Байпас что это в двигателе: Перевірка браузера, будь ласка, зачекайте…

Что такое байпас и зачем он нужен

Найти абсолютно довольных своим транспортом автовладельцев достаточно тяжело. Кто-то придирается к внешности своего четырёхколёсного друга, кому-то кажутся неоптимальными эксплуатационные характеристики персонального авто. Подобный подход вынуждает искать совершенства, модернизируя машину снаружи и в подкапотном пространстве. Обеспечить отличный результат в такой ситуации помогает хорошее знание теории. Поэтому для реализации имеющихся идей с коррекцией работы топливной системы стоит ознакомиться с функционированием байпасов и Blow-Off клапанов.

Применение байпаса.

Содержание

  • 1 В чём заключается принцип работы байпас системы
  • 2 Устройство байпасного клапана
  • 3 Сколько в авто перепускных клапанов
  • 4 Заключение

В чём заключается принцип работы байпас системы

Узнать, что такое система с байпасом в машине, интересно будет автовладельцам, автомобили которых оборудованы турбонаддувом. Благодаря встроенным Blow-Off клапанам или байпасам подобная система способствует активному удалению избыточного объёма воздуха. Считается, что такой подход на первый взгляд противоречит принципам, закладываемым производителями гоночных авто и болидов, хотя в действительности эксплуатационные противоречия отсутствуют.

Важно! Необходимо учитывать, что во время процесса торможения топливная система практически мгновенно блокирует подачу топлива в цилиндры, а также параллельно осуществляется закрытие дроссельной заслонки, перекрывающей подачу воздуха.

Полностью остановить работу всех механических узлов в такой ситуации не удается. Даже при падении оборотов за счёт инерции происходит вращение (замедляющееся) турбонагнетателя. Далее помогут знания конструкции автомобиля, согласно которой нагнеталь располагается до дроссельной заслонки. Турбина способствует принудительному привлечению дополнительных объемов воздуха к цилиндрам. Он поставляется вплоть до полного заглушения мотора, а также работа осуществляется даже спустя небольшой промежуток времени после выключения зажигания.

При закрытии дроссельной заслонки впускной коллектор будет продолжать получать невостребованные порции воздуха, которые станут скапливаться на участке между заслонкой и турбонагнетателем.

Стоит знать, что для достаточного функционирования двухлитрового мотора на оборотах 5 тыс. об/мин около 80 л. Однако вся система воздуховодов имеет объем около 10-12 л. Оборот в такой ситуации совершается за 12 миллисекунд. Но водитель не всегда будет удерживать авто на таких оборотах, а в какой-то промежуток сбросит усилие с педали акселератора, а накопившийся в мгновения воздух быстро «выявит слабые места в конструкции авто». Для предотвращения возможных негативных последствий в системе монтируется байпас или Blow-Off клапан.

Устройство байпасного клапана

Некоторые специалисты считают, что не стоит просто выбрасывать излишек собравшегося воздуха в атмосферу. Допустимым является стравливание собранного газа повторно на вход в компрессор турбинного нагнетателя. Подобное устройство принято называть байпасной конструкцией или рециркулирующей. Среди автолюбителей, занимающихся автотюнингом, много приверженцев данной модернизации. Однако они игнорируют то, что каждое сжатие газа происходит с параллельным поднятием температуры не только всего впускного узла, но и отправляемого по системе воздуха. Фактически встроенная байпасная закольцовка выступает в роли амортизатора, способствуя смягчению удара по осям турбонагнетателя. Исходя из такой логики, стравливающие клапаны Blow-Off максимально избавляют узлы от экстремальных нагрузок, а задачей рециркуляции является смягчение.

Сколько в авто перепускных клапанов

Исходя из конструкции автомобиля, в большинстве топливных систем располагается один байпас. Он в полной мере справляется со своими задачами. Однако автопроизводители могут дополнять свои детища дополнительным клапаном, выполняющим предохранительную функцию. Внимательней двигателю автомобиля стоит быть автовладельцам турбированных машин, в которых имеется возможность нагнетать воздух в камерах сгорания. Именно в такой зоне стравливающий или обходной клапан станет на защиту системы газораспределения от чрезмерного воздушного давления.

Заключение

Свою актуальность байпасы доказали для турбированных моторов. Если же стоит механический нагнетатель, то актуальность обводки теряется. Важно контролировать состояние клапана при каждой смене масла, чтобы на нём не скапливалась влага или загрязнения. Если имеются сомнения в собственных силах, то не стоит проводить переоборудование топливной системы авто своими руками.

Байпас в электрике, что это?

Содержание

  1. Электрический байпас для преобразователей напряжения
  2. Байпас для питания электродвигателей
  3. Для чего нужен байпас в электрике

Байпас (англ. Bypass) – обходной путь, обводной канал, обход. Чаще всего, такой способ подключения используется в системах отопления. Каждый радиатор, насос или конвектор устанавливается с байпасом. Это позволяет исключить неисправный элемент, не нарушая циркуляцию системы. В электрике этим термином обозначается путь электроснабжения, в обход кого-либо прибора питания, на случай выхода этого прибора из строя. К приборам, которые оборудуются байпасом, относятся:

  • стабилизаторы напряжения;
  • источники бесперебойного питания;
  • частотные преобразователи;
  • устройства плавного пуска электродвигателей.

Подача напряжения через электро-байпас – нештатная ситуация, но это лучше, чем полное отключение электропитания.

Электрический байпас для преобразователей напряжения

Обход необходим в тех случаях, когда питание электроприемника осуществляется модифицированным током. Электронные стабилизаторы напряжения и ИБП, преобразуют переменный ток сети в постоянный. Затем, при помощи инвертора, формируют на выходе правильную синусоиду и ток с минимальным отклонением от установленного напряжения. В случае выхода регулирующего устройства из строя, электричество подается напрямую. Несмотря на то, что качество электропитания в этом случае заведомо хуже, применение обходной схемы предотвращает полное прекращение электроснабжения.

Байпас для питания электродвигателей

В отличие от стабилизаторов, частотные преобразователи модифицируют, как это следует из названия, частоту электрического тока. Регулировка этого параметра, плавно изменяет частоту вращения электродвигателя. Работа двигателя в обход частотного преобразователя, возможна в части технологических процессов, для их завершения.

Устройства плавного пуска предотвращают преждевременный износ электродвигателей, работающих в режиме пуск/стоп, снижают отрицательное влияние высоких пусковых токов. После запуска двигателя, необходимость в работе УПП отпадает, электромотор переводится на прямое электропитание от сети. Эту задачу выполняет байпас, являющийся частью устройства плавного пуска.

Для чего нужен байпас в электрике

Устройства, регулирующие электропитание потребителей, как впрочем, и любые другие электроприборы, выходят из строя, требуют технического обслуживания и замены. В этих случаях, на время ремонтных или регламентных работ, электроснабжение переключается на обходную схему вручную.

Автоматический перевод электроснабжения в обход регулирующего прибора, происходит при обнаружении системой самодиагностики неисправности, ведущей к существенным отклонениям от заданных параметров электроснабжения или полному отключению подачи электроэнергии.

Разобравшись, что такое байпас в электрике, обходную схему энергоснабжения можно применять в случаях, когда подача напряжения напрямую, минуя модифицирующие его приборы, лучше, чем аварийное отключение.

Реактивный двигатель | Проектирование, дизайн и функциональность

реактивный двигатель

См. все СМИ

Категория: Наука и техника

Ключевые люди:
сэр Фрэнк Уиттл Ганс Иоахим Пабст фон Охайн Лоуренс Дейл Белл
Похожие темы:
турбореактивный прямоточный воздушно-реактивный двигатель эффективная скорость выхлопа движитель турбовальный

См. всю связанную информацию →

реактивный двигатель , любой из класса двигателей внутреннего сгорания, которые приводят самолет в движение посредством выброса назад струи жидкости, обычно горячих выхлопных газов, образующихся при сжигании топлива с воздухом, всасываемым из атмосферы.

Общие характеристики

Первичным двигателем практически всех реактивных двигателей является газовая турбина. Газовая турбина, которую по-разному называют активной зоной, генератором газа, газификатором или генератором газа, преобразует энергию, полученную в результате сгорания жидкого углеводородного топлива, в механическую энергию в виде воздушного потока высокого давления и высокой температуры. Затем эта энергия используется тем, что называется движителем (например, пропеллером самолета и ротором вертолета), для создания тяги, с помощью которой самолет движется.

Принцип действия

Газовая турбина работает по циклу Брайтона, в котором рабочим телом является непрерывный поток воздуха, подаваемый на вход двигателя. Сначала воздух сжимается турбокомпрессором до степени сжатия, обычно в 10-40 раз превышающей давление входного воздушного потока (как показано на рисунке 1). Затем он поступает в камеру сгорания, где вводится устойчивый поток углеводородного топлива в виде распыленных капель жидкости и пара или того и другого и сгорает при приблизительно постоянном давлении. Это приводит к непрерывному потоку продуктов сгорания под высоким давлением, средняя температура которых обычно составляет от 9от 80 до 1540 °C или выше. Этот поток газов проходит через турбину, которая соединена валом крутящего момента с компрессором и извлекает энергию из газового потока для приведения в действие компрессора. Поскольку к рабочему телу подводится тепло под высоким давлением, газовый поток, выходящий из газогенератора после расширения через турбину, содержит значительное количество избыточной энергии, т. е. газовую мощность, благодаря своему высокому давлению, высокой температуре и высокой скорости, которые могут быть использованы в двигательных целях.

Теплота, выделяемая при сжигании обычного топлива для реактивных двигателей в воздухе, составляет приблизительно 43 370 килоджоулей на килограмм (18 650 британских тепловых единиц на фунт) топлива. Если бы этот процесс был эффективен на 100 процентов, он тогда производил бы мощность газа на каждую единицу расхода топлива в размере 7,45 лошадиных сил/(фунтов в час) или 12 киловатт/(кг в час). На самом деле, некоторые практические термодинамические ограничения, которые являются функцией пиковой температуры газа, достигаемой в цикле, ограничивают эффективность процесса примерно до 40 процентов от этого идеального значения.

Пиковое давление, достигаемое в цикле, также влияет на эффективность выработки энергии. Это означает, что нижний предел удельного расхода топлива (SFC) для двигателя, производящего газ, составляет 0,336 (фунт в час)/лошадиная сила или 0,207 (кг в час)/киловатт. На практике SFC даже выше этого нижнего предела из-за неэффективности, потерь и утечек в отдельных компонентах первичного двигателя.

Викторина «Британника»

Изобретатели и изобретения

Поскольку вес и объем имеют первостепенное значение в общей конструкции самолета и поскольку силовая установка составляет значительную долю от общего веса и объема любого самолета, эти параметры должны быть сведены к минимуму в конструкции двигателя. Воздушный поток, проходящий через двигатель, является репрезентативной мерой площади поперечного сечения двигателя и, следовательно, его веса и объема. Поэтому важным показателем качества первичного двигателя является его удельная мощность — количество энергии, которое он вырабатывает на единицу воздушного потока.

Эта величина очень сильно зависит от пиковой температуры газа в активной зоне на выходе из камеры сгорания. Современные двигатели генерируют от 150 до 250 лошадиных сил/(фунт в секунду), или от 247 до 411 киловатт/(кг в секунду).

Движитель

Газовая мощность, вырабатываемая первичным двигателем в виде горячего газа под высоким давлением, используется для привода движителя, позволяя ему создавать тягу для движения или подъема самолета. Принцип создания такой тяги основан на втором законе движения Ньютона. Этот закон обобщает наблюдение, что сила ( F ), необходимая для ускорения дискретной массы ( м ), пропорциональна произведению этой массы на ускорение ( и ). Фактически, где масса берется как вес ( w ) объекта, деленный на ускорение свободного падения (

g ) в месте, где объект был взвешен. В случае реактивного двигателя обычно имеют дело с ускорением постоянного потока воздуха, а не с дискретной массой. Здесь эквивалентное утверждение второго закона движения состоит в том, что сила ( F ), необходимая для увеличения скорости потока жидкости, пропорциональна произведению скорости массового потока ( M ) струи и изменение скорости струи, где скорость на входе ( V 0 ) относительно двигателя принята за скорость полета, а скорость нагнетания ( V j ) – выхлопная или реактивная скорость относительно двигателя. W — скорость массового расхода рабочего тела (т. е. воздуха или продуктов сгорания), деленная на ускорение свободного падения в месте, где измеряется массовый расход. Относительно небольшое влияние массового расхода топлива на создание разницы между массовым расходом впускного и выпускного потоков намеренно не учитывается.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.

Подпишитесь сейчас

Из этого следует, что компоненты движителя должны воздействовать силой F на поток воздуха, протекающего через движитель, если это устройство ускоряет воздушный поток от скорости полета V 0 до скорости нагнетания V 9 0046 и . Реакция на эту силу F в конечном итоге передается опорами движителя на самолет в виде тяги.

Существует два основных подхода к преобразованию мощности газа в тягу. В одном случае вторая турбина (т. е. турбина низкого давления или мощность) может быть введена в проточную часть двигателя для извлечения дополнительной механической мощности из имеющейся газовой мощности в лошадиных силах.

Затем эта механическая энергия может быть использована для приведения в движение внешнего движителя, такого как пропеллер самолета или винт вертолета. В этом случае тяга создается в движителе, поскольку он возбуждает и ускоряет воздушный поток, проходящий через движитель, т. Е. Воздушный поток, отдельный от потока, протекающего через первичный двигатель.

При втором подходе высокоэнергетический поток, подаваемый первичным двигателем, может подаваться непосредственно в реактивное сопло, которое разгоняет газовый поток до очень высокой скорости на выходе из двигателя, что характерно для турбореактивного двигателя. В этом случае тяга создается в компонентах первичного двигателя, поскольку они возбуждают газовый поток.

В двигателях других типов, таких как ТРДД, тяга создается обоими способами: основная часть тяги создается вентилятором, который приводится в действие турбиной низкого давления и который возбуждает и ускоряет байпасный поток ( см. ниже

). Оставшаяся часть общей тяги создается основным потоком, который выбрасывается через реактивное сопло.

Как первичный двигатель является несовершенным устройством для преобразования тепла сгорания топлива в мощность газа, так и движитель является несовершенным устройством для преобразования мощности газа в тягу. Обычно в высокотемпературном и высокоскоростном реактивном потоке, выходящем из движителя, остается много энергии, которая не полностью используется для движения. КПД движителя, КПД движителя η p , часть доступной энергии, которая используется для приведения в движение самолета, по сравнению с полной энергией реактивного потока. Для простого, но репрезентативного случая, когда поток нагнетаемого воздуха равен потоку входящего газа, установлено, что

Хотя скорость реактивной струи V j должна быть больше скорости самолета V 0 для создания полезной тяги, Скорость полета с существенным запасом может быть очень вредной для тяговой эффективности. Максимальная тяговая эффективность достигается, когда скорость реактивной струи почти равна (но, по необходимости, несколько выше) скорости полета. Этот фундаментальный факт привел к появлению большого разнообразия реактивных двигателей, каждый из которых предназначен для создания определенного диапазона реактивных скоростей, который соответствует диапазону скоростей полета самолета, который он должен приводить в действие.

Чистая оценка КПД реактивного двигателя представляет собой измерение расхода топлива на единицу развиваемой тяги (например, в фунтах или килограммах расходуемого топлива в час на фунты или килограммы развиваемой тяги). Не существует простого обобщения величины удельного расхода топлива двигателя тяги. Это зависит не только от КПД первичного двигателя (и, следовательно, от его отношения давления и температуры пикового цикла), но также и от тягового КПД движителя (и, следовательно, от типа двигателя). Это также сильно зависит от скорости полета самолета и температуры окружающей среды (которая, в свою очередь, сильно зависит от высоты, времени года и широты).

Понимание перепускной фильтрации моторного масла

Масляный фильтр вашего двигателя соответствует вашим ожиданиям? Вы хоть знаете производительность своего фильтра? Большинство людей этого не делают, а если бы и знали, то были бы потрясены.

Некоторые из лучших полнопоточных фильтров для двигателей на рынке имеют эффективность улавливания 50 процентов при размере частиц 10 микрон и выше. Это бета-коэффициент 2 для тех из вас, кто ведет счет, и они считаются «хорошими» с точки зрения полнопоточной фильтрации двигателя. Для сравнения, коэффициент бета 1000 будет считаться «хорошим» с точки зрения промышленной гидравлической фильтрации. Почему такая разница в производительности? На дисперсию влияют следующие факторы:

Физический размер

Масляные фильтры двигателя, часто ограниченные физическими размерами, относительно малы по сравнению с их промышленными аналогами. Этот небольшой размер совпадает с меньшей площадью поверхности фильтрующего материала, через которую проходит смазка.

65% специалистов по смазочным материалам используют обходные системы фильтрации на своих предприятиях, по данным недавнего опроса на веб-сайте Machinelubrication. com

Перепад давления

Перепад давления представляет собой изменение давления от входной до выходной стороны фильтра. Если перепад давления слишком высок, клапан откроется, позволяя маслу пройти мимо фильтра. Все фильтры или головки моторного масла оснащены перепускным клапаном. Этот клапан нужен для того, чтобы двигатель не страдал от масляного голодания из-за засорения фильтра мусором.

Расход

В большинстве конструкций двигателей масло должно проходить через фильтр перед попаданием в компоненты двигателя. Следовательно, фильтр должен выдерживать 100 % расхода, необходимого для питания движущихся компонентов двигателя.

Размер пор среды

Размер пор среды является основным фактором, определяющим эффективность и размер частиц, которые может удалить фильтр.

Когда эти факторы объединяются, возникает проблема. Физический размер обычно ограничивается конструкцией. Фильтр не может быть слишком большим из-за всех остальных компонентов, которые мы пытаемся разместить под капотом. Скорость потока должна быть достаточно высокой, чтобы питать все смазываемые компоненты. Это означает, что вы не можете сделать размер пор слишком маленьким, иначе это повысит перепад давления, и перепускной клапан откроется, что фактически сделает фильтр бесполезным.

Есть несколько вещей, которые вы можете сделать, чтобы решить эту проблему. Введите обходную фильтрацию. Системы байпасной фильтрации забирают от 5 до 10 процентов потока, который должен был бы поступать в двигатель, и пропускают его через сверхэффективный фильтр обратно в поддон.

При байпасной фильтрации скорость потока может быть значительно снижена, что позволяет значительно уменьшить размер пор при сохранении нормального перепада давления. В результате в поддон возвращается гораздо более чистое масло. Теперь из системы можно удалять более мелкую взвесь сажи и полярные нерастворимые вещества, которые не контролируются полнопоточным фильтром. В сочетании с полнопоточным фильтром байпасная фильтрация обеспечивает более низкий уровень износа, более низкий расход масла, более высокую эффективность сгорания и более длительный срок службы масла.

В тематическом исследовании, проведенном General Motors и опубликованном Обществом автомобильных инженеров (SAE), было установлено, что срок службы двигателя может быть увеличен в восемь раз при использовании 5-микронной фильтрации по сравнению со стандартной 40-микронной фильтрацией.

Очевидно, что более чистое масло лучше для надежности двигателя. Есть старая поговорка, что масло не изнашивается; просто загрязняется. Хотя в идее о том, что более грязное масло «стареет» быстрее, чем чистое, есть доля правды, срок службы моторного масла ограничен. Со временем его нужно будет заменить, независимо от того, насколько чистым вы его содержите.

Несмотря на то, что система действительно может удалить большую часть взвешенной сажи, продуктов износа и грязи, масло и присадки все еще разлагаются путем окисления и нитрования. Исчерпание этих присадок в конечном итоге станет причиной замены масла. Система должна замедлить скорость этого истощения, но не может устранить его.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *