Батарея на схеме: Батарейки в электрических цепях

Батарейки в электрических цепях

 

 

Полярность цилиндрической батарейки      Условное графическое обозначение
и условное графическое обозначение.       батарейки на схеме в соответствии с ГОСТ.

Обозначение батарейки на электрических схемах содержит короткую черту, обозначающую отрицательный полюс и длинную черту – положительный полюс. Одиночную батарейку, используемую для питания прибора, на схемах обозначают латинской буквой G, а батарею, состоящую из нескольких батареек буквами GB.

Примеры использования обозначения батареек в схемах.

Самое простое условное графическое обозначение батарейки или аккумулятора в соответствии с ГОСТ использовано в схеме 1. Более информативное обозначение батареи в соответствии с ГОСТ использовано в схеме 2, здесь отражено количество батареек в составе групповой батареи, указано напряжение батареи и положительный полюс.

ГОСТ допускает использовать обозначение батареи, примененное в схеме 3.

Часто в бытовой технике встречается использование нескольких цилиндрических батареек. Включение различного количества последовательно соединенных батареек позволяет получать источники питания, обеспечивающие различное напряжение. Такой батарейный источник питания дает напряжение равное сумме напряжений всех входящих батареек.

Последовательное соединение трех батареек с напряжением 1,5 вольта обеспечивает напряжение питания прибора величиной 4,5 вольта.

При последовательном включении батареек, ток, отдаваемый в нагрузку, сокращается из-за возрастающего внутреннего сопротивления источника питания.

Подключение батареек к пульту дистанционного управления телевизором.

Например, мы сталкиваемся с последовательным включением батареек при их замене в пульте управления телевизором.

Параллельное включение батареек используется редко. Преимущество параллельного включения состоит в увеличении тока нагрузки, собранного таким образом источника питания. Напряжение включенных параллельно батареек остается прежним, равным номинальному напряжению одной батарейки, а ток разряда увеличивается пропорционально количеству объединенных батарей. Несколько слабых батареек можно заменить на одну более мощную, поэтому для маломощных батареек использовать параллельное включение бессмысленно. Параллельно включать есть смысл только мощные батарейки, из-за отсутствия или дороговизны батарейки с еще большим током разряда.

Параллельное включение батареек.

Такое включение имеет недостаток. Батарейки не могут иметь точно совпадающее напряжение на контактах при отключенной нагрузке. У одной батарейки это напряжение может составлять 1,45 вольта, а у другой 1,5 вольта. Это вызовет протекание тока от батарейки с большим напряжением к батарейке с меньшим. Будет происходить разряд при установке батареек в отсеки прибора при отключенной нагрузке.

В дальнейшем при такой схеме включения саморазряд происходит быстрее, чем при последовательном включении.
Комбинируя последовательное и параллельное соединение батареек можно получить различную мощность источника батарейного питания.

Литература:

ГОСТ 2.768-90 Обозначения условные графические в схемах источники  электрохимические, электротермические и тепловые.

Батарея на схеме обозначение

Обозначение батарейки на электрических схемах содержит короткую черту, обозначающую отрицательный полюс и длинную черту — положительный полюс. Одиночную батарейку, используемую для питания прибора, на схемах обозначают латинской буквой G, а батарею, состоящую из нескольких батареек буквами GB. Самое простое условное графическое обозначение батарейки или аккумулятора в соответствии с ГОСТ использовано в схеме 1. Более информативное обозначение батареи в соответствии с ГОСТ использовано в схеме 2, здесь отражено количество батареек в составе групповой батареи, указано напряжение батареи и положительный полюс.

ГОСТ допускает использовать обозначение батареи, примененное в схеме 3.


Поиск данных по Вашему запросу:

Батарея на схеме обозначение

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Условные графические и буквенные обозначения электрорадиоэлементов
  • Гост 2. 710-81 ескд. Обозначения буквенно-цифровые в.
  • Обозначение батареи на схеме
  • Батарея уго гост
  • 12. Источники питания, электродвигатели, линии связи
  • БАТАРЕЙКИ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: КАК ЗАРЯЖАТЬ ПАЛЬЧИКОВЫЕ АККУМУЛЯТОРЫ АА и ААА Ni Mh Ni Cd – обычное и умное зарядное устройство

Условные графические и буквенные обозначения электрорадиоэлементов


Каждый элемент или устройство, имеющие самостоятельную принципиальную схему, должны иметь позиционное двухбуквенное кодовое обозначение табл. В общем случае обозначение состоит из трёх частей, определяющих вид элемента.

Его номер и выполняемую функцию. Первые две являются обязательными составляющими обозначения. Например, LRK – реактор токоограничивающий, межсекционный. Буквенные коды, определяющие вид электрических элементов в соответствии с ГОСТ 2.

Преобразователи неэлектрических величин в электрические кроме генераторов и источников питания или наоборот, аналоговые или многоразрядные преобразователи или датчики для указания или измерители. Порядковые номера элементам следует присваивать, начиная с единицы, в пределах группы элементов, которым на схеме присвоено одинаковое буквенное позиционное обозначение, например, Q1, Q2, Q3, в соответствии с последовательностью их расположения на схеме сверху вниз и слева направо.

Позиционные обозначения проставляют рядом с условными графическими обозначениями элементов с правой стороны или под ними. На принципиальной схеме должны быть однозначно определены все элементы, входящие в состав установки и изображённые на схеме. При выполнении схемы на неполных листах должны выполняться следующие требования:. В настоящее время принципиальные электрические схемы трансформаторных подстанций выполняют в соответствии с ГОСТ Нормально отключенному положению выключателя соответствует заштрихованный прямоугольник, а не заштрихованный прямоугольник – выключатель включенный.

Обозначение выключателя можно выполнять буквенным кодом Q без признака автоматики отключения F. Обозначения условные графические на схемах следует выполнять на основании рекомендаций ГОСТ 2. Часто рассматриваются вопросы размещения электрооборудования в помещениях бытового назначения, в помещениях цехов, подстанций ит. Условные графические изображения на основании ГОСТ Размещение объектов электроэнергетики на картах местности и на ситуационных картах, обозначение объектов и линий связи между ними рекомендуется выполнять в соответствии с графическими обозначениями ниже.

Внутри окружности допускается размещение квалифицирующих символов и дополнительной информации, при этом диаметр окружности при необходимости изменяют. Генератор переменного трёхфазного тока с отмоткой статора, соединенной в звезду с параллельными ветвями. Внутри окружности допускается размещение квалифицирующих символов и дополнительной информации.

Допускается увеличение диаметра окружности. Контактор, магнитный пускатель. Допускается справа от обозначения указывать значение частоты; например, переменного тока с частотой 10 кГц. Допускается применять для обозначений повреждений изоляции между проводами. Квалифицирующие символы, поясняющие принципы работы коммутационных устройств. Контакт, замыкающий нажимного кнопочного выключателя без самовозврата, с размыканием и возвратом элемента управления:. Примеры построения обозначений контактов коммутационных устройств.

Если необходимо уточнить тип разрядника, то применяют следующие обозначения:. Допускается в обозначении предохранителя указывать утолщённой линией сторону, которая остаётся под напряжением. Звёздочку заменяют одним или более квалифицирующим символом, характеризующим вид реле комплекта реле , помещённым в следующей последовательности: техническая характеристика измерительного реле и вид её изменения, направление энергии, диапазон уставок, срабатывание с выдержкой времени.

Допускается помещать диапазоны уставок и или другие данные вне прямоугольника. Общее обозначение можно дополнить цифрой, определяющей число измерительных элементов. Высота обозначения зависит от объёма информации, определяющей вид реле или комплект реле.

Поле прямоугольника допускается разделять горизонтальными линиями на поля, содержащие информацию, касающуюся отдельных реле элементов.

При необходимости изображения нестандартных электроизмерительных приборов следует использовать сочетания соответствующих основных обозначений, например, комбинированный прибор показывающий и регистрирующий.

Для указания назначения электроизмерительного прибора в его обозначение вписывают условные графические обозначения, установленные ЕСКД, а также буквенные обозначения единиц измерения или измеряемых единиц, которые помещают внутри графического обозначения электроизмерительного прибора.

В обозначения электроизмерительных приборов допускается вписывать необходимые данные согласно действующим стандартам на электроизмерительные приборы. Если необходимо указать род тока, используют обозначение по ГОСТ 2. Если необходимо указать цвет лампы, допустимо использовать следующие обозначения: С2 — красный; С4 — красный; С5 — зелёный; С6 — синий; С9 — белый. Батарею из гальванических элементов допускается обозначать так же, как гальванический элемент.

При этом над обозначением проставляют значения напряжения батареи, например, напряжение 48 В. Допускается: указывать над изображением линии данные проводки род тока, напряжение, материал, способ прокладки, отметка проводки и т. Металлические конструкции, используемые в качестве магистралей заземления, зануления. Проводка пересекает отметку, изображённую на плане, сверху вниз или снизу вверх и не имеет горизонтальных участков в пределах данного плана. Переключатель на два направления без нулевого положения со степенью защиты от IP20 до IP Переключатель на два направления без нулевого положения со степенью защиты от IP44 до IP Блоки с выключателями и двухполюсной штепсельной розеткой для открытой установки со степенью защиты от IP20 до IP Блоки с выключателями и двухполюсной штепсельной розеткой для скрытой установки со степенью защиты от IP20 до IP Светильники и прожектора при раздельном изображении на плане оборудования и электрических сетей.

Светильник с лампой накаливания для специального освещения световой указатель , например, для запасного выхода. Светильник с лампой накаливания на кронштейне, на стене здания, сооружения для наружного освещения. Примечание: допускается светильник с люминесцентными лампами изображать в масштабе чертежа.

Светильник с разрядной лампой высокого давления на кронштейне для наружного освещения. Примечание: допускается трансформатор малой мощности изображать без прямоугольного контура. Условный графический и буквенный код элементов электрических схем.

Электрокомпоненты 37 Кабель и провод Светотехника Электрические машины 72 Электропривод 33 Щитовое оборудование 21 Промышленная автоматика 51 Измерительная техника 95 Высоковольтная техника 64 Низковольтная техника 36 Инструмент и принадлежности 19 Документация 2 Теория электротехники 25 Справочные данные Другое Справочник по кабелю и проводу 0.

При выполнении схемы на неполных листах должны выполняться следующие требования: – нумерация позиционных обозначений элементов должна быть сквозной в пределах установка; – перечень элементов должен быть общим; – при повторном изображении отдельных элементов на других листах схемы следует охранять позиционные обозначения, присвоенные им на одном из первых листов схемы.

Правила оформления принципиальных электрических схем В настоящее время принципиальные электрические схемы трансформаторных подстанций выполняют в соответствии с ГОСТ Обозначения в схемах Таблица. Обозначение условное графическое и буквенный код элементов электрических схем Наименование элемента схемы Графическое обозначение Буквенный код Машина электрическая.

Общее обозначение. Допускается увеличение диаметра окружности T Трансформатор и автотрансформатор с РПН с указанием схемы соединений обмоток T Трансформатор силовой, трёхобмоточный.

Начало обмотки указывается точкой Т Трансформатор напряжения ТV Два однофазных трансформатора натяжения, соединённых в открытый треугольник ТV Трансформатор натяжения трёхфазный, трёхобмоточный. Допускается применять для обозначений повреждений изоляции между проводами Обозначение прочих квалифицирующих символов Сопротивление: активное реактивное полное индуктивное реактивное ёмкостное реактивное Идеальный источник: тока напряжения Таблица.

Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения. Выдержка из ГОСТ 2. Наименование Обозначение Квалифицирующие символы, поясняющие принципы работы коммутационных устройств 1. Функция : контактора выключателя разъединителя выключателя-разъединителя 2. Автоматическое срабатывание 3. Функция путевого или концевого выключателя 4.

Самовозврат 5. Отсутствие самовозврата 6. Дугогашение Контакты коммутационного устройства замыкающий размыкающий переключающий переключающий с нейтральным центральным положением Примеры построения обозначений контактных соединений Контакт контактора: замыкающий Размыкающий замыкающий дугогасительный размыкающий дугогасительный замыкающий с автоматическим срабатыванием Контакт: выключателя разъединителя выключателя-разъединителя Контакт концевого выключателя: замыкающий размыкающий Контакт, замыкающий с замедлением, действующим: при сбрасывании при возврате при срабатывании и возврате Контакт, размыкающий с замедлением, действующим: при сбрасывании при возврате при срабатывании и возврате Контакт, замыкающий нажимного кнопочного выключателя без самовозврата, с размыканием и возвратом элемента управления: автоматически посредством вторичного нажатия кнопки посредством вытягивания кнопки Примеры построения обозначений контактов коммутационных устройств 1.

Контакт, замыкающий выключателя: однополюсного трёхполюсного трёхполюсного с автоматическим срабатыванием максимального тока 2.

Разъединитель трёхполюсный 3. Выключатель-разъединитель 4. Выключатель электромагнитный реле 5. Перемычка коммутационная на размыкание Размеры Контакт коммутационного устройства: замыкающий размыкающий переключающий Таблица. Обозначения условные графические в схемах.

Разрядники, предохранители. Наименование Обозначение Искровой промежуток: двухэлектродный, общее обозначение трёхэлектродный Разрядник , общее обозначение Примечание. Если необходимо уточнить тип разрядника, то применяют следующие обозначения: разрядник вентильный и магнитовентильный разрядник шаровой Предохранитель пробивной Предохранитель плавкий , общее обозначение Примечание. Допускается в обозначении предохранителя указывать утолщённой линией сторону, которая остаётся под напряжением Выключатель-предохранитель Разъединитель-предохранитель Выключатель-разъединитель с плавким предохранителем Таблица.

Воспринимающая часть электромеханических устройств. Наименование Обозначение Воспринимающая часть электромеханических устройств Катушка электромеханического устройства : общее обозначение Примечание. Выводы катушки допускается изображать с одной стороны с одной обмоткой трёхфазного тока Катушка электромеханического устройства с дополнительным графическим полем Катушка электромеханического устройства с указанием вида обмотки : обмотка тока обмотка напряжения обмотка максимального тока обмотка минимального напряжения Катушка поляризованного реле Воспринимающая часть электротеплового реле Размеры Катушка электромеханического реле Воспринимающая часть электротеплового реле Катушка электромеханического устройства с дополнительным полем Реле защиты, комплект реле Общее обозначение Примечания.

Квалифицирующие символы приведены в ГОСТ 2. Приборы электроизмерительные. Наименование Обозначение Прибор электроизмерительный: показывающий регистрирующий интегрирующий например, счётчик электрической энергии Примечания. В обозначения электроизмерительных приборов допускается вписывать необходимые данные согласно действующим стандартам на электроизмерительные приборы Самопишущий комбинированный ваттметр и варметр Индикатор максимальной активной мощности, имеющий связь с ваттметром Счётчик времени Счётчик ватт-часов, измеряющий энергию, передаваемую в оном направлении Счётчик ватт-часов с регистрацией максимальной активной мощности Таблица.

Приборы электронагревательные. Наименование Обозначение Способы нагрева: дуговой плазменный электронный сопротивлением смешанный дуговой и сопротивлением индукционный Примечание. Промышленная печь Устройство электротермическое без камеры нагрева. Электронагреватель Электронагреватель: прямого нагрева косвенного нагрева Электропечь промышленная: прямого нагрева косвенного нагрева Примеры обозначений промышленных печей и электронагревателей Электропечь сопротивления общее обозначение Электронагреватель сопротивления общее обозначение Электропечь электродная общее обозначение Электропечь дуговая общее обозначение Размеры Установка электротермическая Электронагреватель Таблица.

Резисторы, конденсаторы, токосъёмники. Источники электромеханические. Стрелкой обозначается подвижный контакт Неиспользованный вывод допускается не изображать Конденсатор постоянной мощности Примечание.


Гост 2. 710-81 ескд. Обозначения буквенно-цифровые в.

Распиновкой называют обозначение контактов в разъемах, соответствующих схеме, но для монтажа в отверстиях. Функционально контакты соответствуют справочной нумерации. Распиновка разъема батареи, работающей с ноутбуком, потребуется в тот момент, когда батарея перестанет заряжаться. В каждом разъеме 6,7, 9 контактов, которые зеркальны на источнике энергии и потребителе. Но расположение контактов зависит от компоновки, и у производителей электронные схемы не совпадают.

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ. ИСТОЧНИКИ Батарея, состоящая из гальванических элементов. Примечание. Батарею из .

Обозначение батареи на схеме

Любые электрические цепи могут быть представлены в виде чертежей принципиальных и монтажных схем , оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Учитывая большое количество электроэлементов, для их буквенно-цифровых далее БО и условно графических обозначений УГО был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты. Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах. Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Вполне возможно, в ближайшее время это вопрос будет урегулирован.

Батарея уго гост

В данной статье покажем таблицу графических обозначений радиоэлементов на схеме. Этот материал предназначен для того, чтобы начинающему радиолюбителю было с чего начать. В различных технических изданиях такой материал встречается очень редко. Именно этим он и ценен. Эта разница важна только для органов государственной приёмки, а для радиолюбителя практического значения не имеет, лишь бы был понятен тип, назначение и основные характеристики элементов.

Автор опровергает распространенное заблуждение, будто чтение радиосхем и их использование при ремонте бытовой аппаратуры доступно лишь подготовленным специалистам.

12. Источники питания, электродвигатели, линии связи

Нужны еще сервисы? Архив Каталог тем Добавить статью. Как покупать? Для автономного питания радиоэлектронной аппаратуры широко используют электрохимические источники тока — гальванические элементы и аккумуляторы. Буквенный код элементов питания — G. УГО [ 11 ] напоминает символ конденсатора постоянной ёмкости — параллельные линии разной длины: короткая обозначает отрицательный полюс, длинная — положительный рис.

БАТАРЕЙКИ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Условные графические обозначения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения. Тарабанов, канд. Приложение 1 Условные обозначения систем вентиляции. Таблица 1. Приложение 2 Условные обозначения трубопроводов. Таблица 2. Приложение 3 Условные обозначения оборудования. Таблица 3.

Варианты обозначения батареи последовательно соединённых гальванических элементов на принципиальных электрических схемах. Гальванические элементы, батареи элементов и батареи аккумуляторов. Батарея (фр. batterie) — два или более соединённых параллельно или последовательно.

Машина синхронная трехфазная неявнополюсная с обмоткой возбуждения на роторе; обмотка статора соединена в треугольник. Переключатель двухполюсный трехпозиционный с нейтральным положением Батарея, состоящая из гальванических гостов с переключаемым отводом уго. Некоммерческая онлайн система, содержащая все Российские Госты, национальные Стандарты и госты.

Батарея фр. В электротехнике источники электроэнергии гальванические элементы, аккумулятор , термоэлементы или фотоэлементы соединяют в батарею, чтобы получить напряжение , снимаемое с батареи при последовательном соединении , силу тока или ёмкость при параллельном соединении , образованного источника больше, чем может дать один элемент. Прародителем батареи последовательно соединённых электрохимических элементов можно считать вольтов столб , изобретённый Алессандро Вольта в году, состоящий из последовательно соединённых медно-цинковых гальванических элементов. Батарейкой в обиходе обычно не совсем корректно называют одиночные гальванические элементы например, типа АА , которые обычно в источниках питания устройств соединяются в батарею для получения необходимого напряжения. Батареей называют и цепь, содержащую только пассивные электрические элементы: резисторы для увеличения рассеиваемой мощности или изменения сопротивления , конденсаторы для увеличения ёмкости или увеличения рабочего напряжения , изменения ёмкости. Такие устройства, снабжённые элементами коммутации — переключателями, гнёздами и т.

Unified system of design documentation.

Для автономного питания радиоэлектронной аппаратуры широко используют электрохимические источники тока — гальванические элементы и аккумуляторы. Буквенный код элементов питания — G. Обозначение напоминает символ конденсатора постоянной ёмкости — параллельные линии разной длины: короткая обозначает отрицательный полюс, длинная — положительный рис. Знаки полярности на схемах можно не указывать. Поскольку для питания приборов чаще всего требуется напряжение, большее того, что обеспечивает один элемент или аккумулятор, их соединяют в батарею.

Электростанции ЭС и подстанции ПС — обозначения без конкретизации конструктивного исполнения при необходимости различения действующих и проектируемых объектов в первом случае применяется штриховка , ГОСТ 2. Машины электрические, ГОСТ 2. Трансформаторы и автотрансформаторы, ГОСТ 2.


Как работают батареи? Детали, типы и терминология (с диаграммой)

Обновлено 3 марта 2020 г.

Автор GAYLE TOWELL

Без аккумуляторов не было бы сотовых телефонов, часов, планшетов, слуховых аппаратов, фонариков, электромобилей или спутников связи — и список можно продолжить. Первая батарея была изобретена более 200 лет назад, и с тех пор эти гениальные устройства стали незаменимыми в нашей повседневной жизни.

Что такое батарея?

Проще говоря, батарея — это любое устройство, которое может служить портативным временным источником электроэнергии.

В электрической цепи батареи служат источником энергии, создавая разность потенциалов, которая управляет потоком электрического тока. Когда ток проходит через цепь, он передает энергию любым подключенным к нему устройствам. В такой цепи протекает постоянный ток. Другими словами, ток течет в одном непрерывном направлении.

И наоборот, электроэнергия, поставляемая электростанцией, подается через розетки в вашем доме и имеет форму переменного тока. Этот тип тока меняет направление с определенной частотой для питания устройств.

Как работают батареи

Типичная батарея состоит из одного или нескольких элементов, которые имеют катод (положительный вывод) на одном конце и анод (отрицательный вывод) на другом конце. Химические реакции, происходящие внутри, вызывают накопление электрического заряда на клеммах, создавая электрический потенциал на узлах за счет высвобождения химической энергии.

Химические реакции в батарее вызывают накопление электронов на аноде. Это создает электрический потенциал между катодом и анодом. Электроны хотят добраться до катода, чтобы нейтрализовать заряд, но они не могут этого сделать, путешествуя через электролитический материал внутри самой батареи. Вместо этого электроны легко текут по проводнику, соединяющему анод с катодом.

В конце концов, химические процессы, создающие избыток электронов в аноде, прекращаются, и батарея умирает. Однако с перезаряжаемыми батареями (также называемыми вторичными батареями) этот процесс можно обратить вспять, подключив батареи к зарядным устройствам после их разрядки. Перезарядка батареи меняет направление потока электронов с помощью другого источника питания. Благодаря этой добавленной энергии химические процессы в батарее могут обратить вспять, и батарея снова сможет самостоятельно питать цепь.

Создайте свою собственную лимонную батарею!

Отличный способ лучше понять, как работает батарея, — создать дома собственную батарею из лимона, цинкового гвоздя и медной монеты и использовать ее для питания маленькой лампочки.

Вставьте медную монету в одну сторону лимона и вставьте оцинкованный (оцинкованный) гвоздь в другую сторону (убедитесь, что два предмета не соприкасаются внутри лимона). Гвоздь будет служить положительным электродом (катодом), а монета — отрицательным электродом (анодом). Лимонный сок служит электролитом. Затем вы можете подключить вольтметр к лимонной батарее, чтобы увидеть, какое напряжение она создает. При необходимости можно соединить несколько лимонных батареек последовательно, чтобы создать напряжение, достаточное для питания небольшой лампочки.

Различные типы батарей

Батареи бывают разных форм, размеров, составов и напряжений. Некоторые из наиболее распространенных типов:

  • Аккумуляторы, используемые в обычных бытовых электронных устройствах. К ним относятся литий-ионные батареи, никель-кадмиевые и никель-металлогидридные (NiMH). Названия аккумуляторов указывают на содержащиеся в них электролиты.
  • Свинцово-кислотные аккумуляторы также можно перезаряжать, но они используются для более тяжелых условий эксплуатации (например, автомобильные аккумуляторы).
  • Батареи, которые обычно не перезаряжаются, включают щелочные батареи или сухие угольно-цинковые батареи.

Как работает батарея – Любопытно

Представьте себе мир без батарей. Все те портативные устройства, от которых мы так зависим, были бы такими ограниченными! Мы смогли бы донести наши ноутбуки и телефоны только до предела досягаемости их кабелей, что сделало бы это новое работающее приложение, которое вы только что загрузили на свой телефон, довольно бесполезным.

К счастью, у нас есть батарейки. Еще в 150 г. до н.э. в Месопотамии парфянская культура использовала устройство, известное как багдадская батарея, сделанное из медных и железных электродов с уксусом или лимонной кислотой. Археологи считают, что на самом деле это не были батареи, а использовались в основном для религиозных церемоний.

Изобретение батареи в том виде, в каком мы ее знаем, приписывают итальянскому ученому Алессандро Вольта, который собрал первую батарею, чтобы доказать точку зрения другого итальянского ученого, Луиджи Гальвани. В 1780 году Гальвани показал, что лапки лягушек, подвешенных на железных или латунных крючках, будут дергаться при прикосновении к ним зондом из какого-либо другого металла. Он считал, что это было вызвано электричеством из тканей лягушек, и называл это «животным электричеством».

Луиджи Гальвани обнаружил, что лапки лягушек, подвешенных на латунных крючках, дергались, если их проткнуть зондом из другого металла. Он думал, что эта реакция была вызвана «животным электричеством» внутри лягушки. Источник изображения: Луиджи Гальвани / Wikimedia Commons.

Вольта, поначалу впечатленный открытиями Гальвани, пришел к выводу, что электрический ток исходит из двух разных типов металла (крючков, на которых висят лягушки, и другого металла зонда) и просто передается через них, а не через них. из тканей лягушек. Он экспериментировал со стопками слоев серебра и цинка, перемежаемых слоями ткани или бумаги, пропитанными соленой водой, и обнаружил, что электрический ток действительно протекал по проводу, прикрепленному к обоим концам стопки.

Батарея Алессандро Вольта: груда цинковых и серебряных листов с вкраплениями ткани или бумаги, пропитанной соленой водой. Представьте, что вы используете это для питания вашего телефона. Источник изображения: Луиджи Кьеза / Wikimedia Commons.

Вольта также обнаружил, что, используя различные металлы в куче, можно увеличить величину напряжения. Он описал свои открытия в письме Джозефу Бэнксу, тогдашнему президенту Лондонского королевского общества, в 1800 году. ‘ (мера электрического потенциала) названа в его честь.

Я сам, если не считать шуток, поражаюсь тому, как мои старые и новые открытия… чистого и простого электричества, вызываемого контактом металлов, могли вызвать такой ажиотаж. Алессандро Вольта

Так что же именно происходило с этими слоями цинка и серебра, да и с дергающимися лягушачьими лапками?

Химия батареи

Батарея — это устройство, которое накапливает химическую энергию и преобразует ее в электричество. Это известно как электрохимия, а система, которая лежит в основе батареи, называется электрохимической ячейкой. Батарея может состоять из одного или нескольких (как в исходной куче Вольты) электрохимических элементов. Каждая электрохимическая ячейка состоит из двух электродов, разделенных электролитом.

Так откуда электрохимический элемент получает электричество? Чтобы ответить на этот вопрос, нам нужно знать, что такое электричество. Проще говоря, электричество — это тип энергии, производимый потоком электронов. В электрохимической ячейке электроны образуются в результате химической реакции, которая происходит на одном электроде (подробнее об электродах ниже!), а затем перетекают на другой электрод, где они расходуются. Чтобы понять это правильно, нам нужно поближе взглянуть на компоненты клетки и на то, как они собираются вместе.

Электроды

Чтобы создать поток электронов, вам нужно где-то, чтобы электроны текли из и куда-то, чтобы электроны текли в . Это электроды клетки. Электроны текут от одного электрода, называемого анодом (или отрицательным электродом), к другому электроду, называемому катодом (положительный электрод). Как правило, это различные типы металлов или других химических соединений.

В батарее Вольта анодом был цинк, от которого электроны текли по проводу (при подключении) к серебру, которое было катодом батареи. Он сложил множество этих элементов вместе, чтобы сделать общую кучу и поднять напряжение.

Но откуда анод получает все эти электроны? И почему они так счастливы, что их весело отправляют на катод? Все сводится к химии, которая происходит внутри клетки.

Происходит несколько химических реакций, которые нам нужно понять. На аноде электрод вступает в реакцию с электролитом, в результате которой образуются электроны. Эти электроны накапливаются на аноде. Тем временем на катоде одновременно происходит другая химическая реакция, которая позволяет этому электроду принимать электроны.

Технический химический термин для реакции, включающей обмен электронами, представляет собой реакцию восстановления-окисления, чаще называемую окислительно-восстановительной реакцией. Всю реакцию можно разделить на две полуреакции, а в случае электрохимической ячейки одна полуреакция происходит на аноде, другая на катоде. Восстановление — это присоединение электронов, и это то, что происходит на катоде; мы говорим, что катод восстанавливается в ходе реакции. Окисление — это потеря электронов, поэтому мы говорим, что анод окисляется.

Каждая из этих реакций имеет определенный стандартный потенциал. Думайте об этой характеристике как о способности/эффективности реакции либо производить, либо поглощать электроны — ее сила в перетягивании каната электронами.

  • Стандартные потенциалы для полуреакций

    Ниже приведен список полуреакций, которые включают высвобождение электронов из чистого элемента или химического соединения. Рядом с реакцией указано число (E 0 ), которое сравнивает силу электрохимического потенциала реакции с силой готовности водорода расстаться со своим электроном (если вы посмотрите вниз по списку, вы увидите, что водородная полуреакция имеет Е 0 нуля). E 0  измеряется в вольтах.

    Причина, по которой этот список настолько интересен, заключается в том, что если вы выберете две реакции из списка и объедините их для создания электрохимической ячейки, значения E 0 подскажут вам, каким образом будет протекать общая реакция: реакция с более отрицательное значение E 0 отдаст свои электроны другой реакции, и это определяет анод и катод вашей ячейки. Разница между двумя значениями E 0 говорит вам об электрохимическом потенциале вашей ячейки, который в основном является напряжением ячейки.

    Итак, если вы возьмете литий и фтор и сумеете соединить их, чтобы сделать элемент батареи, вы получите максимальное напряжение, теоретически достижимое для гальванического элемента. Этот список также объясняет, почему в куче Вольта цинк был анодом, а серебро катодом: полуреакция цинка имеет более низкое (более отрицательное) значение E 0 (-0,7618), чем полуреакция серебра (0,7996). .

    9093 3+ (AQ) + 7H 2 2 3+ (AQ) + 7. 2 2

    Стандартные потенциалы полуреакций восстановления

    (по отношению к стандартному водородному электроду при 25°C)

    В° (В)
    Li + (водный) + e Li(s) –3,040
    Be 2+ (водный) + 2e Be(s) –1,99
    Al 3+ (водн.) + 3e Al(s) –1,676
    Zn 2+ (водный) + 2e Zn(s) –0,7618
    Ag 2 S(s) + 2e 2Ag(s) + S 2− (водн.) –0,71
    Fe 2+ (водн.) + 2e Fe(т) –0,44
    Cr 3+ (водн.) + e Cr 2+ (водн.) –0,424
    Cd 2+ (водн.) + 2e Cd(s) –0,4030
    PbSO 4 (т) + 2e Pb(т) + SO 4 2− (водн. ) –0,356
    Ni 2+ (водн.) + 2e Ni(т) –0,257
    2SO 4 2− (водн.) + 4H + (водн.) + 2e S 2 O 6 2909 (водн.) + 2H 2 O(л) –0,25
    Sn 2+ (водн.) + 2e Sn(s) −0,14
    2H + (водн.) + 2e H 2 (г) 0
    Sn 4+ (водн.) + 2e Sn 2+ (водн.) 0,154
    Cu 2+ (водн.) + e Cu + (водный) 0,159
    AgCl(тв) + e Ag(тв) + Cl (водн.) 0,2223
    Cu 2+ (водн.) + 2e Cu(s) 0,3419
    O 2 (г) + 2H 2 O(л) + 4e 4OH (водн. ) 0,401
    H 2 SO 3 (водн.) + 4H + (водн.) + 4e S(s) + 3H 2 O(l) 0,45
    I 2 (s) + 2e 2I (aq) 0,5355
    MnO 4 2− (водн.) + 2H 2 O(ж) + 2e MnO 2 (т) + 90a (3−902) 0,6
    O 2 (г) + 2H + (водн.) + 2e H 2 O 2 (водный) 0,695
    H 2 SeO 3 (водный) + 4H + + 4e Se(s) + 3H 2 O(l) 0,74
    Fe 3+ (водн.) + e Fe 2+ (водн.) 0,771
    Ag + (водн.) + e Ag(s) 0,7996
    NO 3 (водн. ) + 3H + (водн.) + 2e HNO 2 (водн.) + H 2 O(l) 0,94
    Br 2 (водн.) + 2e 2Br (водн.) 1,087
    MnO 2 (т) + 4H + (водн.) + 2e Mn 2+ (водн.) + 2H 2 O(л) 1,23
    О 2 (г) + 4H + (водн.) + 4e 2H 2 O(л) 1,229
    CR 2 O 7 2– (AQ) + 14H + (AQ) + 6E 2CR 3+ (AQ) + 7H 2
    3+ (AQ) + 700168 2

    9 3

    (AQ) + 70093 – 2 3+ (AQ) + 70093 – 2 3+ (AQ).
    1,36
    Cl 2 (г) + 2e 2Cl (водн. ) 1,396
    Се 4+ (водн.)+е Се 3+ (водный) 1,44
    PBO 2 (S) + HSO 4 (AQ) + 3H + (aq) + 2E PBSO 4 (S) + 2H 2H 2h) + 2H 2h) + 2H 2h) + 2H 2h) + 2H 2H) + 2H 2H) + 2H 2H) + 2H 2H) + 2H 2H 2H) + 2H PBSO 4 9019 (S) + 2H 2H) + 2E PBSO 4 9094 (S) PBSO 4 (S) PBSO 4 + 2 1,69
    H 2 O 2 (водн.) + 2H + (водн.) + 2e 2H 2 O(л) 1,763
    F 2 (г) + 2е 2F (водный) 2,87

    Источник: UC Davis ChemWiki

Любые два проводящих материала, которые реагируют с разными стандартными потенциалами, могут образовать электрохимическую ячейку, потому что более сильный сможет отбирать электроны у более слабого. Но идеальным выбором для анода был бы материал, который вызывает реакцию со значительно более низким (более отрицательным) стандартным потенциалом, чем материал, который вы выбрали для своего катода. В итоге мы получаем, что электроны притягиваются к катоду от анода (и анод не пытается сильно сопротивляться), и когда у нас есть легкий путь туда — проводящий провод — мы можем использовать их энергию для обеспечения электрического тока. питание на фонарик, телефон или что-то еще.

Разница в стандартном потенциале между электродами примерно равна силе, с которой электроны перемещаются между двумя электродами. Это известно как общий электрохимический потенциал ячейки, и он определяет напряжение ячейки. Чем больше разница, тем больше электрохимический потенциал и выше напряжение.

Чтобы увеличить напряжение батареи, у нас есть два варианта. Мы могли бы выбрать разные материалы для наших электродов, которые придадут клетке больший электрохимический потенциал. Или мы можем сложить несколько ячеек вместе. Когда элементы объединены определенным образом (последовательно), это оказывает аддитивное влияние на напряжение батареи. По сути, силу, с которой электроны движутся через батарею, можно рассматривать как общую силу, когда они движутся от анода первой ячейки через все ячейки, содержащиеся в батарее, к катоду последней ячейки.

Когда ячейки объединены другим способом (параллельно), это увеличивает возможный ток батареи, который можно рассматривать как общее количество электронов, протекающих через ячейки, но не как их напряжение.

Электролит

Но электроды – это только часть батареи. Помните бумажки Вольта, смоченные в соленой воде? Соленая вода была электролитом, еще одной важной частью картины. Электролит может быть жидкостью, гелем или твердым веществом, но он должен обеспечивать движение заряженных ионов.

Электроны имеют отрицательный заряд, и, поскольку мы посылаем поток отрицательных электронов по нашей цепи, нам нужен способ сбалансировать движение этого заряда. Электролит обеспечивает среду, через которую могут протекать положительные ионы, уравновешивающие заряд.

Поскольку химическая реакция на аноде приводит к образованию электронов, для поддержания баланса нейтрального заряда на электроде также производится соответствующее количество положительно заряженных ионов. Они не идут по внешнему проводу (это только для электронов!), а выбрасываются в электролит.

В то же время катод также должен уравновешивать отрицательный заряд электронов, которые он получает, поэтому происходящая здесь реакция должна втягивать положительно заряженные ионы из электролита (в качестве альтернативы она может также высвобождать отрицательно заряженные ионы из электрода в электролит).

Таким образом, в то время как внешний провод обеспечивает путь для потока отрицательно заряженных электронов, электролит обеспечивает путь для передачи положительно заряженных ионов, чтобы сбалансировать отрицательный поток. Этот поток положительно заряженных ионов столь же важен, как и электроны, обеспечивающие электрический ток во внешней цепи, которую мы используем для питания наших устройств. Роль балансировки заряда, которую они выполняют, необходима для поддержания всей реакции.

Теперь, если позволить всем ионам, выпущенным в электролит, полностью свободно перемещаться через электролит, они закончат тем, что покроют поверхности электродов и засорят всю систему. Таким образом, у клетки обычно есть какой-то барьер, чтобы предотвратить это.

Показывать метки во время анимации Начать анимацию

При использовании батареи возникает ситуация, при которой происходит непрерывный поток электронов (через внешнюю цепь) и положительно заряженных ионов (через электролит). Если этот непрерывный поток остановлен — если цепь разомкнута, например, когда ваш фонарик выключен — поток электронов остановится. Заряды будут накапливаться, и химические реакции, управляющие батареей, прекратятся.

По мере использования батареи и протекания реакций на обоих электродах производятся новые химические продукты. Эти продукты реакции могут создать своего рода сопротивление, которое может помешать протеканию реакции с той же эффективностью. Когда это сопротивление становится слишком большим, реакция замедляется. Электронное перетягивание каната между катодом и анодом также теряет свою силу, и поток электронов прекращается. Аккумулятор медленно садится.

Зарядка аккумулятора

Некоторые распространенные батареи предназначены только для одноразового использования (известные как первичные или одноразовые батареи). Путешествие электронов от анода к катоду является односторонним. Либо их электроды истощаются, когда они выделяют свои положительные или отрицательные ионы в электролит, либо накопление продуктов реакции на электродах препятствует продолжению реакции, и дело сделано и запылено. Аккумулятор попадает в мусорное ведро (или, надеюсь, на переработку, но это совсем другая тема Nova).

Но. Преимущество этого потока ионов и электронов в том, что он имеет место в некоторых типах батарей с соответствующими материалами электродов, заключается в том, что он также может двигаться в обратном направлении, возвращая нашу батарею в исходную точку и давая ей совершенно новую жизнь. . Точно так же, как батареи изменили то, как мы можем использовать различные электрические устройства, перезаряжаемые батареи еще больше изменили полезность и срок службы этих устройств.

Когда мы подключаем почти разряженную батарею к внешнему источнику электроэнергии и отправляем энергию обратно в батарею, она обращает вспять химическую реакцию, которая произошла во время разряда. Это отправляет положительные ионы, выпущенные из анода в электролит, обратно к аноду, а электроны, которые принял катод, также возвращаются к аноду. Возвращение как положительных ионов, так и электронов обратно в анод запускает систему, поэтому она снова готова к работе: ваша батарея перезаряжена.

Показывать метки во время анимации Начать анимацию

Однако процесс не идеален. Замена отрицательных и положительных ионов из электролита обратно на соответствующий электрод по мере перезарядки аккумулятора происходит не так четко и не так хорошо структурировано, как электрод в первую очередь. Каждый цикл зарядки ухудшает состояние электродов еще немного, а это означает, что батарея со временем теряет производительность, поэтому даже перезаряжаемые батареи не могут работать вечно.

В течение нескольких циклов зарядки и разрядки форма кристаллов батареи становится менее упорядоченной. Это усугубляется, когда батарея разряжается/перезаряжается с высокой скоростью, например, если вы едете на своем электромобиле большими рывками, а не постоянно. Циклирование с высокой скоростью приводит к тому, что кристаллическая структура становится более неупорядоченной, в результате чего батарея становится менее эффективной.

 

Эффект памяти и саморазряд

Почти полностью обратимые реакции разрядки и перезарядки также способствуют так называемому «эффекту памяти». Когда вы перезаряжаете некоторые типы перезаряжаемых батарей, предварительно не разрядив их в достаточной степени, они «вспоминают», на каком уровне они были в предыдущих циклах разрядки, и не заряжаются должным образом.

В некоторых элементах это вызвано тем, как металл и электролит реагируют с образованием соли (и тем, как соль затем снова растворяется, а металл заменяется на электродах при перезарядке). Мы хотим, чтобы наши клетки имели красивые, однородные маленькие кристаллы соли, покрывающие идеальную металлическую поверхность, но это не то, что мы получаем в реальном мире! Способ формирования некоторых кристаллов очень сложен, и способ осаждения некоторых металлов во время перезарядки также удивительно сложен, поэтому некоторые типы батарей имеют больший эффект памяти, чем другие. Несовершенства в основном зависят от состояния заряда батареи, температуры, зарядного напряжения и зарядного тока. Со временем недостатки в одном цикле зарядки могут вызвать то же самое в следующем цикле зарядки и т. д., и наша батарея накапливает некоторые плохие воспоминания. Эффект памяти силен для некоторых типов элементов, таких как батареи на основе никеля. Другие типы, такие как литий-ионные, не страдают от этой проблемы.

Еще один аспект перезаряжаемых батарей заключается в том, что химический состав, делающий их перезаряжаемыми, также означает, что они имеют более высокую склонность к саморазряду. Это когда внутри элемента батареи происходят внутренние реакции, даже когда электроды не подключены через внешнюю цепь. Это приводит к тому, что клетка со временем теряет часть своей химической энергии. Высокая скорость саморазряда серьезно ограничивает срок службы батареи и заставляет ее умирать при хранении.

Литий-ионные аккумуляторы в наших мобильных телефонах имеют довольно хорошую скорость саморазряда, около 2–3 % в месяц, и наши свинцово-кислотные автомобильные аккумуляторы также довольно разумны — они имеют тенденцию терять 4–6 %. в месяц. Аккумуляторы на основе никеля теряют около 10–15 процентов своего заряда в месяц, что не очень хорошо, если вы планируете хранить фонарь целый сезон, когда он вам не нужен! Неперезаряжаемая щелочная батарея теряет всего около 2–3 процентов своего заряда в год.

Напряжение, ток, мощность, мощность… в чем разница?

Все эти слова в основном описывают мощность батареи, верно? Ну вроде. Но все они немного разные.

Напряжение = сила, при которой реакция, приводящая в движение батарею, проталкивает электроны через ячейку. Это также известно как электрический потенциал и зависит от разности потенциалов между реакциями, происходящими на каждом из электродов, то есть от того, насколько сильно катод будет тянуть электроны (через цепь) от анода. Чем выше напряжение, тем большую работу может совершить одно и то же число электронов.

Ток = количество электронов, проходящих через любую точку цепи в данный момент времени. Чем больше сила тока, тем больше работы он может совершить при том же напряжении. Внутри ячейки вы также можете думать о токе как о количестве ионов, движущихся через электролит, умноженном на заряд этих ионов.

Мощность = напряжение x ток. Чем выше мощность, тем выше скорость, с которой батарея может работать — это соотношение показывает, насколько важны напряжение и ток для определения того, для чего подходит батарея.

Емкость = мощность батареи как функция времени, которая используется для описания периода времени, в течение которого батарея сможет питать устройство. Аккумулятор большой емкости сможет работать в течение более длительного периода, прежде чем разрядится или разрядится. У некоторых аккумуляторов есть небольшая грустная особенность: если вы попытаетесь извлечь из них слишком много слишком быстро, вовлеченные химические реакции не смогут продолжаться, и емкость уменьшится! Таким образом, мы всегда должны быть осторожны, когда говорим о емкости батареи и помнить, для чего она будет использоваться.

Другой популярный термин — «плотность энергии». Это количество энергии, которое устройство может удерживать на единицу объема, другими словами, какую отдачу вы получаете за свои деньги с точки зрения мощности и размера. С аккумулятором, как правило, чем выше плотность энергии, тем лучше, так как это означает, что аккумулятор может быть меньше и компактнее, что всегда является плюсом, когда он нужен для питания чего-то, что вы хотите держать в кармане. Для электромобилей это даже плюс — аккумулятор должен как-то влезать в машину!

Для некоторых приложений, таких как хранение электроэнергии на возобновляемой электростанции, такой как ветряная или солнечная электростанция, высокая плотность энергии не является большой проблемой, так как у них, скорее всего, будет достаточно места для хранения батарей. Основной целью такого использования было бы просто хранить как можно больше электроэнергии, как можно безопаснее и дешевле.

Видео: Как работают аккумуляторы? (TED-Ed/YouTube). Посмотреть подробности и расшифровку.

Почему так много типов?

Ряд материалов (раньше это были просто металлы) можно использовать в качестве электродов в батарее. За прошедшие годы было опробовано много-много различных комбинаций, но лишь немногие из них действительно прошли дистанцию. Но зачем вообще использовать разные комбинации металлов? Если у вас есть пара металлов, которые хорошо работают вместе в качестве электродов, зачем возиться с другими?

Различные материалы имеют разные электрохимические свойства, поэтому они дают разные результаты, когда вы кладете их вместе в элемент батареи.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *