такие услуги оказываются не бесплатно, поэтому многие хозяева предпочитают взять на себя ответственность за выбор параметров котельного оборудования.

Давайте посмотрим, какие способы расчета тепловой мощности чаще всего предлагаются на просторах интернета. Но для начала уточним вопрос, что конкретно должно влиять на это параметр. Так проще будет разобраться в достоинствах и недостатках каждого из предлагаемых методов расчета.

Какие принципы являются ключевыми при проведении расчетов

Итак, перед системой отопления стоят две главных задачи. Сразу же уточним, что между ними нет четкого разделения – напротив, наблюдается очень тесная взаимосвязь.

  • Первая – это создание и поддержание в помещениях комфортной для проживания температуры. Причем этот уровень нагрева должен распространяться на весь объем помещения. Безусловно, в силу физических законов, температурная градация по высоте все равно неизбежна, но она не должна сказываться на ощущении комфортности пребывания в комнате. Получается, что система отопления должна быть в состоянии прогреть определённый объем воздуха.

Степень комфортности температуры, безусловно – величина субъективная, то есть разные люди ее могут оценивать по-своему. Но все же принято считать, что этот показатель находится в области +20 ÷ 22 °С. Обычно именно такой температурой и оперируют при проведении теплотехнических расчетов.

Об этом же говорят и нормативы, установленные действующими ГОСТ, СНиП и СанПиН. Вот, например, в таблице ниже приведены требования ГОСТ 30494-96:

Тип помещенияУровень температуры воздуха, °С
оптимальныйдопустимый
Для холодного времени года
Жилые помещения20÷2218÷24
Жилые помещения для регионов с минимальными зимними температурами от – 31 °С и ниже21÷2320÷24
Кухня19÷2118÷26
Туалет19÷2118÷26
Ванная, совмещенный санузел24÷2618÷26
Кабинет, помещения для отдыха и учебных занятий20÷2218÷24
Коридор18÷2016÷22
Вестибюль, лестничная клетка16÷1814÷20
Кладовые16÷1812÷22
Для теплого времени года
Жилые помещения (остальные – не нормируются)22÷2520÷28
  • Вторая задача – это постоянная компенсация возможных тепловых потерь. Создать «идеальный» дом, в которой полностью бы отсутствовали утечки тепла — проблема из проблем, практически нерешаемая. Можно лишь свести их к предельному минимуму. А путями утечки в той или иной мере становятся практически все элементы конструкции здания.

Тепловые потери – это самый главный противник отопительных систем.

Элемент конструкции зданияПримерная доля от общих тепловых потерь
Фундамент, цоколь, полы первого этада (по грунту или над неотапливаемым повалом)от 5 до 10%
Стыки строительных конструкцийот 5 до 10%
Участки прохода инженерных коммуникаций через сроительные консрукции (трубы канализации, водопровода, газоснабжения, электрические или коммункационные кабели и т.п.)до 5%
Внешние стены, в зависимости от уровня термоизоляцииот 20 до 30%
Окна и двери на улицуоколо 20÷25%, из них порядка половины – из-за недостаточной герметизации коробок, плохой подгонки рам или полотен
Крышадо 20%
Дымоход и вентиляциядо 25÷30%

Для чего давались все эти довольно пространные объяснения? А лишь для того, чтобы у читателя возникла полная ясность, что при расчетах волей-неволей необходимо учитывать оба направления. То есть и «геометрию» отапливаемых помещений дома, и примерный уровень тепловых потерь из них. А количество этих утечек тепла, в свою очередь, зависит еще от целого ряда факторов. Это и разница температур на улице и в доме, и качество термоизоляции, и особенности всего дома в целом и расположения каждого из его помещений, и другие критерии оценки.

Возможно, вас заинтересует информация о том, какие подходят котлы для твердого топлива

Теперь, вооружившись этими предварительными познаниями, перейдем к рассмотрению различных методов расчета необходимой тепловой мощности.

Расчет мощности по площади отапливаемых помещений

Этот метод «рекламируется» гораздо шире других Это и неудивительно – проще ничего нельзя придумать.

Предлагается исходить их условного соотношения, что для качественного обогрева одного квадратного метра площади помещения необходим расходовать 100 Вт тепловой энергии. Таким образом, поможет высчитать, какая тепловая мощность формула:

Q = Sобщ / 10

где:

Q — требуемая тепловая мощность системы отопления, выраженная в киловаттах.

Sобщ — суммарная площадь отапливаемых помещений дома, квадратных метров.

Наиболее примитивный способ расчета – только исходя из площади отапливаемых помещений

Делаются, правда, оговорки:

  • Первая — высота потолка помещения в среднем должна составлять 2.7 метра, допускается диапазон от 2,5 до 3 метров.
  • Вторая — можно сделать поправку на регион проживания, то есть принять не жесткую норму 100 Вт/м², а «плавающую»:
Регион проиживанияВеличина удельной мощности системы отопления (Вт на 1 м ²)
Южные регионы России (Северный Кавказ, Прикаспийские, Приазовские, Причерноморские области)70 ÷ 90
Центральное Черноземье, Южное Повольжье100 ÷ 120
Центральные области Европейской части, Приморье120÷ 150
Северные районы Европейской части, Уральский регион, Сибирь160 ÷ 200

То есть формула при этом примет несколько иной вид:

Q = Sобщ × Qуд / 1000

где:

Qуд — взятое из показанной выше таблицы значение удельной тепловой мощности на квадратный метр площади.

  • Третья — расчет справедлив для домов или квартир со средней степенью утепления ограждающих конструкций.

Тем не менее, несмотря на упомянутые оговорки, такой расчет никак нельзя назвать точным. Согласитесь, что он в большей мере зиждется на «геометрии» дома и его помещений. А вот теплопотери практически в расчет не принимаются, если не считать довольно-таки «размытых» диапазонов удельной тепловой мощности по регионам (которые тоже с весьма туманными границами), и ремарки, что стены должны иметь среднюю степень утепления.

Но что бы то ни было, такой метод все же пользуется популярностью, именно за свою простоту.

Понятно, что к полученному расчетному значению необходимо добавить эксплуатационный резерв мощности котла. Чрезмерно завышать его не следует – специалисты советуют останавливаться на диапазоне от 10 до 20%. Это, кстати, касается всех методов расчета мощности отопительного оборудования, о которых речь пойдет ниже.

Расчет необходимой тепловой мощности по объему помещений

По большому счету, этот способ расчета во многом повторяет предыдущей. Правда, исходной величиной здесь уже выступает не площадь, а объем – по сути, та же площадь, но умноженная еще на высоту потолков.

А нормы удельной тепловой мощности здесь принимаются такие:

  • для кирпичных домов – 34 Вт/м³;
  • для панельных домов – 41 Вт/м³.

Расчет, основывающийся на объеме отапливаемых помещений. Точность его тоже невысока.

Даже исходя из предлагаемых значений (из их формулировки) становится понятно, что эти нормы были установлены для многоквартирных домов, и применяются в основном для расчета потребности в тепловой энергии для помещений, подключенных к центральной системе отделения или к автономному котельному пункту.

Совершенно очевидно, что во главу угла вновь ставится «геометрия». А вся система учета тепловых потерь сводится лишь к различиям в теплопроводности кирпичных и панельных стен.

Одним словом, точностью такой подход к расчетам тепловой мощности тоже не отличается.

Алгоритм расчета с учетом особенностей дома и его отдельных помещений

Описание методики расчета

Итак, предложенные выше методы дают лишь обще представление о необходимом количестве тепловой энергии для отопления дома или квартиры. Уязвимое место у них общее – практически полное игнорирование возможных тепловых потерь, которые рекомендуется считать «среднестатистическими».

Но вполне возможно провести и более точные вычисления. В этом поможет предлагаемый алгоритм расчета, который воплощен, кроме того, в форме онлайн-калькулятора, который будет предложен ниже. Просто перед началом вычислений имеет смысл пошагово рассмотреть сам принцип их проведения.

Прежде всего – важное замечание. Предлагаемая методика предполагает оценку не всего дома или квартиры по общей площади или объему, а каждого отапливаемого помещения в отдельности. Согласитесь, что комнаты равной площади, но различающиеся, скажем, количеством внешних стен, потребуют и разное количество тепла. Нельзя поставить знак равенства между помещениями, имеющими существенную разницу в количестве и площади окон. И таких критериев оценки каждой из комнат – немало.

Так что будет правильнее рассчитать необходимую мощность для каждого из помещений по отдельности. Ну а потом простое суммирование полученных значений приведет нас к искомому показателю общей тепловой мощности для всей системы отопления. То есть, по сути, для ее «сердца» — котла.

У каждого помещения дома имеются свои особенности. Поэтому правильнее будет провести расчет необходимой тепловой мощности для каждого из них по отдельности, с последующим суммированием результатов.

Еще одно замечание. Предлагаемый алгоритм не претендует на «научность», то есть он напрямую не основывается на каких-то конкретных формулах, установленных СНиП или иными руководящими документами. Однако, он проверен практикой применения и показывает результаты с высокой степенью точности. Различия с итогами профессионально проведенных теплотехнических расчетов – минимальны, и никак не сказываются на правильном выборе оборудования по его номинальной тепловой мощности.

«Архитектура» расчета такова — берется базовое, уде упомянутое выше значение удельной тепловой мощности, равное 100 Вт/м², а затем вводится целая череда поправочных коэффициентов, в той или иной степени отражающих количество теплопотерь конкретного помещения.

Если это выразить математической формулой, то получится примерно так:

= 0.1 × Sк × k1 × k2 × k3 × k4 × k5 × k6 × k7 × k8 × k9× k10 × k11

где:

— искомая тепловая мощность, необходимая для полноценного отопления конкретной комнаты

0.1 — перевод 100 Вт в 0.1 кВт, просто для удобства получения результата именно в киловаттах.

— площадь помещения.

k1 ÷ k11 — поправочные коэффициенты для корректировки результата с учетом особенностей помещения.

С определением площади помещения, надо полагать, проблем быть не должно. Так что сразу перейдем к подробному рассмотрению поправочных коэффициентов.

  • k1 — коэффициент, учитывающий высоту потолков в комнате.

Понятно, что высота потолков напрямую влияет на объем воздуха, который должна прогреть система отопления. Для расчета предлагается принять следующие значения поправочного коэффициента:

Высота потолка в помещенииЗначение коэффициента k1
– не более 2. 7 м1
– от 2.8 до 3.0 м1.05
– от 3.1 до 3.5 м1.1
– от 3.6 до 4.0 м1.15
– более 4.0 м1.2
  • k2 — коэффициент, учитывающий количество стен помещения, контактирующих с улицей.

Чем больше площадь контакта с внешней средой, тем выше уровень тепловых потерь. Каждый знает, что в угловой комнате всегда бывает значительно прохладнее, нежели в имеющей всего одну внешнюю стену. А некоторые помещения дома или квартиры и вовсе могут быть внутренними, не имеющими контакта с улицей.

По уму, конечно, следует принимать не только количество внешних стен, но и их площадь. Но у нас расчет все же упрощенный, поэтому ограничимся только введением поправочного коэффициента.

Коэффициенты для различных случаев приведены в таблице ниже:

Количество внешних стен в помещенииЗначение коэффициента k2
– одна стена1
– две стены1. 2
– три стены1.4
– внутреннее помещение, стены которого не контактируют с улицей0.8

Случай, когда все четыре стены внешние – не рассматриваем. Это уже не жилой дом, а просто какой-то сарай.

  • k3 — коэффициент, принимающий в расчет положение внешних стен относительно сторон света.

Даже зимой не стоит сбрасывать со счетов возможное воздействие энергии солнечных лучей. В ясный день они проникают через окна в помещения, включаясь тем самым в общую подачу тепла. Кроме того, и стены получают заряд солнечной энергии, что ведет к уменьшению общего количества теплопотерь через них. Но все это справедливо только лишь для тех стен, которые «видят» Солнце. На северной и северо-восточной стороне дома такого влияния не оказывается, на что тоже можно сделать определённую поправку.

Значение может иметь положение стены помещения относительно сторон света – свои коррективы способны внести солнечные лучи

Значения корректировочного коэффициента на стороны света – в таблице ниже:

Положение стены относительно сторон светаЗначение коэффициента k3
– внешняя стена смотрит на Юг или Запад1. 0
– внешняя стена смотрит на Север или Восток1.1
  • k4 — коэффициент, учитывающий направление зимних ветров.

Возможно, эта поправка и не является обязательной, но для домов, расположенных на открытой местности, имеет смысл принять в расчет и ее.

Возможно вас заинтересует информация о том, что собой представляют биметаллические батареи

Практически в любой местности наблюдается преобладание зимних ветров – это еще называется «розой ветров». Такая схема в обязательном порядке есть у местных метеорологов – она составляется по результатам многолетних наблюдений за погодой. Довольно часто и сами местные жители прекрасно осведомлены, какие ветра чаще всего  их беспокоят зимой.

Для домов на открытой, продуваемой местности имеет смысл принять в расчет и преобладающие направления зимних ветров

И если стена помещения размещена с наветренной стороны, и не защищена какими-то естественными или искусственными преградами от ветра, то она будет выстуживаться значительно сильнее. То есть и тепловые потери помещения возрастают. В меньшей степени это будет выражено у стены, расположенной параллельно направлению ветра, в минимальной – находящейся с подветренной стороны.

Если нет желания «заморачиваться» с этим фактором, или же отсутствует достоверная информация о зимней розе ветров, то можно оставить коэффициент, равный единице. Или же, наоборот, приять его максимальным, на всякий случай, то есть для наиболее неблагоприятных условий.

Значения этого поправочного коэффициента – в таблице:

Положение внешней стены помещения относительно зимней розы ветровЗначение коэффициента k4
– стена на наветренной стороне1.1
– стена параллельна преобладающему направлению ветра1.0
– стена на подветренной стороне0.9
  • k5 — коэффициент, учитывающий уровень зимних температур в регионе проживания.

Если проводить теплотехнические расчеты по всем правилам, то оценку тепловых потерь проводят с учетом разницы температур в помещении и на улице. Понятно, что чем холоднее по климатическим условиям регион, тем больше тепла требуется подавать в системе отопления.

Безусловно, уровень зимних температур оказывает самое непосредственное влияние на потребное количество тепловой энергии для отопления помещений

В нашем алгоритме это тоже будет в определенной степени учтено, но с допустимым упрощением. В зависимости от уровня минимальных зимних температур, приходящихся на самую холодную декаду, выбирается поправочный коэффициент k5.

Уровень отрицательных температур в самую холодную декаду зимыЗначение коэффициента k5
-35 °С и ниже1.5
– от -30 до -34 °С1.3
– от -25 до -29 °С1.2
– от -20 до -24 °С1.1
– от -15 до -19 °С1.0
– от -10 до -14 °С0.9
– не холоднее -10 °С0.8

Здесь будет уместным сделать одно замечание. Расчет будет корректным, если принимаются во внимание температуры, которые для данного региона считаются нормой. Нет никакой необходимости вспоминать аномальные морозы, которые случились, скажем, несколько лет назад (и оттого, кстати, и запомнились). То есть должна выбираться самая низкая, но нормальная для данной местности температура.

  • k6 – коэффициент, принимающий во внимание качество термоизоляции стен.

Вполне понятно, что чем эффективнее система утепления стен, тем меньше будет уровень тепловых потерь. В идеале, к которому следует стремиться, термоизоляция вообще должна быть полноценной, проведенной на основании выполненных теплотехнических расчетов, с учетом климатический условий региона и особенностей конструкции дома.

При расчете требуемой тепловой мощности системы отопления следует учесть и имеющуюся термоизоляцию стен. Предлагается такая градация поправочных коэффициентов:

Оценка степени термоизоляции внешних стен помещенияЗначение коэффициента k6
Термоизоляция выполнена по всем правилам, на основании заранее проведенных теплотехнических расчетов0. 85
Средняя степень утепления. Сюда условно можно отнести стены из натурального дерева (бревно, брус) толщиной не менее 200мм, или кирпичную кладку в два кирпича (490 мм).1.0
Недостаточная степень утепления1.27

Недостаточная степень термоизоляции или вообще полное ее отсутствие, по идее, вовсе не должны наблюдаться в жилом доме. В противном случае система отопления будет очень затратной, да еще и без гарантии создания действительно комфортных условий проживания.

Возможно, вас заинтересует информация о том, что такое байпас в системе отопления

Если читатель желает самостоятельно оценить уровень термоизоляции своего жилья, он может воспользоваться информацией и калькулятором, которые размещены в последнем разделе настоящей публикации.

  • k7 и k8– коэффициенты, учитывающие теплопотери через пол и потолок.

Следующие два коэффициента схожи – их введением в расчет принимается во внимание примерный уровень тепловых потерь через полы и потолки помещений. Подробно здесь расписывать незачем – и возможные варианты, и соответствующие им значения этих коэффициентов показаны в таблицах:

Для начала – коэффициент k7, корректирующий результат в зависимости от особенностей пола:

Особенности пола в помещенииЗначение коэффициента k7
Снизу с комнатой соседствует отапливаемое помещение1.0
Утепленный пол над неотапливаемым помещением (подвалом) или по грунту1.2
Неутепленный пол по грунту или над неотапливаемым помещением1.4

Теперь – коэффициент k8, вносящий поправку на соседство сверху:

Что находится сверху, над потолком помещенияЗначение коэффициента k8
Холодный чердак или иное неотапливаемое помещение1.0
Утепленный, но неотапливаемый и не продуваемый чердак или иное помещение.0.9
Сверху расположено отапливаемое помещение0. 8
  • k9 – коэффициент, учитывающий качество окон в помещении.

Здесь тоже все просто – чем качественнее окна, тем меньше теплопотери через них. Старые деревянные рамы, как правило, не отличаются хорошими термоизоляционными характеристиками. Лучше с этим дело обстоит у современных оконных систем, оснащенных стеклопакетами. Но и у них может быть определённая градация – по количество камер в стеклопакете и по другим особенностям конструкции.

Для нашего упрощенного расчета можно применить следующие значения коэффициента k9:

Особенности конструкции окнаЗначение коэффициента k9
– обычные деревянные рамы с двойным остеклением1.27
– современные оконные системы со стеклопакетом однокамерным1.0
– современные оконные системы со стеклопакетом двухкамерным, либо с однокамерным, но имеющим аргоновое заполнение.0. 85
– в помещении нет окон0.6
  • k10 – коэффициент, вносящий поправку на площадь остекления комнаты.

Качество окон еще полностью не раскрывает всех объемов возможных теплопотерь через них. Очень большое значение имеет площадь остекления. Согласитесь, сложно сравнивать маленькое окошко и огромное панорамное окно чуть не во всю стену.

Чем больше площадь окон, даже при самых качественных стеклопакетах, тем выше уровень тепловых потерь

Чтобы внести корректировку и на этот параметр, для начала следует рассчитать так называемый коэффициент остекления помещения. Это несложно – просто находится отношение площади остекления к общей площади комнаты.

kw = sw / S

где:

kw — коэффициент остекления помещения;

sw — суммарная площадь остекленных поверхностей, м²;

S — площадь помещения, м².

Измерить и просуммировать площадь окон сможет каждый. А затем несложно простым делением найти и искомый коэффициент остекления. А он, в свою очередь, дает возможность зайти в таблицу и определить значение поправочного коэффициента k10:

Значение коэффициента остекления kwЗначение коэффициента k10
– до 0.10.8
– от 0.11 до 0.20.9
– от 0.21 до 0.31.0
– от 0.31 до 0.41.1
– от 0.41 до 0.51.2
– свыше 0.511.3
  • k11 – коэффициент, принимающий во внимание наличие дверей на улицу.

Последний из рассматриваемых коэффициентов. В помещении может быть дверь, ведущая непосредственно на улицу, на холодный балкон, в неотапливаемый коридор или подъезд и т.п. Мало того что дверь сама по себе часто является весьма серьезным «мостиком холода» — при ее регулярном открывании каждый раз в помещение будет проникать изрядный объем холодного воздуха. Стало быть, и на это фактор следует сделать поправку: подобные теплопотери, безусловно, требуют дополнительной компенсации.

Значения коэффициента k11 приведены в таблице:

Наличие двери на улицу или в холодное помещениеЗначение коэффициента k11
– нет двери1.0
– одна дверь1.3
– две двери1.7

Этот коэффициент стоит принимать во внимание, если дверями в зимнее время регулярно пользуются.

Возможно, вас заинтересует информация о том, что собой представляет печь камин с водяным контуром отопления

*  *  *  *  *  *  *

Итак, все поправочные коэффициенты рассмотрены. Как видите – ничего сверхсложного здесь нет, и можно смело переходить к расчетам.

Еще один совет перед началом вычислений. Все будет намного проще, если предварительно составить таблицу, в первом столбце которой последовательно указать все отпаиваемые помещения дома или квартиры. Далее, по столбцам, разместить данные, которые требуются для расчетов. Например, во втором столбце – площадь помещения, в третьем — высота потолков, в четвертом – ориентация по сторонам света – и так далее. Такую табличку составить несложно, имея перед собой план своих жилых владений. Понятно, что в последний столбец будут заноситься рассчитанные значения требуемой тепловой мощности по каждому помещению.

Таблицу можно составить в офисном приложении, или даже просто расчертить на листе бумаги. И не спешите с ней расставаться после проведения расчётов – полученные показатели тепловой мощности еще пригодятся, например, при приобретении радиаторов отопления или же электрических нагревательных приборов, используемых в качестве резервного источника тепла.

 Чтобы предельно упростить читателю задачу проведения таких вычислений, ниже размещен специальный онлайн-калькулятор. С ним, при предварительно собранных в таблицу исходных данных, расчет займёт буквально считаные минуты.

Калькулятор расчета необходимой тепловой мощности для помещений дома или квартиры.

Перейти к расчётам

После проведения вычислений по каждому из отапливаемых помещений, все показатели суммируются. Это и будет величиной общей тепловой мощности, которая требуется для полноценного отопления дома или квартиры.

Как уже говорилось, к полученному итоговому значению следует прибавить запас в 10 ÷ 20 процентов. Например, рассчитанная мощность составляет 9,6 кВт. Если прибавить 10%, то это получится 10,56 кВт. При прибавлении 20% — 11,52 кВт. В идеале, номинальная тепловая мощность приобретаемого котла должна как раз и расположиться в диапазоне от 10,56 до 11.52 кВт. Если такой модели нет, то приобретается ближайшая по показателю мощности в сторону его увеличения. Например, конкретно для этого примера отлично подойдут котлы отопления с мощностью 11.6 кВт – они представлены в нескольких линейках моделей различных производителей.

Возможно, вас заинтересует информация о том, что собой представляет буферная емкость для твердотопливного котла

Как правильнее оценить степень термоизоляции стен помещения?

Как и обещалось выше, в этом разделе статьи поможет читателю с оценкой уровня термоизоляции стен его жилых владений. Для этого тоже придется провести один упрощенный теплотехнический расчет.

Принцип проведения расчета

Согласно требованиям СНиП, сопротивление теплопередаче (которое еще иначе называют термическим сопротивлением) строительных конструкций жилых домов должно быть не ниже нормативного показателя. А эти нормированные показатели установлены для регионов страны, в соответствии с особенностями их климатических условий.

Где найти эти значения? Во-первых, они есть в специальных таблицах-приложениях к СНиП. Во-вторых, информацию о них можно получить в любой местной строительной или проектной архитектурной компании. Но вполне можно воспользоваться и предлагаемой картой-схемой, охватывающей всю территории Российской Федерации.

Карта-схема для определения нормированного значения термического сопротивления строительных конструкций

Нас в данном случае интересуют стены, поэтому и берем со схемы значение термического сопротивления именно «для стен» — они указаны фиолетовыми цифрами.

Теперь давайте взглянем, из чего складывается это термическое сопротивление, и чему оно равно с точки зрения физики.

Итак, сопротивление теплопередаче какого-то абстрактного однородного слоя х равно:

Rх = hх / λх

где:

— сопротивление теплопередаче, измеряется в м²×°К/Вт;

— толщина слоя, выраженная в метрах;

λх — коэффициент теплопроводности материала, из которого изготовлен этот слой, Вт/м×°К. Это – табличная величина, и для любого из строительных или термоизоляционных материалов ее несложно отыскать на справочных ресурсах интернета.

Обычные строительные материалы, применяемые для возведения стен, чаще всего даже при их большой (в пределах разумного, конечно) толщине не дотягивают до нормативных показателей сопротивления теплопередаче. Иными словами, стену нельзя назвать полноценно термоизолированной. Вот для этого как раз и применяется утеплитель – создается дополнительный слой, который «восполняет дефицит», необходимый для достижения нормированных показателей. А за счет того, что коэффициенты теплопроводности у качественных утеплительных материалов низкие, можно избежать необходимости возводить очень большие по толщине конструкции.

Возможно, вас заинтересует информация о том, что такое гидрострелка принцип работы назначение и расчеты

Взглянем на упрощённую схему утепленной стены:

Схема стены со слоем утепления и отделкой

1 — собственно, сама стена, имеющая определенную толщину и возведённая из того или иного материала. В большинстве случаев «по умолчанию» она сама не в состоянии обеспечить нормированное термическое сопротивление.

2 — слой утеплительного материала, коэффициент теплопроводности и толщина которого должны обеспечить «покрытие недостачи» до нормированного показателя R. Сразу оговоримся – расположение термоизоляции показано снаружи, но она может размещаться и с внутренней стороны стены, и даже располагаться между двумя слоями несущей конструкции (например, выложенной из кирпича по принципу «колодезной кладки»).

3 — внешняя фасадная отделка.

4 — внутренняя отделка.

Слои отделки часто не оказывают сколь-нибудь значимого влияния на общий показатель термического сопротивления. Хотя, при выполнении профессиональных расчетов их тоже берут во внимание. Кроме того, и отделка может быть разной – например, теплая штукатурка или пробковые плиты очень даже способны усилить общую термоизоляцию стен. Так что для «чистоты эксперимента» вполне можно учесть и оба этих слоя.

Но есть и важное замечание – никогда не принимается в расчет слой фасадной отделки, если между ним и стеной или утеплителем располагается вентилируемый зазор. А это часто практикуется в системах вентилируемого фасада. В такой конструкции внешняя отделка никакого влияния на общий уровень термоизоляции не окажет.

Итак, если нам известны материал и толщина самой капитальной стены, материал и толщина слоев утеплителя и отделки, то по указанной выше формуле несложно посчитать их суммарное термическое сопротивление и сопоставить его с нормированным показателем. Если оно не меньше – нет вопросов, стена имеет полноценную термоизоляцию. Если недостаточно – можно просчитать, какой слой и какого утеплительного материала эту недостачу способен восполнить.

Возможно, вас заинтересует информация о том, как выполняется расчет отопления в частном доме калькулятор

А чтобы сделать задачу еще проще – ниже размещен онлайн-калькулятор, который выполнит этот расчет быстро и точно.

Сразу несколько пояснений по работе с ним:

  • Для начала по карте схеме находят нормированное значение сопротивления теплопередаче. В данном случае, как уже говорилось, нас интересуют стены.

(Впрочем, калькулятор обладает универсальностью. И, позволяет оценивать термоизоляцию и перекрытий, и кровельных покрытий. Так что, при необходимости можно воспользоваться – добавьте страницу в закладки).

  • В следующей группе полей указывается толщина и материал основной несущей конструкции – стены. Толщина стены, если она обустроена по принципу «колодезной кладки» с утеплением внутри, указывается суммарная.
  • Если стена имеет термоизоляционный слой (независимо от места его расположения), то указывается тип утеплительного материала и толщина. Если утепления нет, то оставляется толщина по умолчанию равная «0» — переходят к следующей группе полей.
  • А следующая группа «посвящена» наружной отделке стены – также указывается материал и толщина слоя. Если отделки нет, или отсутствует необходимость ее принимать в расчет – все оставляется по умолчанию и переходят дальше.
  • Аналогичным образом поступают и со внутренней отделкой стены.
  • Наконец, останется только выбрать утеплительный материал, который планируется использовать для дополнительной термоизоляции. Возможные варианты указаны в выпадающем списке.

После нажатия на кнопку «РАССЧИТАТЬ НЕДОСТАЮЩУЮ ТОЛЩИНУ УТЕПЛЕНИЯ» будет показан результат в миллиметрах. Здесь возможны варианты:

— Нулевое или отрицательное значение сразу говорит о том, что термоизоляция стен соответствует нормативам, и дополнительного утепления попросту не требуется.

— Близкое к нулю положительное значение, скажем, до 10÷15 мм, тоже не дает особых поводов беспокоиться, и степень термоизоляции можно считать высокой.

— Недостаточность до 70÷80 мм уже должна заставить хозяев задуматься. Хотя такой утепление можно отнести к средней эффективности, и учесть его при расчетах тепловой мощности котла, лучше все же спланировать проведение работ по усилению термоизоляции. Какая нужна толщина дополнительного слоя – уже показано. А выполнение этих работ сразу даст ощутимый эффект – и повышением комфортности микроклимата в помещениях, и меньшим потреблением энергоресурсов.

— Ну а если расчет показывает недостачу выше 80÷100 мм, утепления практически нет или оно чрезвычайно неэффективное. Тут двух мнений и быть не может – перспектива проведения утеплительных работ выходит на первый план. И это будет намного выгоднее, чем приобретать котел повышенной мощности, часть из которой будет попросту расходоваться буквально на «прогрев улицы». Естественно, в сопровождении разорительных счетов за зря потраченные энергоносители.

Возможно, вас будет полезна схема отопления двухэтажного дома с принудительной циркуляцией

Калькулятор для оценки эффективности термоизоляции стен

Перейти к расчётам

 Завершим публикацию видеосюжетом, также посвященным учету тепловых потерь при расчете мощности системы отопления. Обжимные фитинги для металлопластиковых труб вы найдете ответ по ссылке.

Видео: Факторы, влияющие на необходимую мощность котельного оборудования системы отопления

 

Калькулятор расчета мощности котла отопления

Утепление

Кровля, в первую очередь, предназначена для сохранения тепла в доме и защиты его от

Водоснабжение

Мало одного лишь желания установить в доме бойлер. Предстоит еще выбрать адекватную и подходящую

Газовое отопление

Даже при том, что сегодняшний рынок бытовых водонагревательных приборов насыщен всевозможными электрическими устройствами, газовая

Канализация

Отходы в септиках аэробного типа очищаются на 70-75%. И этого недостаточно, чтобы воду можно

Батареи и радиаторы

Вполне естественное желание возникает у любого жителя квартиры, поменять имеющийся полотенцесушитель, завязанный на системе

Канализация

Для перекачки фекальных, дренажных вод и отведения жидкости от затопленных подвальных помещений лучший вариант

расчет, как рассчитать правильно, определить, подбор котла

Расчет мощности газового котла в зависимости от площади

В большинстве случаев используют ориентировочный подсчет тепловой мощности котлоагрегата по площадям нагрева, например, для частного дома:

  • 10 кВт на 100 кв. м;
  • 15 кВт на 150 кв.м;
  • 20 кВт на 200 кв.м.

Подобные вычисления смогут подойти для не очень большого сооружения с утепленным чердачным перекрытием, низкими потолками, хорошей термоизоляцией, окнами с двойным остеклением, но не более того.

По старым расчетам лучше не делать. Источник фото: porjati.ru

К сожалению, данным условиям соответствуют только немногочисленные строения. С тем, чтобы осуществить наиболее обстоятельный расчет показателя мощности котла, необходимо учитывать полный пакет взаимосвязанных величин, в том числе:

  • атмосферные условия в местности;
  • размер жилой постройки;
  • коэффициент теплопроводности стены;
  • фактическую теплоизоляцию здания;
  • систему регулировки мощности газового котла;
  • объем тепла, требуемый для ГВС.

Расчет одноконтурного котла отопления

Подсчет мощности одноконтурного котлоагрегата настенной или напольной модификации котла с применением соотношения: 10 кВт на 100 м2, необходимо увеличить на 15-20%.

Например, необходимо обогреть здание площадью 80 м2.

Расчет мощности газового котла отопления:

10*80/100*1.2 = 9.60 кВт.

В случае, когда в торговой сети не существует требуемого вида устройств, приобретают модификацию с большим размером кВт. Подобный метод пойдет для источников отопления одноконтурного типа, без нагрузки на горячее водоснабжение, и может быть заложен в основу расчета расхода газа на сезон. Иногда вместо жилой площади расчет выполняют с учетом объема жилого здания квартиры и степени утепления.

Для индивидуальных помещений, построенных по типовому проекту, с высотой потолочного покрытия 3 м, формула расчета довольно простая.

Еще один способ расчета ОК котла

В данном варианте учитывают площадь застройки (П) и коэффициент удельной мощности котлоагрегата (УМК), зависящего от климатического места расположения объекта.

Он варьируется в кВт:

  • 0.7 до 0.9 южные территории РФ;
  • 1.0 до 1.2 центральные регионы РФ;
  • 1. 2 до 1.5 Московская область;
  • 1.5 до 2.0 северные районы РФ.

Следовательно, формула для расчета выглядит таким образом: Мо=П*УМК/10

Например, необходимая мощность источника отопления для постройки в 80 м2, расположенного в северном регионе:

Мо = 80*2/10 = 16 кВт

Если собственник будет устанавливать двухконтурный котлоагрегат, для отопления и ГВС, профессионалы советуют добавить к полученному результату еще 20% мощности на подогрев воды.

Как рассчитать мощность двухконтурного котла

Расчет теплопроизводительности двухконтурного котлоагрегата выполняется на основанию такой пропорции:

10 м2 = 1 000 Вт + 20% (теплопотери) + 20% (подогрев ГВС).

В случае, если здание располагает площадью 200 м2, то требуемый размер будет состоять: 20.0 кВт + 40.0% = 28.0 кВт

Это прикидочный расчет, его лучше уточнить по норме водопользования ГВС на одного человека. Такие данные приводятся в СНИПе:

  • ванная комната – 8.0-9.0 л/мин;
  • душевая установка – 9 л/мин;
  • унитаз – 4. 0 л/мин;
  • смеситель в мойке – 4 л/мин.

В техдокументации к водонагревателю указывается, какая необходима теплопроизводительность котла, чтобы гарантировать качественный подогрев воды.

Для теплообменника на 200 л будет достаточно нагревателя нагрузкой приблизительно 30.0 кВт. После рассчитывают производительность, достаточную для обогрева, в конце итоги суммируют.

Расчет мощности бойлера косвенного нагрева

Для того, чтобы сбалансировать нужную мощность одноконтурного агрегата работающего на газовом топливе с бойлером косвенного нагрева, нужно установить какой объем теплообменника потребуется, чтобы обеспечить горячей водой жильцов дома. Используя данные по нормам горячего водопотребления легко можно установить, что расход в сутки для семьи из 4-х человек составит 500 л.

Производительность водонагревателя косвенного нагрева напрямую зависит от площади внутреннего теплообменника, чем более размеры змеевика, тем больше тепловой энергии он передает воде в час. Детализовать такие сведения можно, изучив характеристики по паспорту на оборудование.

Источник фото: coolandtheguide.com

Существуют оптимальные соотношения этих величин для среднего диапазона мощности бойлеров косвенного нагрева и время получения заданной температуры:

  • 100 л, Мо – 24кВт, 14 мин;
  • 120 л, Мо – 24кВт,17 мин;
  • 200 л, Мо – 24кВт, 28 мин.

При выборе водонагревателя рекомендуется, чтобы он нагревал воду примерно за полчаса. Исходя из этих требований предпочтительнее 3-й вариант БКН.

Скорость теплоносителя

Затем, используя полученные значения расхода теплоносителя, необходимо для каждого участка труб перед радиаторами вычислить скорость движения воды в трубах по формуле:

,

где V — скорость движения теплоносителя, м/с;

m — расход теплоносителя через участок трубы, кг/с

ρ — плотность воды, кг/куб. м. можно принять равной 1000 кг/куб.м.

f — площадь поперечного сечения трубы, кв.м. можно посчитать по формуле: π * r2, где r — внутренний диаметр, деленный на 2

Калькулятор скорости теплоносителя

m = л/с; труба мм на мм; V = м/с

Особенности расчета производительности котла для квартир

Расчет мощности котла для отопления квартир высчитывается по той же норме: на 10 квадратных метров 1 кВт тепла. Но коррекция идет по другим параметрам. Первое, что требует учета — наличие или отсутствие неотапливаемого помещения сверху и снизу.

  • если внизу/вверху находится другая отапливаемая квартира, применяется коэффициент 0,7;
  • если внизу/верху неотапливаемое помещение, никаких изменений не вносим;
  • отапливаемый подвал/чердак — коэффициент 0,9.

Стоит также при расчетах учесть количество стен, выходящих на улицу. В угловых квартирах требуется большее количество тепла:

  • при наличии одной внешней стены — 1,1;
  • две стены выходят на улицу — 1,2;
  • три наружные — 1,3.

Учитывать надо количество наружных стен

Это основные зоны, через которые уходит тепло. Их учитывать обязательно. Можно еще принять во вминание качество окон. Если это стеклопакеты, корректировки можно не вносить. Если стоят старые деревянные окна, найденную цифру надо умножить на 1,2.

Также можно учесть такой фактор, как месторасположение квартиры. Точно также требуется увеличивать мощность, если хотите покупать двухконтурный котел (для подогрева горячей воды).

Расчет по объему

В случае с определением мощности котла отопления для квартиры можно использовать другую методику, которая основывается на нормах СНиПа. В них прописаны  нормы на отопление зданий:

  • на обогрев одного кубометра в панельном доме требуется 41 Вт тепла;
  • на возмещение теплопотерь в кирпичном — 34 Вт.

Чтобы использовать этот способ, надо знать общий объем помещений. В принципе, этот подход более правильный, так как он сразу учитывает высоту потолков. Тут может возникнуть небольшая сложность: обычно мы знаем площадь свой квартиры. Объем придется высчитывать. Для этого общую отапливаемую площадь умножаем на высоту потолков. Получаем искомый объем.

Расчет котла отопления для квартир можно сделать по нормативам

Пример расчета мощности котла для отопления квартиры. Пусть квартира находится на третьем этаже пятиэтажного кирпичного дома. Ее общая площадь 87 кв. м, высота потолков 2,8 м.

  1. Находим объем. 87 * 2,7 = 234,9 куб. м.
  2. Округляем — 235 куб. м.
  3. Считаем требуемую мощность: 235 куб. м * 34 Вт = 7990 Вт или 7,99 кВт.
  4. Округляем, получаем 8 кВт.
  5. Так как вверху и внизу находятся отапливаемые квартиры, применяем коэффициент 0,7. 8 кВт * 0,7 = 5,6 кВт.
  6. Округляем: 6 кВт.
  7. Котел будет греть и воду для бытовых нужд. На это дадим запас в 25%. 6 кВт * 1,25  = 7,5 кВт.
  8. Окна в квартире не меняли, стоят старые, деревянные. Потому применяем повышающий коэффициент 1,2: 7,5 кВт * 1,2 = 9 кВт.
  9. Две стены в квартире наружные, потому еще раз умножаем найденную цифру на 1,2: 9 кВт * 1,2 = 10,8 кВт.
  10. Округляем: 11 кВт.

В общем, вот вам эта методика. В принципе, ее можно использовать и для расчета мощности котла для кирпичного дома. Для других типов стройматериалов нормы не прописаны, а панельный частный дом — большая редкость.

Мощность котла для квартир

При расчете отопительного оборудования для квартир можно пользоваться нормами СНиПа. Использование этих норм еще называют расчетом мощности котла по объему. СНиП задает требуемое количество тепла на обогрев одного кубического метра воздуха в типовых постройках:

  • на обогрев 1м 3 в панельном доме требуется 41Вт;
  • в кирпичном доме на м 3 идет 34Вт.

Зная площадь квартиры и высоту потолков, найдете объем, затем, умножив на норму в узнаете мощность котла.

Расчет мощности котла не зависит от типа используемого топлива

Для примера посчитаем требуемую мощность котла для помещений в кирпичном доме площадью 74м 2 с потолками 2,7м.

  1. Вычисляем объем: 74м 2 *2,7м=199,8м 3
  2. Считаем по норме сколько нужно будет тепла: 199,8*34Вт=6793Вт. Округляем и переводим в киловатты, получаем 7кВт. Это и будет необходимая мощность, которую должен выдавать тепловой агрегат.

Несложно посчитать мощность для такого же помещения, но уже в панельном доме: 199,8*41Вт=8191Вт

В принципе, в теплотехнике округляют всегда в большую сторону, но можно принять во внимание остекление ваших окон. Если на окнах энергосберегающие стеклопакеты, можно округлять в меньшую сторону. Считаем, что стеклопакеты хорошие и получаем 8кВт

Считаем, что стеклопакеты хорошие и получаем 8кВт.

Выбор мощности котла зависит от типа здания — для обогрева кирпичных требуется меньше тепла, чем панельных

Далее нужно, так же как и в расчете для дома, учесть регион и необходимость подготовки горячей воды. Актуальна и поправка на аномальные холода. Но в квартирах большую роль играет расположение комнат и этажность

Принимать во внимание нужно стены, выходящие на улицу:

  • Одна наружная стена — 1,1
  • Две — 1,2
  • Три — 1,3

После того, как учтете все коэффициенты, получите достаточно точное значение, на которое можно опираться при выборе техники для отопления. Если хотите получить точный теплотехнический расчет, его нужно заказывать в профильной организации.

Есть еще один метод: определить реальные потери при помощи тепловизора — современного прибора, который покажет к тому же места, через которые утечки тепла идут более интенсивно. Заодно сможете устранить и эти проблемы и улучшить теплоизоляцию. И третий вариант — воспользоваться программой-калькулятором, который посчитает все вместо вас. Нужно только выбрать и/или проставить требуемые данные. На выходе получите расчетную мощность котла. Правда, тут есть определенная доля риска: непонятно насколько верные алгоритмы заложены в основу такой программы. Так что все-таки придется еще хотя-бы приблизительно просчитать для сравнения результатов.

Так выглядит снимок тепловизора

Надеемся, у вас теперь есть представление о том, как рассчитать мощность котла. И вас не путает, что это газовый котел. а не твердотопливный, или наоборот.

По результатам обследования можно устранить утечки тепла

Возможно, вас заинтересуют статьи о том, как рассчитать мощность радиаторов и выбор диаметров труб для системы отопления. Для того чтобы иметь общее представление об ошибках, которые часто встречаются при планировании системы отопления смотрите видео.

Выводы и полезное видео по теме

Куда уходит тепло из дома – ответы предоставляет наглядный видеоролик:

Подробное видео о принципах подбора мощностных характеристик котла отопления смотрите ниже:

Выработка тепла ежегодно дорожает – растут цены на топливо. А тепла постоянно не хватает. Относиться безразлично к энергозатратам коттеджа нельзя – это совершенно невыгодно.

С одной стороны каждый новый сезон отопления обходится домовладельцу дороже и дороже. С другой стороны утепление стен, фундамента и кровли загородного стоит хороших денег. Однако чем меньше тепла уйдет из здания, тем дешевле будет его отапливать.

Сохранение тепла в помещениях дома – основная задача отопительной системы в зимние месяцы. Выбор мощности отопительного котла зависит от состояния дома и от качества утепления его ограждающих конструкций. Принцип «киловатт на 10 квадратов площади» работает в коттедже среднего состояния фасадов, кровли и фундамента.

Вы самостоятельно рассчитывали систему отопления для своего дома? Или заметили несоответствие вычислений, приведенных в статье? Поделитесь своим практическим опытом или объемом теоретических знаний, оставив комментарий в блоке под этой статьей.

Как рассчитать мощность электрокотла отопления по площади и объему

Для обогрева жилых и офисных помещений используется оборудование с электрическим нагревателем воды. Для обеспечения баланса температуры и энергопотребления производится расчет электрокотла. При определении рабочих параметров учитывается не только площадь комнат, но и физические свойства материалов стен, пола и потолка помещения.

СодержаниеПоказать

Что такое мощность электрокотла

Электрический котел представляет собой резервуар с теплообменником, через который прокачивается водопроводная вода или специальный теплоноситель, обладающий повышенными тепловыми характеристиками.

Котел подключается к бытовой сети переменного тока, нагревает он воду ТЭНами или электродами, изолированными от воды. В конструкции оборудования предусмотрен регулятор температуры.

Потребляемая мощность зависит от степени охлаждения теплоносителя при циркуляции по радиаторам отопления в здании. Часть энергии расходуется на тепловые потери в конструкции котла (нагрев стенок или защитных кожухов нагревательных элементов). На внешней части оборудования устанавливается информационная табличка, на которой указаны рабочие параметры изделия и потребляемая мощность.

Способы определения мощности электрокотла

Расчет рабочей мощности котла отопления выполняется для обеспечения сбалансированной системы отопления, способной поддерживать комфортную температуру в помещении при различных внешних условиях.

Оборудование должно обеспечивать равномерный прогрев комнат, изменение направления ветра не должно оказывать негативного воздействия на условия в помещениях. Перед выбором оборудования владельцу дома необходимо знать, как рассчитать мощность электрокотла с учетом особенностей помещения.

Для расчета применяются 2 основные методики:

  • по площади дома или комнат, подключенных к контуру отопления и котлу;
  • по объему помещений.

Вспомогательная методика определения мощности по контуру горячего водоснабжения предназначена для расчета дополнительной производительности. Полученный параметр суммируется с предварительно рассчитанным значением энергопотребления для отопления дома.

Затем проверяется способность электрической проводки, подведенной к зданию, выдержать максимальную нагрузку при работе нагревательных элементов котла.

Расчет котла по площади дома

Базовой методикой является определение мощности электрического котла отопления по площади помещений. Для определения значения используется базовое значение мощности, необходимой для обогрева комнаты площадью 10 м².

Коэффициент не зависит от климатической зоны, грубо считается, что для прогрева 10 м² необходимо затратить мощность 1 кВт. Коэффициент не учитывает теплопроводность материалов стен и высоту помещения, поэтому для уточнения расчета применяются дополнительные поправочные коэффициенты, определенные опытным путем.

Например, при высоте потолка более 2,7 м вводится дополнительный поправочный параметр, равный отношению фактической высоты к значению 2,7 м. Климатический коэффициент зависит от места расположения дома, значение находится в интервале от 0,7 для южных регионов до 2,0 – северных районов. Если нагревательный узел будет использоваться и для горячего водоснабжения, то к полученному показателю добавляется запас мощности 25-30%.

Существует другой способ подсчета, основанный на формуле S*K*100, где параметр S является площадью помещений, а K представляет собой коэффициент тепловых потерь, изменяющийся в зависимости от минимального порога температуры воздуха. За базовое значение взята цифра 0,7, используемая в местности с минимальной температурой -10°С. При понижении климатической нормы на каждые 5°С коэффициент увеличивается на 0,2.

Метод не применяется при расчете котла для помещений со следующими особенностями конструкции:

  1. Наличие пластиковых или деревянных окон с дублированным стеклопакетом.
  2. Использование дополнительного теплоизоляционного слоя толщиной от 150 мм, расположенного внутри или снаружи кирпичной стены (толщиной 2 размера кирпича).
  3. Сохранение неотапливаемого чердачного помещения и отсутствие теплоизоляционного материала на отделке крыши.
  4. Увеличение высоты жилых комнат до 2,7 м и более.

Расчет мощности котла по объему

Расчет мощности электрического котла отопления по объему жилых помещений базируется на коэффициенте тепловых потерь, который составляет:

  1. От 0,6 до 0,9 – для строений из кирпича с улучшенной теплоизоляцией. В доме применяются пластиковые 2-камерные окна, может использоваться крыша из теплоизолирующего материала.
  2. От 1 до 1,9 – для зданий, построенных из кирпича (двойная кладка), со стандартной кровлей и деревянными окнами.
  3. От 2 до 2,9 – для помещений с ухудшенной теплоизоляцией (например, со стенами толщиной в 1 кирпич).
  4. От 3 до 4 – для зданий, построенных из древесины или выполненных из гофрированного металлического листа со слоем теплоизолирующего материала.

При расчете используется формула вида V*K*T/860, где учитывается объем дома V, поправочный коэффициент K и разница температуру внутри дома и снаружи помещения. Для расчета берется минимальная температура воздуха, характерная для местоположения дома.

Полученное значение является избыточным, но в случае длительных морозов удастся поддерживать температуру в доме в заданных параметрах. Приведенная методика расчета мощности электрокотла для отопления дома не учитывает подачи дополнительной теплой жидкости для мытья посуды или душевой кабины.

Для жилых помещений в панельных или кирпичных домах расчет ведется по нормативам СНиП. Правила закладывают необходимую мощность для нагрева 1 м³ воздуха в пределах 41 и 34 Вт (для дома из панелей и силикатного кирпича, соответственно).

Затем владелец помещения проводит замеры высоты и площади, к полученному значению добавляется страховой запас 10% (на случай понижения температуры воздуха в зимнее время). При установке энергосберегающих окон допускается устанавливать котел с мощностью менее расчетной.

Для угловых помещений учитывается количество стен, контактирующих с улицей. Если на внешнюю сторону дома выходит только 1 стена, то требуется применять коэффициент 1,1. Каждая дополнительная стена увеличивает значение корректирующего параметра на 0,1. Для снижения тепловых потерь рекомендуется проанализировать помещение специальным прибором, а затем смонтировать слой изолятора.

Расчет для ГВС

Расчет электрокотла для отопления частного дома, одновременно используемого для горячего водоснабжения, учитывает следующие факторы:

  1. Количество и температура теплой воды, необходимой для обеспечения жизнедеятельности проживающих в помещении людей.
  2. На основании первого параметра определяется объем горячей воды +90°C, которая затем разбавляется потоком холодной жидкости для получения теплой.
  3. На основании полученного значения осуществляется расчет электрического котла. При определении параметров не учитывается понижение температуры водопроводной воды в зимнее время.

Например, жилой дом ежесуточно потребляет 200 л теплой воды (Vг) прогретой до +40°С (Tг). Предполагается получение необходимой температуры путем смешивания горячей и холодной воды. Владелец планирует приобрести котел, прогревающий жидкость до +95°С (Tк), в линии холодного водоснабжения подается вода с температурой +10°С (Tх).

Объем горячей воды определяется по формуле Vг*(Tг-Tх)/(Tк-Tх)=200*(40-10)/(95-10). Расчет показывает, что для обеспечения подачи горячей воды в сутки требуется прогреть 71 л жидкости до температуры +95°С.

Дальнейший расчет ведется на основании коэффициента удельной теплоемкости воды (4,218 кДж на каждый кг при прогреве на 1°C), веса жидкости и разницы температур. Полученное значение затем переводится по таблицам в киловатты, рекомендуется округлять параметр в сторону увеличения.

Для описанной выше ситуации требуется дополнительная мощность около 5 кВт. Полученное значение подразумевает прогрев воды за 1 час, если жидкость используется равномерно в течение дня, то допускается снизить дополнительные энергозатраты в 2 раза.

Калькулятор расчёта отопления дома онлайн

Все любят, когда в доме тепло, недостаток отопления в любом комфортном и уютном помещении превращает существование жильцов в мучение. С другой стороны каждый год затраты на отопление увеличиваются из-за постоянного роста цен на энергоносители. В таких условиях очень важно правильно выбрать оборудование для отопления. Интенсивность теплопотери дома зависит и от того, насколько хорошо утеплены его полы, стены, входные двери, крыша.

Окна Тройной стеклопакет Двойной стеклопакетОбычное (двойное) остекление

Стены Хорошая теплоизоляцияДва кирпича или 150 мм утеплителяПлохая теплоизоляция

Соотношение площадей окон и пола 10%20%30%40%50%

Температура снаружи помещения -10C-15C-20C-25C-30C-35C

Число стен выходящих наружу ОднаДвеТриЧетыри

Тип помещения над рассчитываемым Обогреваемое помещениеТеплый чердакХолодный чердак

Высота помещения 2,5 метра3 метра3,5 метра4 метра4,5 метра

Площадь помещения

Теплопотери

Теплопроизводительность котла


Качество и тип стеклопакетов также играет немаловажную роль.

На данном сайте можно воспользоваться калькулятором для расчета отопления частного дома и многоквартирного, который позволяет оценить объем потери тепла, учитывая особенности технических условий строительства определенного объекта, даже не имея специального технического образования — котла. Это очень простой и удобный функционал.

Сделав расчет можно запланировать работы по утеплению здания качественными материалами или задуматься о приобретении более эффективного отопительного котла. На рынке оборудования для отопления бытового назначения самую широкую нишу занимают котлы мощностью от 5 до 25 кВТ. Уровень мощности прибора, естественно, влияет на его стоимость.

 Чтобы получить наиболее верные показатели и определить точно необходимую теплопроизводительность котла нужно:

  • Уточнить метраж частного дома — площадь
  • Замерить площадь входных дверей и окон
  • Рассчитать процент их соотношения

Например, площадь дома 30 кв.метров, в нем одна входная дверь (1,5 кв.м) и одно окно (2 кв.м). Процентное соотношение площадей рассчитывается так:

(3,5 / 30) Х 100% = 11,667%

В интернете легко можно найти калькулятор расчета соотношения чисел и не считать на бумаге.

Теперь в первой строке калькулятора нужно указать вид стеклопакетов строительного объекта. Во второй указать полученное процентное число, далее следует заполнить оставшиеся окна, выбрав из предложенных вариантов нужный. Наконец нажать на кнопку расчета.

В первом окне результата отображается показатель тепла, которое «улетает в трубу». Следующее указывает на необходимую производительность отопительного котла.

По завершении расчетов можно запланировать работу по утеплению стен, пола, крыши дома, монтажу более качественных стеклопакетов один раз за весь период эксплуатации строения, ведь по карману может ударить не только покупка мощного отопительного котла, но и собственно затраты на отопление из месяца в месяц, из года в год.

Калькулятор объема

Ниже приводится список калькуляторов объема для нескольких распространенных форм. Заполните соответствующие поля и нажмите кнопку «Рассчитать».

Калькулятор объема сферы


Калькулятор объема конуса


Калькулятор объема куба


Калькулятор объема цилиндра


Калькулятор объема прямоугольного резервуара


Калькулятор объема капсулы


Калькулятор объема сферической крышки

Для расчета укажите любые два значения ниже.


Калькулятор объема конической ствола


Калькулятор объема эллипсоида


Калькулятор объема квадратной пирамиды


Калькулятор объема трубки


Калькулятор площади сопутствующих поверхностей | Калькулятор площади

Объем – это количественная оценка трехмерного пространства, которое занимает вещество.Единицей измерения объема в системе СИ является кубический метр, или м 3 . По соглашению, объем контейнера обычно определяется его вместимостью и количеством жидкости, которое он может вместить, а не объемом пространства, которое фактически вытесняет контейнер. Объемы многих форм можно рассчитать с помощью четко определенных формул. В некоторых случаях более сложные формы могут быть разбиты на более простые совокупные формы, а сумма их объемов используется для определения общего объема. Объемы других, еще более сложных фигур можно рассчитать с помощью интегрального исчисления, если существует формула для границы фигуры.Помимо этого, формы, которые нельзя описать известными уравнениями, можно оценить с помощью математических методов, таких как метод конечных элементов. В качестве альтернативы, если плотность вещества известна и однородна, объем можно рассчитать, используя его вес. Этот калькулятор вычисляет объемы для некоторых наиболее распространенных простых форм.

Сфера

Сфера – это трехмерный аналог двумерного круга. Это идеально круглый геометрический объект, который математически представляет собой набор точек, которые равноудалены от данной точки в ее центре, где расстояние между центром и любой точкой на сфере составляет радиус r .Вероятно, самый известный сферический объект – это идеально круглый шар. В математике существует различие между шаром и сферой, где шар представляет собой пространство, ограниченное сферой. Независимо от этого различия, шар и сфера имеют одинаковый радиус, центр и диаметр, и расчет их объемов одинаков. Как и в случае с кругом, самый длинный отрезок, соединяющий две точки сферы через ее центр, называется диаметром d . Уравнение для расчета объема шара приведено ниже:

EX: Клэр хочет заполнить идеально сферический воздушный шар с радиусом 0.15 футов с уксусом для борьбы с ее заклятым врагом Хильдой на воздушных шарах в предстоящие выходные. Необходимый объем уксуса можно рассчитать с помощью приведенного ниже уравнения:

объем = 4/3 × π × 0,15 3 = 0,141 фута 3

Конус

Конус – это трехмерная форма, которая плавно сужается от своего обычно круглого основания к общей точке, называемой вершиной (или вершиной). Математически конус образован так же, как круг, набором отрезков прямых, соединенных с общей центральной точкой, за исключением того, что центральная точка не входит в плоскость, содержащую круг (или другую основу).На этой странице рассматривается только случай конечного правого кругового конуса. Конусы, состоящие из полукруглых линий, некруглых оснований и т. Д., Которые простираются бесконечно, не рассматриваются. Уравнение для расчета объема конуса выглядит следующим образом:

, где r – радиус, а h – высота конуса

EX: Би полна решимости выйти из магазина мороженого, потратив свои с трудом заработанные 5 долларов. Хотя она предпочитает обычные сахарные рожки, вафельные рожки, несомненно, больше.Она определяет, что на 15% предпочитает обычные сахарные рожки вафельным рожкам, и ей необходимо определить, превышает ли потенциальный объем вафельного рожка на ≥ 15% больше, чем вафельный рожок. Объем вафельного рожка с круглым основанием радиусом 1,5 дюйма и высотой 5 дюймов можно рассчитать с помощью следующего уравнения:

объем = 1/3 × π × 1,5 2 × 5 = 11,781 дюйм 3

Беа также вычисляет объем сахарного рожка и обнаруживает, что разница составляет <15%, и решает купить сахарный рожок.Теперь все, что ей нужно сделать, это использовать свой ангельский детский призыв, чтобы заставить посох выливать мороженое в ее рожок.

Куб

Куб является трехмерным аналогом квадрата и представляет собой объект, ограниченный шестью квадратными гранями, три из которых пересекаются в каждой из его вершин, и все они перпендикулярны своим соответствующим смежным граням. Куб – частный случай многих классификаций геометрических фигур, включая квадратный параллелепипед, равносторонний кубоид и правый ромбоэдр.Ниже приведено уравнение для расчета объема куба:

объем = 3
где a – длина ребра куба

EX: Боб, который родился в Вайоминге (и никогда не покидал штат), недавно посетил свою исконную родину Небраску. Пораженный великолепием Небраски и окружающей средой, непохожей на какие-либо другие, с которыми он когда-либо сталкивался, Боб знал, что ему нужно взять с собой домой часть Небраски. У Боба есть чемодан кубической формы с длиной по краям 2 фута, и он рассчитывает объем почвы, который он может унести с собой домой, следующим образом:

объем = 2 3 = 8 футов 3

Цилиндр

Цилиндр в его простейшей форме определяется как поверхность, образованная точками на фиксированном расстоянии от данной прямой оси.Однако в обычном использовании термин «цилиндр» относится к правильному круговому цилиндру, где основания цилиндра представляют собой окружности, соединенные через их центры осью, перпендикулярной плоскостям его оснований, с заданной высотой h и радиусом r . Уравнение для расчета объема цилиндра показано ниже:

объем = πr 2 ч
где r – радиус, а h – высота резервуара

EX: Кэлум хочет построить замок из песка в гостиной своего дома.Поскольку он является твердым сторонником утилизации отходов, он извлек три цилиндрических бочки с незаконной свалки и очистил бочки от химических отходов, используя средство для мытья посуды и воду. Каждая бочка имеет радиус 3 фута и высоту 4 фута, и Кэлум определяет объем песка, который может вместить каждая, используя уравнение ниже:

объем = π × 3 2 × 4 = 113.097 футов 3

Он успешно строит замок из песка в своем доме и в качестве дополнительного бонуса экономит электроэнергию на ночном освещении, так как его замок из песка светится ярко-зеленым в темноте.

Прямоугольный бак

Прямоугольный резервуар – это обобщенная форма куба, стороны которого могут иметь различную длину. Он ограничен шестью гранями, три из которых пересекаются в его вершинах, и все они перпендикулярны своим соответствующим смежным граням. Уравнение для расчета объема прямоугольника показано ниже:

объем = длина × ширина × высота

EX: Дарби любит торт. Она ходит в спортзал по 4 часа в день, каждый день, чтобы компенсировать свою любовь к торту.Она планирует отправиться в поход по тропе Калалау на Кауаи, и, хотя она в очень хорошей форме, Дарби беспокоится о своей способности пройти тропу из-за отсутствия торта. Она решает упаковать только самое необходимое и хочет набить свою идеально прямоугольную упаковку длиной, шириной и высотой 4 фута, 3 фута и 2 фута соответственно тортом. Точный объем торта, который она может поместить в свою упаковку, рассчитан ниже:

объем = 2 × 3 × 4 = 24 фута 3

Капсула

Капсула – это трехмерная геометрическая форма, состоящая из цилиндра и двух полусферических концов, где полусфера – это полусфера.Отсюда следует, что объем капсулы можно рассчитать, объединив уравнения объема для сферы и правого кругового цилиндра:

объем = πr 2 ч + πr 3 = πr 2 ( р + з)

, где r – радиус, а h – высота цилиндрической части

EX: Имея капсулу с радиусом 1,5 фута и высотой 3 фута, определите объем растопленного молочного шоколада, который Джо может унести в капсуле времени, которую он хочет похоронить для будущих поколений на пути к самопознанию. Гималаи:

объем = π × 1.5 2 × 3 + 4/3 × π × 1,5 3 = 35,343 фута 3

Сферический колпачок

Сферический колпачок – это часть сферы, которая отделена от остальной сферы плоскостью. Если плоскость проходит через центр сферы, сферическая крышка называется полусферой. Существуют и другие отличия, включая сферический сегмент, где сфера сегментируется двумя параллельными плоскостями и двумя разными радиусами, где плоскости проходят через сферу. Уравнение для расчета объема сферической крышки выводится из уравнения для сферического сегмента, где второй радиус равен 0.Относительно сферической крышки, указанной в калькуляторе:

Имея два значения, предоставленный калькулятор вычисляет третье значение и объем. Уравнения для преобразования между высотой и радиусом показаны ниже:

Для r и R : h = R ± √R 2 – r 2

Для R и h : r = √2Rh – h 2
где r – радиус основания, R – радиус сферы, а h – высота сферической крышки.

EX: Джек действительно хочет победить своего друга Джеймса в игре в гольф, чтобы произвести впечатление на Джилл, и вместо того, чтобы тренироваться, решает саботировать мяч для гольфа Джеймса.Он отрезает идеальную сферическую крышку от верхней части мяча для гольфа Джеймса и должен рассчитать объем материала, необходимый для замены сферической крышки и перекоса веса мяча для гольфа Джеймса. Учитывая, что мяч для гольфа Джеймса имеет радиус 1,68 дюйма, а высота сферической крышки, которую срезал Джек, составляет 0,3 дюйма, объем можно рассчитать следующим образом:

объем = 1/3 × π × 0,3 2 (3 × 1,68 – 0,3) = 0,447 дюйма 3

К несчастью для Джека, за день до игры Джеймс получил новую партию мячей, и все усилия Джека были напрасны.

Коническая Frustum

Усеченный конус – это часть твердого тела, которая остается, когда конус рассекается двумя параллельными плоскостями. Этот калькулятор рассчитывает объем специально для правильного кругового конуса. Типичные конические усики, встречающиеся в повседневной жизни, включают абажуры, ведра и некоторые стаканы для питья. Объем усеченного правого конуса рассчитывается по следующей формуле:

объем = πh (r 2 + rR + R 2 )

где r и R – радиусы оснований, h – высота усеченного конуса

EX: Би успешно приобрела мороженое в сахарном рожке и только что съела его так, что мороженое остается упакованным внутри рожка, а поверхность мороженого находится на уровне и параллельно плоскости отверстия рожка.Она собирается начать есть свой рожок и оставшееся мороженое, когда ее брат хватает ее рожок и откусывает часть дна рожка, которая идеально параллельна ранее единственному отверстию. Теперь у Беа осталась коническая усеченная пирамида, из которой вытекает мороженое, и ей нужно рассчитать объем мороженого, который она должна быстро съесть, учитывая высоту усеченного конуса 4 дюйма с радиусом 1,5 дюйма и 0,2 дюйма:

объем = 1/3 × π × 4 (0,2 2 + 0,2 × 1,5 + 1,5 2 ) = 10.849 из 3

Эллипсоид

Эллипсоид является трехмерным аналогом эллипса и представляет собой поверхность, которую можно описать как деформацию сферы посредством масштабирования элементов направления. Центр эллипсоида – это точка, в которой пересекаются три попарно перпендикулярные оси симметрии, а отрезки линии, ограничивающие эти оси симметрии, называются главными осями. Если все три имеют разную длину, эллипсоид обычно называют трехосным.Уравнение для расчета объема эллипсоида выглядит следующим образом:

, где a , b и c – длины осей

EX: Хабат любит есть только мясо, но его мать настаивает на том, что он ест слишком много, и позволяет ему есть столько мяса, сколько он может уместить в булочке в форме эллипса. Таким образом, Хабат выдалбливает булочку, чтобы максимально увеличить объем мяса, который он может уместить в своем сэндвиче. Учитывая, что его булочка имеет длину оси 1,5 дюйма, 2 дюйма и 5 дюймов, Хабат рассчитывает объем мяса, который он может уместить в каждой полой булочке, следующим образом:

объем = 4/3 × π × 1.5 × 2 × 5 = 62,832 дюйма 3

Квадратная пирамида

Пирамида в геометрии – это трехмерное твердое тело, образованное путем соединения многоугольного основания с точкой, называемой его вершиной, где многоугольник – это форма на плоскости, ограниченная конечным числом отрезков прямых линий. Существует много возможных многоугольных оснований пирамиды, но квадратная пирамида – это пирамида, в которой основание представляет собой квадрат. Другое отличие пирамид заключается в расположении вершины. У правых пирамид есть вершина, которая находится прямо над центром тяжести ее основания.Независимо от того, где находится вершина пирамиды, если ее высота измеряется как перпендикулярное расстояние от плоскости, содержащей основание, до ее вершины, объем пирамиды может быть записан как:

Объем обобщенной пирамиды:

Калькулятор БТЕ для отопления

При выборе новой системы отопления для вашего дома важно выбрать прибор правильного размера (печь, камин, печь и т. Д.) Для вашей собственности.

Установка слишком большой печи, газового камина или дровяной печи может привести к тому, что тепловая мощность будет недостаточной для вашего жилого помещения, а это означает, что она не будет обеспечивать достаточно горячего воздуха для обогрева вашего дома.С другой стороны, чрезмерная тепловая мощность сделает ваше жилое пространство невыносимо теплым. Воспользуйтесь нашим калькулятором БТЕ для отопления ниже, чтобы оценить свои потребности.

Что такое БТЕ?

Теплота измеряется в единицах измерения, известных как британские тепловые единицы (БТЕ), и определяется как количество энергии, необходимое для охлаждения или нагрева одного фунта воды на один градус по Фаренгейту.

Таким образом, формула BTU является полезным показателем, поскольку она позволяет сравнивать тепловую мощность различных видов топлива, включая дровяные печи, газовые камины, пропановые обогреватели и электрические обогреватели.

Рейтинг бытовой техники в BTU дает вам информацию о количестве выделяемого тепла, поэтому, чем больше рейтинг в BTU, тем выше мощность нагрева.

Следующее видео даст вам более глубокое представление о том, что такое БТЕ:

БТЕ на квадратный фут Нагревание большого пальца

С учетом сказанного, стандартное практическое правило для БТЕ на квадратный фут: :

15 x Объем пространства для обогрева = Требуемый объем BTU

Чтобы лучше понять, какой размер выходного сигнала BTU вам следует искать, используйте калькулятор BTU ниже.Вам потребуются размеры помещения, которое вы собираетесь отапливать, и средняя температура наружного воздуха в вашем районе.

Сколько БТЕ мне нужно?

Требуемое количество БТЕ зависит от ряда факторов, включая ваш местный климат, размер собственности, изоляцию и желаемую температуру (личные предпочтения). Поэтому, хотя производители предоставляют рекомендации по количеству БТЕ, которое вам требуется для определенной площади (измеряется в квадратных футах), на это также влияет ряд других факторов.

Калькулятор BTU Watts

Если вас интересует электрический прибор, такой как электрический камин или другой тип электронагревателя, вы, вероятно, захотите узнать, как сравнить его с приборами, которые оцениваются в BTU. Например, если вы пытаетесь сравнить пропановый нагреватель, рассчитанный в БТЕ, с электрическим нагревателем, рассчитанный в ваттах.

Одна БТЕ в час составляет 0,293 Вт. Следовательно, для газового камина с тепловой мощностью 30 000 БТЕ в час вы должны умножить 30 000 на 0.293, что соответствует 8790 Вт. Также часто встречаются электрические приборы, измеряемые в киловаттах, и в этом случае вам просто нужно разделить на 100, так что 870 ватт равны 87,9 киловатт.

Если вам нужно вычислить киловатт-часы, просто умножьте киловатты на количество часов, в течение которых обогреватель будет работать. Например, если у вас есть обогреватель мощностью 10 киловатт, работающий 5 часов, это равняется 50 кВт / ч.

Преобразование ватт в БТЕ

Если вы смотрите на электрический нагревательный прибор, и он выдает тепловую мощность только в ваттах, не нужно беспокоиться, что преобразовать ватты в БТЕ очень просто.Следует помнить, что один ватт равен 3,41 БТЕ в час. Следовательно, в случае электрического нагревателя мощностью 2000 Вт вы просто умножаете 2000 на 3,41, что дает 6820.

Другие факторы, влияющие на вашу требуемую тепловую мощность

При поиске нагревательного прибора с достаточной тепловой мощностью , вот некоторые из других важных факторов, которые повлияют на ваше решение:

Теплоизоляция

Теплоизоляция разработана и установлена ​​для снижения уровня теплопередачи между двумя зонами с разными температурами.Например, стены в современных домах обычно заполнены каким-либо изоляционным материалом, который снижает потери тепла во внешнюю среду.

Теплоизоляция важна, когда дело доходит до расчета БТЕ, так как в хорошо изолированном доме, вероятно, потребуется прибор с более низким БТЕ, чтобы оставаться в тепле. Это связано с тем, что теплоизоляция лучше справляется с перемещением тепла, обеспечивая, чтобы тепло оставалось в вашем доме дольше, так что вы используете меньше и требуете меньше.

Причина этого заключается в энтропийном характере тепла, которое перемещается из более теплых областей в более холодные до тех пор, пока не исчезнет разница в температуре.

Как вы узнали из нашей статьи о цикле охлаждения, способность передачи тепла между средами является важным аспектом при охлаждении помещения (или обогреве, если цикл является обратным). Возможно, вы даже захотите подумать о небольшой изоляции, такой как изоляция вашей системы труб, если у вас есть паровая печь.

Если вы живете в современном доме, вполне вероятно, что он имеет некоторую теплоизоляцию в полостях стены, на крыше или в обоих местах. Материалу, используемому для изоляции, присваивается значение R, которое является мерой способности материалов выдерживать передачу тепла.Чем выше значение R, тем выше сопротивление теплопередаче.

Вы живете в старом доме с плохой изоляцией, с одинарными стеклопакетами? Или более новая недвижимость, в которой установлена ​​новейшая теплоизоляция? Это важно знать при выполнении расчета БТЕ, поскольку это сильно повлияет на тепловую мощность, необходимую для вашей собственности.

Предпочтительная температура

Помимо практических соображений, важно также спросить себя, какой температуры вы хотите, чтобы была ваша квартира? Большинству людей нравится, когда температура внутри дома составляет от 70 до 80 ° F, так что это, безусловно, хорошее практическое правило, о котором следует помнить.

Если вы не уверены, лучший способ определить желаемую температуру – использовать простое уравнение разницы между температурой наружного воздуха и температурой в помещении, которая является предпочтительной.

Например, зимы в Канзасе обычно находятся в диапазоне 40 ° F, со странным случаем, когда он достигает 30 ° F время от времени. Температура, которую хотят жители, составляет 70 ° F. Итак, целевая температура будет 70 ° F – 30 ° F = 40 ° F.

Пассивная солнечная конструкция

Дизайн вашего дома и количество солнечного света, которое он получает в течение дня, также могут иметь большое влияние на количество тепла, которое потребуется вашему дому.

Например, дома с пассивной солнечной конструкцией часто имеют очень большие окна, выходящие на юг, которые пропускают большое количество солнечного света в дом. Такой запас естественной тепловой энергии в доме означает, что требуемые БТЕ могут быть значительно уменьшены.

Расход систем отопления

Объемный расход в системе отопления можно выразить как

q = h / (c p ρ dt) (1)

, где

q = объемный расход (м 3 / с )

ч = тепловой поток (кДж / с, кВт)

c

664 904 p = удельная теплоемкость (кДж / кг o C )

ρ = плотность (кг / м 3 )

dt9 разность температур ( o C)

Это общее уравнение может быть изменено для реальных единиц – СИ или британских – и используемых жидкостей.

Объемный расход воды в британских единицах измерения

Для воды с температурой 60 o F расход может быть выражен как

q = h (7,48 галлонов / фут 3 ) / ((1 БТЕ / фунт м o F) (62,34 фунт / фут 3 ) (60 мин / ч) dt)

= h / (500 dt) (2)

где

q = расход воды (гал / мин)

ч = тепловой поток (БТЕ / ч)

ρ = плотность ( фунт / фут 3 )

dt = разница температур ( o F)

Для более точного объемного расхода следует использовать свойства горячей воды.

Массовый расход воды в британских единицах измерения

Массовый расход воды можно выразить как:

м = h / ((1,2 Btu / lbm. o F) dt)

= ч / (1,2 дт) (3)

, где

м = массовый расход (фунты м / ч)

Объемный расход воды в единицах SI

Объемный расход воды расход в системе отопления можно выразить в единицах СИ как

q = h / ((4.2 кДж / кг o C) (1000 кг / м 3 ) dt)

= h / (4200 dt) (4)

, где

q = вода расход (м 3 / с)

ч = тепловой поток (кВт или кДж / с)

dt = разница температур ( o C)

Для более При точном объемном расходе следует использовать свойства горячей воды.

Массовый расход воды в единицах СИ

Массовый расход воды можно выразить как:

м = h / ((4,2 кДж / кг o C) dt)

= h / (4,2 dt) (5)

, где

м = массовый расход (кг / с)

Пример – расход в системе отопления

Циркуляция воды системы отопления выдает 230 кВт с перепадом температур 20 o ° C .

Объемный расход можно рассчитать как:

q = (230 кВт) / ((4,2 кДж / кг, o C) (1000 кг / м 3 ) (20 o C) )

= 2,7 10 -3 м 3 / с

Массовый расход можно выразить как:

м = (230 кВт) / (4,2 кДж / кг o C) (20 o C))

= 2.7 кг / с

Пример – Нагрев воды с помощью электричества

10 литров воды нагревается от 10 o C до 100 o C за 30 минут . Тепловой поток может быть рассчитан как

h = (4,2 кДж / кг o C) (1000 кг / м 3 ) (10 литров) (1/1000 м 3 / литр) ( (100 o C) – (10 o C)) / ((30 мин) (60 с / мин))

= 2.1 кДж / с (кВт)

Электрический ток 24 В постоянного тока , необходимый для обогрева, можно рассчитать как

I = (2,1 кВт) (1000 Вт / кВт) / (24 В)

= 87,5 А

Расчет затрат на отопление дома

жителей США входят в число крупнейших потребителей энергии в доме во всем мире. Наше использование и привычки в огромной степени способствуют истощению природных ресурсов и увеличению наших затрат на энергию. Из всей энергии, которую использует типичный дом, отопление обычно составляет один из основных компонентов, составляя от 50 до 70 процентов! На самом деле существует ряд довольно простых способов, с помощью которых домовладельцы могут снизить свои расходы на отопление.Часто это не обязательно связано с выключением тепла в доме, а просто с минимизацией количества тепла, уходящего из здания. Читайте дальше, чтобы узнать больше о том, как оценить, сколько вы уже тратите на отопление и как снизить это число.

Изоляция дверей, окон и крыши

Добавление слоя изоляции в ключевых частях дома – отличный способ сохранить существующее тепло внутри здания. Это уменьшает количество воздуха, который входит и выходит из дома.Хорошие места для утепления – чердаки или крыши, а также двери и окна. Изоляционные листы из стекловолокна или волокна, известные как войлок и рулоны, достаточно просты для установки домовладельцами. Другие типы изоляции включают пенопласт или рыхлый волокнистый наполнитель, который выдувается в щели и щели. С этими типами изоляции лучше всего справляются профессионалы, имеющие необходимое оборудование и обучение.

Проверка на утечку воздуха

Легкий самостоятельный тест на утечку воздуха в помещении – пройтись с зажженной палочкой благовоний и остановиться в ключевых точках.Когда дым начинает уходить в сторону, а не подниматься вверх, это означает, что поблизости есть утечка воздуха. Наиболее частыми местами утечки воздуха являются электрические розетки, двери и окна, подвалы и чердаки. Бумажный тест – это другой метод, который помогает домовладельцам быстро проверить, пропускают ли их двери и окна холодный воздух. Попытайтесь провести лист бумаги снизу или сквозь стороны. Если он может проходить без разрыва, значит, воздух тоже может проходить.Другой метод проверки на утечку воздуха – это испытание воздуходувки . Это проверка, выполняемая профессиональными энергоаудиторами с использованием определенных диагностических инструментов. Для более полного обзора попробуйте домашний энергоаудит. Опять же, это требует энергоаудита, чтобы осмотреть дом и оценить его на предмет утечек воздуха и общего энергопотребления в различных областях. Хотя некоторые утечки воздуха, возможно, потребуется устранить профессионально, более мелкие можно устранить с помощью герметика. Это тип материала, который при нанесении расширяется и схватывается.Аппликаторы для уплотнения обычно имеют длинный тонкий наконечник, который легко вставить в небольшие трещины.

Идеи энергосбережения для отопления помещений

Снижение затрат на отопление дома часто обходится недорого, хотя некоторые из них требуют первоначальных вложений. Например, установка программируемых термостатов, таких как Nest, помогает автоматически управлять температурой в помещении. С другой стороны, солнечные системы отопления – это эффективный способ использования солнечной энергии для обогрева дома.Другие идеи проще, но также чрезвычайно эффективны. Очищая вентиляционные отверстия, воздуховоды и воздушные фильтры, домовладельцы могут повысить эффективность своих нагревательных элементов. Хотя включение вентилятора зимой может показаться излишним, этот метод действительно полезен. Поскольку горячий воздух имеет тенденцию подниматься, вентиляторы могут рассеивать горячий воздух по комнате или дому и помогать поддерживать более постоянную температуру. В солнечные дни откройте шторы, чтобы солнечный свет согревал дом. После заката закройте шторы, чтобы предотвратить потерю тепла.Более плотные шторы более эффективны против потери тепла, чем тонкие или прозрачные. Аналогичным образом установите шторный экран между прихожей и остальной частью дома. Таким образом, когда люди входят или выходят зимой, холодный воздух не может быстро проникнуть внутрь. Двери, у которых есть утечки воздуха, можно модифицировать с помощью прилагаемого дверного проема. Это кусок плоской резины, который крепится к нижней части двери, чтобы предотвратить утечку воздуха. Наконец, в домах с неэлектрическими каминами есть возможность сжигать бревна, более дешевый и возобновляемый источник тепла, вместо того, чтобы всегда прибегать к электрическому отоплению.

  • Солнечное отопление – Узнайте о том, как активные солнечные системы отопления могут использоваться для обогрева помещений и даже воды.
  • Утечки воздуха – Узнайте, как локализовать и закрыть утечки воздуха и протекающие воздуховоды, добавить изоляцию и улучшить отопление помещений другими способами.
  • Эффективное отопление (PDF) – В этом руководстве для жителей обсуждается, как эффективно поддерживать температуру в доме при сохранении энергии.
  • Insulation Tips – Прочтите онлайн-руководство, в котором описаны все факты и инструкции по правильной изоляции дома.
  • Конопатка – Конопатка – это довольно простой и недорогой способ заглушить утечки воздуха в доме.
  • Снижение затрат на отопление – Практические советы о том, как снизить затраты на отопление дома, не жертвуя температурой в помещении.

РАСЧЕТ ТЕПЛОПОТЕРЯ И РАСЧЕТ МОНТАЖА

РАСЧЕТ ТЕПЛОВЫХ ПОТЕРЬ И РАСЧЕТЫ ПРИ МОНТАЖЕ

ПРИБЛИЗИТЕЛЬНЫЙ РАСЧЕТ ТЕПЛОВЫХ ПОТЕРЬ И ВЫБОР КОМПОНЕНТОВ СИСТЕМЫ

РАСЧЕТ ТЕПЛОПОТЕРЯ:

Инжиниринг:

С помощью этого метода лист расчета потерь тепла, лист радиатора и подробный расчет, лист расчета значений потерь и лист расчета труб заполняются отдельно для каждой среды во время расчета потерь тепла.

В листе расчета теплопотерь расчеты производятся с учетом направления объема, для которого производится расчет теплопотерь, толщины стены-перекрытия и площадей наружных стен-полов-окон. Лист радиатора и подробный расчет используется при выборе радиаторов и размещении на архитектурном проекте после расчета объемных тепловых потерь. В таблице значений потерь (удельного сопротивления) указаны потери, затрудняющие прохождение воды в трубах, S-образных частях, скобах, разделениях и т. Д., и вызвать потерю давления. В таблице расчета труб каждая часть трубы в системе пронумерована, и лист заполняется такими параметрами, как количество тепла, проходящего через каждую часть, длину, скорость и коэффициент трения.

Примерный метод:

Объемы, подлежащие обогреву, имеют приблизительные расчетные значения m 3 в единицах среднегодовых температур.

Для 3 o C:

Изоляция защищенная

Ккал / чм 3

Утепленный свободный

Ккал / чм 3

Неизолированный защищенный

Ккал / чм 3

Без утепления бесплатно

Ккал / чм 3

Пентхаус

19

28

30

40

Мезонин

17

25

26

35

Подвал

19

28

30

40

Для -3 o C:

Изоляция защищенная

Ккал / чм 3

Утепленный свободный

Ккал / чм 3

Неизолированный защищенный

Ккал / чм 3

Без утепления бесплатно

Ккал / чм 3

Пентхаус

22

30

40

50

Мезонин

20

28

32

40

Подвал

22

30

35

45

Для -6 ​​ o C:

Изоляция защищенная

Ккал / чм 3

Утепленный свободный

Ккал / чм 3

Неизолированный защищенный

Ккал / чм 3

Без утепления бесплатно

Ккал / чм 3

Пентхаус

25

33

45

55

Мезонин

22

30

35

43

Подвал

25

33

40

50

Для -12 o C:

Изоляция защищенная

Ккал / чм 3

Утепленный свободный

Ккал / чм 3

Неизолированный защищенный

Ккал / чм 3

Без утепления бесплатно

Ккал / чм 3

Пентхаус

28

38

50

60

Мезонин

24

34

38

46

Подвал

28

38

44

54

Для -21 o C:

Изоляция защищенная

Ккал / чм 3

Утепленный свободный

Ккал / чм 3

Неизолированный защищенный

Ккал / чм 3

Без утепления бесплатно

Ккал / чм 3

Пентхаус

35

45

60

70

Мезонин

30

40

44

55

Подвал

35

45

53

63

Приблизительные потери тепла желаемого объема можно рассчитать с помощью этих таблиц.Котел выбирается исходя из рассчитанного значения теплопотерь.

Например, приблизительная теплопотеря неизолированного защищенного помещения площадью 20 м² с высотой крыши 3 метра, расположенного в мезонине, составляет:

20x3x32 = 1920 ккал / ч.

Таким же образом, примерные потери тепла для дома площадью 150 м² составляют:

.

150x3x32 = 14400 ккал / ч.

Отопительный прибор подбирается по найденному значению теплопотерь. Например. обычный комбинированный котел, конденсационный комбинированный котел и центральное отопление должны выполняться индивидуально, в то время как центральный котел следует выполнять отопление центральной системы.

РАСЧЕТ МОЩНОСТИ ГОРЕЛКИ:

В случае использования котла продувочной системы; Расчет горелки, соответствующей мощности котла, производится по формуле:

Q к

B Br =

Н и . וּ Br

B Br : Производительность горелки (кг / ч)

Q k : Производительность котла (ккал / ч)

וּ Br : КПД горелки (проверено по каталогу)

H u : Низкая теплотворная способность топлива (ккал / ч)

H u значений:

Дизель: 10200 ккал /

кг

Мазут номер 4: 10100 ккал / кг

СУГ: 11800 ккал / кг

Природный газ: 8250 ккал / м 3

Зонгулдакский карьер: 7000 ккал /

кг

Кокс: 6000 ккал / кг

Бурый уголь: 2000 – 5500 ккал / кг

Ориентировочные значения וּ Br :

Бурый уголь: 0.65

Кокс и каменный уголь: 0,72

Мазут: 0,82

Природный газ: 0,92

РАСЧЕТ РАЗМЕРА ТРУБЫ:

В то время как размер трубы рассчитывается, скорость воды при наименьшем значении в ответвлениях должна возрастать по мере увеличения размера трубы и достигать максимальной скорости на входе в котел. Однако скорость воды не должна быть выше 0,2-0,3 м / сек в системах водяного отопления 90 o C / 70 o C, 1 м / сек.в трубах до 2 дюймов и 1,5 м / сек. в трубах большего размера. Позже рассчитываются прямые трубы и локальные потери давления, и для системы выбирается насос.

ВЫБОР КЛАПАНОВ РАДИАТОРА:

Вы должны решить, использовать ли радиаторные клапаны с внутренней регулировкой расхода или термостатические радиаторные клапаны (TRV). В случае TRV вы предотвратите нагрев объемов сверх заданной температуры и обеспечите экономию топлива (каждый последующий нагрев на 1 ° C означает дополнительный расход топлива на 5%), а также получите более легкие комфортные условия и сделаете их постоянными.

Термостатический радиаторный клапан

ВЫБОР И РАЗМЕЩЕНИЕ РАДИАТОРА:

Панельные или чугунные радиаторы выбираются из соответствующих каталогов в соответствии с величиной потерь тепла, рассчитанной для объема. Чугунные радиаторы имеют ряд секций, а панельные радиаторы – длину радиатора. Для размещения выбирается место с наибольшими потерями тепла (например, днище окон). Однако вы должны обратить внимание на тот факт, что эти значения рассчитаны для радиаторов с открытым окружением.В случае, если часть радиаторов должна оставаться в закрытом положении (кладка мрамора на радиатор, установка радиатора в нишу или сетку и т. Д.), К расчетным значениям вносятся дополнения. В этом случае тепловые характеристики радиатора могут упасть до 80%. Радиаторы необходимо ставить как можно больше на пол. Для идеального размещения достаточно места от стены 4 см и дорожного просвета 6 см.

В чугунных чугунных радиаторах с более чем 20 секциями и панельных радиаторах длиной более 1,5 м обратный патрубок должен быть взят с другого конца (поперечного соединения) радиатора.

Важное примечание: На практике никакая система не работает при 90 o C / 70 o C. Поскольку они работают при 75 o C / 65 o C, вы должны спросить у производителей таблицу теплотворной способности радиаторов. по системе 75 o C / 65 o C.

ВЫБОР ЦИРКУЛЯЦИОННОГО НАСОСА

Расход циркуляционного насоса определяется количеством воды, циркулирующей в установке. Циркуляция воды в установке зависит от общей потребности установки в тепле и температуры воды в прямом обратном трубопроводе.

Q к

Q p =

C.p. (t g -t d )

Q p : Расход насоса (м 3 / ч)

Q k : Потребление тепла (ккал / ч)

C: Удельная теплоемкость воды (1 ккал / кг o C)

p: Плотность воды (приблизительно 970 кг / м 3 для систем 90 o C / 70 o C)

t g : Температура поступающей воды

t d : Температура обратной воды

Однако это выражение не используется в типах нагревателей, поскольку тепловая мощность определяется по расходу.В этом случае учитываются рекомендации производителя нагревателя по расходу насоса.

Давление циркуляционного насоса: давление циркуляционного насоса должно быть больше коэффициента трения колонны, которая имеет самые высокие потери на трение и называется критическим контуром.

H p > ∑R.L + ∑Z ммSS

R.L: Прямые потери в трубе:

Z: Местные потери

Найденное значение давления увеличивается, если в расчетах учитываются потери котельной.Если потери котельной не учитываются, к расчетному значению прибавляется 300-800 ммSS.

Циркуляционный насос желательно, чтобы он работал посередине расхода по абсциссе (горизонтальная ось) и характеристической кривой давления по ординате (вертикальная ось). Есть запчасть на случай выхода из строя.

Насосы обычно подключаются к обратной линии. Если установка имеет большую емкость, центробежный насос, который используется вместо циркуляционного насоса подключен к выходной линии.Таким образом, в системе не остается критической точки для образования воздуха.

РАСЧЕТ РАСШИРИТЕЛЬНОГО БАКА:

Закрытый расширительный бак:

Его главная особенность заключается в том, что он блокирует проникновение кислорода из воздуха в воду системы и предотвращает коррозию. Более того, в отличие от открытых расширительных баков, вода не испаряется и вызывает потери воды и тепла. Они изготавливаются цилиндрической, сферической, плоско-круглой и плоско-прямоугольной форм и размещаются в котельных.Таким образом устраняются проблемы размещения и замораживания. В системе обязательно должны быть предохранительный клапан и манометр.

Закрытые расширительные баки подходят только для котлов с автоматическим регулированием горения (жидкого и газового топлива). Его нельзя использовать в угольных котлах с ручной загрузкой, так как это может вызвать большие колебания температуры.

Имеются 6, 12 и 18 литровые модели для комнатных обогревателей в зависимости от тепловой мощности.

В практических расчетах за объем закрытого расширительного бака принимается 6% объема воды в системе.

Чтобы найти объем воды в установке на практике, можно использовать следующий метод:

Панельные радиаторы ПККП высотой 600 мм используются в основном на рынке. На 1 метр такого радиатора уходит почти 6 литров воды. Предположим, в квартире, отапливаемой центральным котлом, используется 100 метровый радиатор 600 ПККП. В этом случае общий объем воды в радиаторах составляет:

100х6 = 600 л.

Теперь предположим, что этот объем воды составляет 1000 литров, когда мы добавляем приблизительное количество воды в установку и бойлер, глядя на значение по каталогу.

В этом случае объем расширительного бака, необходимый для системы, составляет:

1.000х0.06 = 60 литров.

Открытый расширительный бачок:

Они используются в твердотопливных системах, так как отсутствует возможность контроля пламени. Температура воды не превышает 100 o C, так как давление в системе не превышает 1 бар. В систему необходимо добавить новую воду, так как вода при контакте с атмосферой испаряется. Кислород в недавно добавленной воде вызывает коррозию.Важным моментом является то, что прямые и обратные трубопроводы безопасности не отсечной клапан. Предохранительные трубы – это прямые и обратные предохранительные трубы, которые передают количество отопительной воды, увеличившееся в объеме из-за разницы температур, в частности повышения температуры в теплогенераторе, то есть котле и установке, к расширительному депо. Передняя труба должна подключаться сверху, а обратная предохранительная труба должна подключаться снизу. В этом случае вода будет течь из передней предохранительной трубы в расширительное депо, если давление водяного насоса больше требуемого значения.Поскольку такой поток нежелателен, либо к системе должен быть подключен насос с меньшим давлением, либо поток воды в расширительное депо должен быть предотвращен путем регулировки байпасного клапана в насосной станции.

Нормальный уровень воды в установке – это когда температура воды составляет 90 o C и расширительный бак заполнен. Уровень воды считывается в mSS (счетчик водяного столба) с ареометра, прикрепленного к котлу или коллектору.

Трубка сообщения, которая подсоединяется к расширительному депо от минимального уровня воды, проложена до котельной и прикреплена клапаном (1/2 дюйма) на ее конце, помогает вам проверить, достаточно ли воды в установке.

Передний и возвратный предохранительные трубы не могут быть меньше 1 дюйма. Расширительные баки входят в объем TS 713.

Расчет объема открытого расширительного бака производится так же, как и расчет объема закрытого расширительного бака.

Введение и методы расчета

Хорошо известно, что первоначальная стоимость котла составляет небольшую часть общих затрат, связанных с котлом в течение его срока службы. В течение срока службы котла основные затраты связаны с расходами на топливо.Обеспечение эффективной работы котла имеет решающее значение для оптимизации затрат на топливо.

Не всегда верно, что котел будет работать с номинальной эффективностью. Почти всегда было обнаружено, что котлы работают с КПД намного ниже номинального, если не проводить надлежащий мониторинг эффективности.

КПД котла

КПД котла – это совокупный результат эффективности различных компонентов котла. У котла есть много подсистем, эффективность которых влияет на общую эффективность котла.Пара коэффициентов полезного действия, которые окончательно определяют коэффициент полезного действия котла, составляют –

.
  1. Эффективность сгорания
  2. Тепловой КПД

Помимо этих значений КПД, существуют и другие потери, которые также играют роль при определении КПД котла и, следовательно, должны учитываться при расчете КПД котла.

Эффективность сгорания

Эффективность сгорания котла является показателем способности горелки сжигать топливо.Два параметра, которые определяют эффективность горелки, – это количество несгоревшего топлива в выхлопных газах и избыток кислорода в выхлопных газах. По мере увеличения количества избыточного воздуха количество несгоревшего топлива в выхлопе уменьшается. Это приводит к снижению потерь несгоревшего топлива, но к увеличению потерь энтальпии. Следовательно, очень важно поддерживать баланс между потерями энтальпии и несгоревшими потерями. Эффективность сгорания также зависит от сжигаемого топлива. Эффективность сгорания жидкого и газообразного топлива выше, чем твердого топлива.

Тепловой КПД

Термический КПД котла определяет эффективность теплообменника котла, который фактически передает тепловую энергию от камина к воде. На тепловой КПД сильно влияет образование накипи / сажи на трубах котла.

Прямой и косвенный КПД котла

Общий КПД котла зависит от многих других параметров, помимо эффективности сгорания и теплового КПД. Эти другие параметры включают потери при включении-выключении, потери на излучение, потери на конвекцию, потери на продувку и т. Д.На практике для определения КПД котла обычно используются два метода, а именно прямой метод и косвенный метод расчета КПД.

Прямая эффективность

Этот метод рассчитывает КПД котла по основной формуле КПД –

η = (выход энергии) / (вход энергии) X 100

Чтобы рассчитать КПД котла этим методом, мы делим общую выработку энергии котла на общую потребляемую мощность котла, умноженную на сто.

Расчет прямого КПД –

E = [Q (H-h) / q * GCV] * 100

Где,

Q = количество произведенного пара (кг / час)

H = Энтальпия пара (Ккал / кг)

ч = Энтальпия воды (ккал / кг)

GCV = Высшая теплотворная способность топлива.

Косвенная эффективность

Косвенный КПД котла рассчитывается путем определения индивидуальных потерь, происходящих в котле, и последующего вычитания суммы из 100%.Этот метод предполагает определение величин всех измеримых потерь, происходящих в котле, путем отдельных измерений. Все эти потери складываются и вычитаются из 100%, чтобы определить конечный КПД. Продувочный клапан во время процедуры остается закрытым. Этот метод должен быть реализован в соответствии с нормами, предусмотренными в стандартах BS845. Расчетные потери включают потери в дымовой трубе, радиационные потери, потери от продувки и т. Д.

Сравнение прямого и косвенного КПД-

Оба упомянутых выше метода определения КПД котла имеют как преимущества, так и недостатки.Самым большим преимуществом косвенного метода является то, что он также говорит об источниках потерь. Выявив косвенный КПД, можно узнать, где потери увеличиваются и могут быть уменьшены. С другой стороны, значения прямого КПД ближе к реальности по сравнению с косвенным КПД из-за непокрытых потерь, таких как потери на излучение, потери ВКЛ-ВЫКЛ и т. Д. Но прямой КПД может сказать нам только о величине общих потерь. Информация об индивидуальных потерях и их величинах не передается из прямого расчета эффективности.Всегда существует разница в значениях прямой и косвенной эффективности. Косвенный КПД измеряется в конкретное время, тогда как прямой КПД измеряется в течение определенного периода времени, и, следовательно, потери из-за колеблющихся нагрузок, включения-выключения котла и т. Д. Также принимаются во внимание.

Мониторинг эффективности в реальном времени

КПД котла не остается фиксированным, и в процессе эксплуатации происходят большие отклонения от идеальных значений.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *