Рассчитать количество секций для радиатора отопления
г.Минск, улица Серебрянская, дом.1, помещение 2а
- Главная
- Расчет количества секций радиатора отопления
Когда домовладелец понимает, как рассчитать секции радиатора отопления, в помещении будет обеспечен комфортный микроклимат зимой. При недостаточной осведомленности в этом вопросе происходит установка отопительной батареи с меньшей площадью греющей поверхности, чем требуется для конкретного объекта.
Когда домовладелец понимает, как рассчитать секции радиатора отопления, в помещении будет обеспечен комфортный микроклимат зимой. При недостаточной осведомленности в этом вопросе происходит установка отопительной батареи с меньшей площадью греющей поверхности, чем требуется для конкретного объекта.
Количество требующихся секционных отделений у отопительных радиаторов для типовых помещений можно рассчитать приблизительно с помощью простых способов. Однако иногда нужен максимально точный результат. Поэтому приходится учитывать разные моменты.
Содержание статьи:
- Используемые параметры при расчете
- Виды радиаторов отопления
- Методы расчета
- Расчет по площади
- Расчет по объему отапливаемого помещения
- Расчет для нетипового помещения
- Что нужно учитывать для повышения точности расчета
Используемые параметры при расчете
Чтобы провести корректные вычисления требуемого количества секционных отделений для отопительного радиатора, необходимо учитывать следующие параметры:
- размеры отапливаемого помещения;
- разновидность и металл изготовления отопительного секционного радиатора;
- мощность отдельно взятой секции или всей батареи;
- максимально возможное число секционных частей у устанавливаемого радиатора.
Основным критерием расчета является отапливаемая площадь. Для просторного помещения понадобится батарея с более мощной теплоотдачей или придется при возможности монтажа купить секции радиатора отопления в большом количестве.
Виды радиаторов отопления
Отопительные батареи различаются между собой материалом изготовления:
- Стальные радиаторы, отличающиеся элегантным внешним видом, маленьким весом и стенками небольшой толщины. Отопительные приборы этого типа не пользуются популярностью, потому что сталь не обладает устойчивостью перед коррозией. Поэтому на них появляется ржавчина. Особенно коррозии подвергаются места соединений. Стальные батареи быстро нагреваются и остывают из-за низкой теплоемкости. Они не выдерживают гидравлические удары при аварийных ситуациях и во время испытаний, что приводит к появлению течи. В основном стальные батареи производятся в цельном исполнении. Реже выпускаются секционные модели. Поставляются вместе с паспортом, где указывается мощность.
- Чугунные радиаторы, отличающиеся долговечностью и отличными характеристиками, проверенными временем. Батареи этого типа выпускаются еще с советских времен в виде «гармошек» с теплоотдачей одной секции 160 Вт. Отдельные части таких изделий соединяются между собой в любом количестве. Чугунные батареи выпускаются в современном и винтажном исполнении. Они устойчивы перед коррозионными процессами, абразивными воздействиями, хорошо держат тепло, не лопаются при гидравлических ударах и испытаниях, могут подключаться к системам с любым теплоносителем.
- Алюминиевые радиаторы, отличающиеся современным исполнением, легкой конструкцией и высокой теплоотдачей одной секции, составляющей 200 Вт. Небольшой вес позволяют их монтировать на любые основания. Выпускаются также модели алюминиевых радиаторов в цельном исполнении. Любой их тип подвержен кислородной коррозии. Производители с этим недостатком борются с помощью контролируемого процесса окисления алюминия. Он позволяет создавать на поверхности металла защитную пленку.
- Биметаллические радиаторы, состоящие из двух частей: наружного алюминиевого теплообменника и внутреннего стального коллектора. Такая конструкция обеспечивает высокую теплоотдачу до 200 Вт и стойкость перед износом. Недостатком биметаллических изделий является более высокая стоимость по сравнению с другими типами батарей.
Для безошибочного определения нужного количества секций требуется учитывать материал изготовления радиаторов. Тепловые свойства металла влияют на результат вычислений.
Методы расчета
Расчеты можно провести разными способами. Для каждого варианта вычислений нужны определенные данные.
Расчет по площади
Это простой способ, используемый для объектов, у которых потолок находится на высоте от 2,4 до 2,6 м. В соответствии со СНиП, для обогрева одного квадрата площади отопительный прибор должен выделять 100 Вт тепла. Поэтому сначала рассчитывается общее требуемое количество тепловой энергии для отопления всей комнаты. Для получения искомого результата нужно 100 Вт умножить на площадь объекта. Перевод в киловатты выполняется путем деления значения на 1000.
Чтобы определить, сколько должен иметь секций отопительный радиатор, необходимо разделить общую полученную тепловую мощность на значение теплоотдачи одной секционной части батареи. Полученный результат обычно округляется в большую сторону. Для комнат с минимальными теплопотерями округление выполняется к меньшему числу. Такое правило действует для кухни и других подобных помещений.
При расчете по площади учитываются особенности объекта. Когда помещение оснащено выходом на балкон или имеет угловое расположение, общую вычисленную тепловую мощность требуется увеличить на 20%. Если радиатор монтируется в углублении или закрывается экраном, результат расчета повышается от 15 до 20%.
Расчет по объему отапливаемого помещения
Этот способ позволяет получить более точный результат, когда рассчитывается число секционных частей отопительного радиатора для дома. При выполнении вычислений принимается во внимание высота потолка. Умножение этого параметра на площадь комнаты позволяет узнать объем пространства. Он используется для вычисления общей расчетной мощности батареи.
В СНиП указано, что для отопления 1 м3 помещения в здании из железобетонных панелей потребуется 41 Вт тепла. Если же отапливаемое пространство находится в доме с утепленным фасадом и установленными европакетами, тепловой энергии для обогрева потребуется 34 Вт.
Расчетная мощность радиатора вычисляется путем умножения объема комнаты на значение из СНиП. Потом результат необходимо поделить на теплопередачу одной секции. Округление полученного значения выполняется так же, как и при расчете по площади.
Совет! Рекомендуется при вычислении брать минимальное значение теплопередачи одной радиаторной секции, потому что температура теплоносителя в системе редко бывает максимальной.
Расчет для нетипового помещения
Не все квартиры имеют типовую планировку, а частные дома стараются строить по персонально разработанным проектам. Поэтому приходится выполнять подключение радиаторов отопления по нестандартным схемам. По этой причине для правильного вычисления требуемого количества секций батареи учитываются дополнительно разные факторы.
Метод расчета для нестандартного помещения подразумевает использование поправочных коэффициентов. Они учитывают теплопотери отапливаемого помещения через различные ограждающие конструкции.
При расчете применяется формула КТ=100 (Вт/м2)*П*К1*К2*К3*К4*К5*К6*К7, где
КТ — тепловая энергия, требующаяся для нагрева комнаты;
П — отапливаемая площадь, м 2;
К1 — поправка на оконные конструкции:
- окно в обычном исполнении с двумя стеклами — 1,27;
- 2-й стеклопакет в современном исполнении — 1;
- 3-й европакет — 0,85.
К2 — поправка на степень тепловой изоляции стен:
- низкий уровень — 1,27;
- стандартный уровень при двойной кирпичной кладке или использовании теплоизолятора для стены — 1;
- повышенный уровень — 0,85.
К3 — поправка, учитывающая процентное соотношение площади (м2) оконных конструкций и пола:
- 50% — 1,2;
- 40% — 1,1;
- 30% — 1;
- 20% — 0,9;
- 10% — 0,8.
К4 — поправка, принимающая в расчет средний температурный показатель воздушной среды в течение самой холодной недели:
- -35oC — 1,5;
-25oC — 1,3;- -20oC — 1,1;
- -15oC — 0,9;
- -10oC — 0,7.
К5 — поправка, корректирующая потребность в тепловой энергии с учетом числа стеновых конструкций, контактирующих с наружным воздухом:
- одна ограждающая конструкция — 1,1;
- две ограждающих конструкции — 1,2;
- три ограждающих конструкции — 1,3;
- четыре ограждающих конструкции — 1,4.
К6 — поправка на тип выше расположенного помещения:
- чердак без отопительной системы — 1;
- обогреваемый чердак — 0,9;
- отапливаемое пространство, где живут люди — 0,8.
К7 — поправка, учитывающая высоту комнаты:
- 2500 мм — 1;
- 3000 мм — 1,05;
- 3500 мм — 1,1;
- 4000 мм — 1,15;
- 4500 мм — 1,2.
После перемножения всех значений полученный результат делится на теплоотдачу секции для выбранного радиатора. На основе округленного числа выполняется установка батареи.
Что нужно учитывать для повышения точности расчета
Наиболее точный результат при определении числа радиаторных секций можно получить, если дополнительно учитывать:
- количество, площадь и конструкцию окон в помещении;
- материал изготовления и толщину ограждающих стен;
- климат местности;
- расстояние от пола до потолка;
- число наружных стеновых конструкций при расположении сверху и снизу отапливаемых помещений;
- металл изготовления батареи.
Все перечисленные факторы влияют на теплопотери. Их рекомендуется принимать во внимание, когда проводится вычисление требуемого количества радиаторных секций. На расчет придется потратить больше времени, но зато удастся установить радиатор с нужной площадью поверхности обогрева. Поэтому в помещении будут созданы комфортные условия даже при сильном морозе на улице.
Компания «Вайдер» предлагает приобрести качественные отопительные радиаторы по оптимально низкой цене, потому что поставки выполняются напрямую от производителей. Чтобы задать вопросы по заказу продукции, обсудить условия сотрудничества, звоните по контактным телефонам: +375 (17) 223-29-63 и +375 (29) 832-25-81.
- Металлопласт
- Полипропилен
- Канализация
- Медные трубы
- Запорная арматура
- Коллекторы отопления
- Наружний водопровод
- Радиаторы отопления
- Расширительные баки
- Насосное оборудование
- Резьбовые фитинги
- Утеплитель для труб
- Крепления для труб
- Сифоны, трапы
Как рассчитать количество секций радиаторов отопления
Содержание
1 Используем площадь
2 Используем объём
3 Современные радиаторы
3. 1 Радиаторы из металла
3.2 Радиаторы из алюминия
3.3 Радиаторы из чугуна
3.4 Биметаллические радиаторы
4 Алгоритм расчёта
4.1 По площади
4.2 По объёму
5 Важно
5.1 Поправка на стены
5.2 Поправка на окна
5.3 Поправка на крышу и подвал
5.4 Поправка на расположение
6 Особенности температурных режимов
6.1 Калькулятор количества секций радиаторов
6.2 Калькулятор отопления частного дома
Тепло и уют в доме — мечта каждого человека. Современные отопительные системы позволяют сохранять оптимальную температуру в любое время года. Но только при грамотном их использовании. Чтобы в вашем жилище климатические условия в холодный период оставались комфортными, перед установкой батарей нужно узнать количество секций радиаторов.
Выделяют такие методики:
- расчёт по площади помещения;
- расчёт с использованием объёма.
Давайте подробнее разберёмся в каждой из них.
Используем площадь
Данные СНиПа говорят, что в наших погодных условиях нужно примерно 100 Вт тепла на квадратный метр. Берём калькулятор и перемножаем площадь на мощность для 1 м2. То есть для постройки размером в 20 м2 расчёт будет выглядеть так: Это значит, что общая мощность обогрева должна быть 2000 Вт.
При вычислении мощности таким способом следует понимать, что, сколько ни считай площадь — а греть придётся объём. Такой метод подсчёта может быть корректным для квартир и домов с типичной высотой потолка в 2,7 м. А что же делать, если эта самая высота не соответствует стандартам?
Используем объём
Чтобы найти объём, перемножаем площадь и высоту. После чего снова смотрим в нормативные документы и выясняем, что для кирпичных построек норма составляет 34, а для бетонных — 41 Вт на м3.
Дальнейшие действия аналогичны предыдущему методу расчёта. Только вместо площади подставляем значение объёма. Допустим, что высота у нас 3,2 м. При площади 20 м2 — объём такого помещения составит 64 м3 ( ). И если наша комната построена из кирпича, то: Именно эту мощность должен обеспечивать радиатор в постройке с заданными характеристиками.
Расчёт количества секций радиаторов отопления также напрямую зависит от радиатора, который будет установлен и его мощности. Поэтому прежде чем производить расчёт, желательно выяснить какие бывают радиаторы.
Современные радиаторы
Каждый из них имеет свою специфику применения и мощность. Но обо всём по порядку.
Радиаторы из металла
Подразделяются на два вида — трубчатые и панельные. Панельные могут быстро нагреваться, но и охлаждаются тоже быстро. Поэтому нуждаются в постоянном притоке тепла, что делает их применение в автономной системе отопления невыгодным.
Панельные радиаторы из металлаТрубчатые радиаторы разогреваются дольше, соответственно, дольше держат тепло. Это значительно расширяет возможности их использования. Хотя стоит учитывать, что они не подходят для систем с высоким давлением.
Трубчатый радиатор из металлаМощность одной батареи такого типа колеблется от 670 до 6500 Вт.
Радиаторы из алюминия
Выделяются высокой экономичностью, что делает их довольно популярными.
Радиаторы из алюминияОдна из основных особенностей — высокая требовательность к качеству теплоносителя. Для систем централизованного отопления это скорее недостаток, а вот для индивидуального — вполне логичное решение при выборе.
Одна секция может обеспечить 190 Вт.
Радиаторы из чугуна
С появлением свежих дизайнерских решений в их исполнении обрели новую актуальность.
Радиаторы из чугунаХотя и технические показатели батарей такого типа довольно высокие. Основными их достоинствами считаются надёжность и неприхотливость. При качественной установке могут служить долго и исправно.
Правда, мощность довольно небольшая — одна секция обеспечивает 145 Вт.
Биметаллические радиаторы
Состоят из двух компонентов: внутри — алюминий, снаружи — сталь.
Биметаллические радиаторыПривлекательная внешность, простота в установке и эксплуатации, а также высокая мощность сделали их лидерами по популярности среди всех типов батарей. Но и у них есть недостаток — используются только при высоком давлении.
Мощность одной секции — 185 Вт.
Алгоритм расчёта
Алгоритм, по которому выполняется расчёт количества секций радиаторов отопления, один. Он предполагает деление общей мощности на мощность секции. Итог желательно округлять в большую сторону, чтобы создать небольшой запас тепла.
Для примера проведём расчёт для комнаты тех же размеров что и раньше.
По площади
При таком подсчёте общая мощность в нашем примере была равна 2000 Вт. Согласно алгоритму её нужно разделить на нормативное количество тепла одной секции — для алюминиевого типа это 190 Вт. Считаем: . Округляем в сторону увеличения и получаем 11 секций.
По объёму
При высоте в 3,20 м необходимая мощность составила 2176 Вт. Считаем: . После округления — 12 секций радиатора.
Такой способ подсчёта избавляет нас от необходимости выяснять, сколько нужно секций радиаторов на 1 м2 и даёт возможность провести расчёт сразу для всего помещения.
Важно
Необходимо подчеркнуть, что все данные предоставлены для секций стандартного размера, межосевое расстояние которых составляет 50 см. Оно соответствует расстоянию между центрами отверстий для подачи и вывода теплоносителя.
Три модели радиатора с межосевым расстоянием 50 смЕсли межосевое расстояние батареи отличается от стандарта — придётся провести коррекцию расчёта. Для этого нужно определить коэффициент соотношения между двумя размерами радиаторов — фактическим и стандартным. А потом применить его к результату.
Возвращаемся к нашему примеру. Мы установили, что для комнаты площадью 20 м2 с обычной высотой необходимо 11 алюминиевых секций со стандартным расстоянием. Давайте пересчитаем их количество для расстояния 40 см. Первым делом находим коэффициент: . А после корректируем результат: . Округлённый результат — 14.
Как видим, чем меньшей будет площадь батарей — тем больше их понадобится. И это не единственный фактор, который требует доводки результатов. Существуют и другие нюансы, влияющие на расчёт секций. Действуют они все по-разному, но тем не менее требуют внесения поправок в базовые вычисления. Коррекция по любому из них проводится путём умножения изначального результата на необходимый коэффициент.
Поправка на стены
В этом вопросе важную роль играет количество стен, которые непосредственно выходят на улицу, тем самым увеличивая теплопотерю. Для комнат с одной внешней стеной коэффициент будет 1,1, с двумя — 1,2, с тремя — 1,3.
Также вносит свои коррективы толщина и качество наружных стен. При плохом утеплении или вообще без него коэффициент 1,27.
Поправка на окна
Именно на них приходится 15–35% от общих теплопотерь. Для окон тоже используют два коэффициента — на размер, и на качество. Размер окна в этом случае приводится в виде соотношения между площадями окна и комнаты:
- 10% — 0,8;
- 20% — 0,9;
- 30% — 1,0;
- 40% — 1,1;
- 50% — 1,2.
Поправка на крышу и подвал
Важным фактором считается температура в помещении, которое располагается над вами. Для жилой комнаты уточняющий коэффициент составляет 0,7. Тёплый чердак даёт значение 0,9, а не отапливаемый — 1.
В частном доме коэффициент уточнения будет равен 1,5, все результаты увеличатся на 50%.
Поправка на расположение
От места, где будет установлена батарея, тоже зависит качество её работы. Например, защитный экран может забрать от 7 до 25% мощности. Установка в нише снижает продуктивность на 7%, подоконник — на 3–5%.
Особенности температурных режимов
Отдельно стоит обратить внимание на разные температурные режимы отопительных систем. Паспортные данные приводятся для режима, предполагающего температуру 90/70 при подаче и обратке соответственно. Расчётная температура воздуха в комнате — 20 °C.
Но, сейчас такой режим практически не используется. Гораздо чаще можно встретить показатели 75/65/20 или 55/45/20. Поэтому необходимо будет выяснить, какой режим используется у вас, и пересчитать показатели под него.
Сам по себе расчёт количества секций радиаторов отопления довольно простой. Но количество корректировок может немного испугать или как минимум озадачить. В таком случае можно использовать онлайн-калькуляторы, расположенные ниже. В него достаточно внести все исходные данные, и на выходе вы получите искомое количество секций. И помните, любые сложности при подсчётах с лихвой окупятся комфортным теплом в вашем доме.
Калькулятор количества секций радиаторов
Калькулятор отопления частного дома
Окна | Тройной стеклопакет Двойной стеклопакетОбычное (двойное) остекление |
Стены | Хорошая теплоизоляцияДва кирпича или 150 мм утеплителяПлохая теплоизоляция |
Соотношение площадей окон и пола | 10%20%30%40%50% |
Температура снаружи помещения | -10C-15C-20C-25C-30C-35C |
Число стен выходящих наружу | ОднаДвеТриЧетыри |
Тип помещения над рассчитываемым | Обогреваемое помещениеТеплый чердакХолодный чердак |
Высота помещения | 2,5 метра3 метра3,5 метра4 метра4,5 метра |
Площадь помещения | |
Теплопотери | |
Теплопроизводительность котла |
Видео о том, как рассчитать количество секций радиатора:
youtube.com/embed/mftp25b_2-g?wmode=transparent&fs=1&hl=en&modestbranding=1&iv_load_policy=3&showsearch=0&rel=1&theme=dark” frameborder=”0″ allowfullscreen=””/>- Автор: Юлия
- Распечатать
Оцените статью:
(0 голосов, среднее: 0 из 5)
Поделитесь с друзьями!
Двухфазный радиатор с переменным коэффициентом обзора
Andrew Lutz 1 , Calin Tarau 2 , and Srujan Rokkam 3
Advanced Cooling Technologies, Inc., Lancaster, PA, полностью пилотируемый, 17601 , спутники, планетоходы и беспилотные космические аппараты должны отводить отработанное тепло через радиатор. Несмотря на то, что тепловая нагрузка и условия теплоотвода могут сильно различаться, температура батареи и электроники должна поддерживаться в установленных пределах. Как правило, размеры радиаторов рассчитаны на максимальную мощность в самых горячих условиях раковины, поэтому большую часть времени они имеют завышенный размер. Следовательно, существует потребность в разработке легких и эффективных излучателей для будущих космических кораблей и спутников, которые обеспечивают возможность значительного диапазона регулирования. Компания Advanced Cooling Technologies, Inc. (ACT) разработала новый развертываемый радиатор с переменным коэффициентом обзора, управляемый давлением пара, который пассивно работает с изменяемой геометрией (то есть форм-фактором) и предлагает высокий динамический диапазон. Устройство использует двухфазный теплообмен и новые геометрические особенности, которые адаптивно (и обратимо) регулируют коэффициент обзора в ответ на внутреннее давление в радиаторе. Радиатор складывается в каплевидную форму, чтобы свести к минимуму коэффициент обзора в холодном состоянии, и открывается, чтобы максимизировать коэффициент обзора в горячем состоянии. Этому способствует динамическая обратная связь между внутренним давлением внутри полых изогнутых панелей радиатора и самой конструкцией радиатора, которая позволяет изменять форму в пределах предела упругости материала, что приводит к пассивному, обратимому, развертываемому и переменному Радиатор с коэффициентом обзора, обеспечивающий распространение тепла по двухфазному механизму и дальнейшее отведение излучением.
A = area
A inner = internal radiator area
A outer = external radiator area
ε = emissivity
ε изоляция = коэффициент излучения внешней поверхности
ε радиатор = коэффициент излучения внутренней поверхности радиатора
η = эффективность радиатора
F = коэффициент просмотра
Q = тепловая нагрузка
Q (F) = Общая тепловая излучающая
R = большой радиус
SMA = сплав с памятью формы
σ = постоянная Стефана-Больцмана
T 90920 температура 2 радиатора 900020 T sink = heat sink temperature
θ = external angle
VVFTPR = variable-view-factor two-phase radiator
1 R&D Engineer, R&D, 1046 New Holland Ave.
2 Главный инженер отдела исследований и разработок, 1046 New Holland Ave.
3 Ведущий инженер отдела исследований и разработок, 1046 New Holland Ave.
I. Введение в самых горячих условиях мойки, поэтому большую часть времени они негабаритные 1,2 . Существует потребность в разработке легких и эффективных излучателей для будущих космических аппаратов и спутников, обеспечивающих значительный динамический диапазон 3,4 . В «Дорожной карте НАСА по тепловым технологиям» 2015 года говорится, что НАСА ищет радиаторы с изменяемой геометрией 5 : «Цель разработки состоит в том, чтобы обеспечить радиаторы с возможностью снижения теплоотвода 6:1 (с целью растяжения 12:1)». Компания ACT разработала пассивный излучатель с изменяемой геометрией, который может иметь температурный диапазон изменения более 40:1.Для управления температурным режимом космических кораблей и планет важно поддерживать эксплуатационные температуры для бортовых устройств и минимизировать колебания температуры при резких изменениях температуры окружающей среды. В рамках проекта Small Business Innovation Research (SBIR), финансируемого Центром космических полетов имени Маршалла НАСА, компания Advanced Cooling Technologies, Inc. (ACT) разработала новый , управляемый давлением пара, регулируемый коэффициент обзора и развертываемый радиатор , который пассивно работает с переменным геометрия (т. е. форм-фактор) и предлагает высокий динамический диапазон. Предлагаемое устройство использует двухфазный теплообмен и новые геометрические особенности, которые адаптивно (и обратимо) регулируют коэффициент обзора в ответ на внутреннее давление (давление паров рабочей жидкости) в радиаторе. Радиатор складывается в каплевидную форму, чтобы свести к минимуму коэффициент обзора в холодном состоянии, и открывается, чтобы максимизировать коэффициент обзора в горячем состоянии. Этому способствует динамическая обратная связь между внутренним давлением внутри полых изогнутых панелей радиатора и самой конструкцией радиатора, которая позволяет изменять форму в пределах предела упругости материала, что приводит к пассивному, реверсивному, развертываемому и переменному обзору. -факторный излучатель, обеспечивающий распространение тепла по двухфазному механизму и дальнейший отвод за счет излучения. Исследование осуществимости концепции во время разработки с использованием структурного и теплового моделирования подтвердило жизнеспособность концепции.
II. Описание концепции радиатора MorphingРис. 1. Концептуальная схема двухфазного излучателя с переменным коэффициентом обзора, работающего от давления пара
Основная концепция двухфазного излучателя с переменным коэффициентом обзора (VVFTPR) проиллюстрирована на Рис. 1. Гибкая исполнительная секция ВВФТПР состоит из полой изогнутой панели, заполненной двухфазной рабочей жидкостью и герметизированной. Повышение температуры жидкости и, следовательно, давления пара приводит к повышению давления в полой изогнутой панели, что приводит к открытию конструкции радиатора, что увеличивает коэффициент обзора излучающих поверхностей.
На рис. 2 показана новая конструкция радиатора с изменяемой формой, сочетающая изменение формы в зависимости от температуры с высокой эффективной теплопроводностью за счет двухфазной теплопередачи. Радиатор непрерывно трансформируется между полностью закрытой и полностью открытой формой в зависимости от температуры изогнутой гибкой секции привода, управляемой давлением пара. Если температура окружающей среды радиатора увеличивается, температура источника тепла немного увеличивается для отвода тепла. Следовательно, давление паров рабочей жидкости во внутренней полости увеличивается, что приводит к раскрытию и распрямлению полой изогнутой панели, что приводит к открытию радиатора (т.е. увеличению коэффициента обзора). За счет увеличения коэффициента обзора снижается термическое сопротивление окружающей среде и минимизируется повышение температуры источника тепла. Когда температура радиатора снижается, процесс меняется на обратный, так как давление пара внутри полой панели уменьшается. Когда это происходит, упругие свойства материала оболочки вынуждают конструкцию возвращаться в закрытое положение (коэффициент обзора уменьшается, и поэтому тепловое сопротивление окружающей среде увеличивается, сводя к минимуму снижение температуры источника тепла). При промежуточных температурах радиатор частично открыт 4 . Чувствительность к давлению пара можно оптимизировать, регулируя такие геометрические параметры, как толщина стенки и размер полости (зазора).
4 Хотя этот аспект схож с концепцией радиатора на основе сплава с памятью формы (SMA). Радиаторы SMA на самом деле не используют двухфазную передачу тепла. Однако предлагаемый развертываемый радиатор с переменным коэффициентом обзора имеет динамическую обратную связь от внутреннего давления, вероятно, будет более эффективным (поскольку он использует двухфазный теплообмен) и предлагает высокий динамический диапазон.
Рис. 2. Иллюстрация результатов теплового структурного анализа, показывающая изменение формы и температуры радиатора при изменении температуры радиатора.
Компания ACT продемонстрировала адаптивный радиатор, работающий от давления пара, способный обеспечить динамический диапазон 37:1. На рис. 3 показан самый последний прототип VVFTPR компании ACT во время эксперимента, в котором тепло подавалось на внешнюю поверхность прототипа вдоль центральной линии через тепловую трубу, передающую тепло из удаленного места.
Рис. 3. Изображения, полученные во время экспериментальных испытаний прототипа № 5, на которых показан температурный график 9.0010
Предлагаемый радиатор с переменным коэффициентом обзора, управляемый давлением пара, имеет следующие характеристики:
- Высокий тепловой динамический диапазон: Моделирование и экспериментальная работа показывают, что предложенная геометрия может обеспечить тепловой динамический диапазон 37:1. Будущие конструкции могут дополнительно увеличить максимальный динамический диапазон, что приведет к улучшению теплового контроля. На рис. 4 показана теоретическая конструкция радиатора, способная обеспечить температурный диапазон изменения 37:1.
- Пассивный контроль температуры : Предлагаемая концепция использует давление паров для пассивного изменения формы радиатора без необходимости использования внешнего источника питания, оборудования или механизма управления.
- Fast Response : Предлагаемый радиатор трансформируется в зависимости от давления пара внутри полой изогнутой панели. Экспериментальные данные доказывают, что поведение радиатора с переменным коэффициентом обзора в основном зависит от температуры. Временная шкала морфинга из-за изменений давления пара почти мгновенна по сравнению с изменениями температуры материала стенки из-за проводимости и тепловой инерции.
- Реверсивный и высокопрочный : Предлагаемый радиатор меняет форму, используя деформацию материала в области упругости и меньше предела выносливости. Таким образом, деформация и результирующее изменение формы полностью обратимы.
- Высокая эффективность радиатора : Области радиатора, содержащие двухфазные жидкости, будут по существу изотермическими. VVFTPR может предложить повышение эффективности по сравнению с радиаторами с тепловыми трубками с 0,85 до почти единицы. В дальнейшей работе вся панель радиатора может быть построена как двухфазный объем со сверхвысокой эффективной теплопроводностью. Для предложенной базовой геометрии такое повышение эффективности позволит увеличить отвод тепла на 18 % при сохранении динамического диапазона 37:1.
Рис. 4. Изображения VVFTPR с развернутыми секциями, обеспечивающими почти нулевой коэффициент обзора в закрытом состоянии, с указанием коэффициента обзора при соответствующих значениях внутреннего давления
III. Метод проектирования и теоретический анализ A. Исследование конструкцииДля проектирования VVFTPR, способного поддерживать температуру корня радиатора в заданном диапазоне, было выполнено параметрическое структурное исследование для прогнозирования влияния параметров геометрического дизайна на взаимосвязь между внутренними поведение давления и открытия базовой линии VVFTPR. Двумерная (2D) структурная модель базового VVFTPR была создана для исследования возможности использования различных легкодоступных материалов для прототипирования на этапе I. 2D-модель использовалась для оценки деформации и угла раскрытия, которые могут быть достигнуты для VVFTPR. для заданных наборов расчетных параметров. При увеличении давления создается результирующая сила в направлении нормали к внешней стенке, которая уравновешивается жесткостью материала оболочки и сопротивлением изгибу.
Базовая модель использовалась для исследования взаимосвязи между внутренним давлением и углом раскрытия для простой геометрии VVFTPR, состоящей из двух концентрических цилиндрических стенок, которые должны быть соединены и герметизированы по всем внешним краям. Прямые панели радиатора будут прикреплены к концам ВВФТПР, а прямые секции радиатора будут касаться гибкой секции срабатывания с переменным коэффициентом обзора, которая состоит из цилиндрической оболочки с внешним углом θ, немного превышающим 360° в закрытая конфигурация. На рис. 5 показан двухмерный вид базовой геометрии. Чтобы уменьшить размер модели, прямой участок опускается, а модель разрезается пополам по центральной линии симметрии.
Рисунок 5. Слева: Вид базовой геометрии VVFTPR с показанным углом θ. Справа: Эскиз базовой геометрии для структурного исследования, иллюстрирующий ключевые параметры
ACT исследовал влияние различных параметров геометрии базовой линии VVFTPR на чувствительность открытия давление с помощью структурного моделирования в Abuqus Simulia. Чтобы исследовать влияние толщины стенки, толщина стенки варьировалась от 0,010 дюйма (0,254 мм) до 0,020 дюйма (0,508 мм) при неизменной остальной геометрии. Как и ожидалось, минимизация толщины стенки максимизирует чувствительность открытия радиатора при увеличении внутреннего давления в гибкой оболочке VVFTPR, поскольку конструкция менее жесткая. Эта взаимосвязь показана на рисунке 6. Чувствительность к открытию сильно зависит от толщины стенки.
Рисунок 6. Результирующие формы базовой линии VVFTPR в зависимости от давления и толщины стенки
На рисунке 6 показан угол раскрытия базовой линии VVFTPR с начальным большим радиусом 4 дюйма (10,2 см) при давлении до 5 фунтов на кв. дюйм (34,5 кПа). ) внутреннее давление. Для каждой толщины стенки существует предел деформации, при котором напряжение в материале стенки превышает предел текучести, вызывая пластическую деформацию. На рис. 7 показано угловое изменение большого радиуса 4 дюйма (10,2 см) VVFTPR по отношению к внутреннему давлению для различных значений толщины стенки. Представленные здесь результаты показывают только случаи, когда предел текучести не превышается, а деформация является упругой.
Рис. 7. Угловое изменение при различной толщине стенки для большого радиуса 4 дюйма (10,2 см) VVFTPR
В ходе структурного исследования было изучено влияние большого радиуса на поведение морфинга, чтобы получить представление о масштабируемости VVTPR для приложений требуются радиаторы меньшего и большего размера. Если все остальные параметры остаются постоянными, чувствительность морфинга увеличивается по мере увеличения большого радиуса. Чтобы сохранить эффективную чувствительность открытия при уменьшении большого радиуса, можно уменьшить толщину стенки. В структурном исследовании изучались значения большого радиуса в диапазоне от 1 дюйма (2,54 см) до 4 дюймов (10,16 см). Масштабирование до больших больших радиусов выполняется просто, потому что чувствительность морфинга увеличивается с увеличением большого радиуса. Однако по мере уменьшения большого радиуса до 1 дюйма (2,54 см) чувствительность к трансформации снижается, и может потребоваться уменьшение толщины стенки ниже значения, способного обеспечить структурную поддержку и сдерживание давления.
B. Выбор рабочей жидкостиРабочая жидкость внутри полых панелей выбирается на основе давления паров в требуемом температурном диапазоне для терморегуляции, а также ее совместимости с материалом радиатора. Во-первых, рабочее тело должно быть выбрано таким образом, чтобы давление паров при минимальной температуре приводило к закрытой форме радиатора, исходя из баланса сил с материалами стенок. Давление пара при максимальной температуре должно сдерживаться материалами оболочки при конфигурации формы с максимальным коэффициентом обзора без создания напряжения, превышающего предел усталости материала. Поведение открытия между этими двумя точками будет зависеть от кривой насыщения рабочей жидкостью между открытой и закрытой конфигурациями, следовательно, выбор рабочей жидкости можно использовать в качестве конструктивного параметра для оптимизации чувствительности или ограничения максимального диапазона открытия. До сих пор во время экспериментов в качестве рабочей жидкости использовался метанол, так что эксперименты можно было проводить в условиях окружающей атмосферы. Рабочие жидкости, совместимые с эластичными материалами оболочки, такими как нержавеющая сталь и титановые сплавы, являются подходящими жидкостями-кандидатами. В зависимости от диапазона регулирования температуры рабочими жидкостями могут быть пропилен, гидрофторуглероды, аммиак, спирты, ацетон или вода.
C. Выбор материала оболочкиБыл начат обзор материалов, которые можно использовать для изготовления оболочки VVFTPR, чтобы выбрать материал-кандидат для первоначального прототипирования и определить потенциальные материалы для будущего строительства. Структурные и термические свойства каждого материала являются важными факторами, поскольку материал должен выдерживать большую степень упругой деформации, демонстрировать длительный срок службы и легко обеспечивать передачу тепла от источника к радиатору. С точки зрения тепловых характеристик теплопроводность материала оболочки должна быть как можно выше.
Обычно большинство пружин изготавливают из стали из-за благоприятных упругих свойств и низкой стоимости. В частности, аустенитные нержавеющие стали, такие как 304, обычно используются для изготовления пружин. Кроме того, предел текучести материала оболочки должен быть высоким, чтобы наиболее деформированные области гибкой детали могли оставаться эластичными в течение всего срока службы детали. Нержавеющие стали и титановые сплавы имеют предел выносливости, при котором количество циклов деформации до того, как деталь выйдет из строя из-за усталости, практически бесконечно, если максимальное напряжение удерживается ниже определенного значения. Для достижения длительного срока службы изделия и обеспечения максимальной чувствительности VVFTPR к открытию отношение предела текучести к модулю упругости должно быть как можно выше.
Еще одним важным критерием выбора материала оболочки является совместимость с рабочими жидкостями. На протяжении многих лет компания ACT тестировала оболочку тепловых трубок и совместимость рабочей жидкости для многочисленных комбинаций материалов, чтобы квалифицировать совместимость материалов. В результате ACT располагает данными, подтверждающими или опровергающими совместимость некоторых рабочих жидкостей и материалов оболочки.
D. Термический анализДля определения взаимосвязи между формой и излучением 3D-радиатора были созданы модели автоматизированного черчения (САПР) и использовалось программное обеспечение Autodesk CFD для расчета коэффициента обзора внутренних поверхностей относительно внешняя среда. На рисунке 8 показаны некоторые примеры геометрии САПР, используемые для расчета коэффициента обзора в зависимости от формы VVFTPR, где поверхности с изменяющейся площадью (грань в форме капли и грань с верхним отверстием) будут открыты для излучения в космос. Во время этого анализа минимальный коэффициент обзора, когда форма закрыта, может все еще быть относительно значительным, но будущие разработки будут включать в себя закрытие лица в форме слезы и минимизацию коэффициента обзора почти до нуля.
Рис. 8. Пример геометрии CAD для расчета коэффициента обзора в зависимости от формы VVFTPR
Для определения динамического диапазона VVFTPR были рассчитаны тепловые нагрузки для минимального и максимального коэффициента обзора. В обоих случаях излучение в космос, конечный поглотитель тепла, было явлением, ограничивающим передачу тепла. То есть работа двухфазного резонатора была способна передавать большую тепловую нагрузку, не выходя за пределы тепловых труб для двухфазного радиатора, чем могла излучаться (с аммиаком в качестве рабочего тела). Минимальный коэффициент обзора для излучающей (внутренней) части VVFTPR предполагался равным нулю, когда VVFTPR закрыт, поскольку для полного закрытия конструкции будет включен изолирующий экран. Коэффициент обзора отражающей поверхности (внешней поверхности) излучателя принимается равным единице как в закрытой, так и в открытой конфигурации, но излучательная способность этой поверхности мала. Потери тепла от радиатора рассчитываются для условия, когда радиатор имеет низкую температуру и находится в закрытом состоянии. Этот расчет показан в уравнении 1, 9.0010
(1)
где ε изоляция — это коэффициент излучения снаружи, который принимается равным 0,03. η — эффективность ребер радиатора, которая принимается равной 0,85, поскольку тепловые трубки будут использоваться для равномерного распределения тепла по площади панелей радиатора. σ — постоянная Стефана-Больцмана. внешний — это площадь внешней поверхности VVFTPR. Для этого наихудшего случая холодного состояния температура выживания радиатора T радиатора принимается равной 233 K (-40 °C), а температура стока принимается равной 70 K (-203 °C). Вопрос 9Значение 0234 loss , рассчитанное при этих температурах, представляет собой минимальное количество тепла, которое должно выделяться для выживания электронных компонентов. Для расчета максимального рассеивания тепла радиатором, когда скорость тепловыделения и температура радиатора максимальны, используется уравнение 2,
(2)
, где Q потери вычисляются при новых температурах. Максимально допустимая температура радиатора принимается равной 293 К (20 °С), а максимальная температура стока принимается равной 230 К (-43 °С). Коэффициент обзора, используемый для этого расчета, представляет собой максимальный коэффициент обзора, полученный во время структурного моделирования, который составляет 0,878.
(3)
Исходя из минимальной аварийной тепловой нагрузки и максимальной эксплуатационной тепловой нагрузки рассчитывается динамический диапазон.
В таблице 1 приведены температуры, использованные для расчета этих тепловых нагрузок, а также минимальные и максимальные тепловые нагрузки. Это означает, что VVFTPR может достичь динамического диапазона 37: 1, если он разработан с учетом ограничений по материалам и изготовлению, наложенных во время проекта SBIR Phase I. То есть геометрические параметры, такие как толщина стенки, используемые в этой теоретической оценке, ограничены текущими производственными возможностями ACT. Благодаря дополнительной разработке и усовершенствованию производственных процессов чувствительность открытия и, следовательно, динамический диапазон могут быть улучшены. Кроме того, следует отметить, что динамический диапазон 37:1 рассчитан консервативно, поскольку температура изолированной стороны радиатора считается равной температуре излучающей стороны радиатора. Если MLI используется на неизлучающей стороне, то внешняя поверхность MLI будет более холодной, и, следовательно, потери будут дополнительно снижены.
Таблица 1. Параметры миссии для определения динамического диапазона
T радиатор | T раковина | Q | Миссия | |
[К] | [К] | [Вт] | ||
Минимум | 233 | 70 | 5,7 | Выживание |
Максимум | 293 | 230 | 211,4 | Операция |
Конструкция VVFTPR может быть изменена для достижения различных диапазонов регулирования температуры с различной геометрией, материалами и рабочими жидкостями. Например, описанная здесь базовая конструкция может использовать другую толщину стенок или другие геометрические параметры и использовать ту же рабочую жидкость, что приведет к созданию устройства с другой скоростью открытия по отношению к давлению пара и другим максимальным коэффициентом обзора. Это привело бы к другому диапазону регулирования температуры. В качестве альтернативы одна и та же конструкция может использоваться для разных рабочих жидкостей. Все конструкции требуют одинаковых диапазонов давления и приводят к одинаковым диапазонам коэффициента обзора, но диапазон температур насыщения каждой жидкости будет разным. Конструкцию VVFTPR можно оптимизировать для работы в желаемом диапазоне температур и тепловой мощности путем выбора соответствующей рабочей жидкости и геометрических параметров.
IV. Проверка концепции ПрототипированиеРис. 9. Изображение прототипа в открытом положении во время эксперимента
Настольная демонстрация проверки концепции была завершена изготовлением прототипа VVFTPR и повышением давления во внутренней полости, чтобы открыть форму радиатора, тем самым увеличив обзор фактор. На рис. 10 показан прототип ВВФТПР в открытой конфигурации в ходе эксперимента, в котором тепло подавалось на внешнюю поверхность гибкого двухфазного участка вдоль осевой линии через тепловую трубу. На поверхность гибкого двухфазного участка устанавливались термопары, и в ходе экспериментов регистрировались температуры стенок. Датчики смещения располагались в центральной плоскости симметрии излучателя и прикреплялись к точкам на излучателе, чтобы во время экспериментов можно было измерить деформацию.
Записанные значения смещения были переведены в соответствующий угол между секциями плоской панели радиатора и использованы для расчета коэффициента обзора. В ходе экспериментальных испытаний было достигнуто раскрытие радиатора, соответствующее максимальным прогнозируемым деформациям посредством структурного моделирования, что доказывает, что значения коэффициента обзора до 0,88 достижимы для производимых в настоящее время конструкций VVFTPR.
Прототип, показанный на рис. 10, нагревался и охлаждался с различной скоростью во время измерения смещения. На рис. 11 показан график, на котором прототип нагревался и охлаждался в течение 4 циклов. Скорость нагрева составляла 100 Вт, затем 125 Вт, затем 175 Вт для последних двух циклов. В течение первых 3-х циклов прототип охлаждался за счет принудительной конвекции с помощью вентилятора, в течение последнего цикла прототип охлаждался за счет естественной конвекции. Также были проведены дополнительные циклы с мощностью 250 Вт, и воспроизводимое преобразование было продемонстрировано в течение 19 циклов.циклы.
Рис. 10. График температуры и смещения прототипа VVFTPR при различных скоростях нагрева и охлаждения
На рис. 3 показаны изображения, полученные во время эксперимента с использованием этого прототипа, с графиком зависимости температуры от времени в ходе эксперимента. Приблизительные температуры жидкости указаны на рисунке. В левой колонке показано открытие радиатора при повышении температуры, а в правой колонке показано закрытие радиатора при снижении температуры. На рис. 12 показано смещение в зависимости от температуры во время этих экспериментов по термоциклированию. Во всех экспериментах наблюдается некоторая степень гистерезиса при охлаждении по отношению к нагреву. Каждый эксперимент, в котором VVFTPR нагревается, показывает одно и то же смещение для любой заданной температуры, несмотря на различную скорость нагрева. Данные во время охлаждающей части циклов показывают более широкий диапазон смещения для любой температуры, но этот эффект может быть не связан со скоростью охлаждения. Предварительные эксперименты показывают, что форма излучателя является функцией температуры и не зависит от времени, не проявляя признаков запаздывания или мертвой зоны.
Рис. 11. График экспериментов по тепловому наддуву с различными скоростями нагрева и охлаждения
V. Возможные дальнейшие шаги по развитиюАвторы планируют продолжить разработку концепции и максимально использовать ее преимущества. На данный момент разумная осуществимость была продемонстрирована. Дальнейшие этапы полной разработки и оптимизации будут включать:
- Оценка пары материал/рабочая жидкость
- Оптимизация геометрии
- Сдерживание давления в плоской части
- Стратегии сварки
- Оптимизация внутренней структуры фитиля
Эти шаги приведут к повышению чувствительности и, следовательно, увеличению диапазона изменения. Повышение развертываемости также будет результатом этого развития. На этом этапе может быть создано множество вариантов конструкции радиатора на основе предложенной концепции и интересных конфигураций. Например, на рис. 12 показана возможная конфигурация/архитектура радиатора, полностью основанная на разработанной концепции и состоящая из нескольких панелей радиатора и соединений, установленных последовательно. Тепло передается и распределяется двухфазным способом, если прямые участки полые с фитильной конструкцией (в дополнение к соединениям), или с помощью конденсатора LHP, если прямые участки сплошные. Авторы намерены разработать уменьшенную версию такой архитектуры в ближайшем будущем.
Рис. 12. Переменный коэффициент обзора и развертываемый радиатор с приводом от давления пара в конфигурации с несколькими панелями.
VI. ЗаключениеИнновационный прототип развертываемого двухфазного радиатора с переменным коэффициентом обзора был разработан и изготовлен компанией Advanced Cooling Technologies, Inc. В отличие от ранее разработанных материалов радиатора с изменяемой геометрией 6 , эффективно передавать тепло от корня радиатора к излучающим поверхностям, максимально увеличивая их эффективность. Форма радиатора постоянно меняется, чтобы регулировать коэффициент обзора в ответ на изменения температуры. Таким образом, при изменении тепловой нагрузки или условий теплоотвода достигается пассивный контроль температуры, и может поддерживаться диапазон контроля температуры. Результаты термического и структурного анализа были объединены, чтобы предсказать, что VVFTPR может достигать значений коэффициента обзора в диапазоне от почти нуля до 0,9.0, что соответствует коэффициенту теплового диапазона до 37:1 на основе современных технологий изготовления. Прототипы были изготовлены и экспериментально испытаны, чтобы продемонстрировать поведение VVFTPR при изменении формы и доказать, что конфигурации с максимальным коэффициентом обзора, оцененные во время структурного моделирования, осуществимы.
БлагодарностиЭтот проект финансируется Центром космических полетов Маршалла НАСА в рамках программы SBIR Phase II (контракт 80NSSC18P2187). Технический наблюдатель – Джефф Фармер. Особая признательность Филу Текстеру и Бренту Беннихоффу за помощь в изготовлении прототипа.
Ссылки1 Юхас, А. Дж., и Петерсон, Г. П., «Обзор усовершенствованных радиаторных технологий для систем энергоснабжения космических кораблей и управления температурным режимом», Технический меморандум НАСА 4555, июнь 1994 г.
2 , R Schlitt 4 ., Бодендик Ф., Писториус А., Маркештейн Э., «Разработка углепластикового радиатора с интегрированной петлевой тепловой трубкой», Наука и технология тепловых труб – международный журнал, Vol. 2010. Т. 1. С. 261–277.
3 Вишваната, Н. и Мурали, Т., «Новый механизм с использованием сплава с памятью формы для управления солнечными клапанами спутника INSAT-2E», Материалы 34-го симпозиума по аэрокосмическим механизмам, стр. 241–251, 2000 г.
4 Кристофер Л. Бертань, Рубик Б. Шет, Даррен Дж. Хартл и Джон Д. Уиткомб, «Моделирование связанных термомеханических взаимодействий в трансформирующихся радиаторах», Труды SPIE, том 9431, 94312F, 2015.
5 Дорожные карты технологий НАСА, TA 14: Системы терморегулирования, июль 2015 г.
6 К.Л. Бертань, Т.Дж. Cognata, R.B. Sheth, CE Dinsmore, D.J. Хартл, «Испытания и анализ концепции морфирующего радиатора для терморегулирования пилотируемых космических аппаратов», Прикладная теплотехника, 2017.
Мощность радиаторов отопления, как определить своими руками, инструкции, фото, видео
Грамотно устроенная система отопления обеспечит жилье необходимой температурой и будет комфортно во всех помещениях в любую погоду. Но чтобы передать тепло воздушному пространству жилых помещений, нужно знать необходимое количество батарей, не так ли?
Рассчитать это поможет расчет радиаторов отопления, основанный на расчетах тепловой мощности, требуемой от установленных отопительных приборов.
Вы когда-нибудь делали такой расчет и боитесь ошибиться? Мы поможем вам разобраться в формулах — в статье описан подробный алгоритм расчета, проанализированы значения отдельных коэффициентов, используемых в процессе расчета.
Чтобы вам было легче разобраться в тонкостях расчета, мы подобрали тематические фотографии и полезные видео, объясняющие принцип расчета мощности отопительных приборов.
Упрощенный расчет компенсации теплопотерь
Любые расчеты основаны на определенных принципах. В основу расчета необходимой тепловой мощности батарей положено понимание того, что исправно функционирующие отопительные приборы должны полностью компенсировать тепловые потери, возникающие при их эксплуатации из-за особенностей отапливаемых помещений.
Для жилых помещений, расположенных в хорошо утепленном доме, расположенном, в свою очередь, в умеренном климатическом поясе, в ряде случаев подходит упрощенный расчет компенсации тепловых утечек.
Для таких помещений расчеты производятся исходя из нормативной мощности 41 Вт, необходимой для обогрева 1 куб. м. жизненное пространство.
Чтобы тепловая энергия, выделяемая отопительными приборами, направлялась именно на обогрев помещений, необходимо утеплить стены, чердаки, окна и полы.
Формула для определения тепловой мощности радиаторов, необходимой для поддержания оптимальных условий проживания в помещении, выглядит следующим образом:
Q = 41 х V ,
Где V – объем отапливаемого помещения в кубометрах.
Полученный четырехзначный результат можно выразить в киловаттах, уменьшив его из расчета 1 кВт = 1000 Вт.
Параметры биметаллических радиаторов
Технические параметры биметаллических радиаторов определяются особенностями их конструкции – в легком алюминиевом корпусе находится стержень из антикоррозионной стали, контактирующий с теплоносителем. Такой симбиоз материалов придает им антикоррозийную стойкость, высокую теплоотдачу и малый вес, что облегчает процесс монтажа.
К недостаткам относятся высокая стоимость и низкая пропускная способность.
Исходя из вышеизложенного, полуметаллические радиаторы можно использовать для частных домов с индивидуальным отоплением, но только биметаллические радиаторы выдерживают агрессивную водную среду центрального отопления.
Конструктивно данные виды отопительных приборов делятся на монолитные и секционные. Первые в два раза превосходят второй тип по сроку службы и в три раза – по рабочему давлению. И, как следствие, по себестоимости.
Практический пример расчета тепловой мощности
Исходные данные:
- Угловая комната без балкона на втором этаже двухэтажного шлакоблочного оштукатуренного дома в безветренном районе Западной Сибири.
- Длина помещения 5,30 м Х ширина 4,30 м = площадь 22,79 кв.м.
- Ширина окна 1,30 м Х высота 1,70 м = площадь 2,21 кв.м.
- Высота помещения = 2,95 м.
Последовательность расчета:
Площадь помещения в кв.м.: | S = 22.79 |
Window orientation – south: | R = 1. 0 |
The number of external walls is two: | K = 1.2 |
Insulation of external walls – standard: | U = 1,0 |
Минимальная температура – до -35 ° C: | T = 1,3 |
Высота комнаты – до 3 м: | H = 1,05 | H = 1,05 | 8H = 1,05 | 8.W = 1,0 |
Рамы – стеклопакеты однокамерные: | G = 1,0 |
Соотношение площадей окна и комнаты – до 0,1: | Х = |
Положение радиатора – под подоконником: | Y = 1,0 |
Радиатор. Q = 2 986 Вт |
Ниже описано, как рассчитать количество секций радиатора и необходимое количество батарей. Он основан на полученных результатах тепловой мощности с учетом размеров предполагаемых мест установки отопительных приборов.
Вне зависимости от результата, в угловых комнатах рекомендуется оборудовать радиаторами не только оконные ниши. Батареи следует устанавливать у «глухих» наружных стен или у углов, подвергающихся наибольшему промерзанию из-за уличного холода.
Как выбрать чугунный радиатор
На какие характеристики радиатора следует обратить внимание при выборе радиаторов? В первую очередь это:
- рабочее давление;
- рабочая температура в системе отопления, для которой рассчитывается теплопередача;
- теплопередача;
- площадь теплоизлучающей поверхности;
Первый из этих показателей определяет давление теплоносителя (воды), которое может выдержать радиатор. Чем выше этажность здания, тем оно должно быть прочнее. Второй обозначает, с какой температурой теплоноситель подается в радиатор и с какой выходит из него для последующего нагрева. Итак, показатель 90/70 означает, что вода, поступающая в первую секцию батареи, имеет температуру 90 градусов. а на выходе из его последней секции – 70 град. Теплоотдача – это показатель, показывающий, сколько тепла отдает секция радиатора за время остывания воды в ней от температуры на входе (например, 90 градусов) до температуры на выходе (например, 70 градусов).
Отдельного внимания заслуживает форма приобретенного радиатора. Не секрет, что предубеждение к чугунным радиаторам вызвано тем, что при упоминании о них многие вспоминают знакомую с детства «чугунную гармошку» под окном. Ведь обычные «ребристые батареи» имеют небольшую и малоэффективную площадь нагрева (теплообмена) — так для сечения привычного радиатора МС 140 этот показатель равен 0,23 кв. м.
Часть тепла поступающего теплоносителя теряется «по пути» от котла отопления до батареи водяного отопления, т.к. для таких систем используются массивные подводящие трубы. Кроме того, для нагрева воды до расчетной температуры 90 градусов. подходят только паровые котлы большой мощности. Поэтому в частных домах система отопления иногда работает в более низком температурном режиме.
Однако современные чугунные радиаторы как по внешнему виду, так и, соответственно, по параметрам могут существенно отличаться от своих предшественников – «гармошек». Сохраняя все достоинства традиционных чугунных батарей, он лишен многих их недостатков. Итак, радиатор минского производства 1К60П-500 собран из плоских пластин, каждая из которых имеет небольшую площадь нагрева (0,116 м) и малую мощность (70 Вт).
Однако собранный из них радиатор, по сути, представляет собой нагревательную панель, которая (в отличие от ребристых батарей) дает широкий направленный тепловой поток. Другие производители также предоставляют широкий выбор таких радиаторов.
Преимущество современных чугунных радиаторов в том, что многие модели позволяют собирать батареи необходимой мощности из отдельных секций.
Радиаторы, реализуемые в сборе (например, Коннер, СТИ Бриз и некоторые другие) формируются из числа секций, предназначенных для помещений различной площади на основании инженерного расчета необходимой тепловой мощности на квадратный метр помещения.
Например, вы можете приобрести один радиатор по 4-6-8-12 секций или два радиатора по 4 (6, 8 секций).
Удельная тепловая мощность батарейных секций
Еще до выполнения общего расчета необходимой теплоотдачи отопительных приборов необходимо решить, какие сборно-разборные батареи из какого материала будут установлены в помещениях.
Выбор должен основываться на характеристиках системы отопления (внутреннее давление, температура теплоносителя). При этом не следует забывать о сильно различающейся стоимости покупаемой продукции.
О том, как правильно рассчитать необходимое количество разных батарей для отопления, пойдет речь далее.
При температуре теплоносителя 70°С стандартные 500 мм секции радиаторов из разнородных материалов имеют неодинаковую удельную теплоотдачу «q».
- Чугун – q = 160 Вт (удельная мощность одной чугунной секции). Радиаторы из этого металла подходят для любой системы отопления.
- Сталь – q = 85 Вт … Стальные трубчатые радиаторы выдерживают самые суровые условия эксплуатации. Их секции красивы своим металлическим блеском, но обладают наименьшим тепловыделением.
- Алюминий – q=200 Ватт … Легкие, эстетичные алюминиевые радиаторы следует устанавливать только в автономных системах отопления, в которых давление менее 7 атмосфер. А вот по теплоотдаче их секции не имеют себе равных.
- Биметалл – q = 180 Ватт … Внутренности биметаллических радиаторов изготовлены из стали, а теплоотводящая поверхность из алюминия. Эти батареи выдерживают все виды давления и температурных условий. Удельная тепловая мощность биметаллических секций также на высоте.
Приведенные значения q достаточно условны и используются для предварительных расчетов. Более точные цифры содержатся в паспортах приобретаемых отопительных приборов.
Галерея изображений
Фото из
Преимущества секционного принципа сборки
Основные правила сборки отопительных приборов
Устаревшие чугунные аккумуляторные секции
Окрашенные порошковой краской секции
Сколько весит1 медный радиатор ВАЗ 2?
Если на старой копейке сдох родной медный радиатор, найти ему замену очень просто и не так дорого, как если брать оригинальный.
Можно смело ставить алюминий для ВАЗ 2103-2106.
Лично я брал себе от производителя LUZAR.
Доработка требует докупки патрубков (квасцы 2106), прямых рук и пары часов свободного времени.
Экономия финансов в 2,5 раза.
Код Luzar LRc 0106
OEM номер: 2106-1301012
Размер сердечника, мм: 450*342*32
Где можно купить
Применяемость для А/М
Торговая марка – LRc – Luzar Radiator Cooler
Мы производим сотни моделей радиаторы охлаждения двигателя для автомобилей. Радиаторы выпускаются практически для любых марок на рынке России, различных модификаций, с различными моторами. Постоянно в разработке десятки новых радиаторов охлаждения – для популярных и новейших автомобилей, которые можно купить в России и СНГ.
Радиатор системы охлаждения Теплообменник, предотвращающий перегрев двигателя во время работы. Радиатор охлаждения рассеивает лишнее. подробнее
Торговая марка – LRc – Luzar Радиатор радиатора
Мы производим сотни моделей радиаторов охлаждения двигателя для автомобилей. Радиаторы выпускаются практически для любых марок на рынке России, различных модификаций, с различными моторами. Постоянно в разработке десятки новых радиаторов охлаждения – для популярных и новейших автомобилей, которые можно купить в России и СНГ.
Радиатор системы охлаждения Теплообменник, предотвращающий перегрев двигателя во время работы. Радиатор охлаждения отводит лишнее тепло от двигателя автомобиля через охлаждающую жидкость, тем самым поддерживая оптимальную температуру 85-100°С (в зависимости от марки автомобиля).
По конструкции радиаторы системы охлаждения от LUZAR
Радиаторы охлаждения LUZAR можно разделить на три типа:
- Трубчато-пластинчатые, сборные, алюминиевые. Состоит из алюминиевых пластин, через которые проходят алюминиевые трубки, по которым течет теплоноситель. Баки на этих радиаторах сделаны из пластика. Радиаторы охлаждения этого типа применяются для двигателей с небольшой кубатурой – из-за ограниченной теплоотдачи; обладают наилучшей жесткостью и малым весом, а также наименьшей стоимостью.
- Лента трубчатая несобранная (паяная), алюминий. Гофрированная алюминиевая лента в таком радиаторе расположена между алюминиевыми плоскоовальными трубками. Баки-радиаторы этого типа могут изготавливаться как из пластика (наиболее распространенный), так и из металла (чаще всего используются радиаторы охлаждения грузов). Конструкция неразборных (паянных) алюминиевых радиаторов охлаждения наиболее универсальна, что позволяет создавать теплообменники с любыми заданными характеристиками. Они имеют малый вес и относительно высокую жесткость, а также оптимальную цену.
Лента трубчатая несобранная (паяная), медно-латунная. Конструкция очень близка к типу 2 – между медными плоскоовальными трубками расположены медные полоски, сложенные в виде «гармошки». При этом баки на таких радиаторах охлаждения используются латунные — с целью повышения общей жесткости конструкции. Медные радиаторы охлаждения – благодаря высокой удельной теплоемкости меди – обладают отличными показателями теплопередачи. Однако из-за высокой мягкости меди радиаторы охлаждения из этого металла вынуждены иметь узкую трубку и большой интервал (шаг) между трубками, что накладывает серьезные ограничения на максимальную эффективность. Также у медных радиаторов самая высокая цена и самая низкая жесткость на кручение, изгиб и внутреннее давление. В связи с этим медные радиаторы «устарели» и постепенно выводятся из употребления.
LUZAR: гарантия и надежность
Мы производим радиаторы по стандартам производителей автомобилей. Каждое изделие проходит испытания избыточным давлением и агрессивной средой, чтобы на этапе производства можно было выявить коррозионные дефекты и протечки.
Продукция LUZAR распространяется через магазины-партнеры, список которых можно найти в разделе “Где купить?” Раздел. В этих же магазинах вы сможете обменять радиатор охлаждения, если обнаружите брак или несовместимость с вашим автомобилем.
На вопросы по производству, упаковке, установке и продаже отвечают наши менеджеры по телефону 8-800-555-8965.
Технические характеристики
Описание продукта
Группа по каталогу. Система охлаждения Двигатель
Описание Радиатор
ООО «Оренбургский радиатор» занимается разработкой, внедрением и серийным производством радиаторной продукции, которая используется в производстве тракторов, комбайнов, сельскохозяйственной техники, а также отечественных автомобилей и грузовики.
Уже среди выпускаемой продукции насчитывается более 500 наименований продукции, пользующейся спросом не только в России, но и за рубежом (в Белоруссии, Казахстане, Украине, Польше, Венгрии, Туркменистане, Германии, Чехии, Пакистане и др. .).
automotocity.com
Расчет количества секций радиатора
Сборно-разборные радиаторы из любого материала хороши тем, что отдельные секции можно складывать или убирать для достижения расчетной тепловой мощности.
Для определения необходимого количества «N» секций батарей из выбранного материала следуйте формуле:
N = Q/q ,
Где:
- Q = рассчитанная ранее необходимая тепловая мощность приборов для обогрева помещения,
- q = удельная тепловая мощность отдельной секции батарей, предназначенных для установки.
Рассчитав общее необходимое количество секций радиаторов в помещении, нужно понять, сколько батарей нужно установить. Этот расчет основан на сравнении размеров предполагаемых мест установки отопительных приборов и размеров батарей с учетом подачи.
элементы батареи соединяются ниппелями с разнонаправленной наружной резьбой с помощью радиаторного ключа, при этом в места соединений устанавливаются прокладки
Для предварительных расчетов можно вооружиться данными о ширине секций разных радиаторов:
- чугун = 93 мм,
- алюминий = 80 мм,
- биметалл = 82 мм.
При изготовлении сборно-разборных радиаторов из стальных труб производители не придерживаются определенных стандартов. Если вы хотите поставить такие аккумуляторы, следует подойти к вопросу индивидуально.
Вы также можете воспользоваться нашим бесплатным онлайн калькулятором для расчета количества секций:
Увеличенный радиатор охлаждения – DRIVE2
Всем привет, наконец-то мы воплотили нашу старую идею в металле, а точнее в меди. Увеличенный радиатор охлаждения.
Полный размер
В интернете, да и просто в личном общении много людей, которые жалуются на нагрев двигателей, особенно в горах. В основном это владельцы автомобилей «автомат» с разными моторами.
Решено начать с изготовления самого большого радиатора с тремя рядами сот (есть вариант с двумя) толщиной 70 мм по сотам (двухрядный имеет толщину 46 мм по сотам)
стандартный алюминий толщиной 35 мм в сотах.
Были опасения, что такая толщина не влезет в стандартный моторный отсек, но как оказалось все влезает, не без усилий конечно.
Ставим этот радиатор на патруль в комплектации с двигателем тд42т и АКПП. Технические данные автомобиля Лифт 2″, шины 35″ м/т, главные пары в редукторах 4.375.
Рассказ в мелких деталях здесь особого смысла не имеет, т.к. для товара будет составлена своего рода инструкция по установке с фото и отправлена тем, кто собирается устанавливать наш товар
Короче, нужно внимательно, без отслаивания, а совсем чуть-чуть, подогните нижние края “брызговиков” (арок) в районе нижней части радиатора, подрежьте диффузор в нескольких местах (если он сохранился) и подрежьте верхнюю и нижние патрубки охлаждения для компенсации толщины радиатора (в случае с двухрядным радиатором все проще).
Также мы провели тесты, повесив датчики температуры на входе и выходе радиатора, чтобы иметь объективную оценку происходящего и понять, стоит ли игра выделки и потраченных денег. И конечно оба взвешивали))). Стандартный радиатор имеет вес 8 кг. Медный 23 кг.
Для начала замерили работу штатного радиатора, затем увеличенного медного.
И так первое фото, это работа штатного радиатора, температура воздуха на улице минус 5
Второе фото, температура медного радиатора, температура наружного воздуха 0, к машине прицеплен прицеп с грузом 400 кг.
Полноразмерный
Равномерное движение на скорости 60-80 Стандартный радиатор.
Полноразмерный
Плавный ход на скоростях 60-80 Увеличенный радиатор
Полные
www.drive2.ru
Повышение эффективности теплообмена при обогреве помещения радиатором
3 900 наружная стена также интенсивно нагревается в области за радиатором. Это приводит к дополнительным ненужным потерям тепла.Для повышения эффективности отвода тепла от радиатора предлагается экранировать обогреватель с наружной стены теплоотражающим экраном.
На рынке представлены разнообразные современные теплоизоляционные материалы с фольгированной теплоотражающей поверхностью. Фольга предохраняет подогретый батареей теплый воздух от соприкосновения с холодной стеной и направляет его внутрь помещения.
Для корректной работы границы установленного отражателя должны превышать габариты излучателя и выступать на 2-3 см с каждой стороны. Зазор между утеплителем и поверхностью теплозащиты должен быть 3-5 см.
Для изготовления теплоотражающего экрана можно посоветовать Изоспан, Пенофол, Алуф. Из купленного рулона вырезается прямоугольник необходимых размеров и закрепляется на стене в месте установки радиатора.
Экран, отражающий тепло обогревателя, лучше всего крепить к стене силиконовым клеем или жидкими гвоздями
Рекомендуется отделять лист утеплителя от наружной стены с небольшим воздушным зазором, например, с помощью тонкой пластиковой решетки.
Если отражатель соединяется из нескольких кусков изоляционного материала, то стыки со стороны фольги должны быть проклеены металлизированным скотчем.
Радиаторы стальные
Отопительные приборы из стали представлены на рынке в широком ассортименте. Конструктивно они делятся на панельные и трубчатые.
В первом случае панель крепится на стену или на пол. Каждая часть состоит из двух сварных пластин, между которыми циркулирует теплоноситель. Все элементы соединяются точечной сваркой. Такая конструкция значительно увеличивает теплоотдачу. Для увеличения этого показателя несколько панелей соединяют между собой, но в этом случае батарея становится очень тяжелой – радиатор из трех панелей по весу равен чугуну.
Во втором случае конструкция состоит из нижнего и верхнего коллекторов, соединенных друг с другом вертикальными трубами. Один такой элемент может содержать максимум шесть трубок. Для увеличения поверхности радиатора несколько секций можно соединить вместе.
Оба типа являются прочными нагревательными приборами с хорошей теплоотдачей.
Радиаторы трубчатые стальные по конструктивному назначению могут изготавливаться в виде перегородок, лестничных ограждений, рам зеркал.
Таблица теплопередачи стальных радиаторов отопления размещена далее в статье.
Сильные и слабые стороны алюминиевых радиаторов
Перечень положительных характеристик алюминиевых батарей:
- Экономичность.
- Легкий вес. То, сколько весит алюминиевая батарея, значительно упрощает установку и снятие устройств.
- Возможность регулировки температуры.
- Самый высокий КПД среди всех бытовых радиаторных обогревателей.
- Презентабельный внешний вид, позволяющий использовать алюминиевые радиаторы как в обычных домах, так и в престижных заведениях.
Слабые стороны:
- Слабость стыковых швов (иногда возникают протечки).
- Неравномерное распределение тепла: в основном аккумулируется ребристой частью профилей.
- Слабая конвекционная циркуляция.
- Малый срок службы. Те же чугунные батареи служат гораздо дольше, чем 15-20 лет.
- Могут образовываться внутренние газы.
- Чрезмерная реакционная способность алюминия. Это самый большой недостаток данного типа батарей, из-за которого наличие малейших примесей в теплоносителе может спровоцировать разрушительные процессы на внутренних стенках.
- Низкая устойчивость к перепадам давления.
Учитывая все эти недостатки, сфера применения алюминиевых радиаторов ограничена автономными системами отопления, которые имеют стабильно низкое давление и химически нейтральный теплоноситель. Что касается установки батарей такого типа в обычных квартирах, то на это есть даже специальный запрет со стороны соответствующих органов.
Радиатор отопления, сравнение нескольких типов
для каждого из них есть определенные условия
- Секционный чугунный радиатор.
- Алюминиевый нагреватель.
- Биметаллические секционные нагревательные приборы.
Сравним разные типы отопительных приборов по параметрам, влияющим на их выбор и установку:
- Величина тепловой мощности отопительного прибора.
- При каком рабочем давлении. происходит эффективная работа устройства.
- Требуемое давление для опрессовки секций батареи.
- Занимаемый объем теплоносителя одной секцией.
- Каков вес обогревателя.
Следует отметить, что в процессе сравнения не следует учитывать максимальную температуру теплоносителя; высокий показатель этого значения позволяет использовать данные радиаторы в жилых помещениях.
В городских теплосетях всегда разные параметры рабочего давления теплоносителя, этот показатель необходимо учитывать при выборе радиатора, а также параметры испытательного давления. В загородных домах, в поселках с дачами теплоноситель практически всегда ниже 3 бар. а вот в городах централизованное отопление подается с давлением до 15 бар.