Рассчитать мощность батареи отопления: Как произвести расчет секций радиаторов отопления

Содержание

Рассчитать мощность радиатора отопления

Содержание

  1. Как рассчитать мощность радиатора отопления — делаем расчет мощности правильно
  2. Особенности проведения расчетов
  3. Порядок расчета мощности радиаторов отопления
  4. Необходимая величина тепловой мощности радиатора
  5. Как расчитать мощность радиаторов отопления
  6. Расчет мощности радиатора отопления
  7. Что нужно для расчета мощности радиаторов отопления
  8. Формула расчета мощности радиатора отопления

 

Как рассчитать мощность радиатора отопления — делаем расчет мощности правильно

Когда проектируется система теплоснабжения для частного дома или квартиры, расположенной в новостройке, необходимо знать, как рассчитать мощность радиаторов отопления, чтобы определить требуемое количество секций для каждой комнаты и подсобных помещений. В статье приводится несколько несложных вариантов вычислений.

Особенности проведения расчетов

Расчет мощности радиатора отопления сопряжен с рядом проблем. Дело в том, что на протяжении отопительного сезона температура за окном постоянно меняется, а соответственно отличаются потери тепла. Так при 30 градусах мороза и сильном северном ветре, они будут гораздо больше, чем при — 5 градусах, да еще при безветренной погоде.

 

Многих владельцев недвижимости волнует, что неправильно рассчитанная тепловая мощность радиаторов отопления может привести к тому, что в морозы в доме будет холодно, а в теплую погоду придется держать нараспашку форточки целый день и таким образом отапливать улицу (детальнее: «Расчет мощности батарей отопления — как рассчитать самому «).
Однако имеется понятие, которое называется температурный график. Благодаря чему температура теплоносителя в отопительной системе меняется в зависимости от погоды на улице. По мере того, как будет расти температура воздуха на улице, повышается теплоотдача каждой из секций батареи. А раз так, то относительно любого отопительного оборудования можно говорить о средней величине теплоотдачи.

Что касается жильцов частных домовладений, то после установки современного электрического или газового теплоагрегата или отопления с применением тепловых насосов они не должны волноваться о том, какую температуру имеет теплоноситель, циркулирующий в контуре отопительной конструкции.

Созданное с применением новейших технологий тепловое оборудование позволяет управлять им при помощи термостатов и корректировать мощность батарей в соответствии с потребностями. Наличие современного котла не требует контроля над температурой теплоносителя, но, чтобы установить радиаторы отопления расчет мощности все равно потребуется.

 

Порядок расчета мощности радиаторов отопления

Все расчеты, связанные с обустройством отопительной конструкции, неразрывно связаны с таким понятием как тепловая мощность. Вариантов как рассчитать мощность радиатора отопления существует несколько. При этом следует отметить, что у приборов от известных и хорошо себя зарекомендовавших производителей данный параметр всегда указывается в прилагаемых к ним документах (прочитайте также: «Как рассчитать отопление в доме правильно «).

У таких агрегатов, как электрический конвектор, тепловентилятор, масляный радиатор или инфракрасная керамическая панель тепловая мощность соответствует их электрической мощности (читайте также: «Что выбрать конвектор или масляный радиатор «). При создании системы отопления, где используется жидкий теплоноситель, не обойтись без батарей.
У чугунных, алюминиевых или биметаллических отопительных приборов мощность одной секции радиатора отопления составляет от 140 до 220 ватт. Усредненным значением считается значение 200 ватт, которое батарея отдает при разнице температур между теплоносителем и воздухом в помещении, равным 70 градусам. Читайте также: «Расчет количества секций биметаллических радиаторов «.

Чтобы выполнить расчет биметаллических отопительных радиаторов или чугунных батарей, исходя из тепловой мощности, необходимо разделить требуемое количество тепла на величину 0,2 КВт. В результате будет получено количество секций, которые нужно приобрести, чтобы обеспечить обогрев комнаты (детальнее: «Правильный расчет тепловой мощности системы отопления по площади помещения «).

Если чугунные радиаторы (см. фото) не имеют промывочных кранов специалисты рекомендуют принимать в расчет 130-150 ватт на каждую секцию, учитывая мощность 1 секции чугунного радиатора. Даже когда они первоначально отдают тепла больше, чем требуется, появившиеся в них загрязнения понизят теплоотдачу.

 

Как показала практика, батареи желательно монтировать с запасом около 20%. Дело в том, что при наступлении экстремальных холодов чрезмерной жары в доме не будет. Также поможет бороться с повышенной теплоотдачей дроссель на подводке. Покупка лишних нескольких секций и регулятора не сильно отразится на семейном бюджете, а тепло в доме в морозы будет обеспечено.

Необходимая величина тепловой мощности радиатора

При расчете отопительной батареи непременно нужно знать требуемую тепловую мощность, чтобы в доме было комфортно жить. Как рассчитать мощность радиатора отопления или других отопительных приборов для теплоснабжения квартиры или дома, интересует многих потребителей.

  1. Способ согласно СНиП предполагает, что на один «квадрат» площади требуется 100 ватт.

Но в данном случае следует учитывать ряд нюансов:

— теплопотери зависят от качества теплоизоляции. Например, для обогрева энергоэффективного дома, оборудованного системой рекуперации тепла со стенами, сделанными из сип-панелей, потребуется тепловая мощность меньше, чем в 2 раза;
— создатели санитарных норм и правил при их разработке ориентировались на стандартную высоту потолка 2,5-2,7 метра, а ведь этот параметр может равняться 3 или 3,5 метра;
— этот вариант, позволяющий рассчитать мощность радиатора отопления и теплоотдачу, верен только при условии примерной температуры 20°C в квартире и на улице — 20°C. Подобная картина типична для населенных пунктов, расположенных в европейской части России. Если дом находится в Якутии, тепла потребуется гораздо больше.

  • Способ расчета, исходя из объема, не считается сложным. Для каждого кубометра помещения требуется 40 ватт тепловой мощности. Если размеры комнаты составляют 3х5 метра, а высота потолка 3 метра, тогда потребуется 3х5х3х40 = 1800 ватт тепла. И хотя погрешности, связанные с высотой помещений в этом варианте расчетов устранены, он все еще не является точным.
  • Уточненный способ расчета по объему с учетом большего количества переменных дает более реальный результат. Базовым значением остаются все те же 40 ватт на один кубометр объема.Когда производится уточненный расчет тепловой мощности радиатора и требуемой величины теплоотдачи, следует учитывать, что:

    — одна дверь наружу отнимает 200 ватт, а каждое окно — 100 ватт;
    — если квартира угловая или торцевая, применяется поправочный коэффициент 1,1 — 1,3 в зависимости от вида материала стен и их толщины;
    — для частных домовладений коэффициент составляет 1,5;
    — для южных регионов берут коэффициент 0,7 — 0,9, а для Якутии и Чукотки применяют поправку от 1,5 до 2.

 

В качестве примера для проведения расчета взята угловая комната с одним окном и дверью в частном кирпичном доме размером 3х5 метров с трехметровым потолком на севере России. Средняя температура за окном зимой в январе составляет — 30,4°C.

 

Порядок вычислений следующий:

  • определяют объем помещения и требуемую мощность — 3х5х3х40 = 1800 ватт;
  • окно и дверь увеличивают результат на 300 ватт, итого получают 2100 ватт;
  • с учетом углового расположения и того, что дом частный будет 2100х1,3х1,5 = 4095 ватт;
  • прежний итог умножают на региональный коэффициент 4095х1,7 и получают 6962 ватт.

Видео о выборе радиаторов отопления с расчетом мощности:

Как расчитать мощность радиаторов отопления

Отправляясь в магазин за радиаторами, можно всецело положиться на квалификацию продавца и приобрести их столько, сколько он скажет. Но, как Вы понимаете, зарплата этого человека напрямую зависит от количества проданных единиц товара. Поэтому ниже будет приведен расчет, который либо вообще избавит Вас от чужих советов, либо позволит перепроверить их в случае, если Вы засомневались.

Произведем расчет мощности радиаторов отопления на конкретных числах. Предположим, необходимо обогреть комнату в 14 квадратных метров и высотой 3 метра. Первым делом необходимо узнать объем помещения. Он рассчитывается следующим образом:

14 кв. м. х 3 м. = 42 куб. м.

Для дальнейших расчетов полезно знать следующее. Чтобы обогреть один кубический метр квартиры в строении стандартной постройки необходимо затратить 41 Ватт тепловой мощности. Это условие справедливо для климата европейской части России (в том числе, и для городов Москва и Нижний Новгород), а также Беларуси, Молдавии и Украины.

Значит, для определения необходимой мощности нужно перемножить объем помещения на этот норматив, т. е. на 41 Ватт: 42 х 41 Вт = 1722 Вт. Полученный показатель — количество тепла, которое должны отдать радиаторы, чтобы обогреть предполагаемое помещение.

В соответствии с проведенными вычислениями, владельца предполагаемого помещения вполне устроит отопительное устройство мощностью 1700 Вт (округление 1722 лучше производить в меньшую сторону).

Чтобы уже полностью быть уверенным, можно увеличить полученную мощность процентов на 20. На случай особо холодных зим, так сказать. Получим: 1700 х 1,2 = 2040. Округлим эту цифру в меньшую сторону. Таким образом, для гарантированного тепла в особо холодную зиму понадобится радиатор мощностью 2 кВт.

Далее нужно понять, сколько секций необходимо, чтобы обеспечить полученную величину мощности. Сделать это не менее просто. На упаковке (или во вкладыше) всякого радиатора имеется информация о его тепловой мощности. Под нею понимают то количество тепла, которое отдаст радиатор в процессе охлаждения с температуры нагрева до 20 градусов Цельсия (средняя комнатная температура). Зная, что одно ребро биметаллического или алюминиевого радиатора обладает мощностью порядка 150 Вт, рассчитаем необходимое количество ребер: 2000. 150 = 13,3 шт. Следовательно, радиатора с 13-тью ребрами будет достаточно.

Другие статьи по теме

Как увеличить теплоотдачу батарей отопления

Недостаточная теплоотдача квартирной системы отопления — это еще не повод, чтобы менять ее на новую или же модернизировать. Куда целесообразнее поработать над увеличением эффективности ее работы.

Как выбрать радиатор отопления в квартиру

Потихоньку уходят в прошлое предыдущие поколения отопительных приборов. Им на смену приходят другие источники тепла с большей теплоотдачей, более экономичные, с красивым современным дизайном. Остается только выбрать.

Как выбрать алюминиевый радиатор

Лучшего момента для смены отопительной системы в квартире, чем капитальный ремонт, трудно и представить. Несмотря на преимущества, которыми обладают радиаторы из чугуна, есть смысл заменить их на алюминиевые.

Расчет мощности радиатора отопления

  • Что нужно для расчета мощности радиаторов отопления
  • Формула расчета мощности радиатора отопления
  • Влияние места расположения на расчет мощности батареи отопления
  • Как нужно размещать приборы

Что нужно для расчета мощности радиаторов отопления

Тепло, которое передается радиаторами воздуху в помещении, должно обязательно компенсировать тепловые потери помещения. В упрощенном виде это соответствует тому, что на каждые 10 кв.м площади комнаты понадобится устанавливать биметаллические радиаторы с тепловой мощностью не меньше 1 кВт. На практике данный показатель следует увеличить на 15%, то есть полученная мощность радиатора умножается на 1,15. На сегодняшний день есть и более точные расчеты необходимой мощности стальных радиаторов, которые используют специалисты, однако для грубой оценки будет достаточно и предложенного метода. При данном методе расчета батареи могут оказаться немного большей мощности, чем это необходимо, однако возрастет качество системы отопления, при котором может быть возможной более точная настройка и низкотемпературный отопительный режим.

Схема радиаторов отопления.

При приобретении стальных радиаторов в паспорте прибора отопления указываются размеры устройства в миллиметрах. На сегодняшний день в продаже существуют радиаторы, которые имеют высоту 20, 30, 40, 50 и 60 см. Приборы имеющие высоту 20 и менее сантиметров, называются плинтусными. Высота в 60 см является традиционной высотой для старых чугунных батарей, в связи с чем новые радиаторы, которые имеют высоту 60 см, могут с легкостью их заменить.

Формула расчета мощности радиаторов отопления.

В данный момент в большинстве случаев используются радиаторы, которые имеют высоту 50 см, потому как в архитектуре все больше начинают использовать высокие окна и низкие подоконники, а при монтаже радиатора под окно понадобится выдержать нормативный зазор между радиатором и подоконной доской не меньше 5 см, при этом расстояние между полом и отопительным устройством должно составлять не менее 6 см. Низкие батареи выглядят компактнее, однако при одинаковой мощности будут длиннее. Следует знать, что размеры помещения не всегда дают возможность устанавливать более длинные радиаторы.

Говоря о том, как рассчитать мощность, следует отметить, что в паспорте устройства отопления рядом с мощностью, к примеру, 1905 Вт, будут указаны цифры расчетного перепада температуры, например, 70/55. Это значит, что в случае охлаждения с 70°С до 55°С радиаторы со своей поверхности отдадут 1905 Вт тепловой мощности. Многие продавцы указывают мощность радиаторов исключительно для перепада 90/70. В случае использования подобных устройств отопления для среднетемпературных систем с перепадом 70/55 мощность тепловой отдачи подобных радиаторов будет меньше, чем та, которая заявлена в паспорте. Именно поэтому при выборе батарей для низко- (55/45) и среднетемпературных отопительных систем их фактическую мощность понадобится пересчитывать.

Вернуться к оглавлению

Формула расчета мощности радиатора отопления

Варианты присоединения радиаторов.

Для того чтобы рассчитать мощность прибора отопления, существует следующая формула:

Q=k×A×dT, где k — коэффициент тепловой отдачи прибора отопления (Вт/кв.м°С), А — площадь поверхности прибора отопления, которая передает тепло (кв.м), dT — температурный напор (°С).

Из паспортных данных радиаторов становится известна мощность радиатора (Q) и температурный напор (dT), который соответствует данной мощности. Подставляя данные значения в формулу, следует рассчитать произведение k×A. Таким образом, станут известны все составляющие формулы. Если подставить значение dT, которое равняется 50°С или 30°С (в зависимости от средне- и низкотемпературных систем отопления), будет возможность найти мощность имеющихся радиаторов для данных систем. Кроме того, мощность подобных устройств можно пересчитать на свой температурный напор (dT) в случае, если по каким-либо причинам хозяина квартиры не устраивают нормативные величины 30°С и 50°С. Для этого понадобится использовать ту же самую формулу.

Теплоотдача радиаторов в зависимости от способа установки.

К примеру, необходимо выбрать отопительные радиаторы для комнаты, которая имеет площадь 16 кв.м. Для того чтобы отопить данную площадь, понадобятся батареи, которые имеют мощность 1,6 кВт. Данное число умножается на коэффициент 1,15, и получается 1,84 кВт. Далее останется только прийти в магазин и выбрать батареи, которые подходят по мощности и размеру.

Например, был найден прибор, в паспортных данных которого обозначается мощность 1905 Вт (1,9 кВт). Понадобится изучить паспортные данные и найти информацию по поводу того, что данную мощность устройство может выдать исключительно при температурном напоре в 60°С (90/70). Однако заранее известно, что имеющаяся система отопления будет выполнена с качественной регулировкой температуры теплового носителя — с использованием трехходовых смесителей. Она будет работать в низкотемпературном режиме (55/45) с напором температуры dT = 30°C. Соответственно, необходимо пересчитать мощность радиатора, который предлагается. По формуле либо паспортным данным надо найти величину произведения k×A=31,75 Вт/°С и вставить обновленные данные в формулу, которая необходима для расчета мощности.

Q=k×A×dT=31,75×30=956 Вт, что составит приблизительно 50% от необходимой мощности.

Далее можно поступить несколькими способами:

  • приобрести вместо одного устройства два;
  • произвести расчет мощности одной секции батареи и на основании данного расчета подобрать отопительный прибор с необходимым количеством секций;
  • выполнить поиск других приборов, которые будут удовлетворять необходимым требованиям.

Следует добавить, что при приобретении батарей для низкотемпературных систем отопления (dT=30°C), в паспортных данных которых указывается температурный напор в 60°С, результат во всех случаях остается один — количество секций устройства понадобится удвоить. В других случаях, когда в паспорте указываются другие температурные напоры либо к расчетному напору температуры существуют собственные требования, мощность батарей необходимо пересчитать.

Источники: http://teplospec.com/radiatory-batarei/kak-rasschitat-moshchnost-radiatora-otopleniya-delaem-raschet-moshchnosti-pravilno.html, http://termosyst.ru/radiatory-otopleniya/raschet-moschnosti-radiatorov.php, http://1poteply.ru/radiatory/moshhnosti-radiatora-otopleniya.html

 

 

Как вам статья?

Как рассчитать радиаторы отопления?

При выборе нагревателя для конкретной комнаты, мы должны, прежде всего, определить потребность в тепле в этом помещении. Это чрезвычайно важно, потому что при правильном расчете пространство не будет ни перегретым, ни слишком холодным. При этом, как всем известно, существуют совершенно разные потребности в отоплении в разных комнатах – ванной, кухне или гостиной. Как определить потребность комнаты в тепле, как рассчитать количество радиаторов отопления частного дома или квартиры, мы расскажем в этой статье.

Содержание

  1. Функции обогревателей
  2. Мощность радиатора
  3. Что определяет мощность радиатора?
  4. Эффективное и дешевое отопление
  5. Как рассчитать радиаторы отопления?
  6. Расчет радиатора для ванной комнаты

Функции обогревателей

Важным аспектом в выборе радиаторов в комнату является определение их функциональных возможностей. В зависимости от помещения мы можем выбрать радиатор отопления, либо обогреватель – сушку (для ванной комнаты), или модель, которая сочетает все эти функции. Принимая решение о покупке радиатора отопления, мы всегда должны учитывать в первую очередь его мощность, поэтому важно знать, как рассчитать количество секций радиатора отопления. Правильный расчет позволит устройству правильно выполнять свои функции.

Стоит учитывать, что батареи часто являются декоративным элементом, они должны быть согласованы с дизайном интерьера, прежде всего, с точки зрения их формы, чтобы создать с ним единое целое. Если в комнате есть и другие источники тепла (например, камин или теплый пол), мы можем позволить себе иметь полную свободу в выборе этого типа нагревателя.

Очень часто в ванной комнате ставят варианты для сушки или полотенцесушители, они являются идеальным выбором для небольших помещений, потому что благодаря своим свойствам позволяют эффективно использовать пространство. Такая модель должна быть широкой и с большим количеством горизонтальных перекладин, тогда она сможет выполнить свою задачу должным образом.

Мощность радиатора

В дополнение к форме радиатора, а также его функциям, необходимо также учитывать его мощность. Общепринятые правила гласят, что в таких помещениях, как гостиная, кухня или ванная, оптимальная температура сильно отличается, поэтому, чтобы избежать неприятных сюрпризов, связанных с недостатком тепла или с его избытком, вы должны знать, как рассчитать секции радиатора отопления и, следовательно, его мощность.

Что определяет мощность радиатора?

Температура воды, которая течет через радиатор, определяет во многом его мощность. Различные источники тепла имеют различные характеристики. Основные параметры это – температура подаваемой воды, температура воды, поступающей из нагревателя, и температуры внутри помещения. В различных типах каталогов, которые вы можете увидеть, указанные выше параметры температуры составляют соответственно 75 ° / 65 ° / 20 °, такие параметры характеризуют нормальную мощность.

Эффективное и дешевое отопление

Выбор радиаторов в помещение представляет собой сложный процесс, но это не должно вызывать у нас какие-либо проблемы. Кроме того, чтобы правильно выбрать радиаторы, очень важно также их надлежащее использование. С помощью нескольких простых шагов счета станут значительно ниже, а температура в помещении стабильной. Надо принять решение об установке радиатора там, где потери тепла наиболее высокие, так что лучше всего устанавливать их под окнами. В случае вентиляции помещения это должно быть сделано быстро, но интенсивно – таким образом, потери тепла не будет слишком большим. Кроме того, не закрывайте радиаторы мебелью, они становятся в такой ситуации неэффективными. При ежедневном соблюдении этих простых правил, наши радиаторы будут не только работать должным образом, но и сэкономят ваш домашний бюджет.

Как рассчитать радиаторы отопления?

Как правило, потребность в тепле составляет от 60 до 200 Вт / м². В домах, хорошо изолированных k = 0,3 Вт / м² К, (10 см полистирола на многослойных или однослойных стенах – из блоков ячеистого бетона сорта 400 и толщины 36,5 см) спрос на тепло будет достигать 60 Вт / м² для двухэтажных домов с мансардой, или 70 Вт / м² для одноэтажных домов.

Хорошее решение в частных домах – использование обогревателей одно-, двух- или трехрядных.

Минимальное расстояние от пола до радиатора и от радиатора до подоконника 10 см.

В исключительных случаях, допускается оставить свободное пространство высотой 7 см, но тогда следует увеличить мощность нагревателя на 5-10%. Если не могут быть выполнены эти условия, то лучше использовать радиатор с меньшей высотой. Длина и количество секций рассчитывается исходя из потребности в тепле для обогрева помещения.

Эти расчеты прилагаются к большинству готовых проектов. Если мы не имеем готового расчета, то могут быть использованы методы, как рассчитать мощность радиатора отопления на основе размера помещения. Этот метод подвержен значительной погрешности.

Как правило, спрос на тепло, как мы уже писали выше, составляет от 60 до 200 Вт / м².

  • В домах хорошо изолированных k = 0,3 Вт / м²К (где применен 10 см слой пенопласта) – спрос будет достигать 60-70 Вт / м².
  • В домах с предельной изоляцией k = 0,7 Вт / м²К (где применен 5 см слой пенопласта) спрос на тепло будет достигать 90 Вт / м² для двухэтажных домов с мансардой или 100 Вт / м² для одноэтажных домов.
  • В домах без изоляции, где k = 1,2-1,5 Вт спрос на тепло составит 130-140 Вт / м² для дома с мансардой и 150-200 Вт / м² для одноэтажных домов.

Чтобы рассчитать радиатор отопления в доме следует учитывать расчетные параметры воды в системе и, таким образом, ввести поправочные коэффициенты. Система, работающая на газовом котле, будет работать на параметры 80/60 ° C или 75/65 ° C – радиаторы должны быть выбраны непосредственно из расчета выше без применения коэффициентов.

Для параметров, отклоняющихся от стандарта, например, 90/70 ° C следует применить поправочный коэффициент 0,8 и умножить его на потребности в тепле.

Пример, как рассчитать радиатор отопления комнаты для рабочих параметров при 90/70 ° C:

Исходные данные:

Комната – 15 м², дом с мансардой.

Изоляция стен – пенопласт 5 см.

Источник тепла – газовый котел.

Расстояние от пола до подоконника – 85 см.

Длина окна – 90 см.

Формула расчета: Q = 15 м² х 90 Вт / м² х 0,8 = 1080 Вт

Расчет радиатора для ванной комнаты

При выборе нагревателя для ванной комнаты, помимо эстетической стороны, обратите внимание на его мощность. Если у вас есть проект центрального отопления, теплопотери и тепловая мощность нагревателя определяются проектировщиком. Если вы не знаете фактического спроса на тепло, она может быть вычислена в приближенном виде.

Обычно предполагается, что потери тепла составляют 130-150 Вт, по отношению к 1м². В каталогах мощность радиаторов приведена в расчете на параметры 75/65/20 ° C, где 75 ° С – это температура поступающей воды, 65 ° С – это температура возвратной воды и 20 ° С – температура внутри помещения. Обратите внимание на параметры расчета. Расчетная температура в ванной комнате составляет 24°C. Таким образом, при выборе нагревателя необходимо вносить коррекции с учетом изменения параметров, отличных от каталога.

Самая большая мощность обогревателя-полотенцесушителя будет получена при перекрестном соединении, вверх-вниз. При подключении питания нагревателя вниз-вниз мощность примерно на 5-10% ниже. Наименее благоприятным по тепловой эффективности является подключение снизу вверх. При таком устройстве мощность нагревателя снижается на 30-40%. Поэтому такой вариант подключения не рекомендуется.

Аккумуляторы

– Выходная мощность аккумулятора, рассчитанная по внутреннему сопротивлению – объяснение, связь с выделением тепла и фактической мощностью?

\$\начало группы\$

В спецификации производителя батареи (https://www.scib.jp/en/product/cell.htm, «Ячейка высокой мощности 10 Ач») указано: Выходная мощность 1800 Вт* (SOC: 50%, 10 с, 25°). C), *Это значение рассчитывается исходя из внутреннего сопротивления.

Как точно осуществляется расчет номинальной мощности по внутреннему сопротивлению батареи?

Как рассчитанная выше выходная мощность соотносится с мощностью тепловыделения (Вт) батареи, которая также рассчитывается на основе внутреннего сопротивления?

И как эта теоретическая выходная мощность (обычно) соотносится с фактической выходной мощностью батареи, доступной пользователю на практике?

  • питание
  • батареи
  • тепло
  • внутреннее сопротивление

\$\конечная группа\$

4

\$\начало группы\$

Как точно выполняется расчет номинальной мощности по внутреннему сопротивлению батареи?

Я предполагаю, что он основан на теореме о максимальной передаче мощности, поэтому максимальная мощность, которую вы можете передать в нагрузку, зависит от внутреннего сопротивления батареи.

Как вычисленная выше выходная мощность соотносится с мощностью тепловыделения (Вт) батареи, которая также рассчитывается на основе внутреннего сопротивления?

Если приведенное выше предположение верно, то отдаваемая мощность равна мощности, рассеиваемой в самой батарее.

И как эта теоретическая выходная мощность (обычно) соотносится с фактической выходной мощностью батареи, доступной пользователю на практике?

При передаче максимальной мощности выходное напряжение элемента батареи будет составлять половину напряжения холостого хода. Кроме того, КПД будет 50%, и, следовательно, большая часть энергии будет потеряна на внутреннее рассеяние. В практическом случае допустимое падение напряжения и критерии энергоэффективности будут ограничивать подачу энергии. У меня нет отраслевого опыта работы с аккумуляторными системами, но для повышения энергоэффективности до уровня выше 80% или 90%, мощность должна быть уменьшена менее чем на 64% или 36% от заявленного значения максимальной выходной мощности (снова по той же теореме).

Однако внутреннее сопротивление зависит от нескольких рабочих параметров, поэтому я привожу цифры для идеального случая.

\$\конечная группа\$

4

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

. Мощность

 – Почему я могу использовать P = I²R, но не P=V²/R при расчете потерь энергии в цепи?

\$\начало группы\$

Я работаю над сборником задач и меня смущает ответ на этот:

Батарея 12 В выдает 60 А в течение 2 секунд.

Суммарное сопротивление проводов в цепи 0,01 Ом.

Q1. Какова общая мощность?

Q2. Какая энергия теряется в виде тепла в проводах?

A1:

Общая выходная мощность = 12 * 60 * 2 = 1440 Дж.

Пока все хорошо.

A2:

Вот ответ в книге:

P = I²R * t = 3600 * 0,01 * 2 = 72 Дж

Меня это устраивает. Однако, если я использую эквивалентное уравнение P=V²/R …

P = V²/R * t = 12² / 0,01 * 2 = 28 800 Дж

Оба эти уравнения для P, так как же они дают мне разные ответы?

  • мощность
  • аккумуляторы
  • схема-анализ
  • энергия
  • электричество

\$\конечная группа\$

2

\$\начало группы\$

60 А через сопротивление 0,01 Ом дает падение 600 мВ. Это – это напряжение, которое вам нужно использовать в уравнении.

\$\конечная группа\$

3

\$\начало группы\$

Проблема предполагает, что вы понимаете что-то, что неясно прописано: провода и (неизвестная) нагрузка – это последовательно . Поэтому они разделяют ток, а не напряжение батареи.

Вот такая ситуация:

смоделируйте эту схему – Схема создана с помощью CircuitLab

Как отмечали другие, падение напряжения на проводах мало из-за их небольшого сопротивления.

Вы знаете, что один и тот же ток протекает как в нагрузке, так и в проводах, следовательно, эту информацию необходимо использовать для расчета потерь мощности в проводке.

\$\конечная группа\$

2

\$\начало группы\$

Вот ответ в книге: P = I²R * t = 3600 * 0,01 * 2 = 72 Джоулей

Тогда вам нужно найти книгу получше, потому что это явно неправильно. Мощность делает равным I²R, но не равным I²R * t. Энергия = I²R * т.

Какова общая потребляемая мощность?

Общее сопротивление нагрузки (включая провода) составляет 12 В/60 А = 0,2 Ом, поэтому общая потребляемая мощность составляет 144/0,2 = 720 Вт

Какая энергия теряется в виде тепла в проводах?

Мощность, теряемая в проводах, составляет 60² * 0,01 = 36 Вт, поэтому доставляемая энергия равна этому числу, умноженному на время (2 секунды) = 72 джоуля.

Почему я могу использовать P = I²R, но не P=V²/R при расчете потерь энергии в схема?

Согласно закону Ома, I = V/R, следовательно, I²R становится (V/R)²R, которое становится V²/R. Просто убедитесь, что напряжение, о котором вы говорите, находится на резисторе, через который протекает ток I. Все остальное, вероятно, будет неправильным или, возможно, «правильным» по совпадению.

\$\конечная группа\$

2

\$\начало группы\$

Если 12 В обеспечивает 60 А, по закону Ома общее сопротивление в цепи должно быть \$\frac{12~V}{60~A} = 0,2~\Omega\$. Предполагая, что нагрузочный резистор включен последовательно с проводом, это означает, что нагрузочный резистор имеет сопротивление \$0,2 – 0,01 = 0,19~\Омега\$.

Итак, согласно закону Ома, падение напряжения на нагрузке составляет \$0,19.2*р.

Ваш расчет энергии был бы правильным, если бы нагрузка 190 м\$\Омега\$ (12 В/60 А – 0,01\$\Омега\$) была заменена на короткое замыкание при наличии только проводки. Ток был бы огромным (1200 А), если бы батарея действительно держалась до 12 В, а провода, таким образом, рассеивали бы 14,4 кВт и быстро сгорали. Не уверен, почему вы использовали 48 В для напряжения.

В данном случае 95% энергии поступает в нагрузку, а 5% теряется в проводке. Суммарная мощность за две секунды составляет 720 Вт, 36 Вт теряется в проводке, а на нагрузку остается 684 Вт. За две секунды проводка нагревается на 72 Дж.

\$\конечная группа\$

\$\начало группы\$

Прежде всего, Вам нужно понимать, что вся мощность, выдаваемая аккумулятором, не равна мощности, потребляемой проводом.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *