Расчет отопления по объему: Расчет количества секций радиаторов отопления по объему или площади, примеры

Содержание

Расчет отопления по объему помещения

Расчет отопления по площади помещения — подробный разбор методов

Если у вас возникла необходимость замены старых, вышедших из строя радиаторов, или же вы собираетесь произвести установку новой системы в строящемся доме, следует знать, как произвести расчет отопления по площади помещения.

Чтобы работа системы была эффективной, следует точно определить количество секций устанавливаемых радиаторов, чтобы теплоотдача и прогревание были оптимальными.

Если секций будет недостаточно, то комната никогда не прогреется должным образом, а большое их количество приведет к неэкономному и чрезмерному расходованию тепла, и соответственно пагубно скажется на ваших финансах и бютжете. Потребности помещений стандартного типа и планировки можно определить с помощью довольно простых расчетов, а чтобы добиться большей точности, необходимо обязательно учитывать и некоторые дополнительные параметры и особенности.

Простые вычисления по площади

Вычислить величину батарей отопления для определенного помещения можно, ориентируясь на его площадь. Это самый простой способ – использовать сантехнические нормы, которые предписывают, что тепловой мощности 100 Вт в час нужно для обогрева 1 кв.м. Надо помнить, что этот метод используется для помещений, у которых потолки стандартной высоты (2,5-2,7 метра), а результат получается несколько завышенным.
К тому же он не учитывает таких особенностей, как:

  • число окон и тип стеклопакетов на них;
  • количество в комнате наружных стен;
  • толщина стен здания и из какого материала они состоят;
  • тип и толщина использованного утеплителя;
  • диапазон температур в данной климатической зоне.

Тепло, которое для обогрева комнаты должны давать радиаторы: площадь следует умножить на тепловую мощность (100 Вт). К примеру, для комнаты в 18 кв.м требуется такая мощность батареи отопления:

18 кв.м х 100 Вт = 1800 Вт

То есть, в час для обогрева 18-ти квадратных метров необходимо 1,8 кВт мощности. Этот результат надо поделить на количество тепла, которое в час выделяет секция отопительного радиатора. Если данные в его паспорте указывают, что это составляет 170 Вт, то следующий этап вычислений выглядит так:

1800 Вт / 170 Вт = 10,59

Это число надо округлить до целого (обычно округляется в большую сторону) – получится 11. То есть, чтобы в комнате температура в отопительный сезон была оптимальной, необходимо установить радиатор отопления с 11-ю секциями.

Такой метод подходит только для вычисления величины батареи в помещениях с центральным отоплением, где температура теплоносителя не выше 70 градусов Цельсия.

Есть и более простой способ, который можно применять для обычных условий квартир панельных домов. В этом приблизительном расчете учитывается, что для обогрева 1,8 кв.м площади нужна одна секция. Другими словами, площадь помещения надо разделить на 1,8. Например, при площади 25 кв.м необходимо 14 частей:

25 кв.м / 1,8 кв.м = 13,89

Но такой метод расчета неприемлем для радиатора пониженной или повышенной мощности (когда средняя отдача одной секции варьируется в пределах от 120 до 200 Вт).

Рассмотрим метод вычислений для комнат с высокими потолками

Однако расчет отопления по площади не позволяет верно определить количество секций для комнат с потолками выше 3 метров. В этом случае надо применять формулу, учитывающую объем помещения. Для обогрева каждого кубического метра объема по рекомендациям СНИП необходим 41 Вт тепла. Так, для комнаты с потолками высотой 3 м и площадью 24 кв.м, расчет будет следующим:

24 кв.м х 3 м = 72 куб.м (объем комнаты).

72 куб.м х 41 Вт = 2952 Вт (мощность батареи для обогрева помещения).

Теперь следует узнать количество секций. В случае, если в документации радиатора указано, что теплоотдача одной его части в час составляет 180 Вт, надо разделить на это число найденную мощность батареи:

2952 Вт / 180 Вт = 16,4

Это число округляется до целого – получается, 17 секций, чтобы обогреть комнату объемом 72 куб.м.

Путём не сложных вычислений можно с лёгкостью определить нужные вам данные.

Дополнительные параметры, которые нужно учесть

Произведя примерный расчет количества секций радиаторов отопления для своей квартиры, не забудьте его откорректировать, приняв во внимание особенности помещения. Их нужно учитывать следующим образом:

  • для угловой комнаты (две стены выходят на улицу) с одним окном мощность радиатора надо увеличить на 20%, а при двух окнах – на 30%;
  • если радиатор монтируется в нише под окном, его теплоотдача снизится, это компенсируется увеличением мощности на 5%;
  • на 10% следует увеличить, если окна выходят на северную либо северо-восточную сторону;
  • экран, для красоты закрывающий радиаторы, «крадет» 15% их теплоотдачи, которые также надо учесть при расчете.

В самом начале следует рассчитать общее значение необходимой для помещения тепловой мощности, учитывая все наличествующие параметры и факторы. И лишь затем разделить это значение на количество тепла, которое выделяет в час одна секция. Результат при дробном значении, как правило, округляется до целого в большую сторону.

Специфика и другие особенности

Также возможна и другая специфика у помещений, для которых делается расчет, не все же они похожи и совершенно одинаковы. Это могут быть такие показатели как:

  • температура теплоносителя меньше 70 градусов – число частей соответственно предстоит увеличить;
  • отсутствие двери в проеме между двумя помещениями. Тогда требуется подсчитать общую площадь обоих помещений, чтобы вычислить количество радиаторов для оптимального обогрева;
  • установленные на окнах стеклопакеты препятствуют потере тепла, следовательно, можно монтировать меньше секций батареи.

При замене старых чугунных батарей, которые обеспечивали нормальную температуру в комнате, на новые алюминиевые или биметаллические, калькуляция весьма проста. Умножитьте теплоотдачу одной чугунной секции (в среднем 150 Вт). Результат разделите на количество тепла одной новой части.

Климатические зоны тоже важны

Не для кого ни секрет, что в разных климатических зонах имеется разная потребность в обогреве, поэтому при проектировании проекта необходимо учитывать и эти показатели.

Климатические зоны также имеют свои коэффициенты:

  • средняя полоса России имеет коэффициент 1,00, поэтому он не используется;
  • северные и восточные регионы: 1,6;
  • южные полосы: 0,7-0,9 (учитываются минимальные и среднегодовые температуры в регионе).

Данный коэффициент необходимо умножить на общую тепловую мощность, а полученный результат разделить на теплоотдачу одной части.

Выводы

Таким образом, расчет отопления по площади особых трудностей не представляет. Достаточно немного посидеть, разобраться и спокойно посчитать. С его помощью каждый владелец квартиры или дома может легко определить величину радиатора, который следует установить в комнате, кухне, ванной или в любом другом месте.

Если вы сомневаетесь в своих силах и знаниях – доверьте монтаж системы профессионалам. Лучше заплатить один раз профессионалам, чем сделать неправильно, демонтировать и повторно приступить к работе. Или же не сделать ничего вообще.

Расчет количества радиаторов отопления по площади и объему помещения

При замене батарей или переходе на индивидуальное отопление в квартире встает вопрос о том, как рассчитать количество радиаторов отопления и число секций приборов. Если мощность батарей окажется недостаточной, в холодное время года в квартире будет прохладно. Избыточное количество секций не только ведет к ненужным переплатам – при системе отопления с однотрубной разводкой жильцы нижних этажей останутся без тепла. Рассчитать оптимальную мощность и количество радиаторов можно, опираясь на площадь или объем комнаты, учитывая при этом особенности помещения и специфику разных видов батарей.

Расчет по площади

Наиболее распространенной и простой методикой является способ расчета мощности приборов, требуемой для обогрева, по площади обогреваемого помещения. Согласно усредненной норме, на отопление 1 кв. метр площади требуется 100 Вт тепловой мощности. В качестве примера рассмотрим комнату, имеющую площадь 15 кв. метров. Согласно данному методу, для ее обогрева потребуется 1500 Вт тепловой энергии.

При использовании данной методики нужно учесть несколько важных моментов:

  • норма в 100 Вт на 1 кв. метр площади относится к средней климатической полосе, в южных регионах для обогрева 1 кв. метра помещения требуется меньшая мощность – от 60 до 90 Вт;
  • для областей с суровым климатом и очень холодной зимой на обогрев 1 кв. метра требуется от 150 до 200 Вт;
  • метод подходит для помещений со стандартной высотой потолков, не превышающей 3 метра;
  • способ не учитывает потери тепла, которые будут зависеть от расположения квартиры, количества окон, качества утепления, материала стен.

Методика расчета по объему помещения

Способ расчетов с учетом объема потолка будет более точным: он учитывает высоту потолков в квартире и материал, из которого сделаны наружные стены. Последовательность вычислений будет следующей:

  1. Определяется объем помещения, для этого площадь комнаты умножается на высоту потолка. Для комнаты площадью 15 кв. м. и высотой потолка 2,7 м он будет равен 40,5 кубометрам.
  2. В зависимости от материала стен на обогрев одного кубометра воздуха тратится разное количество энергии. По нормам СНиП для квартиры в кирпичном доме этот показатель равен 34 Вт, для панельного дома – 41 Вт. Значит, полученный объем нужно умножить на 34 или на 41 Вт. Тогда для кирпичного здания на обогрев комнаты в 15 квадратов потребуется 1377 Вт (40,5*34), для панельного – 1660, 5 Вт (40,5*41).

Корректировка результатов

Любой из выбранных способов покажет лишь приблизительный результат, если не будут учитываться все факторы, влияющие на уменьшение или увеличение теплопотерь. Для точного расчета необходимо полученное значение мощности радиаторов умножить на приведенные ниже коэффициенты, среди которых нужно выбрать подходящие.

В зависимости от размеров окон и качества утепления через них помещение может терять 15–35% тепла. Значит, для вычислений мы будем использовать два связанных с окнами коэффициента.

Соотношение площади окон и пола в комнате:

  • для окна с трехкамерным стеклопакетом или двухкамерным с аргоном – 0,85;
  • для окна с обычным двухкамерным стеклопакетом – 1,0;
  • для рам с обычным двойным остеклением – 1,27.

Стены и потолок

Потери тепла зависят от количества наружных стен, качества теплоизоляции и от того, какое помещение расположено над квартирой. Для учета этих факторов будет использоваться еще 3 коэффициента.

Число наружных стен:

  • нет наружных стен, потери тепла отсутствуют – коэффициент 1,0;
  • одна наружная стена – 1,1;
  • две – 1,2;
  • три – 1,3.
  • нормальная теплоизоляция (стена толщиной в 2 кирпича или слой утеплителя) – 1,0;
  • высокая степень теплоизоляции – 0,8;
  • низкая – 1,27.

Учет типа вышерасположенного помещения:

  • отапливаемая квартира – 0,8;
  • отапливаемый чердак – 0,9;
  • холодный чердак – 1,0.

Высота потолков

Если вы пользовались способом расчета по площади для комнаты с нестандартной высотой стен, то для уточнения результата придется ее учесть. Коэффициент можно узнать следующим образом: имеющуюся высоту потолка разделить на стандартную высоту, которая равна 2,7 метра. Таким образом мы получим следующие цифры:

  • 2,5 метра – коэффициент 0,9;
  • 3,0 метра – 1,1;
  • 3,5 метра – 1,3;
  • 4,0 метра – 1,5;
  • 4,5 метра – 1,7.

Климатические условия

Последний коэффициент учитывает температуру воздуха на улице в зимнее время. Отталкиваться будем от средней температуры в наиболее холодную неделю года.

Расчет количества секций радиаторов

После того как нам стала известна мощность, требуемая для обогрева помещения, мы можем произвести расчет батарей отопления.

Для того чтобы рассчитать количество секций радиатора, нужно поделить рассчитанную общую мощность на мощность одной секции прибора. Для проведения вычислений можно пользоваться среднестатистическими показателями для разных типов радиаторов со стандартным осевым расстоянием, равным 50 см:

  • для чугунных батарей примерная мощность одной секции составляет 160 Вт;
  • для биметаллических – 180 Вт;
  • для алюминиевых – 200 Вт.

Справка: осевое расстояние радиатора – это высота между центрами отверстий, через которые подается и отводится теплоноситель.

Для примера определим требуемое число секций биметаллического радиатора для комнаты площадью 15 кв. м. Предположим, что вы считали мощность простейшим способом по площади помещения. Делим требуемые для ее обогрева 1500 Вт мощности на 180 Вт. Полученное число 8,3 округляем – необходимое число секций биметаллического радиатора равно 8.

Важно! Если вы решили выбрать батареи нестандартного размера, узнайте мощность одной секции из паспорта прибора.

Зависимость от температурного режима системы отопления

Мощность радиаторов указывается для системы с высокотемпературным тепловым режимом. Если система отопления вашего дома работает в среднетемпературном или низкотемпературном тепловом режиме, для подбора батарей с нужным количеством секций придется произвести дополнительные расчеты.

Для начала определим тепловой напор системы, который представляет собой разницу между средней температурой воздуха и батарей. За температуру приборов отопления берется среднее арифметическое от значений температуры подачи и отвода теплоносителя.

  1. Высокотемпературный режим: 90/70/20 (температура подачи — 90 °C, обратки —70 °C, за среднюю температуру в помещении принимается значение 20 °C). Тепловой напор рассчитаем так: (90 + 70) / 2 – 20 = 60 °С;
  2. Среднетемпературный: 75/65/20, тепловой напор – 50 °С.
  3. Низкотемпературный: 55/45/20, тепловой напор – 30 °С.

Чтобы узнать, сколько секций батареи вам понадобится для систем с тепловым напором 50 и 30, нужно умножить общую мощность на паспортный напор радиатора, а затем разделить на имеющийся тепловой напор. Для комнаты 15 кв.м. потребуется 15 секций алюминиевых радиаторов, 17 – биметаллических и 19 – чугунных батарей.

Для отопительной системы с низкотемпературным режимом вам потребуется в 2 раза больше секций.

(голосов: 7, средняя оценка: 3,43 из 5)

Калькулятор расчета количества секций радиаторов отопления

В подавляющем числе случаев основными приборами конечного теплообмена в системах отопления остаются радиаторы. Значит, важно не только правильно заранее рассчитать требуемую тепловую мощность котла отопления, но и правильно расставить приборы теплообмена в помещениях дома или квартиры, чтобы обеспечить комфортный микроклимат в каждом из них.

Калькулятор расчета количества секций радиаторов отопления

В этом вопросе поможет калькулятор расчета количества секций радиаторов отопления, который размещен ниже. Он также позволяет определить необходимую суммарную тепловую мощность радиатора, если тот является неразборной моделью.

Если в ходе расчетов будут возникать вопросы, то ниже калькулятора размещены основные пояснения по его структуре и правилам применения.

Калькулятор расчета количества секций радиаторов отопления

Некоторые разъяснения по работе с калькулятором

Часто можно встретить утверждение, что для расчета требуемой тепловой отдачи радиаторов достаточно принять соотношение 100 Вт на 1 м² площади комнаты. Однако, согласитесь, что такой подход совершенно не учитывает ни климатических условий региона проживания, ни специфики дома и конкретного помещения, ни особенностей установки самих радиаторов. А ведь все это имеет определенное значение.

В данном алгоритме за основу также взято соотношение 100 Вт/м², однако, введены поправочные коэффициенты, которые и внесут необходимые коррективы, учитывающие различные нюансы.

— Площадь помещения – хозяевам известна.

— Количество внешних стен – чем их больше, тем выше теплопотери, которые необходимо компенсировать дополнительной мощностью радиаторов. В угловых квартирах часто комнаты имеют по две внешних стены, а в частных домах встречаются помещения и с тремя такими стенами. В то же время бывают и внутренние помещения, в которых теплопотери через стены практически отсутствуют.

— Направление внешних стен по сторонам света. Южная или юго-западная сторона будет получать какой-никакой солнечный «заряд», а вот стены с севера и северо-востока Солнца не видят никогда.

— Зимняя «роза ветров» – стены с наветренной стороны, естественно, выхолаживаются намного быстрее. Если хозяевам этот параметр неизвестен, то можно оставить без заполнения – калькулятор рассчитает для самых неблагоприятных условий.

— Уровень минимальных температур – скажет о климатических особенностях региона. Сюда должны вноситься не аномальные значения, а средние, характерные для данной местности в самую холодную декаду года.

— Степень утепления стен. По большому счету, стены без утепления – вообще не должны рассматриваться. Средний уровень утепления будет соответствовать, примерно, стене в 2 кирпича из пустотного керамического кирпича. Полноценное утепление – выполненное в полном объеме на основании теплотехнических расчетов.

— Немалые теплопотери происходят через перекрытия – полы и потолки. Поэтому важное значение имеет соседство помещения сверху и снизу – по вертикали.

— Количество, размер и тип окон – связь с теплотехническими характеристиками помещения очевидна.

— Количество входных дверей (на улицу, в подъезд или на неотапливаемый балкон) – любое открытие будет сопровождаться «порцией» поступающего холодного воздуха, и это необходимо каким-то образом компенсировать.

— Имеет значение схема врезки радиаторов в контур – теплоотдача от этого существенно изменяется. Кроме того, эффективность теплообмена зависит и от степени закрытости батареи на стене.

— Наконец, последним пунктом будет предложено ввести удельную тепловую мощность одной секции батареи отопления. В результате будет получено требуемое количество секций для размещения в данном помещении. Если расчет проводится для неразборной модели, то этот пункт оставляют незаполненным, а результирующее значение берут из второй строки расчета – она покажет необходимую мощность радиатора в кВт.

В расчетное значение уже заложен необходимый эксплуатационный резерв.

Что необходимо еще знать про радиаторы отопления?

При выборе этих приборов теплообмена следует учитывать ряд важных нюансов. Подробнее об этом можно узнать в публикациях нашего портала, посвящённых стальным , алюминиевым и биметаллическим радиаторам отопления.

Правильный расчет отопления — по объему помещения

Делать ли расчет отопления по объему помещения или ограничиться расчетами по площади? Давайте рассмотрим, чем расчет отопления по объему помещения в доме предпочтительнее и лучше, чем распространенные цифры «1 кВт на каждые 10 квадратных метров площади».

Итак, если вы делаете расчет отопления по объему помещения, вы включаете в него три величины – площадь помещения, высота потолков и толщина перекрытий. Кроме того, в расчете участвует не только толщина, но будет важен также и материал перекрытия. Почему? Поясним чуть ниже.

Когда же вы рассчитываете отопление, отталкиваясь от площади помещения, в ваших расчетах участвует только один показатель = площадь ваших помещений. Почему первый вариант точнее и почему он предпочтительнее?

Зачем нам высота потолков при расчетах

Итак, давайте рассмотрим некий «типовой» вариант – дом площадью 100 квадратных метров. В расчетах, основанных на площади дома мы опираемся на величину «1 кВт тепловой мощности котла на каждые 10 квадратных метров площади» и получаем, что нам потребуется котел мощностью 10кВт для отопления дома площадью 100 м2.

А теперь давайте обратим внимание на высоту потолков в помещениях. Они могут быть 2,20, 2,50 и, например, 3,0 метра.

В первом варианте объем помещений составит 220 кубических метров, во втором – 250 и в третьем – 300 м3.

Любой теплогенератор, который работает в вашем доме, за исключением ИК панелей и им подобных, нагревает воздух внутри помещения. Благодаря конвекции теплый воздух перемешивается с холодным и обеспечивает теплопередачу по всему объему. В итоге, любой котел или печь нагревают воздух в доме. А воздух меряется именно объемными величинами, то есть кубометрами.

В первом случае нам нужно будет нагреть 220 кубометров воздуха во внутренних помещениях дома, а в последнем – 300 кубометров. Логично предположить, что при нагревании 300 кубометров воздуха потребуется почти в 1,5 раза больше тепла, чем при нагревании 220 кубометров.

То есть, при одинаковой площади помещений в первом случае можно использовать котел почти в 1,5 раза менее мощный, чем в последнем.

Толщина и материал перекрытий

Когда мы имеем одноэтажный дом, то его перекрытия, их толщина и материал, могут не участвовать в расчете отопления. Конечно, толщина и материал перекрытий обладают теплопроводностью и учитываются при расчете теплосопротивления ограждающих конструкций, но это немного другая «опера».

А вот если мы имеем двухэтажный или трехэтажный дом, то при расчетах мощности котла нам важно знать, какой толщины в доме перекрытия и как они выполнены.

Возьмем все тот же дом площадью 100 квадратных метров, но уже в двухэтажном варианте. Пусть в первом случае у нас будут плиты перекрытия толщиной 20 см, во втором случае – деревянные перекрытия с лагами 20 см и в третьем – деревянные перекрытия с лагами 20 см и подвесным потолком из гипсокартона.

В первом случае мы имеем дело с монолитным перекрытием, которое изготовлено из теплоемкого материала. Нагретый один раз в начале сезона бетон перекрытий будет служить своеобразным теплоаккумулятором. Объем перекрытий можно исключить в этом случае из расчета. Умножаем площадь 1-го этажа 50 квадратных метров на толщину перекрытий 0,2 метра и получаем объем 10 кубометров, который можно исключить из расчетов мощности котла.

Во втором случае у нас имеются деревянные перекрытия по лагам, подшитые сверху и снизу сначала черновым полом и потолком, а затем чистовыми покрытиями. При толщине 20 см и высоте чистовых потолков, например, 2,50 метра нам потребуется добавить к общему объему помещений дома в 250 кубометров еще 10 кубометров перекрытий.

В третьем случае, когда мы имеем высоту чистовых потолков 2,50 метра и общий объем в 250 кубометров, важно понимать, сколько высоты еще «скрывается» за подвесными потолками первого и второго этажей.

При использовании подвесов длиной, например, 10 см, нам нужно не только добавить 10 кубометров перекрытий, но еще и по 5 кубометров воздуха на каждом этаже, которые «скрывают» подвесные потолки. В итоге мы добавляем 20 кубометров к объему ома при расчетах отопления по объему помещения.

Как видите, метод расчета отопления по объему помещения гораздо более точный и учитывает больше нюансов, нежели метод расчета по площади помещений.

Еще по этой теме на нашем сайте:

  1. Какой выбрать электрический котел отопления для дома
    Выбирая электрический котел отопления для дома, нужно ответить себе всего лишь на три вопроса: какой площади будет дом, какая электрическая.

Верный расчет мощности котла для отопления дома
Чтобы сделать расчет мощности котла для отопления дома, не нужно нанимать специалиста или обладать какими-то специфическими знаниями. Любой хозяин сможет.

Электрокотел для отопления дома 150 кв. метров — выбор и отзывы
Здесь мы будем выбирать электрокотел для отопления дома 150 квадратных метров, и смотреть отзывы реальных владельцев домов такой площади, отапливаемых.

Считаем воздушное отопление производственных помещений — расчет и схема
Воздушное отопление представляет собой способ обогрева помещений без участия теплоносителя. Реализация этого способа отопления возможна как с помощью прямых способов.

Калькулятор расчета отопления по площади помещения: 2 нормы

Чтобы рассчитать количество радиаторов в квартире или в частном доме, потребуется для начала подобрать радиаторы. При этом измеряют отапливаемую площадь и берут во внимание другие исходные показатели. Все температурные нормы указаны в соответствующих СНиП. Но не обязательно изучать все это, ведь специальная программа избавит от множества трудностей.

Расчет мощности радиатора отопления: калькулятор и материал батарей

Расчет радиаторов начинается с выбора самих отопительных устройств. Для батарей на батарейке этого не нужно, так как система электронная, но для стандартного отопления придется воспользоваться формулой или калькулятором. Отличают батареи за материалом изготовления. Каждый вариант обладает своей мощностью. Многое зависит от необходимого количества секций и габаритов отопительных приборов.

Виды радиаторов:

Для биметаллических радиаторов используют 2 вида металла: алюминий и сталь. Внутренняя основа создается из прочной стали. Наружная сторона выполнена из алюминия. Он обеспечивает хорошее увеличение теплообмена прибора. В итоге получается надежная система с хорошей мощностью. На теплоотдачу влияет межосевой интервал и определенная модель радиатора.

Мощность радиаторов Rifar составляет 204 Вт при межосевом интервале 50 см. Другие производители предоставляют изделия меньшей производительности.

Для алюминиевого радиатора тепловая мощность схожая с биметаллическими устройствами. Обычно этот показатель при межосевом расстоянии 50 см составляет 180-190 Вт. Более дорогие устройства имеют мощность до 210 Вт.

Алюминий часто используют, организовывая индивидуальный обогрев в частном доме. Дизайн устройств достаточно простой, но зато приборы отличаются отменной теплоотдачей. К гидроударам такие радиаторы не устойчивы, поэтому их нельзя применять для центрального отопления.

При расчете мощности биметаллического и алюминиевого радиатора учитывается показатель одной секции, так как приборы имеют монолитную конструкцию. Для стальных композиций расчет выполняется для всей батареи при определенных размерах. Выбор таких устройств следует осуществлять с учетом их рядности.

Измерение теплоотдачи чугунных радиаторов колеблется от 120 до 150 Вт. В некоторых случаях мощность может достигать 180 Вт. Чугун устойчив к коррозии и может работать при давлении 10 бар. Их можно использовать в любых строениях.

Минусы чугунных изделий:

  • Тяжелые – 70 кг весят 10 секций с расстоянием в 50 см;
  • Усложненная установка из-за тяжести;
  • Долго прогревается и использует больше тепла.

При выборе, какую батарею покупать, учитывают мощность одной секции. Так определяют прибор с необходимым количеством отделений. При межосевом расстоянии 50 см мощность конструкции составляет 175 Вт. А при расстоянии 30 см показатель измеряется, как 120 Вт.

Калькулятор расчета радиаторов отопления по площади

Калькулятор регистров по площади представляет собой наиболее простой способ определить необходимое количество радиаторов на 1м2. Расчеты делаются на основе норм производимой мощности. Выделяют 2 основных предписания норм, учитывающие климатические особенности региона.

Основные нормы:

  • Для умеренных климатов требуемая мощность составляет 60-100 Вт;
  • Для северных регионов норма составляет 150-200 Вт.

Многих интересует, почему в нормах такой большой диапазон. Но мощность выбирается исходя из исходных параметров дома. Бетонные строения требуют максимальных показателей мощности. Кирпичные – средних, утепленные – низкие.

Все нормы учитываются со средней максимальной высотой пололка 2,7 м.

Для расчета секций потребуется умножить площадь на норму и поделить на теплоотдачу одной секции. В зависимости от модели радиатора учитывает мощность одной секции. Эту информацию можно найти в технических данных. Все достаточно просто и никаких особых сложностей не представляет.

Калькулятор простого расчета батарей отопления на площадь

Калькулятор является эффективным вариантом расчета. Для комнаты размеров 10 м кв потребуется 1 квт (1000 Вт). Но это при условии, что помещение не угловое и установленные двойные стеклопакеты. Чтобы узнать количество ребер панельных приборов, необходимо требуемую мощность поделить на теплоотдачу одной секции.

При этом учитывают высоту потолков. Если они выше 3,5 м, то потребуется увеличить количество секций на одну. А если помещение угловое, то добавляем плюс один отсек.

Берут в учет запас тепловой мощности. Это 10-20% от расчетного показателя. Это необходимо на случай сильных холодов.

Теплоотдача секций прописана в технических данных. Для алюминиевых и биметаллических батарей учитывают мощность одной секции. Для чугунных приборов берут за основу теплоотдачу всего радиатора.

Калькулятор точного расчета количества секций радиаторов отопления

Простой расчет не учитывают много факторов. В итоге получаются искривленные данные. Тогда одни комнаты остаются холодными, вторые – слишком жаркими. Температуру можно контролировать с помощью запорных вентелей, но лучше заранее все точно посчитать, чтобы использовать нужное количество материалов.

Для точного расчета используют понижающие и повышающие тепловые коэффициенты. Сначала следует обратить внимание на окна. Для одинарного остекления используется коэффициент 1,7. Для двойных окон не нужен коэффициент. Для тройных показатель составляет 0,85.

Дальше учитывают кирпичную кладку. Для стены в два кирпича или с уплотнителем используют коэффициент 1. При наличии теплоизоляции применяет показатель 0,85, при отсутствии – 1,27.

Если окна одинарные, а теплоизоляции нет, то потери тепла будут достаточно крупными.

При расчетах учитывают соотношение площади полов и окон. Идеальное соотношение составляет 30%. Тогда применяют коэффициент 1. При повышении соотношения на 10% коэффициент повышается на 0,1.

Коэффициенты для разной высоты потолков:

  • Если потолок ниже 2,7 м, коэффициент не нужен;
  • При показателях от 2,7 до 3,5 м используют коэффициент 1,1;
  • Когда высота составляет 3,5-4,5 м, потребуется коэффициент 1,2.

При наличии чердаков или верхних этажей также применяет определенные коэффициенты. При теплом чердаке применяют показатель 0,9, жилой комнате – 0,8. Для неотапливаемых чердаков берут 1.

Калькулятора объема для расчета тепла на отопление помещения

Подобные расчеты используют для слишком высоких или слишком низких комнат. При этом рассчитывают по объему комнаты. Так на 1 м куб нужно 51 Вт мощности батареи. Формула расчета имеет такой вид: А=В*41

Расшифровка формулы:

  • А — сколько нужно секций;
  • В – объем помещения.

Для нахождения объема умножаем длину на высоту и ширину. Если батарея ее разделена на секции, то общая потребность разделяется на мощность целой батареи. Полученные расчеты принято округлять в большую сторону, так как компании нередко увеличивают мощность своего оборудования.

Как рассчитать количество секций радиаторов на комнату: погрешности

Тепловая мощность за формулами рассчитывается с учетом идеальных условий. В идеале температура теплоносителя на входе составляет 90 градусов, а на выходе – 70. Если в доме поддерживать температуру 20 градусов, то теплой напор системы будет составлять 70 градусов. Но при этом один из показателей обязательно будет отличаться.

Сначала потребуется рассчитать температурный напор системы. Берем исходные данные: температура на входе и выходе, в помещении. Дальше определяем дельту системы: потребуется рассчитать среднее арифметическое между показателя на входе и выходе, затем отнимают температуру в комнате.

Полученную дельту следует найти в таблице пересчета и умножить мощность на данный коэффициент. В итоге получает мощность одной секции. Таблица состоит всего из двух столбиков: дельта и коэффициент. Показатель получаем в ватт. Данная мощность используется при расчете количества батарей.

Особенности расчета отопления

Часто утверждается, что для 1 метр квадратный достаточно 100 Вт. Но данные показатели поверхностные. Они не учитывают множество факторов, о которых стоит знать.

Необходимые данные для расчета:

  1. Площадь комнаты.
  2. Количество внешних стен. Они холодят помещения.
  3. Стороны света. Важно солнечная или затененная это сторона.
  4. Зимняя роза ветров. Там, где в зимнее время достаточно ветряно, то комната будет холодной. Все данные учитывает калькулятор.
  5. Климат региона – минимальные температуры. Достаточно взять средние показатели.
  6. Кладка стен – сколько кирпичей использовалось, есть ли утепление.
  7. Окна. Учитывают их площадь, утепления, тип.
  8. Количество дверей. Стоит помнить, что они отнимают тепло и заносят холод.
  9. Схема врезки батарей.

Кроме этого всегда берется во внимание мощность одной секции радиатора. Благодаря этому можно узнать, сколько радиаторов вешать в одну линию. Калькулятор значительно упрощает расчеты, так как многие данные являются неизменными.

Как производится расчет отопления по площади помещения: калькулятор (видео)

Количество ребер на комнату легко определяется с помощью калькулятора. Чтобы правильно все рассчитать, потребуется знать, сколько квадратов обогревается и некоторые особенности частного дома или квартиры. Можно сделать все по нормативу. На основе этого упрощается подбор приборов для обогрева. При этом вывести необходимое количество киловатт можно и самостоятельно за формулой.

Расчет секций радиаторов отопления.

Если необходим точный расчет секций радиаторов отопления, то сделать это можно по площади помещения. Данный расчет подходит для помещений с низким потолком не более 2,6 метра. Для того, чтобы его обогреть тратится 100 Вт тепловой мощности на 1 м 2 . Исходя из этого, не трудно посчитать, сколько понадобится тепла на всю комнату. То есть площадь нужно умножить на количество квадратных метров.

Далее имеющийся результат следует разделить на значение теплоотдачи одной секции, полученное значение просто округляем в сторону увеличения. Если это теплое помещение, например кухня, то результат можно округлить в меньшую сторону.

При вычислении количества радиаторов нужно учитывать возможные теплопотери, учитывая определенные ситуации и состояние жилья. Например, если комната квартиры угловая и имеет балкон или лоджию, то тепло она теряет намного быстрее, нежели комнаты квартир с другим расположением. Для таких помещений расчеты по тепловой мощности необходимо увеличить минимум на 20%. Если в планах монтировать радиаторы отопления в нише или скрыть их за экраном, то расчет тепла увеличивают на 15-20%.

Для расчета радиаторов отопления, вы можете воспользоваться калькулятором расчета радиаторов отопления.

Расчеты учитывая объем помещения.

Расчет секций радиаторов отопления будет более точным, если их рассчитывать, основываясь на высоте потолка, то есть исходя из объема помещения. Принцип расчета в этом случае аналогичный предыдущему варианту.

Вначале нужно вычислить общую потребность в тепле, а уже потом рассчитать количество секций в радиаторах. Когда радиатор скрывают за экраном, то потребность помещения в тепловой энергии увеличивают минимум на 15-20%. Если брать во внимание рекомендации СНИП, то для того, чтобы обогреть один кубический метр жилой комнаты в стандартном панельном доме необходимо потратить 41 Вт тепловой мощности.

Для расчета берем площадь комнаты и умножаем на высоту потолка, получится общий объем, его нужно умножить на нормативное значение, то есть на 41. Если квартира с хорошими современными стеклопакетами, на стенах есть утепление из пенопласта, то тепла понадобится меньшее значение – 34 Вт на м 3 . Например, если комната с площадью 20 кв. метров имеет потолки с высотой 3 метра, то объем помещения будет составлять всего 60 м 3 , то есть 20Х3. При расчете тепловой мощности комнаты получаем 2460 Вт, то есть 60Х41.

Таблица расчетов необходимого теплоснабжения.

Приступаем к расчету: Чтобы рассчитать необходимое количество радиаторов отопления необходимо полученные данные разделить на теплоотдачу одной секции, которую указывает производитель. Например, если взять за пример: одна секция выдает 170 Вт, берем площадь комнаты, для которой нужно 2460 Вт и делим его на 170 Вт, получаем 14,47. Далее округляем и получаем 15 секций отопления на одну комнату. Однако следует учитывать тот факт, что многие производители намеренно указывают завышенные показатели по теплоотдаче для своих секций, основываясь на том, что температура в батареях будет максимальной. В реальной жизни такие требования не выполняются, а трубы иногда чуть теплые, вместо горячих. Поэтому нужно исходить из минимальных показателей теплоотдачи на одну секцию, которые указывают в паспорте товара. Благодаря этому полученные расчеты будут более точными.

Как получить максимально точный расчет.

Расчет секций радиаторов отопления с максимальной точностью получить довольно трудно, ведь не все квартиры считаются стандартными. И особенно это касается частных строений. Поэтому у многих хозяев возникает вопрос: как сделать расчет секций радиаторов отопления по индивидуальным условиям эксплуатации? В этом случае учитывается высота потолка, размеры и количество окон, утепление стен и другие параметры. По этому методу расчетов необходимо использовать целый перечень коэффициентов, которые будут учитывать особенности определенного помещения, именно они могут повлиять на способность отдавать или сохранять тепловую энергию.

Вот как выглядит формула расчета секций радиаторов отопления: КТ = 100Вт/кв.м. * П * К1 * К2 * К3 * К4 * К5 * К6 * К7, показатель КТ — это количество тепла, которое нужно для индивидуального помещения.

1. где П — общая площадь комнаты, указана в кв.м.;

2. К1 — коэффициент, который учитывает остекление оконных проемов: если окно с обычным двойным остеклением, то показатель — 1,27;

  • Если окно с двойным стеклопакетом — 1,0;
  • Если окно с тройным стеклопакетом — 0,85.

3. К2 — коэффициент теплоизоляции стен:

  • Очень низкая степень теплоизоляции — 1,27;
  • Отличная теплоизоляция (кладка стен на два кирпича или же утеплитель) — 1,0;
  • Высокая степень теплоизоляции — 0,85.

4. К3 — соотношение площади окон и пола в комнате:

5. К4 — коэффициент, который позволяет учитывать среднюю температуру воздуха в самое холодное время:

  • Для -35 градусов — 1,5;
  • Для -25 градусов — 1,3;
  • Для -20 градусов — 1,1;
  • Для -15 градусов — 0,9;
  • Для -10 градусов — 0,7.

6. К5 — корректирует потребность в тепле, учитывая количество наружных стен:

7. К6 — учитывает тип помещения, которое находится выше:

  • Очень холодный чердак — 1,0;
  • Чердак с отоплением — 0,9;
  • Отапливаемое помещение — 0,8

8. К7 — коэффициент, который учитывает высоту потолков:

Представленный расчет секций радиаторов отопления учитывает все нюансы комнаты и расположения квартиры, поэтому достаточно точно определяет потребность помещения в тепловой энергии. Полученный результат нужно только разделить на значение теплоотдачи от одной секции, готовый результат округляет. Есть и такие производители, которые предлагают воспользоваться более простым способом расчета. На их сайтах представлен точный калькулятор расчетов, необходимый для вычислений. Для работы с этой программой, пользователь вводит нужные значения в поля и получает готовый результат. Кроме этого, он может использовать специальный софт.

Чтобы самая лютая стужа была нипочём! Расчет радиаторов отопления

Вы просматриваете раздел Расчет, расположенный в большом разделе Установка.

Тщательно продуманная система отопления дома — одна из важнейших задач при строительстве и последующем усовершенствовании жилищных условий, поскольку комфортная температура в помещении не только залог уюта, но и важное условие для человеческой жизни.

Расчёт и подбор необходимо совершать в зависимости от ряда условий, таких как материал радиатора, обогреваемой площади, климатических условий региона и др. Для корректного монтажа отопительной системы можно обратиться к профессионалам, а можно осуществить этот процесс с помощью своих умений и навыков.

Замеры для определения радиаторов отопления

Определение параметров отопления в квартире должно начинаться с получения необходимых данных, снятых путём замера.

Этими данными являются: длина комнаты, ширина комнаты, площадь комнаты, количество внешних стен, высота потолков, количество, дверей, количество окон, площадь каждого из окон.

Определение параметров батарей в зависимости от различных факторов

На расчет радиаторов отопления оказывают влияние множество факторов.

По площади жилого пространства

Приняв искомый параметр как Q, расчёт представляет собой формулу:

Q = S×100 Вт (1), где

S ? площадь пространства, для которого производится подсчёт радиатора, м2;

100 Вт ? величина, принимаемая нормативно, означающая количество тепла, необходимое для 1 м2 жилой площади.

Особенности вычислений с применением уточняющих множителей

Уточняющие множители для этого расчёта ? коэффициенты, учитывающие конструкционные особенности расчётного жилья.

Определение Q с их использованием позволит наиболее точно определить тепловые расходы для каждого индивидуального случая.

Коэффициенты уточняют формулу (1) и приводят её к следующему виду:

Q=S×100Вт×α×β×γ×δ×ε×ζ×η×θ (2), где

α – множитель, учитывающий количество внешних стен, которые увеличивают тепловые потери, принимается равным:

Величина αКол-во стен
1,01
1,22
1,33
1,44

β – множитель, учитывающий степень естественной прогреваемости жилого пространства. Зависит от стороны света, на которую выходит окно. β принимается равным:

Величина βСторона света
1,1Север, Восток
1,0Юг, Запад

γ – множитель, учитывающий местные климатические условия. Зависит от средней минимальной температуры января. Значение уточняется по данным справочников или местной гидрометеослужбы. γ принимается равным:

Величина γТемпература
0,7до -10°С
0,9до -15°С
1,1до -20°С
1,3от -20°С до -35°С
1,5от -35°С и ниже

Фото 1. Потери тепла в частном доме. Их нужно учитывать при установке отопительных радиаторов.

δ – множитель, учитывающий наличие стенового утеплителя помещений. δ принимается равным:

Величина δУровень утепления
0,85Высокий
1,0Средний
1,27Низкий

ε – множитель, зависящий от высоты потолков жилья. ε принимается равным:

Величина εВысота потолка
1,0до 2,7 м
1,05от 2,8 м до 3,0 м
1,1от 3,1 м до 3,5 м
1,15от 3,6 м до 4,0 м
1,2свыше 4,1 м

ζ – множитель, учитывающий потерю тепла, за счёт помещения, находящегося над расчётным. ζ принимается равным:

Величина ζТип помещения сверху
0,8Отапливаемое
0,9Утеплённое
1,0Неотапливаемое

η – множитель, использующий зависимость искомого значения от типа окна, установленного в помещении. η принимается равным:

Величина η Тип окна, стеклопакет
0,85Трехкамерный
1,0Двухкамерный
1,27Рамы двойные обычные

Фото 2. Однокамерные, двухкамерные и трехкамерные стеклопакеты. Тип окна влияет на количество устанавливаемых радиаторов.

θ – множитель, учитывающий при расчёте процентное соотношение площади окна к площади пола. θ принимается равным:

Значение θ Отношение
0,810%
0,920%
1,030%
1,140%
1,250%

В зависимости от объёма помещения

Учёт объёма жилого пространства позволит получить более точные данные при вычислении отопительного прибора, и формула (1) примет вид:

Q=S×h×41 Вт (3), где

h — высота потолков комнаты, м;

41 Вт ? величина, принимаемая нормативно, означающая количество тепла, необходимое для 1 м3жилой площади.

Внимание! Потери тепла ? неминуемый минус при отоплении квартиры.

Формула расчета теплоотдачи радиаторных приборов для квартир

Теплорасчет для квартиры лучше всего выполнить с учётом общих потерь тепла по формуле:

ТПобщ = V×0,04×ТП0×n0×ТПд×nд (4), где

V — объем расчётного пространства, м3;

0,04 — нормативная величина потерь для 1 м3;

ТП0 — нормативная величина потерь от одного окна, ТП0 = 0,1 кВт;

n0— общее количество окон в квартире;

ТПд — нормативная величина от одной двери, ТПд = 0,2 кВт;

nд — количество дверей в квартире.

Общие теплопотери квартиры определяются также специальным прибором ? тепловизором, который при этом выполняет функцию поиска скрытых строительных дефектов и бракованных материалов.

Фото 3. Тепловизор от производителя Fluke. Прибор позволяет измерить температуру радиаторов отопления.

На общий расчёт также влияет мощность радиатора:

Рст = ТП0/1,5×k (5), где

Рст — мощность радиатора;

1,5 — коэффициент, учитывающий работу прибора при температуре от 50?С до 70?С;

k — коэффициент запаса, применяется равным:

Искомый kТип жилья
1,2Квартира
1,3Частный дом
  • Особенности определения радиаторных приборов для многоэтажного дома

Вычисление проводится по формуле:

Q = S×80 Вт (6), где

80 Вт ? значение, принимаемое нормативно, означающее количество тепла, необходимое на 1 м2 жилой площади, начиная со второго этажа и выше.

Вам также будет интересно:

Вычисление количества радиаторных секций

Для вычисления количества секций радиатора также необходима особая формула.

По площади комнаты

В обеспечении необходимой теплоподачи помещения, одно из важных значений ? количество секций радиатора.

Корректно подобранное, оно обеспечит потребителя необходимым уровнем комфорта при неблагоприятных зимних температурах.

Определение количества секций по площади помещения ведётся по формуле:

nc = S×100 Вт/q0 (7), где

q0 — теплоотдача одной секции радиатора, данные технической документации, комплектующейся вместе с изделием.

По объёму дома

Применение расчёт по объёму позволит более точно определить необходимое количество секций:

nc = V×100 Вт/q0 (8)

  • Особенности определения мощности секции с поправочным коэффициентом:

Для определения поправочного коэффициента необходимо определить температурный напор системы отопления по формуле:

hт = (tвх-tвых/2)-tпом (9), где

tвх— температура на входе радиатора;

tвых — температура на выходе радиатора;

tпом — необходимая температура в помещении.

Следующий шаг ? нахождение поправочного коэффициента k, зависящего от полученного параметра hт по таблице:

hтkhтkhтkhтk
400,48490,63580,78670,94
410,50500,65590,80680,96
420,51510,66600,82690,98
430,53520,68610,84701,0
440,55530,70620,85711,02
450,58540,71630,87721,04
460,58550,73640,89731,06
470,60560,75650,91741,07
480,61570,77660,93751,09

Заключительный этап ? находим параметр мощности секции по формуле:

qс = k×q0 (10).

Самое точное определение мощностного параметра системы отопления в кВт

?

Наиболее точное определение проводится по формуле (2) с учётом уточнённого теплового расчёта:

Мощность, кВт = ((Lд×Lш)×Hп)/2,7))/10 (11), где

Lд — длина комнаты;

Lш — ширина комнаты;

Hп — высота потолка.

Полезное видео

Посмотрите видео, в котором рассказывается, как рассчитать количество секций в батареях отопления.

Правильный расчёт прибора ? залог комфортной температуры

Правильный расчёт теплопотерь, например, через окна и двери, а также подбор радиаторов обеспечит успешное завершение ремонта и будет гарантировать постоянную нормированную температуру в помещении

, а, следовательно, и хорошее самочувствие жителей. Серьёзный подход к процессу обеспечивает успех во всех начинаниях.

Расчет количества секций радиаторов отопления

Скорее всего Вы уже решили для себя Какие радиаторы отопления лучше, но необходим расчет количества секций. Как его выполнить безошибочно и точно, учесть все погрешности и теплопотери?

Существует несколько вариантов расчета:

  • по площади помещения
  • и полный расчет включающий все факторы.

Рассмотрим каждый из них

Расчет количества секций радиаторов отопления по объему

Чаще всего используется значение, рекомендованное СНиП, для домов панельного типа на 1 куб.метр объема требуется 41 Вт тепловой мощности.

Если у Вас квартира в современном доме, со стеклопакетами, утепленными наружными стенами и откосами из гипсокартона, то для расчета уже используется значение тепловой мощности 34вт на 1куб.метр объема.

Пример расчета количества секций:

Комната 4*5м, высота потолка 2,65м

Получаем 4*5*2,65=53 куб.м Объем комнаты и умножаем на 41вт. Итого, требуемая тепловая мощность для обогрева: 2173Вт.

Исходя из полученных данных, не трудно рассчитать количество секций радиаторов. Для этого необходимо знать теплоотдачу одной секции, выбранного Вами радиатора.

Допустим:
Чугунный МС-140, одна секция 140Вт
Global 500,170Вт
Sira RS, 190Вт

Тут следует заметить, что производитель или продавец, часто указывает завышенную теплоотдачу, рассчитанную при повышенной температуре теплоносителя в системе. Поэтому ориентируйтесь на меньшее значение, указанное в паспорте на изделие.

Продолжим расчет: 2173 Вт делим на теплоотдачу одной секции 170Вт, получаем 2173Вт/170Вт=12,78 секций. Округляем в сторону целого числа, и получаем 12 или 14 секций.


Некоторые продавцы предлагают услугу по сборке радиаторов с необходимым числом секций, то есть 13. Но это уже будет не заводская сборка.

Этот метод, как и следующий является приблизительным.

Расчет количества секций радиаторов отопления по площади помещения

Является актуальным для высоты потолков помещения 2,45-2,6 метра. Принимается равным, что для обогрева 1кв.метра площади достаточно 100Вт.

То есть для комнаты 18 кв.метров, требуется 18кв.м*100Вт=1800Вт тепловой мощности.

Делим на теплоотдачу одной секции: 1800Вт/170Вт=10,59, то есть 11 секций.

В какую сторону лучше округлить результаты расчетов?

Комната угловая или с балконом, то к расчетам добавляем 20%
Если батарея будет устанавливаться за экраном или в нишу, то потери тепла могут достигать 15-20%

Но в то же время, для кухни, можно смело округлить в меньшую сторону, до 10 секций.

Кроме того, на кухне, очень часто монтируется электрический теплый пол. А это минимум 120 Вт тепловой помощи с одного квадратного метра.

Точный расчет количества секций радиаторов

Определяем требуемую тепловую мощность радиатора по формуле

Qт= 100ватт/м2 х S(помещения)м2 х q1 х q2 х q3 х q4 х q5 х q6 х q7

Где учитываются следующие коэффициенты:

Вид остекления (q1)

  • Тройной стеклопакет q1=0,85
  • Двойной стеклопакет q1=1,0
  • Обычное(двойное) остекленение q1=1,27

Теплоизоляция стен (q2)

  • Качественная современная изоляция q2=0,85
  • Кирпич (в 2 кирпича) или утеплитель q3= 1,0
  • Плохая изоляция q3=1,27

Отношение площади окон к площади пола в помещении (q3)

Минимальная температура  снаружи помещения (q4)

Количество наружных стен (q5)

  • Одна (обычно) q5=1,1
  • Две (угловая квартира) q5=1,2

Тип помещения над расчетным (q6)

  • Обогреваемое помещение q6=0,8
  • Отапливаемый чердак q6=0,9
  • Холодный чердак q6=1,0

Высота потолков (q7)

Пример расчета:

100 вт/м2*18м2*0,85 (тройной стеклопакет)*1 (кирпич)*0,8
(2,1 м2 окно/18м2*100%=12%)*1,5(-35)*
1,1(одна наружная)*0,8(обогреваемое,квартира)*1(2,7м)=1616Вт

Плохая теплоизоляция стен увеличит это значение до 2052 Вт!

количество секций радиатора отопления: 1616Вт/170Вт=9,51 (10 секций)

Мы рассмотрели 3 варианта расчета требуемой тепловой мощности и на основании этого получили возможность расчета необходимого количества секций радиаторов отопления. Но тут следует отметить, что для того чтобы радиатор выдал паспортную мощность его следует правильно установить. Как это сделать правильно или проконтролировать не всегда грамотных работников ЖЭКа, читайте в следующих статьях на официальном сайте Школы ремонта Remontofil

Формула расчета отопления для радиаторов

Сколько энергии нужно для обогрева всего дома и отдельных помещений в нем? От этих параметров будет зависеть мощность вашей системы отопления. Ошибки в расчетах быть не должно — иначе придется либо мерзнуть зимой, либо переплачивать за ненужное тепло.

На фото:

Для чего нужен тепловой расчет?

Для определения мощности источника тепла. Рассчитать отопление — значит определить мощность отопительной системы, т.е. понять, какие тепловые затарты потребуются на обогрев вашего дома. Применительно к водяным системам отопления этот параметр означает эффективную мощность водогрейного устройства (котла), к электрическим — суммарную тепловую мощность конвекторов, к воздушному отоплению — мощность воздухонагревателя.

В конечном итоге, от мощности нагревательного устройства будет зависеть и денежный расчет за отопление.

Исходные данные

Общая формула расчета отопления: знать площадь комнат и высоту потолков. Считается, что для обогрева 10 кв. м площади хорошо утепленного дома с высотой потолков 250-270 см нужен 1 кВт энергии. Таким образом, для дома площадью 200 кв. м понадобится мощность 20 кВт. Но это лишь максимально упрощенная формула, дающая приблизительное представление о количестве необходимого тепла.

Помещения без радиаторов также включают в расчет. Воздух в таких помещениях (коридоры, подсобки) все равно будет прогреваться «пассивно», за счет отопления в комнатах с радиаторами.

Поправки к общей формуле

Климатические особенности. Их рекомендуют учитывать, если вы хотите сделать не приблизительный, а более точный расчет отопления. Например, в Подмосковье для отопления 10 кв. м площади требуется в среднем 1,2-1,5 кВт, в северных районах — 1,5-2 кВт, в южных — 0,7-0,8 кВт.

Что еще влияет на расчет тепловой мощности?

Различные факторы, которые нельзя игнорировать. Это, например, наличие чердака и подвала, количество окон (они увеличивают теплопотери), тип окон (у пластиковых стеклопакетов теплопотери минимальные), нестандартная высота потолка, количество наружных стен в помещении (чем их больше, тем больше нужно энергии на прогрев), материал, из которого сделан дом и т.п. Каждый такой фактор добавляет к общей формуле расчета корректирующий коэффициент.

Примеры различных коэффициентов:

  • Коэффициент потери тепла через окна: 1,27 (обычное окно), 1,0 (окно с двойным стеклопакетом), 0,85 (окно с тройным стеклопакетом)
  • Теплоизоляция стен: плохая теплоизоляция 1,27, хорошая теплоизоляция 0,85.
  • Соотношение площади окон и площади пола: 30% — 1, 40% — 1,1, 50% — 1,2.
  • Количество наружных стен: 1,1 (одна стена), 1,2 (две стены), 1,3 (три стены), 1,4 (четыре стены).
  • Верхнее помещение: холодный чердак — 1, теплый чердак — 0,9, отапливаемая мансарда — 0,8.
  • Высота потолков: 3 метра — 1,05; 3,5 метра — 1,1; 4 метра — 1,15; 4,5 метра — 1,2.

Что делать с полученным результатом?

Добавить еще 20%. Или, что то же самое, умножить полученный результат на 1,2. Это нужно, чтобы у обогревательного устройства был запас и оно не работало на пределе своих возможностей.

На фото: радиатор Logatrend K-Profil от компании Buderus.

Как посчитать количество радиаторов обогрева?

Узнать количество энергии, необходимое для обогрева данной комнаты. Для этого пользуетесь формулой, которую мы разбирали выше. Затем делите результат на рабочую мощность одной секции выбранного вами радиатора (этот параметр указан в техпаспорте). Он зависит от материала, из которого сделан радиатор и температуры системы. В результате получаете количество секций радиатора, необходимых для обогрева данной комнаты.

Доверять ли собственным силам?

Лучше обратиться в специальную фирму. Наиболее точный расчет необходимой тепловой мощности для вашего дома сделают профессионалы. Можно воспользоваться онлайн калькуляторами, которые есть на сайтах многих компаний. Чем больше параметров запрашивает у вас калькулятор, тем точнее будет его расчет.


В статье использованы изображения: kermi.com, buderus.ru


Калькулятор расчета мощности конвектора по площади помещения

Подобрать конвектор по параметрам

Стены

Общая длина внешних (холодных) стен помещения м

Высота стены м

Количество слоев материала наружних стен 1 2 3 4 5

Тип материала:

Слой 1 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Толщина слоя м

Слой 2 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Толщина слоя м

Слой 3 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Толщина слоя м

Слой 4 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Толщина слоя м

Слой 5 ЖелезобетонКерамзитобетонГазо и пенобетон, газо и пеносиликатПлиты из гипсаЛисты гипсовые обшивочные (сухая штукатурка)Кирпич глиняный обыкновенный (ГОСТ 530-80) на цементно песчаном раствореКирпич силикатный обыкновенный (ГОСТ 379-79) на цементно песчаном раствореКирпич керамический пустотныйКирпич, теплая керамикаГранит, гнейс и базальтМраморИзвестнякТуфСосна и ельДубФанера клеенаяКартон облицовочныйПлиты минераловатныеПенополистиролПенопласт ПХВ-1ПенополиуретанГравий керамзитовыйПеностекло или газостекло
Толщина слоя м

Остекление

Пол

Кровля

0 Вт Тепловая мощность конвектора

Подберите модель

Расчет мощности конвектора: полезные таблицы и формулы

При проектировании системы отопления в квартире или доме важно определить необходимую мощность теплового оборудования. Для этого нужно знать площадь помещения, высоту потолков, количество внешних стен и окон для применения повышающего коэффициента. Если высота потолков в доме – около 2,7 м, вы легко произведете расчет мощности конвекторов по площади. Согласно нормам СНиП 41-01-2003, 1 кВт тепловой энергии достаточно для обогрева 10 кв. м помещения.

Как рассчитать мощность конвекторов по площади?

В соответствии со строительными нормами номинальная мощность конвектора для комнаты 25 кв. м составит:

(25 кв. м : 10 кв. м) * 1 кВт = 2,5 кВт

или

25 кв. м * 0,1 кВт = 2,5 кВт

Полученный результат приведен без учета особенностей помещения. Для повышения точности вычислений учтите следующие факторы:

  • расположение конвектора под окном снижает теплоотдачу, поэтому для компенсации тепловых потерь выбирайте оборудование на 5 – 10 % мощнее;
  • если окна занимают большую площадь стены (панорамные, французские), а также выходят на север и северо-восток, при расчетах увеличьте результат на 15 %;
  • угловое расположение помещения требует увеличения мощности на 20 %, а при наличии в такой комнате 2 окон полученный результат повышают на 30 %.

Сделать расчеты наиболее точными вам поможет таблица повышающих коэффициентов:

Особенность помещения Коэффициент
Отсутствие утепления стен 1,1
Установка конвектора под окном 1,05
Монтаж конвектора в угловом помещении с 1 окном 1,2
Монтаж конвектора в угловом помещении с 2 окнами 1,3
Наличие однослойных стеклопакетов 0,9
Высота потолков от 2,8 до 3 м 1,05

Произведем расчет мощности электрического конвектора отопления для угловой комнаты с двумя внешними стенами и площадью 18 кв. м:

(18 кв. м * 0,1 кВт) * 1,2 = 2,16 кВт

В некоторых регионах при расчете учитывают климатические особенности, но в средней полосе России погодный коэффициент равен 1,0.

Расчет мощности конвектора по объему помещения

Согласно положениям СП 60.13330.2012, для обогрева помещений с очень высокими и низкими потолками необходимо 41 Вт на 1 куб. м объема. Зная длину, ширину комнаты и высоту потолка, вы сможете рассчитать мощность отопления на калькуляторе по формуле:

abc * 0,041 кВт,

где abc – формула расчета объема;

0,041 кВт – норматив тепловой энергии.

Рассчитаем мощность конвектора для комнаты 3х4 м с потолками 2 м:

(3*4*2) * 0,041 = 0,984 кВт

Для обогрева такой комнаты потребуется конвектор мощностью 1 кВт (без учета повышающих коэффициентов).

■ Расчет количества секций радиаторов отопления по параметрам

Правильный расчет батарей отопления – необходимое условие для обеспечения комфортного микроклимата в доме или квартире. От количества секций зависит тепловая мощность отопительного прибора.

Если площадь батарей слишком велика, затраты будут слишком высокие, при недостаточном количестве секций радиаторов в помещении они могут не справиться с потерями тепла. Из этой статьи вы узнаете, какие методы расчета радиаторов отопления частного дома и других объектов существуют, в чем преимущества или недостатки каждого.

Теплоотдача сегмента отопительного устройства обычно указана в его техническом паспорте.

Если по каким-то причинам она неизвестна, для расчета числа секций радиаторов отопления по площади можно воспользоваться следующими значениями из таблици:

Материал и конструкция отопительного устройстваТепловая мощность
1-й секции, Вт
Чугунные100
Алюминиевые200
Биметаллические150
Стальные (панельные)120

После выполнения вычислений, округлим получившееся значение в большую сторону. Если в помещении имеется окно или оно расположено на углу многоквартирного дома, необходимо выбрать количество сегментов отопительного устройства с 20% запасом.

Упрощенный способ имеет свои недостатки:

  • Недостаточная точность.
  • Непригодность для определения числа сегментов батарей на объектах в северной или южной зоне.
  • Этот метод не учитывает теплоизоляционные свойства стен, наличие остекляющих систем и другие немаловажные критерии, влияющие на теплопотери.

Учитывая вышеперечисленные критерии, необходима коррекция результатов вычислений.

Вычисление по площади

Самый простой способ – расчет батарей отопления на площадь. Такой метод пригоден для помещений с потолками не более 2,7 м. Согласно существующим нормам на квадратный метр, для комнат с потолками такой высоты должно приходиться 100 Вт тепловой энергии в час. Специалисты рекомендуют определять мощность отопительных приборов для каждой комнаты.

Формула для вычисления выглядит так:

где:  S — полная площадь помещения, Р — тепловая мощность одной секции, N — их количество.

Вычисление по объему

Для более точного определения тепловой мощности используется расчет мощности батарей отопления по объему помещения. По требованиям СНиПа, норма тепловой энергии на 1 мпомещения составляет 41 Вт.

Формула выглядит следующим образом:

где: Н — высота, S — площадь комнаты, Р — теплоотдача 1 секции, N — количество сегментов.

Отопительные приборы радиаторы, батареи и т.д. призваны возместить потери тепла которое теряет строение в холодное время. Приведенные здесь примеры должны помочь сделать примерный подсчет.

Расчет радиаторов (батарей) отопления

Радиаторы – это наиболее распространенный прибор отопления, использующийся в жилых, производственных и общественных помещениях. Они представляют собой обогревающие полые элементы, постоянно наполненные водой. Важными техническими характеристиками, на которые следует обращать внимание при покупке радиатора, являются его рабочая мощность и давление. Перед установкой отопительного оборудования необходимо тщательно продумать все до последней мелочи: планируемый материал для радиатора, его дизайн и бюджет работ. Далее расчет радиаторов отопления должен заключаться в определении количества радиаторов и их секций и необходимой мощности для обогрева помещения.

Содержание

На современном рынке представлено огромное количество батарей отопления, имеющих различные технические характеристики.

[include id=»1″ title=»Реклама в тексте»]

После выбора наиболее подходящего оборудования под дизайн помещения и собственные требования можно начинать расчет батарей отопления. Для этого понадобится:

  • рулетка;
  • калькулятор.

Кроме того вам нужно ознакомиться со свойствами выбранного источника тепла и выяснить мощность одной секции радиатора.

Мощность одной секции биметаллического радиатора равна 122 Ватт

Перед тем как произвести расчет количества секций радиаторов отопления, следует вычислить необходимую мощность для обогрева помещения.

Расчет мощности батареи ↑

Для начала определяем площадь комнаты. Для этого нужно просто-напросто умножить ширину помещения на его длину. Для удобства вычисления все измерения осуществляем в метрах. После измерения высоты потолка необходимо посчитать количество дверей и окон, определить материал, из которого они выполнены, выяснить расположение квартиры и наиболее низкую температуру наружного воздуха в зимнее время. Кроме того расчет мощности радиаторов отопления требует знания температуры теплоносителя.

[include id=»2″ title=»Реклама в тексте»]

Согласно «СНиП» для обогрева каждого квадратного метра жилой площади требуется 100 Ватт мощности отопительного прибора. Следовательно, чтобы вычислить необходимую мощность необходимо общую площадь комнаты умножить на 100 Ватт и откорректировать полученное значение с помощью специальных коэффициентов увеличения и уменьшения мощности.

Коэффициенты корректировки мощности ↑

Сначала рассмотрим коэффициенты уменьшения мощности:

  1. Если в помещении установлены пластиковые стеклопакеты, полученное значение следует уменьшить на 20%.
  2. При высоте потолка меньшей трех метров мощность уменьшается на коэффициент, который рассчитывается, как отношение фактической высоты к положенной по стандартным нормам (в данном случае – 3 метра). То есть, если высота потолка составляет 4 метра, то коэффициент понижения будет равен 4/3=1,33
  3. При температуре обогревательного котла выше нормы, каждые 10 «лишних» градусов приводят к уменьшению мощности на 15%.

Наличие стеклопакетов на окнах позволяет снизить мощность, необходимую для достаточного обогрева, на 20%

Коэффициенты увеличения мощности:

  1. При потолках выше трех метров мощность следует увеличить на коэффициент, расчет которого  производится аналогично расчету для потолков высотой менее трех метров.
  2. Если квартира имеет угловое расположение, мощность увеличивается на коэффициент 1,8.
  3. Если в помещении расположено более двух окон, мощность также увеличивается на коэффициент 1,8.
  4. При нижнем подключении радиаторов вводится повышающий коэффициент, равный 8%.
  5. На каждые 10 градусов теплоносителя ниже норматива мощность увеличивается на 17%.
  6. При очень низких зимних температурах мощность следует увеличить в 2 раза.

Совет: при расчете учтите возможность возникновения различных случайных факторов, для этого значение необходимой мощности следует повысить еще на 20%.

Мощность одной секции чугунного радиатора — 160 Ватт

Сколько секций нужно для обогрева ↑

Есть несколько способов осуществить расчет радиатора отопления на комнату:

  1. Расчет секций радиаторов отопления, обыкновенный способ. После расчета необходимой мощности для обогрева полученное значение делим на мощность одной секции (это значение указано в технических характеристиках). Например, мощность радиатора равна 200 Ватт, а необходимая мощность для нагревания комнаты – 2400 Ватт. Тогда необходимо установить 2400 Ватт/200 Ватт=12 секций.
  2. Расчет количества радиаторов отопления по объему. Если вы знаете, сколько кубометров способна обогреть одна секция вашего обогревателя, то количество радиаторов можно вычислить следующим образом: объем комнаты (напомним, что для нахождения этой величины нужно перемножить значения длины, ширины и высоты помещения) необходимо разделить на количество кубов, обогреваемых секцией конкретной батареи.
  3. Примерный способ расчета. Как правило, все секционные батареи имеют стандартные размеры, небольшая разница не играет практически никакой роли. Опытные люди уже давно заметили, что, при высоте потолка равной 2,7 метра, одной секции хватает для обогрева 1,8 кв.м. комнаты. То есть если площадь помещения равна 25 кв.м., то необходимо (25/1,8=13,9) 14 батарейных секций.

Конечно, воспользовавшись нашими методами расчета, вы сможете добиться необходимого уровня тепла в вашем доме, но не забывайте, что все нюансы способны учесть только настоящие профессионалы. Даже небольшая ошибка в расчетах или пренебрежение хотя бы одним влияющим фактором способны заставить жильцов дома зимой страдать от мучительного холода.

Мощность, необходимая для нагрева объема жидкости

РАСЧЕТ МОЩНОСТИ, НЕОБХОДИМОЙ ДЛЯ НАГРЕВА ОБЪЕМА ЖИДКОСТИ

Онлайн расчет

Мощность, которая должна быть установлена ​​для повышения температуры в течение определенного времени объема жидкости, содержащейся в резервуаре, является результатом 2 расчетов: расчета мощности для повышения температуры жидкости (Pch) и расчет теплопотерь (Pth).

Установленная мощность (кВт) = Мощность нагрева (Pch) + Тепловые потери (Pth)

1 / Расчет мощности, необходимой для повышения температуры объема жидкости:

– Мощность обогрева: Pch (кВт)

– Вес жидкости: M (кг)

– Удельная теплоемкость жидкости: Cp (ккал / кг × ° C)

– Начальная температура: t1 (° C)

– Требуемая конечная температура: t2 (° C)

– Время нагрева: T (ч)

1,2 : Коэффициент безопасности, связанный с нашими производственными допусками и вариациями мощности сети

Pch = (M × Cp × (t2 – t1) × 1,2) ÷ (860 × T)

a / Расчет массы нагреваемой жидкости:

– Вес жидкости: M (кг)

– Объем нагреваемой жидкости: В (дм3 или литр)

– Плотность жидкости: ρ (кг / дм3)

M = V × ρ

Значения ρ / Cp для некоторых жидкостей:

Вода: 1/1

Минеральное масло: 0,9 / 0,5

Битум: 1,1 / 0,58

Уксусная кислота: 1,1 / 0,51

Соляная кислота: 1,2 / 0,6

Азотная кислота: 1,5 / 0,66

б / Расчет объема жидкости:

В цилиндрической емкости:

– Объем бака: В (дм3)

– Диаметр бака: (дм)

– Высота жидкости: h2 (дм)

В = π × (∅² ÷ 4) × h2

В прямоугольном резервуаре:

– Объем бака: В (дм3)

– Длина бака: L (дм)

– Ширина бака: Вт (дм)

– Высота жидкости: h2 (дм)

V = Д × Ш × В2

2 / Расчет мощности, необходимой для компенсации потерь тепла:

– Тепловые потери: Pth (кВт)

– Площадь теплообменной поверхности резервуара: S (м2)

– Требуемая конечная температура: t2 (° C)

– Температура: ta (° C)

– Коэффициент обмена: K (ккал / ч × м2 × ° C)

1,2 : Коэффициент безопасности, связанный с нашими производственными допусками и вариациями мощности сети

Pth = (S × (t2 – ta) × K × 1,2) ÷ 860

Коэффициент обмена K как функция скорости ветра и толщины изоляции:

а / Расчет площади обменной поверхности резервуара:

Площадь цилиндрической емкости:

– Площадь резервуара: S (м2)

– Диаметр резервуара: (м)

– Высота бака: х3 (м)

S = (π × (∅² ÷ 4)) + (π × ∅ × h3)

Площадь прямоугольного резервуара:

– Площадь резервуара: S (м2)

– Длина резервуара: L (м)

– Ширина бака: Вт (м)

– Высота бака: х3 (м)

S = ((Д + Ш) × в3 × 2) + (Д × Ш)

Расчет потерь тепла | NaturalGasEfficiency.

орг

Введение

Формулы для расчета теплопотерь и притока тепла несложные. Сложность возникает из-за большого количества предположений, которые необходимо сделать, чтобы получить значения, которые вводятся в простые формулы. Для оценки годовых затрат на отопление (и охлаждение) помещения используются очень простые расчеты, используя только одну формулу для каждой области основных потерь (прироста) тепла. Более сложные методы используют компьютер для повторения одной и той же простой формулы 8760 раз, один раз для каждого часа в году, с использованием допущений почасовой переменной.Сложные модели учитывают скорость ветра и воздействие, солнечную изоляцию и облачный покров, уровень занятости и другие факторы, которые могут повлиять на годовое потребление энергии.

Точность результатов будет определяться допущениями, сделанными для ввода в формулы. Запуск сложной компьютерной модели 8760 не даст лучших результатов, если введенные допущения сильно не соответствуют условиям реального мира. (Мусор в мусоре выброшен.)

В этом разделе рассматриваются, в основном, потери тепла за счет теплопроводности и инфильтрации; для получения информации о приросте тепла и солнечном тепле см. Тепловая нагрузка.

Основные формулы

Основная формула кондуктивной теплопередачи:

(Площадь) x (Значение U) x (Разница температур) = БТЕ / час

(Площадь) x (Значение U) x (Сезонные градусные дни x 24 часа) = БТЕ / сезон

Площадь = квадратные футы
Значение U = Коэффициент передачи = 1 / Значение R = величина, обратная значению R
Разница температур = Дельта-Т = ((Внутренняя температура) – (Наружная температура))
Основная формула для инфильтрации а теплоотдача движущимся воздухом составляет:

(Объем) x (Скорость изменения) x (Удельная теплоемкость воздуха) x (Разница температур) = БТЕ / час

(объем) x (скорость изменения) x (удельная теплоемкость воздуха) x (DD x 24 часа) = БТЕ / сезон

Объем = кубический фут
Скорость изменения = Воздухообмен в час; вентилятор CFH и т. д.
Удельная теплоемкость воздуха = БТЕ на кубический фут воздуха = 0.018 типичный
Temp Diff = разница температур воздуха, подлежащего обмену

Площадь и объем
Площадь всегда указывается в квадратных футах, а объем – в кубических футах. Базовые математические навыки необходимы для расчета каждой области с различными конструкциями, материалами и R-Value. Все области, которые образуют барьер между внутренним отапливаемым пространством и открытым пространством, должны быть определены.
Оценка скорости воздухообмена, вероятно, является самой большой отдельной переменной в расчетах теплопотерь / прироста.Общие практические правила различаются при многих условиях. Хорошая отправная точка:
Жилая новостройка / плотная конструкция = 0,25 – 0,5 воздухообмена в час

Жилые старые дома = 0,5 – 1,0 воздухообмена в час

Жилые старые неизолированные дома с одинарными стеклопакетами 1,0 – 1,5 воздухообмена в час

Коммерческие помещения с ограниченным открытием снаружи и без принудительной вентиляции = 0,5 акр / час

Коммерческие помещения с большим количеством дверных проемов / движение людей = 1. 0 – 2,0 ак / час

Промышленные помещения с потолочными дверями, окнами, принудительной вентиляцией = 0,5 – 3,0 акр / час (чем больше пространство, тем НИЖНИЕ производственные помещения в час).
Вентиляторные двери могут точно измерять скорость инфильтрации воздуха в жилых и небольших коммерческих зданиях. Для получения дополнительной информации см. Двери воздуходувки.
R-значения и U-значения
R-Values ​​- это общий рейтинг, используемый в материалах, однако в формулах используется U-значение. Значение U – это значение, обратное значению R (то есть: R-2 = U-1/2).

R-значений могут быть добавлены; U-значения не могут. Следовательно, общее значение R должно быть определено путем сложения всех индивидуальных значений R композитного материала, а затем преобразовано в значение U для ввода в формулу. (ПРИМЕЧАНИЕ: компьютерные программы могут разрешить прямой ввод значений R, а затем выполнить преобразование в программе.)
Пример: Значение R для сборки жилой стены, показывающее аддитивный метод

Компонент

R-стоимость

Стена – пленка наружного воздуха

0. 17

Сайдинг – деревянный скос

0,80

Обшивка из фанеры – 1/2 ″

0,63

3 1/2 ″ стекловолокно

11,00

1/2 ″ гипсокартон

0,45

Внутренняя воздушная пленка

0,68

Полная сборка стены
R-Value

13.73

Общая R-стоимость = R-13,73

Значение U = 1 / 13,73 = 0,0728

Обратите внимание, что сечение стены не на 100% однородно; По крайней мере, 20% типовой стены жилого дома составляют обрамляющие материалы. Поэтому, если быть более точным, 80% стены R-13,73 и 20% стены R-4,248 (замена изоляции R-11 деревянным каркасом R-3). Часто «Фактор рамок» не учитывается при расчетах жилых помещений.

Существует множество источников оценок R-Value, включая производителей, ASHRAE и ACCA.

Примеры

Каковы почасовые потери тепла 500 квадратных футов площади стен конструкции R-13 при наличии 70F Delta-T?

500 x 1/13 x 70 = 2692 БТЕ в час

Сколько БТЕ можно сэкономить, добавив R-10 на крышу склада площадью 10 000 квадратных футов с существующей крышей R-5, расположенной в климатических условиях при температуре 6000 градусов?

10 000 x 1/5 x 6000 x 24 = 288 000 000 БТЕ за сезон

10 000 x 1/15 x 6000 x 24 = 96 000 000 БТЕ за сезон

288 – 96 = 192 миллиона БТЕ за сезон

Используя небольшую алгебру, мы можем также вычислить его по одной формуле:

10 000 x (1/5 – 1/15) x 6000 x 24 = 192 000 000 БТЕ за сезон

Сколько БТЕ в час можно сэкономить, уменьшив объем вентилируемого воздуха с 1000 до 750 куб. Футов в минуту при 70F Delta-T?

(1000-750 куб. Фут / мин) x 60 мин / час x 0.018 x 70 = 18900 БТЕ в час

Дополнительная информация

ACCA является издателем руководств J (Расчет нагрузки в жилых помещениях) и Руководства N (Расчет малых коммерческих нагрузок), давно признанных лидеров в методах оценки нагрузки. Для получения информации об этих и других ресурсах посетите веб-сайт ACCA по адресу:

Подрядчики по кондиционированию воздуха в Америке
2800 Shirlington Road, Suite 300
Arlington, VA 22206
Телефон: (703) 575-4477

www.acca.org

Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, ASHRAE, ежегодно публикует один из четырех справочников. В издание «Основы» включен полный раздел расчетов энергии, в котором перечислены несколько страниц R-значений строительных материалов.

ASHRAE
1791 Tullie Circle, N.E.
Atlanta, GA 30329
Телефон: (800) 527-4723, (404) 636-8400

www. ashrae.org

5-ступенчатый расчет потерь тепла

Расчет тепловой нагрузки необходим до начала установки системы лучистого отопления, так как разные типы систем лучистого отопления имеют разные значения мощности в БТЕ.
Типичный расчет тепловой нагрузки состоит из расчета поверхностных потерь тепла и потерь тепла из-за инфильтрации воздуха. И то, и другое следует делать отдельно для каждой комнаты в доме, поэтому неплохо начать с плана этажа с размерами всех стен, полов, потолка, а также дверей и окон.

Ниже приведен пример 5-шагового руководства по расчету поверхностных тепловых потерь:

Шаг 1 – Расчет дельты T (расчетная температура):

Дельта T – это разница между расчетной температурой в помещении (T1) и расчетной температурой снаружи (T2), где расчетная температура в помещении обычно составляет 68-72 ° F в зависимости от ваших предпочтений, а расчетная температура наружного воздуха является типичным минимумом в течение отопительного сезона. Первый можно получить, позвонив в местную коммунальную компанию.
Предполагая, что T1 равен 72F, а T2 равен –5F, Delta T = 72F - (-5F) = 72F + 5F = 77F


Шаг 2 – Расчет площади поверхности:

Если расчет выполняется для наружной стены с окнами и дверями, расчет теплопотерь окна и двери должен выполняться отдельно.

Площадь стены = Высота x Ширина – Поверхность двери – Площадь окна
Площадь стены = 8 футов x 22 фута - 24 квадратных фута - 14 квадратных футов = 176 квадратных футов - 38 квадратных футов = 138 квадратных футов

Шаг 3 – Рассчитайте значение U:

Используйте справочник «Типичные значения R и U» для получения значения R стены.

Значение U = 1 / значение R
Значение U = 1 / 14,3 = 0,07

Шаг 4 – Расчет теплопотерь поверхности стены:

Потери тепла с поверхности можно рассчитать по следующей формуле:

Поверхностные тепловые потери = U-значение x Площадь стены x Delta T
Поверхностные тепловые потери = 0,07 x 138 квадратных футов x 77F = 744 BTUH
(U-значение основано на предположении, что деревянная каркасная стена 2×4 со стекловолокном 3,5 дюйма изоляция)

Шаг 5 – Рассчитайте общие потери тепла стеной:

Выполните шаги с 1 по 4, чтобы рассчитать теплопотери отдельно для окон, дверей и потолка.
Теплопотери двери = 0,49 x 24 кв. Фута x 77F = 906 BTUH
(значение U основано на предположении, что дверь из массива дерева)
Потери тепла на окне = 0,65 x 14 кв. Футов x 77F = 701 BTUH
(Значение U основано на предположении, что окно состоит из двух панелей)
Потери тепла на потолке = 0,05 x 352 кв. Фута x 77F = 1355 BTUH
(Значение U основано на предположении, что изоляция из стекловолокна 6 дюймов. 22 фута x 16 футов)

Теперь сложите все числа вместе:
Общие тепловые потери стены = Потери стены + Потери окна + Потери двери + Потери потолка
Общие тепловые потери стены = 744 BTUH + 906 BTUH + 701 BTUH + 1352 BTUH = 3703 BTUH


Всегда следует учитывать скорость инфильтрации воздуха.
Для расчета потерь тепла в помещении из-за инфильтрации воздуха можно использовать следующую формулу:

Потери тепла при инфильтрации воздуха = Объем помещения x Дельта T x Количество воздуха в час x 0,018
Где объем помещения = длина x ширина x высота

изменений воздуха в час учитывает утечку воздуха в комнату.
Например: Потери тепла при инфильтрации воздуха = (22 фута x 16 футов x 8 футов) x 77F x 1,2 x 0,018 = 4683 BTUH

Для фактических расчетов обратитесь к подрядчику или разработчику системы.


Пример расчета теплопотерь из помещения

Простой пример, примененный к двухквартирному дому

Предпосылки для расчета теплопотерь от собственности описаны на отдельной странице этого сайта, прежде чем рассматривать этот пример, Взгляните на страницу о размерах, чтобы понять основные принципы.

Для этого примера, помимо размеров, указанных на вышеприведенных чертежах, также необходимо знать:

  1. Все номера имеют высоту 8 футов.
  2. Все внешние стены представляют собой полость размером 11 дюймов без изоляции.
  3. Партийная стена из полнотелого кирпича 9 дюймов.
  4. Внутренние стены все оштукатурены, кирпич 4,5 дюйма, штукатурка.
  5. Пол подвесной брус.
  6. Все остекление UVPC с двойным остеклением.
  7. Наружная расчетная температура до 30 ° F.
  8. Температура в прилегающем участке неизвестна, поэтому предположим, что разница температур составляет 5 ° F.
  9. Расчетные температуры для комнаты – смотрите на этой странице.
  10. Большие окна имеют размер 10 х 4 фута, меньшие окна – 4 х 4 фута.
  11. Крыша – фетр с утеплителем 100 мм.
  12. План не в масштабе !!

В этом примере мы подробно рассмотрим одноместный номер (холл).

  1. Рассмотрим по очереди 4 стены и вычислим площадь каждого типа ткани:
    • Передняя стенка:
      1. Общая стена 14 футов x 8 футов = 112 квадратных футов
      2. Окно 10 футов x 4 фута = 40 квадратных футов
      3. Стена пустотелая So – 112-40 = 72 кв. Фута
    • Стена для вечеринок:
      1. Общая площадь стен 15 футов x 8 футов = 120 квадратных футов
    • Стена в столовую:
      1. На этой стене нет разницы температур, поэтому нет потока тепловой энергии, поэтому нет необходимости рассчитывать площадь.
    • Стена в зал:
      1. Общая стена 15 футов x 8 футов = 120 квадратных футов
      2. Дверь обрабатывается как стенная
    • Площадь потолка и пола:
      1. 15 футов x 14 футов = 210 квадратных футов:
  2. Используя приведенные выше цифры, значения U (см. Эту страницу) и температура разность по каждой стене / потолку / полу можно рассчитать теплопотери (площадь x значение U x разница температур).

    площадь
    (футы)

    Значение U

    темп.
    разница

    всего

    Передняя стенка: полость

    72

    0.18

    40

    518,4

    Окно

    40

    0,51

    40

    816

    Party Wall

    120

    0,38

    5

    228

    Стенка столовой

    0. 39

    0

    0

    Стенка зала

    120

    0,39

    10

    468

    Потолок

    210

    0,29

    5

    304,5

    Этаж

    210

    0.12

    40

    1008

    Полная потеря ткани =

    3342,9

    Таким образом, общие потери тепла через ткань здания составляют 3345 БТЕ

  3. Теперь посчитаем потери тепла из-за воздухообмена.
    • объем помещения = 14 x 15 x 8 = 1,680 кубических футов
      воздухообмена = 1 в час (в зависимости от комнаты – см. Эту страницу)
      , поэтому потери тепла через воздухообмен составляют
      1,680 х 1 х 0.02 x 40 = 1344 БТЕ
  4. Складываем результаты 2 и 3 вместе, получаем общую потерю тепла в час:
    • 3345 + 1344 = 4689 БТЕ / час

Это расчеты для салона, теперь необходимо провести расчеты для всех остальных комнат в доме. Обратите внимание, что если «потери» тепла происходят через внутренние стены или пол / потолок, одна комната будет теряет тепло, в то время как другая комната получает его. В расчетах теплопотери помещения будут отрицательными. именно для этой части строительной ткани.

потеря ткани

Потери при замене воздуха

всего (БТЕ / ч)

Столовая

3391

3046

6437

Гостиная

3343

1344

4687

Кухня

1714

941

2655

Прихожая

1501

1250

2751

Спальня 1

1162

666

1828

Спальня 2

1678

588

2266

Спальня 3

1009

134

1143

Ванная

2192

1129

3321

Итого на дом = 25 088

Результаты расчетов для всех комнат в примере дома показаны на правильно. Это указывает количество тепла, которое необходимо произвести в каждой комнате для поддержания расчетной температуры. Не только это необходимо для определения подходящего размера радиаторов, это также необходимо для определения размеров труб для водоснабжения. центральное отопление.

Когда все значения сложены, окончательная цифра указывает на размер котла, необходимый для обогрева дома (примечание: он не учитывает дополнительное отопление, необходимое для водная система).

Подробные расчеты для полного дома показаны на другом страница на этом сайте.


Эти упрощенные расчеты не принимают во внимание тепло, производимое жителями или их жителями. деятельность (например, приготовление пищи, стирка и т. д.). Его можно изменить, улучшив (т.е. уменьшив) количество воздухообмена за счет увеличения исключение сквозняков, улучшенная изоляция ткани или принятие более низкой расчетной температуры в любой из комнат.

Вообще нет смысла пытаться слишком точно рассчитать показатели теплопотерь, его основная цель указывает размер необходимых радиаторов и бойлера.Знание этих значений теплопотерь должно гарантировать, что выбранный радиаторы и бойлер не могут быть ни занижены, ни завышены; некоторое завышение рейтинга будет неизбежным, поскольку окончательный расчет цифра не будет полностью соответствовать номинальной мощности любого радиатора или бойлера.

Работа и тепло

7.2 Работа и тепло

Цели обучения

  1. Определите вид работы по давлению и объему.
  2. Определите тепла .
  3. Соотнесите количество тепла с изменением температуры.

Мы уже определили работу как силу, действующую на расстоянии. Оказывается, есть и другие эквивалентные определения работы, которые также важны в химии.

Когда определенный объем газа расширяется, он работает против внешнего давления и расширяется (Рисунок 7.2 «Объем в зависимости от давления»). То есть газ должен выполнять работу. Предполагая, что внешнее давление P ext постоянно, объем работы, выполняемой газом, определяется уравнением

w = – P внешний × Δ V

, где Δ V – изменение объема газа.Этот член всегда представляет собой конечный объем минус начальный объем,

. Δ V = V конечный V начальный

и может быть положительным или отрицательным, в зависимости от того, больше ли V final (расширяется) или меньше (сокращается), чем V initial . Отрицательный знак в уравнении для работы важен и означает, что по мере увеличения объема (Δ V положительно), газ в системе теряет энергии в качестве работы.С другой стороны, если газ сжимается, Δ V отрицательно, и два отрицательных знака делают работу положительной, поэтому в систему добавляется энергия.

Рисунок 7.2 Объем в зависимости от давления

Когда газ расширяется против внешнего давления, газ действительно работает.

Наконец, рассмотрим единицы. Изменения объема обычно выражаются в таких единицах, как литры, тогда как давление обычно выражается в атмосферах. Когда мы используем уравнение для определения работы, единица измерения работы получается как литр · атмосфера или л · атм.Это не очень распространенная единица для работы. Однако существует переводной коэффициент между л · атм и обычной единицей работы, джоулями:

. 1 л · атм = 101,32 Дж

Используя этот коэффициент преобразования и предыдущее уравнение для работы, мы можем рассчитать работу, выполняемую при расширении или сжатии газа.

Пример 2

Какую работу совершает газ, если он расширяется с 3,44 л до 6,19 л при постоянном внешнем давлении 1,26 атм? Выразите окончательный ответ в джоулях.

Решение

Сначала нам нужно определить изменение объема, Δ V . Изменением всегда является конечное значение минус начальное значение:

Δ V = V окончательный V начальный = 6,19 л – 3,44 л = 2,75 л

Теперь мы можем использовать определение работы для определения проделанной работы:

w = – P ext · Δ V = – (1,26 атм) (2,75 л) = −3.47 л · атм

Теперь мы построим коэффициент преобразования из отношения между литром · атмосферой и джоулями:

−3,47 л⋅атм × 101,32 Дж1 л⋅атм = −351 Дж

Мы ограничиваем окончательный ответ тремя значащими цифрами, если это необходимо.

Проверьте себя

Какая работа выполняется, когда газ расширяется с 0,66 л до 1,33 л при внешнем давлении 0,775 атм?

Ответ

−53 Дж

Тепло – еще один аспект энергии.Тепло – передача энергии от одного тела к другому из-за разницы температур. это передача энергии от одного тела к другому из-за разницы температур. Например, когда мы касаемся чего-то руками, мы интерпретируем этот объект как горячий или как холодный, в зависимости от того, как передается энергия: если энергия передается в ваши руки, объект ощущается горячим. Если энергия передается от ваших рук к объекту, они становятся холодными. Поскольку тепло является мерой передачи энергии, оно также измеряется в джоулях.

Для данного объекта количество тепла ( q ) пропорционально двум вещам: массе объекта ( м ) и изменению температуры (Δ T ), вызванному передачей энергии. Мы можем записать это математически как

q∝m × ΔT

, где ∝ означает «пропорционально». Чтобы сделать пропорциональность равенством, мы включаем константу пропорциональности. В этом случае константа пропорциональности обозначается c и называется удельной теплоемкостью. Константа пропорциональности между теплотой, массой и изменением температуры; также называется удельной теплоемкостью., или, более кратко, удельная теплоемкость :

q = мк Δ T

, где масса, удельная теплоемкость и изменение температуры умножаются. Удельная теплоемкость – это мера того, сколько энергии необходимо для изменения температуры вещества; чем больше удельная теплоемкость, тем больше энергии требуется для изменения температуры. Единицы измерения удельной теплоемкости – Jg⋅ ° C или Jg⋅K, в зависимости от единицы измерения Δ T . Вы можете заметить отклонение от требования выражать температуру в Кельвинах.Это связано с тем, что изменение температуры на на имеет одно и то же значение, независимо от того, выражены ли температуры в градусах Цельсия или Кельвинах.

Пример 3

Рассчитайте количество тепла, необходимое для повышения температуры 25,0 г Fe с 22 ° C до 76 ° C. Удельная теплоемкость Fe составляет 0,449 Дж / г · ° C.

Решение

Для начала необходимо определить Δ T . Изменением всегда является конечное значение минус начальное значение:

Δ T = 76 ° C – 22 ° C = 54 ° C

Теперь мы можем использовать выражение для q , подставить все переменные и решить для тепла:

q = (25.0 г) (0,449 Дж · г⋅ ° C) (54 ° C) = 610 Дж

Обратите внимание на то, как единицы измерения g и ° C отменяются, оставляя J единицей тепла. Также обратите внимание, что это значение q по своей природе положительное, что означает, что в систему поступает энергия.

Проверьте себя

Вычислите количество тепла, возникающее при повышении температуры 76,5 г Ag с 17,8 ° C до 144,5 ° C. Удельная теплоемкость Ag составляет 0,233 Дж / г · ° C.

Ответ

2260 Дж

Как и в случае с любым уравнением, если вы знаете все переменные, кроме одной, в выражении для q , вы можете определить оставшуюся переменную с помощью алгебры.

Пример 4

Требуется 5 408 Дж тепла, чтобы повысить температуру 373 г Hg на 104 ° C. Какова удельная теплоемкость Hg?

Решение

Мы можем начать с уравнения для q , но теперь даны другие значения, и нам нужно решить для удельной теплоемкости. Обратите внимание, что Δ T напрямую выражается как 104 ° C. Подставляющая,

5,408 Дж = (373 г) c (104 ° C)

Разделим обе части уравнения на 373 г и 104 ° C:

c = 5408 Дж (373 г) (104 ° C)

Соединив числа и собрав все единицы, получим

с = 0.139 мкг⋅ ° C

Проверьте себя

Золото имеет удельную теплоемкость 0,129 Дж / г · ° C. Если для повышения температуры образца золота на 99,9 ° C требуется 1377 Дж, какова масса золота?

Ответ

107 г

В таблице 7.1 «Удельная теплоемкость различных веществ» перечислены значения удельной теплоты некоторых веществ. Удельная теплоемкость – это физическое свойство веществ, поэтому это характеристика вещества.Общая идея состоит в том, что чем ниже удельная теплоемкость, тем меньше энергии требуется для изменения температуры вещества на определенную величину.

Таблица 7.1 Удельная теплоемкость различных веществ

Вещество Удельная теплоемкость (Дж / г · ° C)
вода 4,184
утюг 0.449
золото 0,129
ртуть 0,139
алюминий 0,900
спирт этиловый 2,419
магний 1,03
гелий 5.171
кислород 0,918

Ключевые выводы

  • Работа может быть определена как изменение объема газа при постоянном внешнем давлении.
  • Тепло – это передача энергии из-за разницы температур.
  • Теплота может быть рассчитана через массу, изменение температуры и удельную теплоемкость.

Упражнения

  1. Дайте два определения работы.

  2. Какой знак работы при увеличении объема пробы газа? Объясните, почему у работы есть этот знак.

  3. Что происходит, когда газ расширяется с 3,00 л до 12,60 л при внешнем давлении 0,888 атм?

  4. Что такое работа, когда газ расширяется от 0?666 л до 2,334 л при внешнем давлении 2,07 атм?

  5. Что происходит, когда газ сжимается с 3,45 л до 0,97 л при внешнем давлении 0,985 атм?

  6. Что такое работа, когда газ сжимается с 4,66 л до 1,22 л при внешнем давлении 3,97 атм?

  7. Как и работа, знак тепла может быть положительным или отрицательным.Что происходит с общей энергией системы, если тепло положительно?

  8. Как и работа, знак тепла может быть положительным или отрицательным. Что происходит с полной энергией системы, если тепло отрицательно?

  9. Для повышения температуры до 36 требуется 452 Дж тепла.8 г образца металла от 22,9 ° C до 98,2 ° C. Какая теплоемкость металла?

  10. Требуется 2267 Дж тепла, чтобы поднять температуру образца металла массой 44,5 г с 33,9 ° C до 288,3 ° C. Какая теплоемкость металла?

  11. Неизвестная масса алюминия поглощает 187.9 Дж тепла и увеличивает его температуру с 23,5 ° C до 35,6 ° C. Какая масса у алюминия? Сколько это молей алюминия?

  12. Образец He переходит с 19,4 ° C до 55,9 ° C при добавлении 448 Дж энергии. Какая масса у гелия? Сколько это молей гелия?

ответы

  1. Работа – это сила, действующая через расстояние или объем, изменяющийся против некоторого давления.

  2. Когда тепло положительно, общая энергия системы увеличивается.

Энергия, необходимая для нагрева воды

Количество энергии, необходимое для нагрева воды, пропорционально разнице температур чего?

Q = m⋅Cp⋅ΔT

Где…

м = масса нагреваемой воды

Cp = теплоемкость воды (1 БТЕ / фунт ºF)

ΔT = разница температур.

Не забывайте согласовывать единицы измерения. Поскольку C p измеряется в фунтах, масса нагретой воды также должна измеряться в фунтах. Таким образом, если вы знаете только количество галлонов, вы должны преобразовать его в фунты. Один галлон воды = около 8,3 фунта, поэтому умножьте количество галлонов на 8,3, чтобы определить вес в фунтах.
Пример 1

По оценкам Министерства энергетики США, семья из четырех человек, принимающая душ в течение 10 минут в день, потребляет около 700 галлонов горячей воды в неделю.Вода для душа поступает в дом при температуре 55ºF и ее необходимо нагреть до 120ºF.

Для расчета необходимого тепла определите переменные:
м = масса нагретой воды = 700 галлонов = 5810 фунтов
C p – теплоемкость воды = 1 БТЕ / фунт ºF (дано)
ΔT = разница температур = 120 ºF – 55 ºF

Тепловая энергия, необходимая для нагрева 700 галлонов, может быть рассчитана следующим образом:

Требуемое количество тепла = 5810 фунтов x 1 БТЕ / фунт ºF x (120 ºF – 55 ºF)
Требуемое количество тепла = 5810 фунтов x 65 ºF
Требуемое количество тепла = 377 650 БТЕ / неделя

Потребность в тепле на один год:

377650 БТЕ / неделя x 52 недели / год = 19 637 800 БТЕ / год или 5755 кВт · ч

Предполагается, что стоимость природного газа составляет 10 долларов США за MMBTU (1 MMBTU = 1000000 BTU), а стоимость электроэнергии равна 0.092 за кВтч, затраты на газ составят 196,37 долларов, а затраты на электроэнергию – 529,46 долларов. Понятно, что электрическое тепло дороже природного газа.

Пример 2

Оцените% экономии энергии электрического водонагревателя, который нагревает 100 галлонов воды в день, когда температура снова установлена ​​на 110 ° вместо 120 ° F. Подвал отапливается и имеет температуру 65 ° F. Срок службы водонагревателя – около 10 лет. Используйте соответствующую стоимость электроэнергии и сравните эксплуатационные расходы.

Требуемое количество тепла (БТЕ) ​​= m x C p x (разница температур)

Где C p – теплоемкость воды (1 БТЕ / фунт / фут), а m – масса воды (предположим, что 1 галлон содержит 8,3 фунта воды, а 3,412 БТЕ = 1 кВт · ч)

Решение:

Энергия, необходимая для нагрева воды до 120 ° F :

= м × Cp × ΔT

= 100 галдей × 8,3 фунт-галл︸м × 1 BTUlb ° F︸Cp × (120-65) ° F︸ΔT

= 100 галдей × 8,3 фунта × 1 БТЕ / фунт ° F × (120-65) ° F

= 45 650 БТЕ / день

В год необходимое количество энергии:

45650 БТЕ в день × 365 дней в году = 1662250 БТЕ в год

За 10-летний период необходимая энергия составляет 166 622 500 БТЕ, что равно 48 834 кВтч.

166 622 500 БТЕ × 1 кВт · ч 4412 БТЕ = 48 834 кВт · ч

Эксплуатационные расходы в течение срока службы:

48834 кВтч2 × 0,09 доллара США за кВтч = 4395,06 доллара США

Энергия, необходимая для нагрева воды до 110 ° F :

= м × Cp × ΔT

= 100 галдаев × 8,3 фунт-галл︸м × 1 BTUlb ° F︸Cp × (110-65) ° F︸ΔT

= 100 галдей × 8,3 фунта × 1 БТЕ / фунт ° F × (110-65) ° F

= 37 350 БТЕ / день

В год необходимое количество энергии:

37350 БТЕ в день × 365 дней в году = 13 632 750 БТЕ в год

За 10-летний период необходимая энергия составит 136 327 500 БТЕ, что равно 39 995 кВтч.

136 327 500 БТЕ × 1 кВт · ч 4412 БТЕ = 39 995 кВт · ч

Эксплуатационные расходы в течение срока службы:

39 955 кВтч2 × 0,09 USD кВтч = 3 595,95 USD

Расчетная экономия энергии,% :

4395,06 долл. США – 3595,95 долл. США = 799,11 долл. США

799,11 $ 4395,06 $ = 18,2% экономии

Преобразование нагрузок нагрева и охлаждения в воздушный поток – Физика

Когда вы приступаете к проекту по изучению строительной науки, первое, с чем вы сталкиваетесь, – это концепция нагрузок нагрева и охлаждения.Они есть в каждом здании. (Да, даже в проектах пассивных домов.) Именно поэтому мы проводим расчеты тепловой и охлаждающей нагрузки. Мы вводим все детали здания, устанавливаем проектные условия и получаем нагрузку на отопление и охлаждение для каждой комнаты в здании. Здесь, в США, мы все еще используем те устаревшие единицы, которые дают британские тепловые единицы в час (БТЕ / час) для нагрузок. В большинстве стран мира результат измеряется в ваттах или киловаттах.

Но что тогда? Мы не просто включаем кран BTU.Обычно мы перемещаем эти БТЕ в комнаты дома с жидкостью, такой как воздух или вода, и из них. Итак, как мы узнаем, сколько кубических футов в минуту (кубических футов в минуту) воздуха даст нам правильное количество БТЕ в час? Сегодня мы поговорим об этой связи между BTU / hr и CFM. (Я собираюсь оставить обсуждение использования воды для распределения тепла своим друзьям на гидравлической стороне, но это аналогично тому, что я объясняю ниже.)

Прежде чем мы начнем, позвольте мне отметить, что есть немного математики впереди.Это действительно не так уж плохо, и если вы сможете следовать по тексту, вы лучше поймете физику, лежащую в основе перемещения тепла с воздухом. Если после слова «математика» вы уже задыхаетесь, можете сразу перейти к разделу «Выводы».

Сколько тепла может удерживать воздух?

Материя довольно интересная штука. Он обладает множеством интересных свойств, которые веками скрывали ученых в лабораториях. (Я слышал, что Галилей все еще трудится в подвале Пизанской башни.) Когда говорят о способности воздуха удерживать тепло, соответствующее свойство называется – вы не поверите – теплоемкостью. Ага. Это термин, который я иногда упоминал в этом пространстве, но так и не дал точного определения, поэтому давайте займемся этим сегодня.

Тепловая мощность – это своего рода КПД. Это соотношение цены и качества. При эффективности уравнение выводится поверх ввода. Теплоемкость – это отношение добавленного или удаленного тепла к изменению температуры. Вот уравнение:

Если мы добавим определенное количество тепла (измеряемое в БТЕ) к определенному количеству вещества (в нашем случае воздух), мы получим определенное изменение температуры.Это уравнение говорит нам о том, что отношение этих двух величин является мерой того, сколько тепла может удерживать вещество. Если мы получим вдвое меньшее изменение температуры при заданном количестве добавленного тепла, этот материал будет иметь вдвое большую теплоемкость. Таким образом, это количество, теплоемкость, является важным свойством материалов для всех, кто интересуется энергоэффективностью или обогревом и охлаждением.

Обычно легче говорить об удельной теплоемкости, потому что Q в приведенном выше уравнении будет меняться в зависимости от количества воздуха, представляющего здесь интерес.Разделив правую часть приведенного выше уравнения на массу воздуха, мы получим удельную теплоемкость. Если мы немного изменим порядок, используя магию алгебры, мы получим уравнение, которое вы можете вспомнить из средней школы или колледжа. (Он появляется на вводных курсах и по физике, и по химии.) Вот он:

Знакомо? Если нет, подождите еще немного, и я покажу вам уравнение, которое вы, возможно, видели раньше.

Следующим шагом будет небольшое преобразование массового члена.Когда мы имеем дело с жидкостями, обычно легче работать с плотностью, которая равна массе, разделенной на объем. Поэтому мы заменяем термин м выше на плотность (греческая буква ро, ρ ), умноженная на объем ( V ). Вот как теперь выглядит наше уравнение:

Неважно, вызывает ли вас гипервентиляция математика или нет, давайте сделаем шаг назад и вспомним, куда мы идем. Первоначальный вопрос заключался в том, как мы измеряем тепловые и охлаждающие нагрузки в БТЕ / час и определяем, какой расход воздуха нам нужен в кубических футов в минуту.Теперь у нас есть член в уравнении для объема, а куб.фут / мин – это просто объем во времени. Одна из замечательных особенностей алгебры заключается в том, что мы можем делить (или умножать) обе части уравнения на одно и то же. Фактически, это приветствуется!

Итак, давайте разделим обе части приведенного выше уравнения на время. Слева мы получаем Q / t , что подводит нас к обсуждаемой нами БТЕ / час. Справа объем V , разделенный на время, дает нам кубические футы в минуту. Конечно, чтобы получить БТЕ в час с одной стороны и кубических фута в минуту с другой стороны, нам нужно добавить коэффициент 60.Идет по правой стороне.

Также с правой стороны у нас ρc , плотность воздуха, умноженная на удельную теплоемкость воздуха (при постоянном давлении, но это другое обсуждение). Плотность и удельная теплоемкость – это всего лишь два числа, которые мы можем перемножить, и для ясности мы говорим о воздухе на уровне моря и температуре, близкой к комнатной. Вы не можете использовать это уравнение внизу высоко в горах или при температурах, далеких от воздуха, которым вы дышите прямо сейчас. Когда мы умножаем плотность (0,075) на удельную теплоемкость (0.24), а также на 60, получаем 1,08. Окончательное уравнение выглядит так:

Это уравнение, которое, как я сказал, вы, возможно, видели раньше. Его преподают в программах HVAC и классах BPI, а также в других местах. Если мы изменим это уравнение, чтобы получить поток воздуха слева, мы получим:

И вот оно. Как только мы узнаем, сколько тепла нужно подавать или отводить в комнату, мы можем сделать простой расчет, чтобы узнать, сколько кубических футов в минуту воздушного потока нам нужно.Конечно, необходимая нам CFM будет зависеть от местоположения. Как я сказал выше, вы не можете просто везде использовать 1.08. И нам также нужно знать, насколько изменяется температура воздуха, когда он проходит через печь или воздухонагреватель, ΔT в приведенных выше уравнениях.

Это все?

Я знаю, о чем сейчас думают некоторые из вас. Вы смотрите на все, что я сделал выше, и говорите себе, что это разумно. И ты абсолютно прав. Приведенные выше уравнения относятся только к явному теплу, добавляемому к воздуху или удаляемому из него.Он не включает скрытую теплоту кондиционирования воздуха, которая занимается удалением влаги.

Мы могли бы вернуться к началу и пройти аналогичный процесс для отвода скрытой теплоты. Черт возьми, мы могли бы пойти еще дальше и поговорить о частной производной энтальпии по температуре. Но как насчет того, чтобы избавить вас от этих подробностей и дать ответ сразу. Вот аналогичное уравнение для общего тепла (ощутимое плюс скрытое):

Снова сделав небольшую магию алгебры, мы получим уравнение охлаждения cfm:

Единственное, что здесь нового – это переменная Δw .Это означает изменение соотношения влажности, а индекс гр., – для зерна. Отношение влажности (часто ошибочно называемое абсолютной влажностью) является одной из основных переменных на психрометрической диаграмме и измеряется в зернах водяного пара на фунт сухого воздуха. Зерно – это странный способ говорить о массе водяного пара: один фунт (масса) воздуха эквивалентен 7000 гран.

В основном, Δw измеряет изменение количества водяного пара в воздухе, проходящем через кондиционер, когда часть его конденсируется на холодном змеевике испарителя.Когда воздух проходит над холодным змеевиком испарителя, происходят две вещи. Температура воздуха падает ( ΔT ), и концентрация водяного пара в воздухе также падает ( Δw ) по мере того, как водяной пар конденсируется на змеевике. Оба этих изменения являются частью охлаждающей способности единицы оборудования.

Выводы

Если вы запутались в математике вверху и прыгнули сюда, позвольте мне посмотреть, смогу ли я немного подытожить вас. Я начал с изучения физики воздушного потока и тепла.Все это было основано на определении теплоемкости, которая является мерой того, насколько сильно изменяется температура материала при заданном количестве добавленного или удаленного тепла. В результате получилась пара уравнений, которые связывают три переменные: БТЕ / час, куб.фут / мин и ΔT. В уравнении тоже есть число (1,08), и хотя оно выглядит как константа, это не так. Вы должны не забыть отрегулировать его, если плотность воздуха не такая, как у воздуха на уровне моря при комнатной температуре. (Теплоемкость тоже может варьироваться, но для того, что мы здесь делаем, вам придется регулировать в основном плотность.)

Затем я показал, что эти два уравнения предназначены только для явного тепла; то есть тепло, вызывающее изменения температуры. Если у вас влажный воздух (а кто этого не хочет!) И вы его охлаждаете, вы также должны учитывать тепло, необходимое для удаления водяного пара из воздушного потока, конденсируя его на змеевике холодного кондиционера. Это привело нас ко второй паре уравнений, которая включает это тепло, скрытое тепло.

Если бы нам пришлось начинать с первых принципов и делать всю физику каждый раз, когда мы проектируем систему отопления и кондиционирования воздуха, мы бы, вероятно, просто сидели у костра зимой или обмахивались листьями пальметто летом.Вместо этого у нас есть процедуры для получения результатов расчета нагрузки и получения нужного оборудования, которое перемещает нужное количество воздуха с нужным количеством БТЕ. Это инженерная сторона.

Итак, у вас есть ответ на исходный вопрос. Мы знаем, как перейти от тепловой или охлаждающей нагрузки в БТЕ / ч до кубических футов в минуту воздушного потока, необходимого для удовлетворения нагрузки.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *