Алюминиевые батареи: Алюминиевые радиаторы отопления, технические характеристики, цены

Содержание

Алюминиевые радиаторы: плюсы, минусы, виды, характеристики

При строительстве частного дома очень важно уделить внимание радиаторам отопления, устанавливаемым в нем. От правильности такого выбора зависит теплота в вашем жилье. На рынке представлены различные вариации отопительных блоков. Недавно среди прочих появились алюминиевые радиаторы.

Содержание:

  • Плюсы алюминиевых радиаторов
  • Минусы
  • Виды алюминиевых радиаторов
  • Характеристики алюминиевых радиаторов
  • Расчет
  • Установка

Плюсы алюминиевых радиаторов

Важное качество алюминия – податливость, поэтому радиаторы из подобного материала экономичнее.

  • Небольшой вес. Радиаторы на основе алюминия гораздо проще транспортировать и устанавливать, нежели отопительные приборы из прочих металлов. Это связано с лёгкостью алюминия. Одна секция в весе не превышает полутора килограмм.
  • Повышенная теплоотдача. За счет повышенной теплоотдачи алюминия требуется меньший объем теплообменника для достижения нужной температуры в помещении.
  • Выдержка. Отопительный прибор способен выдержать температуру теплоносителя в 110 градусов.
  • Оптимальное соотношение цены и качества. Производить батареи из этого металла малозатратно, поэтому конечная стоимость становится ниже конкурентов.
  • Порошковая покраска. Компоненты входящие в краску на порошковой основе меньше подвергаются коррозии, поэтому такой радиатор не нуждается в перекраске на протяжении всего срока службы.
  • Привлекательный внешний вид. Алюминиевые отопительные приборы эстетично выглядят, поэтому они не портят уже сформированный интерьер. У прочих устройств дополнительно скрывают секции декоративными коробами и решетками для красоты.
  • Расстояние между осями. Находится в диапазоне 350 и 800 мм. Поэтому легко выбрать модель, подходящую под требуемую комнату.
  • Объем. Одна секция в объеме вмещает 0.25 – 0.5 л теплоносителя.

Минусы

Не подойдут для некоторых многоквартирных домов или же для их установки потребуется дополнительное оборудование.

  • Ненадежность. Секционные батареи менее надежные, в отличие от литых, особенно, если соединение деталей производилось без помощи профессионалов. Такое устройство со временем может дать утечку.
  • Чувствительность к воде. Если кислотно-щелочной баланс воды превышает 7-8, то алюминий вступает в реакцию с водой. Выделяемый в процессе водород может разорвать радиатор. Для избежания печальных последствий необходим воздухоотводчик.
  • Коррозия. Алюминий подвержен коррозии, это происходит в местах соединения с отопительными конструкциями. Для ее избежания некоторые производители наносят на внутреннюю часть антикоррозийный слой, или же для соединения используют хромовые переходники.
  • Боязнь гидроударов. Отопительные алюминиевые устройства ломаются от гидроударов. Для избежания прорывов необходимы гидрокомпенсаторы, которые обеспечат надежную защиту от резких скачков давления в системе отопления и уберегут установленный радиатор от разрыва и протекания. Установку такого прибора стоит доверить профессионалу.

Виды алюминиевых радиаторов

Несмотря на использование одного и того же металла, алюминиевые радиаторы отличаются друг от друга по методу производства. Батареи продаются литые, изготовленные методом экструзии и анодированного типа.

Литые алюминиевые радиаторы

Изготавливаются путем отливания в формах. Жидкий металл поступает в них по литьевым каналам. После кристаллизации, форму раскрывают, а секцию вынимают и оставляют остывать. Каждая секция делается отдельно, поэтому собранная батарея может состоять из нескольких составляющих.

Для производства чаще всего используют силумин – сплав, в котором, кроме алюминия, присутствуют элементы 12% кремневой добавки. Готовый прибор отопления выдерживает давление в 16 – 20 атмосфер. Каналы таких батарей крупные, позволяющие жидкости свободно циркулировать внутри системы.

Экструдирование

На заводе такие теплообменники делаются при помощи пресса, в 2 этапа. Сначала алюминиевому профилю придается форма половины секции. Изготавливают 2 таких экземпляра. Затем эти части свариваются друг с другом, образуя цельную часть.

В отличие от литья, такой радиатор выдерживает до 40 атмосфер, в зависимости от производителя и качества сборки. Отличие батарей, изготовленных методом экструдирования от литья – в стоимости. Первые стоят дешевле, но их невозможно усовершенствовать в процессе использования.

Радиаторы анодированного типа

Их изготавливают из предварительно очищенного металла. В процессе производства прибор подвергается процессу оксидирования, который изменяет структуру алюминия. Из-за этого такие радиаторы практически не подвержены коррозии.

На заводе элементы будущего отопителя соединяют муфтами, которые монтируются снаружи. Поэтому внутренняя сторона батареи – гладкая. Анодированные радиаторы отдают тепло лучше, чем прочие. Способны выдерживать давление до 70 атмосфер. Стоят дороже остальных видов.

Кроме способа производства, радиаторы еще делятся по целостности.

Сборные

Эта климатотехника изготавливается секционно. За счет этого регулируется длина конечного изделия. По просьбе клиента, её могут сделать под комнату. Отопительный прибор не должен превышать 70% длины оконного проема, под которым он установлен. Секции соединяются уже на месте установки.

Цельные

Изготавливаются сразу цельным блоком по существующим стандартам. Преимущество перед секционными – цена, так как для производства используется меньше металла.

Для помещений нестандартных размеров они не всегда подходят, так как показатель их теплоотдачи бывает выше или ниже требуемого. Из-за этого комната может недостаточно прогреваться.

Характеристики алюминиевых радиаторов

  • Расстояние между осями климатической техники. Это длина от середины верхнего до середины нижнего коллекторов (труб в отопительном приборе). Стандартно – величина 200-500 мм.
  • Рабочее (10-15 атмосфер) и опрессовочное давление (20-30 атмосфер). Первое выдерживает батарея при эксплуатации, а второе – при опрессовке. Есть вероятность прорыва некачественного отопительного прибора при проведении таких испытаний.

Расчет

Для секционных

Если требуемая комната нестандартных размеров, то лучше выбрать секционный прибор отопления. Количество сегментов нужно правильно рассчитать, чтобы не было лишних затрат, или нехватки тепла.

По объему. Производится он в следующей последовательности:

  1. Определение потребности тепла по нормам. По строительным нормам, количество тепла, необходимое для помещения, равно 41 ватт на метр кубический, однако эти расчеты относятся к утепленным зданиям. Если здание утеплено плохо, тогда показатель нужно повысить до 50 Вт/м3. Если на стенах помещения есть слой утеплителя, а еще установлены пластиковые окна –  показатель снижают до 30 – 34 Вт/м3.
  2. Рассчитайте необходимое количество секций. Первым делом вычисляют объем помещения, которому необходимы отопители.
  3. Будем считать на примере комнаты шириной 4 м, длиной 5 м и высотой потолка 3 м. Перемножаем значения и получаем объем в 60 м3.
  4. Определение потребности тепла для квартиры. Квартира – со средним утеплением без дополнительного слоя. Значение для нее приближается к 41 Вт/м3. Перемножаем показатель с объёмом помещения, в результате получается 2460 Вт. Такое количество энергии надо, чтобы обеспечить теплом вашу комнату.
  5. Обратите внимание на количество тепла, выделяемое одной секцией выбранной вами батареи. Современные образцы выдают мощность в следующем диапазоне – 80-212 Вт. Берем для расчета среднее значение в 170 Вт. Количество необходимого тепла делится на это значение, а после полученная сумма округляется в большую сторону. Получаем 15. Именно такое количество секций надо для отопления приведенного помещения.

Так же существует более простой способ, он применяется для помещений, потолки в которых – 2.6 метра.

Расчет по площади. При таком расчете требуется знать только длину стен помещения. Рассмотрим на примере комнаты, похожей на предыдущую, однако потолки там будут менее 2. 6 метров. При таком расчете берется потребность в 100 Вт/м3, независимо от условий.

  1. Вычисляем площадь помещения. Она составляет 20 м2.
  2. Определение количество тепла, требуемого для отопления. Умножаем потребность на площадь, в итоге выходит 2000 Вт.
  3. Теперь необходимо узнать, какой теплоотдачей обладает одна секция батареи. Как и в прошлом расчете, принимаем значение в 170 Вт. На него делится потребность помещения, а результат округляется в большую сторону. По расчетам получили, что для комнаты, приведенной в примере, необходимы 12 секций.

Для цельных

Расчёт тепла для цельных батарей не отличается от секционных до этапа вычисления количества тепла, необходимого помещению. Если в предыдущих примерах вы делили полученное значение на теплоотдачу секции, то здесь вы сравниваете показатели тепла. Необходимый для помещения и тот, которому соответствует выбранный вами отопительный прибор.

Если число вырабатываемых батареей ватт ниже, необходимо установить дополнительный климатический прибор, который позволит перекрыть нехватку необходимого тепла.

Оба вида расчёта предполагают, что высота потолков в помещении не превышает 3-х метров, поэтому при большей высоте они не подойдут. В таких помещениях количество секций определяют уже инженеры-теплотехники.

Установка

На комнату, площадь которой превышает 25 м2, необходимы 2 батареи. Это означает, что получившееся число надо разделить на два. Так тепло распределяется равномерно.

При расчётах применяется стандартная температура жидкости, циркулирующей в батареях. Она не превышает 70 градусов. Если же температура выше этого показателя, то конечный результат снижается на 15%.

Существует несколько поправочных коэффициентов, которые помогут точнее определить количество секций. Они добавляются или вычитаются из количества тепла, необходимого на метр кубический/квадратный:

  • При использовании стандартных окон, или же ненадлежащем утеплении, число увеличивается на 1.27 Вт.
  • Установленные дополнительные теплоизоляционные слои или стеклопакеты позволяют вычесть из количества тепла 0. 8 Вт.

От стены, к которой крепится прибор, нужно отступить не менее 2.5 или 3 см. До пола оставляйте расстояние не менее, чем 8-10 см. А подоконник должен быть не уже 5 см.

Алюминиевые батареи, несмотря на недостатки, пользуются популярностью у населения нашей страны, особенно у владельцев частных домов. Если вы приобретаете их, помните несколько правил:

  • Узнайте давление в вашей системе отопления. Это поможет решить, каким именно способом должен быть изготовлен радиатор, подходящий для вашего дома.
  • Измерьте расстояние между осями для более точного выбора.
  • Рассчитайте необходимое количество секций, которое обеспечит хороший уровень теплоотдачи.
  • Позаботьтесь о дополнительной безопасности и найдите необходимые приборы для снижения рисков, а также установите терморегулятор для большего комфорта.
  • Доверьте работу по установке отопителя профессионалам, которые знают свое дело и смогут обеспечить вам гарантию качества выполненной работы.

Соблюдая все эти правила, вы сможете выбрать качественный отопительный прибор, подходящий именно для вашего помещения. Покупатели выбирают алюминиевые радиаторы из-за привлекательной стоимости, поэтому к ним стоит присмотреться.

Реклама от спонсоров: // // //

Алюминиевые радиаторы для частного дома: какие лучше?

Вход / Регистрация

Советы

Алюминиевые радиаторы: особенности конструкции и производства

Выбор алюминиевых радиаторов для отопления частного дома стоит начать с изучения методов производства. В производстве батарей основным материалом используют алюминий. Прочности легкому материалу добавляют специальные кремниевые примеси. Из полученного вещества либо отливают коллектор целиком, либо создают отдельные секции. В зависимости от технологии производства различаются алюминиевые батареи для дома изготовленные по методу экструзии или литья.

В производстве батарей методом литья каждая секция отливается отдельно. Для изготовления батарей используют силумин — это особый сплав алюминия с добавлением кремния. Секции отливаются под действием высокого давления, что позволяет получить самую различную форму. Подобная батарея выдержит давление до 15 атмосфер. Также в конструкции батареи сконструированы широкие протоки для воды и утолщенные стенки.

Изготовление алюминиевых радиаторов для отопления частного дома экструзией также предполагает изготовление батареи частями. Однако по этому методу выдавливаются из алюминия только вертикальные детали. А коллектор изготавливается из силуминового сплава целиком. Такой способ изготовления батарей дешевле, чем литье. Существует один недостаток — такую батарею невозможно улучшить в процессе эксплуатации, так как батареи изготавливаются уже фиксированного размера, и добавить либо удалить дополнительную секцию нельзя.

Среди алюминиевых радиаторов для частного дома существуют батареи анодированного типа.

Такие конструкции в процессе изготовления подвергаются процессу оксидирования, который позволяет получить алюминий высокого качества. Подобный материал устойчив к коррозии и прослужит дольше, чем обычная алюминиевая модель. Анодированные алюминиевые радиаторы выдерживают давление до 70 атмосфер. Следует заметить, что улучшение характеристик повлияло на стоимость. Такой радиатор стоит намного дороже обычной модели.

Характеристики батарей из алюминия

Выбор алюминиевых радиаторов отопления следует осуществлять, учитывая основные характеристики. Рассмотрим подробно каждую из них.

  • Расстояние между осями. Стандартными размерами для производства батарей из алюминия стали параметры 200 мм, 350 мм и 500 мм. Такие модели найти легко. Существуют радиаторы и с большим размером. Можно найти модель с размерами до 800 мм. При выборе и покупке радиатора необходимо измерить расстояние под подоконником. Выбранная модель должна помещаться туда с запасом не менее 3 см от стены, 10 см от подоконника и пола.
    Если модель помещается плохо, то лучше выбрать поменьше. В противном случае циркуляция воздуха в помещении будет затруднена.
  • Характеристики батарей из алюминияВ техническом паспорте указано два значения давлений. Это рабочее давление и опрессовочное. Иногда указывают еще максимальное давление. Следует знать, что это за характеристики и на какую стоит рассчитывать при выборе радиатора. Значение рабочего давления показывает возможную нагрузку в системе, при котором используется радиатор. Обычно указывается значение в 15 атмосфер. В системах городского отопления давление часто поднимается до 30 атмосфер. Поэтому алюминиевые батареи противопоказано применять в квартирах. Это идеальное решение для частного дома, где давление редко бывает больше 2-3 атмосфер. Очень важно понимать, что означает опрессовочное давление. В теплый период года, когда не нужно обогревать помещение, вода из батарей сливается. Перед отопительным сезоном нужно проверить герметичность системы. Герметичность проверяют посредством опрессовки.
    Это означает, что систему испытывают при давлении, которое минимум в 1,5 раза больше рабочего. Таким образом, следует выбирать алюминиевый радиатор с показателями по давлению с запасом. Тогда можно быть абсолютно уверенным, что оборудование выдержит перепады давления в системе и гидроудары.
  • В технологическом паспорте указывается также теплоотдача батареи. Половина выработанного алюминиевыми батареями тепла составляют тепловые лучи. Остальной эффект достигается за счет конвекционного движения воздуха (когда теплый воздух поднимается вверх). В результате общая теплоотдача достигает весьма значительных показателей. В паспорте коэффициент теплоотдачи указан на одну секцию в ваттах. Умножим это значение на количество секций в модели и получим реальное значение теплоотдачи радиатора.

Следует знать, что на рынке обогревательных систем алюминиевые радиаторы отопления для частного дома обогнали всех своих конкурентов по теплоотдаче. Алюминий нагревается быстрее, чем чугун или биметалл. Это позволяет нагревать воду в котле до меньшей температуры, тем самым увеличивая его длительность эксплуатации. Так и котел изнашивается не так быстро, и экономится энергия для нагрева, тем самым создается дополнительная экономия финансов.

Одним из преимуществ алюминиевых радиаторов становится их дизайн. В настоящее время модели выпускаются с различным внешним видом, которые впишутся в любой интерьер.

Плюсы и минусы радиаторов из алюминия

Подводя итоги, можно выделить все преимущества использования алюминиевых батарей в частном доме:

  • алюминиевые радиаторы экономичны. Они быстрее нагреваются, экономят ресурсы котла и газ или электроэнергию для нагрева;
  • алюминиевые радиаторы идеальны для использования в замкнутых системах отопления частных домов. Батареи из алюминия плохо подходят для квартир, так как их рабочее давление редко превышает 30 атмосфер. Значение давления в системах централизованного отопления часто подвержено перепадам и гидроударам, поэтому гарантировать спокойную службу батарей из алюминия в квартирах крайне сложно. Однако это отличный вариант для частного дома, где давление в системе редко выше 3 атмосфер; Для квартир же используются биметаллические.
  • алюминиевые радиаторы имеют широкий выбор по размерам, что позволяет подобрать их для комнаты с любой площадью;
  • батареи имеют малый вес. Это отличное свойство позволяет легко их транспортировать и монтировать в доме;
  • высокий коэффициент теплоотдачи. Среди всех своих аналогов батареи из алюминия бьют абсолютный рекорд по теплоотдаче. Они быстрее греются, поэтому требуют меньше ресурсов и берегут котел;
  • большинство моделей оснащаются теплорегулятором, благодаря которому температуру в комнате можно изменять;
  • легкость в монтаже;
  • оригинальный дизайн и возможность подобрать модель, которая впишется в любой интерьер;
  • цена батареи доступна широкому потребителю;

Выбирая алюминиевые батареи в частном доме, следует учесть несколько важных эксплуатационных качеств. Рассмотрим каждое из них:

  • возможность утечки на межсекционных стыках. В процессе эксплуатации алюминий изнашивается, поэтому через несколько лет возможны утечки в слабых местах радиатора;
  • тепло распределяется неравномерно. Основное тепло накапливается на ребристой поверхности радиатора;
  • не слишком длительный срок эксплуатации. Максимально возможный гарантийный срок, который указан производителем, составляет 25 лет. Тогда как радиаторы из других материалов могут прослужить более 40 лет;
  • повышенная возможность газообразования;
  • главная негативная особенность батареи — это подверженность алюминия коррозийным процессам, поэтому батарею следует обработать специальным антикоррозийным раствором, который увеличит длительность эксплуатации оборудования.

Следует заметить, что алюминий подвержен действию теплоносителя. Вода с примесью, повышенной кислотностью или добавлением химических веществ агрессивной природы негативно влияет на материал батареи.

Некачественная вода может значительно уменьшить срок службы алюминиевых батарей и привести к прорыву. Именно поэтому следует применять алюминиевые радиаторы только в частных домах, где нейтральная среда воды абсолютно не повредит батарее.

В поисках недорогих и качественных батарей для собственного дома радиаторы из алюминия становятся настоящей находкой. Они недороги, имеют хорошие технологические характеристики, интересный дизайн и высокую теплоотдачу. Однако подобные радиаторы следует обработать специальными антикоррозийными веществами, а также обращать внимание на качество воды в системе отопления.

Где купить

Прежде чем купить алюминиевые радиаторы отопления для частного дома, следует изучить множество возможных моделей, провести их сравнительный анализ, а также тщательно замерить пространство под подоконником. В процессе выбора у потребителя обычно возникает множество вопросов. Внести ясность в процесс выбора алюминиевого радиатора поможет консультация специалиста. Компания «Ламмин» предлагает вам свою помощь в выборе алюминиевого радиатора для частного дома. Мы занимаемся только проверенной высокотехнологичной продукцией, которая прослужит долгие годы. Вы можете получить консультацию в наших магазинах в Москве или по телефону, указанному на сайте.

В нашем каталоге представлен возможный ассортимент продукции, приобрести которую вы можете в нашем магазине в Москве либо в другом регионе, заказав доставку любой транспортной компанией. Предложение компании «Ламмин» интересны как оптовым, так и розничным покупателям. Мы имеем тридцатилетний опыт работы с системами отопления, поэтому вы можете быть уверены в нашем профессионализме. Мы заслужили доверие многих монтажных компаний в России. Выбирая нашу компанию в качестве партнеров, вы получите продукцию высокого качества, а также грамотную консультацию специалистов и помощь в выборе. Мы ждем вас в наших магазинах!

28 Сентября 2017

Советы

Есть вопросы о продукции Lammin?

Чтобы приобрести инженерную сантехнику оптом или стать дилером Lammin, звоните!

+7 (800) 700-83-55

+7 (800) 700-83-55

особенности, размеры и срок службы

Алюминиевые радиаторы отопления: технические характеристики, плюсы и минусы

5 (100%) голосов: 2

Сегодня алюминиевые радиаторы отопления очень популярны и спрос на подобные изделия достаточно большой, особенно у владельцев частных домов. В статье отметим конструктивные особенности, технические характеристики этого вида батарей, а также выделим все их плюсы и минусы.

  • Виды алюминиевых радиаторов
  • Технология литья
  • Технология экструзии
  • Анодированные радиаторы
  • Преимущества и недостатки
  • Технические характеристики алюминиевых батарей
  • Производители
  • org/ListItem”> Faral
  • Rovall
  • Fondital
  • Rifar

Алюминиевые радиаторы

Виды алюминиевых радиаторов

Батареи из алюминия различаются по технологии изготовления:

  • метод литья;
  • метод экструзии.

Технология литья

Этот способ производства подразумевает, что каждая секция будет сконструирована отдельно. Их льют из силумина (состав из алюминия и кремниевых добавок). Численность кремния в данной смеси составляет не более 12 %. Такого количества достаточно для того, чтобы прибор был достаточно прочным и надежным.

Процесс изготовления осуществляется следующим образом:

  1. Форма для литья секции батарей представляет собой две равные части. Прежде чем залить состав, обе части стыкуются под высоким давлением в литьевом агрегате.
  2. На следующем этапе готовый сплав по специальным каналам попадает в готовую форму.
  3. Расплавленный состав распространяется по всем каналам формы, там же он охлаждается и кристаллизуется.
  4. После завершения процесса кристаллизации, форму нужно открыть и оставить до тех пор, пока не остынет.
  5. Как только состав остынет, к заготовкам секций приваривают горлышко.
  6. Следующий этап: в специальной ванне, под воздействием высокого давления, секции проверяются на герметичность.
  7. Затем внутренние и наружные алюминиевые стенки покрываются антикоррозийным составом, а после они охлаждаются и высушиваются.
  8. После вышеописанных манипуляций секции окрашиваются посредством порошковой эмали.
  9. На заключительном этапе секции собираются в радиаторы и проходят тест на прочность и герметичность.

Подобный метод изготовления радиаторов позволяет создать батареи абсолютно любой формы.

Зарубежные производители чаще всего прибегают к изготовлению алюминиевых радиаторов методом литья, т. к. такие изделия отличаются длительным сроком эксплуатации и высокой безопасностью.

Технология экструзии

Процесс экструзии основан на продавливании размягченного расплава металла через специальный формовочный экструдер. Таким способом получается деталь необходимого профиля.

Такой способ производства не предполагает мгновенного получения деталей радиатора с замкнутым объемом. Изначально формируются передние и задние части, которые впоследствии соединяются между собой термическим прессованием.

При помощи экструзионного метода изготавливаются как отдельные секции, так и цельные коллекторы.

Технические показатели у приборов, сделанных методом экструзии ниже, чем у батарей, выполненных технологией литья. В первую очередь, это обусловлено меньшей площадью поверхности, следовательно, и более низкой теплоотдачей. Еще один недостаток заключается в том, что прессовочные швы обычно не способны выдерживать высокое давление и быстро начинают ржаветь под воздействием агрессивной среды теплоносителя.

Какие можно установить термостаты на батареи?

Анодированные радиаторы

Такие батареи изготавливаются из сплава, в котором алюминий прошел качественную очистку. Его количество в составе — 90 % и более. И внутренние и внешние поверхности изделия подвергаются анодному оксидированию (анодированию).

Стандартный процесс анодирования алюминиевых радиаторов заключается в следующем:

  1. Изначально батареи хорошо промываются, для этого радиатор помещается в ванну со щелочным раствором и там его поверхность очищается от всевозможных загрязнений.
  2. Затем осуществляется «химическая фрезеровка». Поверхность алюминия очищается от оксидной пленки, также снимается тонкий верхний слой металла.
  3. Следующий этап — осветление. С внешних сторон алюминия удаляются тяжелые металлы.
  4. Далее радиаторы опускаются в ванну с электролитом, под воздействием этого отрицательного заряда осуществляется электрохимическая реакция, в результате которое образуется защитная оксидная пленка AL203.
  5. На заключительном этапе слои уплотняются посредством закупоривания пор.

Для сцепления всех деталей анодированного радиатора между собой применяются наружные сухие муфты. За счет этого внутренняя сторона батарей остается гладкой. Такое соединение способствует тому, что устройство защищено от застойных процессов и процесс циркуляции теплоносителя происходит с минимальным гидравлическим сопротивлением.

Благодаря тому, что алюминиевые батареи внутри абсолютно гладкие, они отличаются высокой теплоотдачей.

Единственный недостаток у такого типа алюминиевых радиаторов — высокая цена.

Алюминиевые радиаторы отопления обладают множеством положительных характеристик:

  1. Приборы отличаются небольшим весом. Масса одной секции — не более 1,5 кг.
  2. Батареи такого типа очень компактные, благодаря чему вы сможете разместить их в любом месте.
  3. Характеризуются высокой теплопроводностью и нагреваются за короткий промежуток времени.
  4. Высокая эффективность, которая обеспечивается за счет высокой теплоотдачи.
  5. В случае необходимости вы запросто можете уменьшить или, наоборот, увеличить количество рабочих секций.
  6. В радиаторах, которые снабжены терморегуляторами, присутствует функция регулировка температуры. В любое время вы можете изменить температурный режим: увеличить или уменьшить.
  7. Приборы очень эстетичны, дизайн достаточно простой и сдержанный, но в то же время очень привлекательный. Поэтому алюминиевые батареи прекрасно впишутся в любой интерьер.

Несмотря на большое количество плюсов, у алюминиевых радиаторов есть и ряд недостатков:

  1. Приборы чувствительны к уровню pH теплоносителя. Важно контролировать, чтобы он не превышал 7-8 единиц, поскольку, если его показатели будут выше, алюминий будет ржаветь и батареи быстро выйдут из строя.
  2. При установке алюминиевых радиаторов, придется монтировать воздухоотводчик, который будет защищать секции от возможного разрыва, в случае угрозы газообразования.
  3. Нужно подсоединить прибор к трубам из алюминия или пластика, иначе при контакте с другими материалами (например, медь) алюминиевый радиатор может подвергнуться электрохимической коррозии.
  4. Описываемый вид батарей способен выдерживать отнюдь невысокое рабочее давление.

Технические характеристики алюминиевых батарей

Алюминиевые радиаторы привлекательны не только своим внешним видом, «красивой» ценой и практичностью. Многие технические характеристики подобных приборов имеют достаточно высокие показатели.

ПараметрыЗначение
Рабочее давление6-25 Атм
Теплоотдача одной секции150-212 Вт
Предельно допустимая температура теплоносителя110°С
Объем секции250-460 мл
Вес секции1-1,5 кг
Межосевое расстояние200-800 мм
Срок эксплуатации10-15 лет

Чаще всего встречаются алюминиевые радиаторы, размер которых: 200, 350, 500 мм. Эти параметры обозначают показатель величины межцентровой дистанции между коллекторами, но на рынке можно встретить и модели с расстоянием от 200 до 800 мм.

Наиважнейший показатель, от которого зависит качество и эффективность алюминиевых радиаторов — рабочее давление.

В паспорте алюминиевых радиаторов помимо рабочего указывается и опрессовочное давление, показатели которого немного выше. Этот показатель является очень важным, т.к. применяется в испытаниях при запуске отопительной системы после ее слива.

Производители

Выпускают алюминиевые радиаторы отопления как зарубежные, так и отечественные производители. Отметим некоторых из них.

Faral

Изделия этой итальянской компании очень популярны, отличаются высоким европейским качеством и имеют массу положительных отзывов пользователей.

Рассмотрим основные параметры моделей, предлагаемых Faral.

МодельМежосевое расстояние, ммВысота, ширина, глубина секции, ммМакс. рабочее давление, БарТепловая мощность, ВтОбъем секции, лВес, кг
GREEN HP 350350430/80/80161360,261,12
GREEN HP 500500580/80/80161800,331,48
TRIO HP 350350430/80/95161510,41,23
TRIO HP 500500580/80/95162120,51,58

Радиатор Faral Trio HP 500/100

Rovall

Этот производитель также из Италии. При производстве радиаторов используются прессованные алюминиевые трубы. На рынке представлен широкий выбор цветовой гаммы радиаторов. Самые известные модели Rovall: TANGO, OPERA, ALUX, JAZZ, BLUES, SWING.

МодельМежосевое расстояние, ммВысота, ширина, глубина секции, ммМакс. рабочее давление, БарТепловая мощность, ВтОбъем секции, лВес, кг
ALUX 200200245/80/10020920,110,83
ALUX 350350395/80/100201550,110,82
ALUX 500500545/80/100201790,231,31

Fondital

Итальянский производитель, продукция компании разработана специально для эксплуатационных условий России и стран СНГ. Алюминиевые радиаторы Fondital изготавливаются в соответствии с высокими стандартами европейского качества, при этом соблюдаются российские нормы (ГОСТ Р RU.9001.5.1.9009).

МодельМежосевое расстояние, ммВысота, ширина, глубина секции, ммМакс. рабочее давление, БарТепловая мощность, ВтОбъем секции, лВес, кг
Calidor Super 350/100350407/80/97161440,241,3
Calidor Super 500/100500557/80/97161930,301,32

Rifar

Отечественный производитель, который по качеству нисколько не уступает зарубежным аналогам. Отзывы на изделия Rifar — положительные. Пользователи отмечают привлекательный дизайн радиаторов и высокую эффективность.

МодельМежосевое расстояние, ммВысота, ширина, глубина секции, ммМакс. рабочее давление, БарТепловая мощность, ВтОбъем секции, лВес, кг
Alum 350350415/80/90201390,191,2
Alum 500500565/80/90201830,271,45

Алюминиевый радиатор RIFAR Alum 500 5 секций

Исходя из вышеописанного, можно сделать вывод, что алюминиевые радиаторы отопления являются отличным источником обогрева, в особенности для частных домов. Благодаря большому количеству положительных моментов и высоких технических показателей вкупе с невысокой ценой, делает такие батареи очень привлекательными для пользователей. В результате высокий спрос пользователей оправдан.

Простой, но очень эстетичный дизайн позволяет вписать радиаторы из алюминия в любой интерьер. Приборы являются не только качественным и экономичным источником обогрева, но и занимают достойное место в интерьере.

ПРОТОТИПОВ ГРАФЕН-АЛЮМИНИЙ-ИОННЫХ АККУМУЛЯТОРОВ ОТПРАВЛЕНЫ ЗАКАЗЧИКАМ ДЛЯ ИСПЫТАНИЙ И ОЦЕНКИ | Graphene Manufacturing Group

БРИСБЕН, КВИНСЛЕНД, АВСТРАЛИЯ – 22 декабря 2021 г. – Graphene Manufacturing Group Ltd. (TSX-V:GMG; FRA:0GF) («GMG» или «Компания») рада сообщить, что ее графеновый алюминий -ионные батареи («Батарея G+AI») Прототипы типа «таблетка» 2032 (см. рис. 1) были отправлены ряду потенциальных клиентов по всему миру.

Испытания плоской круглой батарейки, проведенные на сегодняшний день, показали, что прототипы плоской круглой батарейки GMG 2032 типа G+AI полностью перезаряжаются за несколько секунд, сохраняют емкость в течение нескольких тысяч циклов зарядки и разрядки, не воспламеняются и относительно нетоксичны. практически полностью подлежит вторичной переработке. Эти характеристики выгодно отличаются от типичных перезаряжаемых литий-ионных батарей типа 2032, которые заряжаются за 3-6 часов, являются токсичными и могут быть весьма вредными при проглатывании, их трудно перерабатывать, они легко воспламеняются при определенных условиях и быстрее теряют свои характеристики. .

Рисунок 1: Прототип GMG 2032 1,7 В

GMG рада сообщить, что дальнейшая разработка батареи в сотрудничестве с Университетом Квинсленда увеличила емкость батарейки G+AI Battery по сравнению с предыдущим доказательством. концептуальных прототипов. В настоящее время компания также разрабатывает технологию, необходимую для увеличения напряжения батарейки типа «таблетка» примерно с 1,7 В до 3,4 В, что делает батарею G+AI более подходящей для взаимозаменяемого использования в существующих повседневных персональных устройствах. В дополнение к графену, производимому GMG, компания также продолжает тестировать различные сорта графена из различных источников для использования в батареях G+AI. GMG считает, что рабочие характеристики этих прототипов достаточно ясны, чтобы привлекать потенциальных клиентов и отраслевых партнеров для получения отзывов об их коммерческом потенциале после последующей доработки.

Генеральный директор и управляющий директор GMG Крейг Никол сказал: «Мы очень довольны техническим и коммерческим прогрессом, которого мы достигли на сегодняшний день в отношении наших аккумуляторов G+AI, а также уровнем интереса, полученным от потенциальных клиентов. Мы с нетерпением ждем отзывов клиентов об этих прототипах и продвижения к коммерциализации этой впечатляющей аккумуляторной технологии. Параллельно с этим мы продолжим оптимизировать и повышать производительность нашего недавно введенного в эксплуатацию пилотного завода и в течение 2022 года начнем разрабатывать форматы пакетов в дополнение к ячейкам для монет».

О компании GMG

GMG — австралийская компания, занимающаяся чистыми технологиями, зарегистрированная на TSX Venture Exchange (TSXV:GMG), которая производит графен и водород путем крекинга метана (природного газа) вместо добычи графита. Используя запатентованный процесс компании, GMG может производить высококачественный, недорогой, масштабируемый, «настраиваемый» графен без загрязнения или с низким содержанием загрязняющих веществ, что позволяет продемонстрировать улучшение затрат и экологических улучшений в ряде глобальных приложений экологически чистых технологий. Используя этот и другие источники низкозатратного графена, компания разрабатывает продукты с добавленной стоимостью, ориентированные на массовые рынки энергоэффективности и хранения энергии.

Компания использует возможности для продуктов GMG с улучшенным графеном, включая разработку аккумуляторов нового поколения, сотрудничество с ведущими мировыми университетами в Австралии и изучение возможности повышения производительности и энергоэффективности моторных масел, биодизеля и дизельного топлива.

Для получения дополнительной информации обращайтесь:
– Крейг Никол, главный исполнительный и управляющий директор компании, craig.nicol@graphenemg. com, +61 415 445 223
— Лео Карабелас из Focus Communications, [email protected], +1 647 689 6041

Ни венчурная биржа TSX, ни ее поставщик услуг по регулированию (согласно определению этого термина в политике венчурной биржи TSX) не несут ответственности за адекватность или точность этого выпуска новостей.

Предостережение относительно заявлений прогнозного характера

Настоящий пресс-релиз содержит определенные заявления и информацию, которые могут представлять собой прогнозную информацию в соответствии с применимым канадским законодательством о ценных бумагах. Прогнозные заявления относятся к будущим событиям или будущей деятельности и отражают ожидания или убеждения руководства Компании в отношении будущих событий. Как правило, прогнозные заявления и информация могут быть идентифицированы с помощью прогнозной терминологии, такой как «намеревается», «ожидает» или «предвидится», или вариантов таких слов и фраз или заявлений, что определенные действия, события или результаты « может», «может», «должен», «будет» или будет «потенциально» или «вероятно» произойти. Эта информация и эти заявления, именуемые в настоящем документе «прогнозными заявлениями», не являются историческими фактами, сделаны на дату выпуска данного пресс-релиза и включают, помимо прочего, заявления о постоянной оптимизации G+AI Battery, потенциальная токсичность и возможность вторичной переработки прототипов элементов типа «таблетка» типа 2032 G+AI, технологическая разработка и оптимизация элементов типа «таблетка» типа G+AI, потенциальная коммерциализация технологии элемента типа «таблетка» типа 2032 типа G+AI, оптимизация и повышение производительности пилотного завода Компании, а также разработка прототипа батарейки типа 2032 G+AI в формате плоской упаковки.

Эти прогнозные заявления сопряжены с многочисленными рисками и неопределенностями, и фактические результаты могут существенно отличаться от результатов, предлагаемых в любых прогнозных заявлениях. Эти риски и неопределенности включают в себя, среди прочего, риски, связанные с использованием ресурсов Компании, включая ее персонал, и намерение Компании исследовать, разрабатывать и производить определенные продукты и технологии, способность Компании оптимизировать определенные продукты и объекты, а также коммерческий прогресс и технические характеристики определенных продуктов.

Делая прогнозные заявления в этом пресс-релизе, Компания применила несколько существенных допущений, включая, помимо прочего, предположения относительно способности Компании исследовать, разрабатывать и тестировать свою продукцию в установленные сроки, а также рыночного спроса на продукцию Компании.

Несмотря на то, что руководство Компании пыталось определить важные факторы, которые могут привести к тому, что фактические результаты могут существенно отличаться от результатов, содержащихся в прогнозных заявлениях или прогнозной информации, могут быть и другие факторы, которые могут привести к тому, что результаты не будут такими, как ожидалось, оценивалось или предназначен. Не может быть никаких гарантий, что такие заявления окажутся точными, поскольку фактические результаты и будущие события могут существенно отличаться от ожидаемых в таких заявлениях. Соответственно, читатели не должны чрезмерно полагаться на прогнозные заявления и прогнозную информацию. Читатели предупреждаются, что использование такой информации может быть неприемлемым для других целей. Компания не обязуется обновлять какие-либо прогнозные заявления, прогнозную информацию или финансовые прогнозы, которые включены в настоящий документ посредством ссылки, за исключением случаев, предусмотренных действующим законодательством о ценных бумагах. Мы ищем безопасную гавань.

 

Дешевый, большой емкости и быстрый: новая технология алюминиевых аккумуляторов обещает все

Увеличить

Aurich Lawson | Getty Images

Классическая ирония в отношении новых технологий заключается в том, что их последователи вынуждены ограничивать себя двумя из трех вещей, которые все хотят: быстро, дешево и хорошо. Когда речь идет о батареях, внедрение становится еще более сложной задачей. Дешевый и быстрый (зарядка) по-прежнему имеет значение, но «хороший» может означать разные вещи, такие как легкий вес, небольшой объем или длительный срок службы, в зависимости от ваших потребностей. Тем не менее, здесь задействованы одни и те же компромиссы. Если вы хотите действительно быструю зарядку, вам, вероятно, придется отказаться от некоторой емкости.

Эти компромиссы позволяют продолжать исследования альтернативных химических элементов аккумуляторов, несмотря на то, что литий-свинец имеет огромные технологические и производственные возможности — все еще есть надежда, что какой-то другой химический состав может привести к значительному снижению цены или значительному увеличению в некоторой степени. производительность.

Сегодня публикуется статья, которая предлагает низкую цену в сочетании с большим повышением некоторых из этих показателей. Описываемые в нем алюминиево-серные батареи предлагают недорогое сырье, конкурентоспособный размер и большую емкость на единицу веса, чем литий-ионные, с большим преимуществом полной зарядки элементов менее чем за минуту. Единственная очевидная проблема, с которой он сейчас сталкивается, заключается в том, что он должен быть на 90 ° C (почти точка кипения воды) для работы.

Алюминиевая банка?

Некоторое время люди размышляли над батареями на основе алюминия, привлеченными их высокой теоретической емкостью. Хотя каждый атом алюминия немного тяжелее лития, атомы и ионы алюминия физически меньше, так как более высокий положительный заряд ядра немного притягивает электроны. Кроме того, алюминий легко отдает до трех электронов на атом, а это означает, что вы можете сместить большой заряд для каждого задействованного иона.

Рекламное объявление

Большой проблемой было то, что химически алюминий отстой. Многие соединения алюминия очень нерастворимы в воде, их оксиды чрезвычайно стабильны и т. д. Незначительная побочная реакция легко может вывести аккумулятор из строя после нескольких циклов зарядки/разрядки. Таким образом, пока работа продолжалась, высокие теоретические возможности часто выглядели так, как будто они никогда не будут реализованы на практике.

Ключом к новой работе было осознание того, что мы уже решили одну из больших проблем с изготовлением металлического алюминиевого электрода — мы только что сделали это в совершенно другой области. Электроды из чистого металла предлагают большие преимущества в простоте и объеме, поскольку в них не используется настоящая химия, и вам не нужны дополнительные материалы для наполнения ионами металлов. Но металл имеет тенденцию неравномерно оседать на электродах батареи, в конечном итоге образуя шипы, называемые дендритами, которые растут до тех пор, пока не повредят другие компоненты батареи или полностью не закорачивают элемент. Таким образом, выяснить, как равномерно наносить металл, было большим препятствием.

Ключевым моментом здесь является то, что мы уже знаем, как равномерно наносить алюминий. Мы делаем это постоянно, когда хотим гальванизировать алюминий на какой-нибудь другой металл.

Это часто делается с использованием расплавленной соли хлорида алюминия. В расплавленной соли ионы алюминия и хлора имеют тенденцию образовывать длинные цепочки чередующихся атомов. Когда алюминий наносится на поверхность, он имеет тенденцию выходить из центра этих цепочек, а физическая масса остальной части цепи облегчает это на плоской поверхности.

Внутри расплавленной соли ионы алюминия также могут быстро перемещаться от одного электрода к другому. Большая проблема заключается в том, что хлорид алюминия плавится только при 192 ° C. Но смешивание небольшого количества хлорида натрия и хлорида калия снизило температуру до 90 ° C — ниже точки кипения воды и совместимо с большим количеством дополнительных материалов.

Рекламное объявление

Бутерброд с солью

Таким образом, у исследователей осталось две трети батареи. Одним из электродов был металлический алюминий, а электролитом — жидкий хлорид алюминия. Остается определить второй электрод. Здесь было много примеров хранения алюминия как химического соединения с элементами ниже кислорода в периодической таблице, такими как сера или селен. В целях визуализации команда работала с селеном, создавая экспериментальный элемент батареи и подтверждая, что он ведет себя в соответствии с ожиданиями.

Визуализация алюминия показала, что после нескольких циклов зарядки и разрядки поверхность стала несколько неровной, но из нее не выходили большие или заостренные выступы, которые могли бы повредить батарею. Реакции на селеновом электроде, по-видимому, начинаются в расплавленной соли, а затем заканчиваются на поверхности электрода. В целом, ячейка показала стабильную производительность в течение десятков циклов и высокую емкость на единицу веса, которую должен обеспечивать алюминий. Итак, команда перешла к созданию и тестированию элементов, которые их действительно интересовали: алюминиевая сера.

При медленных скоростях разряда алюминиевые серные элементы имели зарядную емкость на единицу веса, которая более чем в три раза превышала емкость литий-ионных аккумуляторов. Эта цифра снижалась по мере увеличения скорости заряда/разряда, но производительность оставалась превосходной. Если элемент разряжался в течение двух часов и заряжался всего за шесть минут, его зарядная емкость на единицу веса все равно была на 25 % выше, чем у литий-ионных аккумуляторов, и сохраняла примерно 80 % этой емкости после 500 циклов — намного больше того, что вы можете себе представить. d см. с большинством литиевых химикатов.

Если сократить время зарядки до чуть более минуты, емкость на единицу веса будет примерно равна емкости литий-ионной батареи, и более 80 процентов этой емкости останется доступной после 200 циклов. Аккумулятор мог даже выдерживать полную зарядку менее чем за 20 секунд, хотя емкость на единицу веса была лишь немногим более половины того, что можно было бы получить от литий-ионного аккумулятора.

Алюминий-сера — так в будущем будет называться литий-ион?

Утрехт, город с населением 350 000 человек, в основном передвигающийся на велосипедах, расположенный к югу от Амстердама, стал испытательным полигоном для методов двунаправленной зарядки, которые вызывают живой интерес автопроизводителей, инженеров, городских менеджеров и энергетических компаний во всем мире. Эта инициатива реализуется в условиях, когда обычные граждане хотят путешествовать, не вызывая выбросов, и все больше осознают ценность возобновляемых источников энергии и энергетической безопасности.

«Мы хотели перемен, — говорит Элко Эеренберг, один из заместителей мэра Утрехта и олдермен по вопросам развития, образования и общественного здравоохранения. Часть изменений связана с расширением городской сети зарядки электромобилей. «Мы хотим предсказать, где нам нужно построить следующую электрическую зарядную станцию».

Так что это хороший момент, чтобы подумать о том, где впервые появились концепции «автомобиль-сеть», и увидеть в Утрехте, как далеко они продвинулись.

Прошло 25 года с тех пор, как эксперт по энергетике и окружающей среде Делавэрского университета Уиллетт Кемптон и экономист по энергетике из колледжа Грин-Маунтин Стив Летендре описали то, что они видели как «зарождающееся взаимодействие между электромобилями и системой электроснабжения». Этот дуэт вместе с Тимоти Липманом из Калифорнийского университета в Беркли и Алеком Бруксом из AC Propulsion заложили основу для передачи энергии от транспортного средства к сети.

Инвертор преобразует переменный ток в постоянный ток при зарядке автомобиля и обратно при подаче электроэнергии в сеть. Это хорошо для сетки. Еще предстоит ясно показать, почему это хорошо для водителя.

Их первоначальная идея заключалась в том, что автомобили в гараже будут иметь двустороннее компьютерное подключение к электросети, которая сможет получать питание от автомобиля, а также обеспечивать его питанием. Кемптон и Летендре Статья 1997 года в журнале Transportation Research описывает, как энергия аккумуляторов от электромобилей в домах людей будет питать сеть во время аварийной ситуации или отключения электроэнергии. С уличными зарядными устройствами вам даже не понадобится дом.

В двунаправленной зарядке используется инвертор размером с житницу, расположенный либо в специальном зарядном устройстве, либо на борту автомобиля. Инвертор преобразует переменный ток в постоянный ток при зарядке автомобиля и обратно при подаче электроэнергии в сеть. Это хорошо для сетки. Еще предстоит ясно показать, почему это хорошо для водителя.

Это животрепещущий вопрос. Владельцы автомобилей могут заработать немного денег, возвращая немного энергии в сеть в подходящее время, или могут сэкономить на своих счетах за электроэнергию, или могут таким образом косвенно субсидировать эксплуатацию своих автомобилей. Но с того момента, как Кемптон и Летендре изложили концепцию, потенциальные пользователи также опасались потерять деньги из-за износа батареи. То есть, не приведет ли циклирование батареи к преждевременному износу самого сердца автомобиля? Эти нерешенные вопросы сделали неясным, приживутся ли когда-нибудь технологии «автомобиль-сеть».

Наблюдатели за рынком стали свидетелями целой череды моментов, когда технология «автомобиль-сеть» практически достигла цели. В 2011 году в Соединенных Штатах Университет Делавэра и базирующаяся в Нью-Джерси коммунальная компания NRG Energy подписали технологическая лицензия на первое коммерческое развертывание технологии «автомобиль-сеть». Их исследовательское партнерство длилось четыре года.

В последние годы наблюдается всплеск этих пилотных проектов в Европе и США, а также в Китае, Японии и Южной Корее. В Соединенном Королевстве эксперименты в настоящее время происходит в загородных домах с использованием внешних настенных зарядных устройств, измеряемых для предоставления владельцам транспортных средств кредита на их счета за коммунальные услуги в обмен на загрузку аккумулятора в часы пик. Другие испытания включают коммерческие автопарки, набор фургонов в Копенгагене, два электрических школьных автобуса в Иллинойсе и пять в Нью-Йорке.

Однако эти пилотные программы так и остались пилотными. Ни одна из них не превратилась в крупномасштабную систему. Это может скоро измениться. Опасения по поводу износа аккумуляторов ослабевают. В прошлом году Хета Ганди и Эндрю Уайт из Университет Рочестера смоделировал экономику перехода от транспортного средства к сети и обнаружил, что затраты на износ аккумуляторов минимальны. Ганди и Уайт также отметили, что капитальные затраты на батареи со временем заметно снизились: с более чем 1000 долларов США за киловатт-час в 2010 году до примерно 140 долларов США в 2020 году.

По мере того, как технология перехода от транспортного средства к сети становится доступной, Утрехт становится одним из первых мест, где ее полностью внедряют.

Ключевая сила изменений, происходящих в этом продуваемом всеми ветрами голландском городе, — это не тенденция мирового рынка или зрелость инженерных решений. Это мотивированные люди, которые также оказываются в нужном месте в нужное время.

Один из них — Робин Берг, основавший компанию под названием We Drive Solar из его дома в Утрехте в 2016 году. Он превратился в оператора по совместному использованию автомобилей с 225 электромобилями различных марок и моделей — в основном Renault Zoes, а также Tesla Model 3s, Hyundai Konas и Hyundai Ioniq 5s. Попутно привлекая партнеров, Берг наметил способы обеспечить двунаправленную зарядку для парка We Drive Solar. Сейчас в его компании 27 автомобилей с возможностью двунаправленного движения, и ожидается, что в ближайшие месяцы будет добавлено еще 150.

В 2019 году король Нидерландов Виллем-Александр руководил установкой двунаправленной зарядной станции в Утрехте. Здесь король [в центре] показан вместе с Робином Бергом [слева], основателем We Drive Solar, и Жеромом Панно [справа], генеральным менеджером Renault в Бельгии, Нидерландах и Люксембурге. Патрик ван Катвейк/Getty Images

Собрать этот флот было непросто. Два двунаправленных Renault Zoe We Drive Solar — это прототипы, которые Берг получил в партнерстве с французским автопроизводителем. Серийные Zoe, способные к двунаправленной зарядке, еще не вышли. В апреле прошлого года Hyundai поставила We Drive Solar 25 двунаправленных дальнобойных Ioniq 5. Это серийные автомобили с модифицированным программным обеспечением, которые Hyundai выпускает в небольшом количестве. Компания планирует внедрить эту технологию в стандартную комплектацию будущей модели.

1500 абонентов We Drive Solar не должны беспокоиться об износе аккумуляторов — если это проблема компании, то Берг так не думает. «Мы никогда не доходим до краев батареи», — говорит он, имея в виду, что батарея никогда не переводится в состояние высокого или низкого уровня заряда, чтобы существенно сократить срок ее службы.

We Drive Solar — это не бесплатный сервис, который можно забрать из приложения и доставить туда, куда вы хотите. Для автомобилей предусмотрены специальные парковочные места. Абоненты бронируют свои автомобили, забирают и сдают их в одном и том же месте и ездят на них, куда хотят. В тот день, когда я был у Берга, две его машины направлялись в швейцарские Альпы, а одна направлялась в Норвегию. Берг хочет, чтобы его клиенты рассматривали определенные автомобили (и связанные с ними парковочные места) как свои собственные и регулярно пользовались одним и тем же транспортным средством, обретая чувство собственности на то, чем они вообще не владеют.

То, что Берг сделал решительный шаг в сфере совместного использования электромобилей и, в частности, в сетевых технологиях, таких как двунаправленная зарядка, неудивительно. В начале 2000-х он основал местного поставщика услуг под названием LomboXnet, установив антенны Wi-Fi в пределах прямой видимости на шпиле церкви и на крыше одного из самых высоких отелей города. Когда интернет-трафик начал переполнять его радиосеть, он проложил оптоволоконный кабель.

В 2007 году Берг получил контракт на установку солнечных батарей на крыше местной школы с идеей создания микросети. Сейчас он управляет 10 000 панелями на крышах школ по всему городу. В его шкафу в прихожей стоит коллекция счетчиков электроэнергии, которые отслеживают солнечную энергию, частично поступающую в аккумуляторы электромобилей его компании — отсюда и название компании We Drive Solar.

Берг не узнал о двунаправленной зарядке через Кемптона или кого-либо из первых чемпионов технологии «автомобиль-сеть». Он услышал об этом из-за Катастрофа на АЭС Фукусима десять лет назад. В то время у него был Nissan Leaf, и он читал о том, как эти автомобили обеспечивали аварийное электроснабжение в районе Фукусимы.

«Хорошо, это интересная технология», — вспоминает Берг. «Есть ли способ масштабировать его здесь?» Nissan согласился отправить ему двунаправленное зарядное устройство, и Берг позвонил градостроителям Утрехта, сказав, что хочет проложить для него кабель. Это привело к большему количеству контактов, в том числе в компании, управляющей местной низковольтной сетью, Стедин. После того, как он установил свое зарядное устройство, инженеры Стедина захотели узнать, почему его счетчик иногда работал в обратном направлении. Позже Ирэн тен Дам из Утрехтского агентства регионального развития узнала об его эксперименте и была заинтригована, став сторонником двунаправленной зарядки.

Берг и люди, работающие в городе, которым нравилось то, что он делал, привлекли новых партнеров, в том числе Стедина, разработчиков программного обеспечения и производителя зарядных станций. К 2019 году Виллем-Александр, король Нидерландов, руководил установкой двунаправленной зарядной станции в Утрехте. «Как для города, так и для сетевого оператора самое замечательное то, что они всегда ищут способы масштабирования», — говорит Берг. Они не просто хотят сделать проект и сделать отчет о нем, говорит он. Они действительно хотят перейти к следующему шагу.

Следующие шаги происходят все быстрее. В настоящее время в Утрехте имеется 800 двунаправленных зарядных устройств, разработанных и изготовленных голландской инженерной фирмой NieuweWeme. Скоро городу понадобится гораздо больше.

Количество зарядных станций в Утрехте резко возросло за последнее десятилетие.

«Люди покупают все больше и больше электромобилей, — говорит Иренберг, олдермен. Городские власти заметили всплеск таких покупок в последние годы только для того, чтобы услышать жалобы от жителей Утрехта на то, что им пришлось пройти долгий процесс подачи заявок, чтобы установить зарядное устройство там, где они могли бы его использовать. Эеренберг, ученый-компьютерщик по образованию, все еще работает над тем, чтобы развязать эти узлы. Он понимает, что город должен двигаться быстрее, если он хочет выполнить требование правительства Нидерландов о том, чтобы через восемь лет все новые автомобили были с нулевым уровнем выбросов.

Количество энергии, используемой для зарядки электромобилей в Утрехте, резко возросло в последние годы.

Несмотря на то, что аналогичные предписания по увеличению количества автомобилей с нулевым уровнем выбросов на дорогах в Нью-Йорке и Калифорнии в прошлом не срабатывали, сейчас потребность в электрификации автомобилей возрастает. И городские власти Утрехта хотят опередить спрос на более экологичные транспортные решения. Это город, который только что построил центральный подземный гараж на 12 500 велосипедов и потратил годы на то, чтобы прорыть автостраду, проходящую через центр города, и заменить ее каналом во имя чистого воздуха и здорового городского образа жизни.

Движущей силой этих изменений является Маттейс Кок, городской менеджер по энергопереходу. Он провел меня на велосипеде, естественно, по новой зеленой инфраструктуре Утрехта, указав на некоторые недавние дополнения, такие как стационарная батарея, предназначенная для хранения солнечной энергии от множества панелей, которые планируется установить в местном жилом комплексе.

На этой карте Утрехта показана городская инфраструктура для зарядки электромобилей. Оранжевые точки — расположение существующих зарядных станций; красные точки обозначают разрабатываемые зарядные станции. Зеленые точки — возможные места для будущих зарядных станций.

«Вот почему мы все это делаем», — говорит Кок, отходя от своего велосипеда и указывая на кирпичный сарай, в котором находится трансформатор мощностью 400 киловатт. Эти трансформаторы являются последним звеном в цепи, которая идет от электростанции к высоковольтным проводам, к подстанциям среднего напряжения, к низковольтным трансформаторам и кухням людей.

В обычном городе таких трансформаторов тысячи. Но если слишком много электромобилей в одном районе нуждаются в зарядке, такие трансформаторы могут легко перегрузиться. Двунаправленная зарядка обещает облегчить такие проблемы.

Кок работает с другими в городском правительстве над сбором данных и созданием карт, разделяющих город на районы. Каждый из них аннотирован данными о населении, типах домохозяйств, транспортных средств и других данных. Вместе с нанятой по контракту группой по анализу данных и при участии обычных граждан они разработали алгоритм, основанный на политике, чтобы помочь выбрать лучшие места для новых зарядных станций. Город также включил стимулы для развертывания двунаправленных зарядных устройств в свои 10-летние контракты с операторами зарядных станций для транспортных средств. Итак, в этих зарядках пошли.

Эксперты ожидают, что двунаправленная зарядка будет особенно хорошо работать для транспортных средств, которые являются частью автопарка, движение которого предсказуемо. В таких случаях оператор может легко запрограммировать, когда заряжать и разряжать автомобильный аккумулятор.

We Drive Solar зарабатывает кредит, отправляя энергию аккумуляторов своего парка в местную сеть в периоды пикового спроса и заряжая аккумуляторы автомобилей в непиковые часы. Если это так хорошо, водители не теряют запас хода, который им может понадобиться, когда они забирают свои машины. И эти ежедневные сделки по энергоснабжению помогают снизить цены для абонентов.

Поощрение схем совместного использования автомобилей, таких как We Drive Solar, нравится властям Утрехта из-за проблем с парковкой — хронической болезни, характерной для большинства растущих городов. Огромная строительная площадка недалеко от центра Утрехта скоро добавит 10 000 новых квартир. Дополнительное жилье приветствуется, но дополнительных 10 000 автомобилей не будет. Планировщики хотят, чтобы это соотношение было больше похоже на одну машину на каждые 10 домохозяйств, и количество выделенных общественных парковок в новых районах будет отражать эту цель.

Некоторые автомобили We Drive Solar, в том числе Hyundai Ioniq 5, поддерживают двунаправленную зарядку. We Drive Solar

Прогнозы крупномасштабной электрификации транспорта в Европе обескураживают. Согласно отчету Eurelectric/Deloitte, к 2030 году в Европе может быть от 50 до 70 миллионов электромобилей, для чего потребуется несколько миллионов новых точек зарядки, двунаправленных или иных. Для поддержки этих новых станций распределительным сетям потребуются сотни миллиардов евро инвестиций.

За утро до того, как Эеренберг сел со мной в мэрии, чтобы объяснить алгоритм планирования Утрехтской зарядной станции, на Украине разразилась война. Цены на энергоносители в настоящее время напрягают многие домохозяйства до предела. Бензин достиг 6 долларов за галлон (если не больше) в некоторых местах в Соединенных Штатах. В середине июня в Германии водителю скромного VW Golf пришлось заплатить около 100 евро (более 100 долларов США) за заправку бака. В Великобритании счета за коммунальные услуги выросли в среднем более чем на 50 процентов 1 апреля.

Война перевернула энергетическую политику на европейском континенте и во всем мире, сосредоточив внимание людей на энергетической независимости и безопасности и укрепив уже начатую политику, такую ​​как создание зон без выбросов в центрах городов и замена обычных автомобилей электрическими. те. Часто неясно, как лучше осуществить необходимые изменения, но моделирование может помочь.

Нико Бринкель, работающий над докторской диссертацией в Лаборатория интеграции фотогальваники Вильфрида ван Сарка в Утрехтском университете фокусирует свои модели на местном уровне. В Согласно своим расчетам, в Утрехте и его окрестностях укрепление низковольтной сети стоит около 17 000 евро за трансформатор и около 100 000 евро за километр сменного кабеля. «Если мы перейдем к полностью электрической системе, если мы добавим много энергии ветра, много солнечной энергии, много тепловых насосов, много электромобилей…», — его голос затихает. «Наша сеть не была предназначена для этого».

Но электрическая инфраструктура должна не отставать. Одно из исследований Бринкеля предполагает, что если бы большая часть зарядных устройств для электромобилей была двунаправленной, такие расходы можно было бы распределить более управляемым образом. «В идеале, я думаю, было бы лучше, если бы и все новых зарядных устройств были двунаправленными», — говорит он. «Дополнительные расходы не так уж велики».

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *