Бестопливный генератор из двух асинхронных двигателей. Электрогенератор, сделанный своими руками: порядок сборки
Эти работы между собой не имеют практически ничего общего, так как надо сделать разные по сути и назначению узлы системы. Для изготовления того и другого элемента используются подручные механизмы и приспособления, которые можно использовать или переделать в необходимый узел. Один из вариантов создания генератора, часто используемый при изготовлении ветрогенератора – изготовление из асинхронного электродвигателя, которое наиболее удачно и качественно позволяет решить проблему. Рассмотрим вопрос подробнее:
Изготовление генератора из асинхронного двигателя
Асинхронный двигатель является наилучшей «заготовкой» для изготовления генератора. Он имеет для этого наилучшие показатели по устойчивости к короткому замыканию, менее требователен к попаданию пыли или грязи. Кроме того, асинхронные генераторы вырабатывают более «чистую» энергию, клирфактор (наличие высших гармоник) у этих устройств всего 2% против 15% у синхронных генераторов. Высшие гармоники способствуют нагреву двигателя и сбивают режим вращения, поэтому их малое количество является большим плюсом конструкции.
Асинхронные устройства не имеют вращающихся обмоток, что в значительной степени снимает возможность выхода их из строя или повреждения от трения или замыкания.
Также важным фактором является наличие на выходных обмотках напряжения в 220В или 380 В, что позволяет подключать приборы потребления прямо к генератору, минуя систему стабилизации тока. То есть, пока есть ветер, приборы будут работать точно так же, как от сети.
Единственное отличие от работы полного комплекса в прекращении работы сразу же после стихания ветра, тогда как аккумуляторы, входящие в комплект, какое-то время питают потребляющие устройства используя свою емкость.
Как переделать ротор
Единственным изменением, которое вносится в конструкцию асинхронного двигателя при переделывании его в генератор, является установка на ротор постоянных магнитов.
Для получения большей силы тока иногда перематывают обмотки более толстым проводом, имеющим меньшее сопротивление и дающим лучшие результаты, но эта процедура не критична, можно обойтись и без нее – генератор будет работать.Ротор асинхронного двигателя не имеет никаких обмоток или иных элементов, являясь, по сути, обычным маховиком. Обработка ротора производится в токарном станке по металлу, обойтись без этого никак нельзя. Поэтому при создании проекта надо сразу решить вопрос с техническим обеспечением работ, найти знакомого токаря или организацию, занимающуюся такими работами. Ротор надо уменьшить в диаметре на толщину магнитов, которые будут на него установлены.
Существует два способа монтажа магнитов:
- изготовление и установка стальной гильзы, которая одевается на предварительно уменьшенный в диаметре ротор, после чего на гильзу крепятся магниты. Этот способ дает возможность увеличить силу магнитов, плотность поля, способствующую более активному образованию ЭДС
- уменьшение диаметра только на толщину магнитов плюс необходимый рабочий зазор. Этот способ проще, но потребует установки более сильных магнитов, лучше всего – неодимовых, которые имеют намного большее усилие и создают мощное поле.
Установка магнитов производится по линиям конструкции ротора, т.е. не воль оси, а несколько смещенными по направлению вращения (на роторе эти линии хорошо видны). Магниты расставляются по чередованию полюсов и фиксируются на роторе с помощью клея (рекомендуется эпоксидная смола). После ее высыхания можно производить сборку генератора, в который отныне превратился наш двигатель, и переходить к испытательным процедурам.
Испытания вновь созданного генератора
Эта процедура позволяет выяснить степень работоспособность генератора, опытным путем определить скорость вращения ротора, необходимую для получения нужного напряжения. Обычно прибегают к помощи другого двигателя, например, электродрели с регулируемой частотой вращения патрона. Вращая ротор генератора с подключенным к нему вольтметром или лампочкой, проверяют, какие скорости необходимы для минимума и каков максимальный предел мощности генератора, чтобы получить данные, на основе которых будет создаваться ветряк.
Можно в испытательных целях подключить какой-либо прибор потребления (например, нагреватель или осветительное устройство) и убедиться в его работоспособности. Это поможет снять все возникающие вопросы и внести какие-либо изменения, если возникнет такая необходимость. Например, иногда возникают ситуации с «залипанием» ротора, не стартующего при слабых ветрах. Это происходит при неравномерном распределении магнитов и устраняется разборкой генератора, отсоединением магнитов и повторным их укреплением в более равномерной конфигурации.
По завершении всех работ в распоряжении появляется полностью рабочий генератор, который отныне нуждается в источнике вращения.
Изготовление ветряка
Для создания ветряка потребуется выбрать какой-либо из вариантов конструкции, которых имеется немало. Так, существуют горизонтальные или вертикальные конструкции ротора (в данном случае термин «ротор» обозначает вращающуюся часть ветрогенератора – вал с лопастями, приводимый в движение силой ветра). имеют более высокую эффективность и устойчивость в производстве энергии, но нуждаются в системе наведения на поток, которая, в свою очередь, нуждается в легкости вращения на валу.
Чем мощнее генератор, тем труднее его вращать и тем большее усилие должен развивать ветряк, что требует его больших размеров. При этом, чем крупнее ветряк, тем он тяжелее и обладает большей инерцией покоя, что образует замкнутый круг. Обычно используют средние значения и величины, дающие возможность образовать компромисс между размерами и легкостью вращения.
Проще в изготовлении и не требовательны к направлению ветра. При этом, они имеют меньшую эффективность, так как ветер с одинаковой силой воздействует на обе стороны лопасти, затрудняя вращение. Для того, чтобы избежать этого недостатка, создано множество различных конструкций ротора, таких как:
- ротор Савониуса
- ротор Дарье
- ротор Ленца
Известны ортогональные конструкции (разнесенные относительно оси вращения) или геликоидные (лопасти, имеющие сложную форму, напоминающую витки спирали). Все эти конструкции имеют свои достоинства и недостатки, основным из которых является отсутствие математической модели вращения того или иного вида лопастей, делающего расчет крайне сложным и приблизительным. Поэтому действуют методом проб и ошибок – создается экспериментальная модель, выясняются ее недостатки, с учетом которых изготавливается рабочий ротор.
Наиболее простая и распространенная конструкция – ротор , но в последнее время в сети появляется множество описаний других ветрогенераторов, созданных на базе других видов.
Устройство ротора несложно – вал на подшипниках, на верхней части которого укреплены лопасти, которые под действием ветра вращаются и передают крутящий момент на генератор. Изготовление ротора осуществляется из доступных материалов, монтаж не требует чрезмерной высоты (обычно поднимают на 3-7 м), это зависит от силы ветров в регионе. Вертикальные конструкции почти не требуют ухода или обслуживания, что облегчает эксплуатацию ветрогенератора.
В стремлении получить автономные источники электроэнергии специалисты нашли способ как своими руками переделать, трехфазный асинхронный электродвигатель переменного тока в генератор. Такой метод имеет ряд преимуществ и отдельные недостатки.
Внешний вид асинхронного электродвигателя
В разрезе показаны основные элементы:
- чугунный корпус с радиаторными рёбрами для эффективного охлаждения;
- корпус короткозамкнутого ротора с линиями сдвига магнитного поля относительно его оси;
- коммутационно контактная группа в коробке (борно), для коммутации обмоток статора в схемы звезда или треугольник и подключения проводов электропитания;
- плотные жгуты медных проводов обмотки статора;
- стальной вал ротора с канавкой для фиксации шкива клиновидной шпонкой.
Детальная разборка асинхронного электродвигателя с указанием всех деталей показана на рисунке ниже.
Детальная разборка асинхронного двигателя
Достоинства генераторов, переделанных из асинхронных двигателей:
- простота сборки схемы, возможность не разбирать электродвигатель, не перематывать обмотки;
- возможность вращения генератора электротока ветряной или гидротурбиной;
- генератор из асинхронного двигателя широко используется в системах мотор-генератор для преобразования однофазной сети 220В переменного тока в трёхфазную сеть с напряжением 380В.
- возможность использования генератора, в полевых условиях раскручивая его от двигателей внутреннего сгорания.
Как недостаток можно отметить сложность расчёта ёмкости конденсаторов, подключаемых к обмоткам, фактически это делается экспериментальным путём.
Поэтому трудно добиться максимальной мощности такого генератора, бывают сложности с электропитанием электроустановок, которые имеют большое значение пускового тока, на циркулярных электропилах с трёхфазными двигателями переменного тока, бетономешалках и других электроустановках.
Принцип работы генератора
В основу работы такого генератора заложен принцип обратимости: «любая электроустановка преобразующая электрическую энергию в механическую, может сделать обратный процесс». Используется принцип работы генераторов, вращение ротора вызывает ЭДС и появление электрического тока в обмотках статора.
Исходя из этой теории, очевидно, что асинхронный электродвигатель можно переделать в электрогенератор. Чтобы осознано провести реконструкцию необходимо понять, как происходит процесс генерации и что для этого требуется. Все двигатели, которые приводит в движение сила переменного тока, считаются асинхронными. Поле статора движется с небольшим опережением относительно магнитного поля ротора, подтягивая его за собой в сторону вращения.
Чтобы получить обратный процесс, генерацию, поле ротора должно опережать движение магнитного поля статора, в идеальном случае вращаться в противоположном направлении. Добиваются этого включением в сеть питания, конденсатора большой ёмкости, для увеличения ёмкости используют группы конденсаторов. Конденсаторная установка заряжается, накапливая магнитную энергию (элемент реактивной составляющей переменного тока). Заряд конденсатора по фазе противоположный источнику тока электродвигателя, поэтому вращение ротора начинает замедляться, обмотка статора генерирует ток.
Преобразование
Как практически своими руками преобразовать асинхронный электродвигатель в генератор?
Для подключения конденсаторов надо открутить верхнюю крышку борно (коробка), где расположена контактная группа, коммутирующая контакты обмоток статора и подключены провода питания асинхронного двигателя.
Открытое борно с контактной группой
Обмотки статора могут быть соединены в схему «Звезда» или «Треугольник».
Схемы включения «Звезда» и «Треугольник»
На шильдике или в паспорте на изделие показаны возможные схемы подключения и параметры двигателя при различных подключениях. Указывается:
- максимальные токи;
- напряжение питания;
- потребляемая мощность;
- количество оборотов в минуту;
- КПД и другие параметры.
Параметры двигателя, которые указаны на шильдике
В трёхфазный генератор из асинхронного электродвигателя, который делают своими руками, конденсаторы подключаются по аналогичной схеме «Треугольником» или «Звездой».
Вариант включения со «Звездой» обеспечивает пусковой процесс генерации тока на более низких оборотах, чем при соединении схемы в «Треугольник». При этом напряжение на выходе генератора будет немного ниже. Подключение по схеме «Треугольника» предоставляет незначительное увеличение выходного напряжения, но требует более высоких оборотов при запуске генератора. В однофазном асинхронном электродвигателе подключается один фазосдвигающий конденсатор.
Схема подключения конденсаторов на генераторе в «Треугольник»
Используются конденсаторы модели КБГ-МН, или другие марки не менее 400 В бесполярные, двухполюсные электролитические модели в этом случае не подходят.
Как выглядит бесполюсный конденсатор марки КБГ-МН
Расчёт ёмкости конденсаторов для используемого двигателя
Номинальная выходная мощность генератора, в кВт | Предположительная ёмкость в, мкФ |
---|---|
2 | 60 |
3,5 | 100 |
5 | 138 |
7 | 182 |
10 | 245 |
15 | 342 |
В синхронных генераторах возбуждение процесса генерации происходит на обмотках якоря от источника тока. 90% асинхронных двигателей имеют короткозамкнутые роторы, без обмотки, возбуждение создаётся остаточным в роторе статическим зарядом. Его достаточно чтобы на первоначальном этапе вращения создать ЭДС, которое наводит ток, и подзаряжает конденсаторы, через обмотки статора. Дальнейшая подзарядка уже поступает от генерируемого тока, процесс генерации будет непрерывным, пока вращается ротор.
Автомат подключения нагрузки к генератору, розетки и конденсаторы рекомендуется установить в отдельный закрытый щит. Соединительные провода от борно генератора до щита проложить в отдельном изолированном кабеле.
Даже при неработающем генераторе необходимо избегать прикосновения к клемам конденсаторов контактов розеток. Накопленный конденсатором заряд остаётся длительное время и может ударить током. Заземляйте корпуса всех агрегатов, мотора, генератора, щита управления.
Монтаж системы мотор-генератор
При монтаже генератора с мотором своими руками надо учитывать, что указанное количество номинальных оборотов используемого асинхронного электродвигателя на холостом ходу больше.
Схема мотор-генератора на ременной передаче
На двигателе в 900 об/м при холостом ходе будет 1230 об/м, чтобы получить на выходе генератора, переделанного из этого двигателя достаточную мощность, надо иметь количество оборотов на 10% больше холостого хода:
1230 + 10% =1353 об/м.
Ременная передача рассчитывается по формуле:
Vг = Vм x Dм\Dг
Vг – необходимая скорость вращения генератора 1353 об/м;
Vм – скорость вращения мотора 1200 об/м;
Dм – диаметр шкива на моторе 15 см;
Dг – диаметр шкива на генераторе.
Имея мотор на 1200 об/м где шкив Ø 15 см, остаётся рассчитать только Dг – диаметр шкива на генераторе.
Dг = Vм x Dм/ Vг = 1200об/м х 15см/1353об/м = 13,3 см.
Генератор на ниодимовых магнитах
Как сделать генератор из асинхронного электродвигателя?
Этот самодельный генератор исключает применение конденсаторных установок. Источник магнитного поля, которое наводит ЭДС и создаёт ток в обмотке статора, построен на постоянных ниодимовых магнитах. Для того чтобы это сделать своими руками необходимо последовательно выполнить следующие действия:
- Снять переднюю и заднюю крышки асинхронного электродвигателя.
- Извлечь ротор из статора.
Как выглядит ротор асинхронного двигателя
- Ротор протачивается, снимается верхний слой на 2 мм больше толщины магнитов. В бытовых условиях сделать расточку ротора своими руками не всегда представляется возможным, при отсутствии токарного оборудования и навыков. Нужно обратиться к специалистам в токарные мастерские.
- На листе обычной бумаги готовится шаблон для размещения круглых магнитов, Ø 10-20мм, толщиной до 10 мм, с силой притяжения 5-9 кг, на кв/см, размер зависит от величины ротора. Шаблон наклеивается на поверхность ротора, магниты размещаются полосами под углом 15 – 20 градусов относительно оси ротора, по 8 штук в полосе. На рисунке ниже видно, что на некоторых роторах отмечены тёмно-светлые полосы смещения линий магнитного поля относительно его оси.
Установка магнитов на ротор
- Ротор на магнитах рассчитывается так, чтобы получилось четыре группы полос, в группе по 5 полосок, расстояние между группами 2Ø магнита. Промежутки в группе 0.5-1Ø магнита, такое расположение снижает силу залипания ротора к статору, он должен проворачиваться усилиями двух пальцев;
- Ротор на магнитах, сделанный по рассчитанному шаблону, заливается эпоксидной смолой. После того как она немного подсохнет цилиндрическая часть ротора покрывается слоем стекловолокна и опять пропитывается эпоксидной смолой. Это исключит вылет магнитов при вращении ротора. Верхний слой на магнитах не должен превышать первоначального диаметра ротора, который был до проточки. В противном случае ротор не встанет на своё место или при вращении будет тереться об обмотку статора.
- После просушки, ротор можно поставить на место и закрыть крышки;
- Испытывать, электрогенератор необходимо – проворачивать ротор электродрелью, измеряя напряжение на выходе. Количество оборотов при достижении нужного напряжения измеряется тахометром.
- Зная необходимое количество оборотов генератора, ременная передача рассчитывается по методике описанной выше.
Интересный вариант применения, когда электрогенератор на основе асинхронного электродвигателя, используется в схеме электрический мотор-генератор с самоподпиткой. Когда часть мощности вырабатываемой генератором поступает на электродвигатель, который его раскручивает. Остальная энергия расходуется на полезную нагрузку. Осуществив принцип самоподпитки практически можно на долгое время обеспечить дом автономным электропитанием.
Видео. Генератор из асинхронного двигателя.
Для широкого круга потребителей электроэнергии покупать мощные дизельные электростанции как TEKSAN TJ 303 DW5C с мощностью на выходе 303 кВА или 242 кВт не имеет смысла. Маломощные бензиновые генераторы дорогие, оптимальный вариант сделать своими руками ветровые генераторы или устройство мотор-генератор с самопдпиткой.
Используя эту информацию можно собрать генератор своими руками, на постоянных магнитах или конденсаторах. Такое оборудование очень полезно на загородных домах, в полевых условиях, как аварийный источник питания, когда отсутствует напряжение в промышленных сетях. Полноценный дом с кондиционерами, электрическими плитами и нагревательными бойлерами, мощный мотор циркулярной пилы они не потянут. Временно обеспечить электроэнергией бытовые приборы первой необходимости могут, освещение, холодильник, телевизор и другие, которые не требуют больших мощностей.
Изобретение относится к области электротехники и электроэнергетики, в частности к способам и оборудованию для генерирования электрической энергии, и может быть использовано в автономных системах электроснабжения, в автоматике и бытовой технике, на авиационном, морском и автомобильном транспорте.
За счет нестандартного способа генерации, и оригинальной конструкции мотора-генератора, режимы генератора и электромотора, объединены в одном процессе, и неразрывно связаны. В результате чего, при подключении нагрузки, взаимодействие магнитных полей статора и ротора образует вращающий момент, который по направлению совпадает с моментом, создаваемым внешним приводом.
Другими словами, при увеличении мощности потребляемой нагрузкой генератора, ротор мотора-генератора начинает ускоряться, и соответственно понижается мощность, потребляемая внешним приводом.
Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента.
Результаты экспериментов, которые привели к изобретению мотора-генератора.
Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше, чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента. Эта информация подтолкнула нас на проведение ряда экспериментов с кольцевой обмоткой, результаты которых мы покажем на этой странице. Для экспериментов, на тороидальный сердечник, были намотаны 24шт., не зависимые обмотки, с одинаковым количеством витков.
1) Вначале вес обмотки были включены последовательно, выводы на нагрузку расположены диаметрально. В центре обмотки был расположен постоянный магнит с возможностью вращения.
После того как магнит с помощью привода приводился в движение, подключалась нагрузка и лазерным тахометром измерялись обороты привода. Как и следовало ожидать, обороты приводного двигателя начинали падать. Чем большую мощность потребляла нагрузка, тем сильнее падали обороты.
2) Для лучшего понимания процессов происходящих в обмотке, вместо нагрузки был подключен миллиамперметр постоянного тока.
При медленном вращении магнита, можно наблюдать, какая полярность и величина выходного сигнала, в данном положении магнита.
Из рисунков видно, когда полюсы магнита, находятся напротив выводов обмотки (рис. 4;8), ток в обмотке равен 0. При положении магнита, когда полюсы находятся в центре обмотки, мы имеем максимальное значение тока (рис. 2;6).
3) Нa следующем этапе экспериментов, использовалась только одна половина обмотки. Магнит также медленно вращался, и фиксировались показания прибора.
Показания прибора полностью совпадали с предыдущим экспериментом (рис 1-8).
4) После этого к магниту подключили внешний привод и начали его вращать на максимальных оборотах.
При подключении нагрузки, привод начал набирать обороты!
Другими словами, при взаимодействии полюсов магнита, и полюсов образующихся в обмотке с магнитопроводом, при прохождении через обмотку тока, появился вращающий момент, направленный по ходу вращающего момента созданного приводным двигателем.
Рисунок 1, идет сильное торможение привода при подключении нагрузки. Рисунок 2, при подключении нагрузки привод начинает ускоряться.
5) Что бы понять что происходит, мы решили создать карту магнитных полюсов, которые появляются в обмотках при прохождении через них тока. Для этого была проведена серия экспериментов. Обмотки подключались в разных вариантах, а на концы обмоток подавались импульсы постоянного тока. При этом на пружине был закреплен постоянный магнит, и по очереди располагался рядом с каждой из 24 обмоток.
По реакции магнита (отталкивался он или притягивался) была составлена карта проявляющихся полюсов.
Из рисунков видно, как проявлялись магнитные полюсы в обмотках, при различном включении (желтые прямоугольники на рисунках, это нейтральная зона магнитного поля).
При смене полярности импульса, полюсы как и положено менялись на противоположные, по этому разные варианты включения обмоток, нарисованы при одной полярности питания.
6) Па первый взгляд, результаты на рисунках 1 и 5 идентичны.
При более подробном анализе, стало ясно, что распределение полюсов по окружности и «размер» нейтральной зоны довольно сильно отличаются. Сила с которой магнит притягивался или отталкивался от обмоток и магнитопровода показана градиентной заливкой полюсов.
7) При сопоставлении данных экспериментов описанных в пунктах 1 и 4, кроме кардинальной разницы в реакции привода на подключение нагрузки, и существенной разницы в «параметрах» магнитных полюсов, были выявлены и другие отличия. При проведении обоих экспериментов, параллельно нагрузке был включен вольтметр, а последовательно с нагрузкой включался амперметр. Если показания приборов из первого эксперимента (пункт 1), взять за 1, то во втором эксперименте (пункт 4), показание вольтметра так же было равно 1. По показания амперметра составляло 0,005 от результатов первого эксперимента.
8) Исходя из изложенного в предыдущем пункте, логично предположить, если в незадействованной части магнитопровода, сделать немагнитный (воздушный) зазор, то сила тока в обмотке должна увеличиться.
После того как был сделан воздушный зазор, магнит снова подключили к приводному двигателю, и раскрутили на максимальные обороты. Сила тока действительно возросла в несколько раз, и стала составлять примерно 0,5 от результатов эксперимента по пункту 1,
но при этом появился тормозной момент на привод.
9) Способом, который описан в пункте 5, была составлена карта полюсов данной конструкции.
10) Сопоставим два варианта
Не трудно предположить, если увеличить воздушный зазор в магнитопроводе, геометрическое расположение магнитных полюсов по рисунку 2, должно приблизиться к такому расположению как в рисунке 1. А это в свою очередь, должно привести к эффекту ускорения привода, который описан в пункте 4 (при подключении нагрузки, вместо торможения, создается добавочный момент к вращающему моменту привода).
11) После того как зазор в магнитопроводс был увеличен до максимума (до краев обмотки), при подключении нагрузки вместо торможения, привод снова начал набирать обороты.
При этом карта полюсов обмотки с магнитопроводом выглядит так:
На основе предложенного принципа генерации электроэнергии, можно конструировать генераторы переменного тока, которые при повышении электрической мощности в нагрузке, не требуют повышения механической мощности привода.
Принцип работы Мотора Генератора.
Согласно явлению электромагнитной индукции при изменении магнитного потока проходящего через замкнутый контур, в контуре возникает ЭДС.
Согласно правилу Ленца: Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток. При этом не имеет значения, как именно магнитный поток, движется по отношению к контуру (Рис. 1-3).
Способ возбуждения ЭДС в нашем моторе-генераторе аналогичен рисунку 3. Он позволяет использовать правило Ленца для увеличения вращающего момента на роторе (индукторе).
1) Обмотка статора
2) Магнитопровод статора
3) Индуктор (ротор)
4) Нагрузка
5) Направление вращения ротора
6) Центральная линия магнитного поля полюсов индуктора
При включении внешнего привода, ротор (индуктор) начинает вращаться. При пересечении начала обмотки магнитным потоком одного из полюсов индуктора в обмотке индуцируется ЭДС.
При подключении нагрузки, в обмотке начинает течь ток и полюса возникшего в обмотках магнитного поля согласно правилу Э. X. Ленца направлены на встречу возбудившего их магнитного потока.
Так как обмотка с сердечником расположена по дуге окружности, то магнитное поле ротора, движется вдоль витков (дуги окружности) обмотки.
При этом в начале обмотки согласно правилу Ленца, возникает полюс одинаковый с полюсом индуктора, а на другом конце ротивоположный. Так как одноименные полюса отталкиваются, а противоположные притягиваются, индуктор стремится принять положение, которое соответствует действию этих сил, что и создает добавочный момент, направленный по ходу вращения ротора. Максимальная магнитная индукция в обмотке достигается в момент, когда центральная линия полюса индуктора находится напротив середины обмотки. При дальнейшем движении индуктора, магнитная индукция обмотки уменьшается, и в момент выхода центральной линии полюса индуктора за пределы обмотки, равна нулю. В этот же момент, начало обмотки начинает пересекать магнитное поле второго полюса индуктора, и согласно правилам, описанным выше, край обмотки от которого начинает отдаляться первый полюс начинает его отталкивать с нарастающей силой.
Рисунки:
1) Нулевая точка, полюсы индуктора (ротора) симметрично направлены на разные края обмотки в обмотке ЭДС=0.
2) Центральная линия северного полюса магнита (ротора) пересекла начало обмотки, в обмотке появилась ЭДС, и соответственно проявился магнитный полюс одинаковый с полюсом возбудителя (ротора).
3) Полюс ротора находится в центре обмотки, и в обмотке максимальное значение ЭДС.
4) Полюс приближается к концу обмотки и ЭДС снижается до минимума.
5) Следующая нулевая точка.
6) Центральная линия южного полюса входит в обмотку и цикл повторяется (7;8;1).
Данная задача требует выполнения ряда манипуляций, которые должны сопровождаться четким пониманием принципов и режимов функционирования такого оборудования.
Что собой представляет и как работает
Эл двигатель асинхронного типа – это машина, в которой происходит трансформация электрической энергии в механическую и тепловую. Такой переход становится возможным благодаря явлению электромагнитной индукции, которая возникает между обмотками статора и ротора. Особенностью асинхронных двигателей является тот факт, что частота вращения этих двух ключевых его элементов отличается.
Конструктивные особенности типичного эл двигателя можно видеть на иллюстрации. И статор, и ротор представляют собой соосные круглого сечения объекты, изготавливаются путем набора достаточного количества пластин из специальной стали. Пластины статора имеют пазы на внутренней части кольца и при совмещении образуют продольные канавки, в которые наматывается обмотка из медной проволоки. Для ротора, ее роль играют алюминиевые прутки, они также вставляются в пазы сердечника, но с обеих сторон замыкаются стопорными пластинами.
Во время подачи напряжения на обмотки статора, на них возникает и начинает вращаться электромагнитное поле. В связи с тем, что частота вращения ротора заведомо меньше, между обмотками наводится ЭДС и центральный вал начинает двигаться. Не синхронность частот связана не только с теоретическими основами процесса, но и с фактическим трением опорных подшипников вала, оно будет его несколько тормозить относительно поля статора.
Что такое электрический генератор?
Генератор представляет собой эл машину, преобразовывающую механическую и тепловую энергии в электрическую. С этой точки зрения он является устройством прямо противоположным по принципу действия и режиму функционирования к асинхронному двигателю. Более того, наиболее распространенным типом электрогенераторов являются индукционные.
Как мы помним из выше описанной теории, такое становится возможным только при разности оборотов магнитных полей статора и ротора. Из это следует один закономерный вывод (учитывая также принцип обратимости, упомянутый вначале статьи) – теоретически возможно сделать генератор из асинхронника, кроме того, это задача, решаемая самостоятельно за счет перемотки.
Работа двигателя в режиме генератора
Любой асинхронный электрогенератор используется в качестве некоего трансформатора, где механическая энергия от вращения вала двигателя, преобразуется в переменный ток. Такое становится возможным тогда, когда его скорость становится выше синхронной (порядка 1500 об/мин). Классическую схему переделки и подключения двигателя в режиме электрогенератора с выработкой трехфазного тока можно легко собрать своими руками:
Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.
Чтобы достичь такой стартовой частоты вращения, необходимо приложить довольно большой крутящий момент (например, за счет подключения двигателя внутреннего сгорания в бензогенераторе или крыльчатки в ветряке). Как только частота вращения достигает значения синхронной, начинает действовать конденсаторная батарея, создающая емкостный ток. За счет этого происходит самовозбуждение обмоток статора и выработка электрического тока (режим генерирования).
Необходимым условием устойчивой работы такого электрогенератора с промышленной частотой сети 50 Гц, является соответствие его частотных характеристик:
- Скорость его вращения должна превышать асинхронную (частоту работы самого двигателя) на процент скольжения (от 2 до 10%),
- Значение скорости вращения генератора должно соответствовать синхронной скорости.
Как самостоятельно собрать асинхронный генератор?
Обладая полученными знаниями, смекалкой и умением работать с информацией, можно своими руками собрать/переделать работоспособный генератор из двигателя. Для этого необходимо совершить точные действия следующей последовательности:
- Вычисляется реальная (асинхронная) частота вращения двигателя, который планируется применить в качестве электрогенератора. Для определения оборотов на подключенном к сети агрегате можно использовать тахограф,
- Определяется синхронная частота двигателя, которая одновременно будет асинхронной для генератора. Здесь учитывается величина скольжения (2-10%). Допустим, измерения показали скорость вращения на уровне 1450 об/мин. Требуемая частота работы электрогенератора будет составлять:
nГЕН = (1,02…1,1)nДВ= (1,02…1,1)·1450 = 1479…1595 об/мин,
- Подбор конденсатора необходимой емкости (используются стандартные сравнительные таблицы данных).
На этом можно и поставить точку, но если требуется напряжение однофазной сети 220В, то режим функционирования такого устройства потребует внедрения в приведенную ранее схему понижающего трансформатора.
Виды генераторов на базе двигателей
Покупка штатного готового эл генератора – удовольствие отнюдь не из дешевых и вряд ли по карману практическому большинству наших сограждан. Прекрасной альтернативой может послужить самодельный генератор, его можно собрать при достаточных познаниях в области электротехники и слесарного дела. Собранное устройство может успешно использоваться в качестве:
- Электрогенератора с самозапиткой. Пользователь может своими руками получить устройство для выработки электроэнергии с длительным периодом действия вследствие самостоятельной подпитки,
- Ветрогенератора. В качестве движителя, необходимого для пуска двигателя, используется ветряк, который вращается под воздействием ветра,
- Генератора на неодимовых магнитах,
- Трехфазного бензогенератора,
- Однофазного маломощного генератора на двигателях электроприборов и т. д.
Переделка своими руками стандартного мотора в действующее генерирующее устройство – занятие увлекательное и очевидно экономящее бюджет. Таким образом можно переделать обычный ветряк, соединив его с двигателем для автономной выработки энергии.
За основу был взят промышленный асинхронный двигатель переменного тока, мощностью 1,5 кВт с частотой вращения вала 960 об/мин. Сам по себе такой мотор изначально не может работать как генератор. Ему необходима доработка, а именно замена или доработка ротора.
Табличка с маркировкой двигателя:
Двигатель хорош тем, что у него везде где нужно стоят уплотнения, особенно у подшипников. Это существенно увеличивает интервал между периодическими техническими обслуживаниями, так как пыль и грязь никуда просто так попасть и проникнуть не могут.
Ламы у этого электродвигателя можно поставить на любую сторону, что очень удобно.
Переделка асинхронного двигателя в генератор
Снимаем крышки, извлекаем ротор.
Обмотки статора остаются родные, двигатель не перематывается, все остается как есть, без изменений.
Ротор дорабатывался на заказ. Было решено сделать его не цельнометаллическим, а сборным.
То есть, родной ротор стачивается до определенного размера.
Вытачивается стальной стакан и запрессовывается на ротор. Толщина скана в моем случае 5 мм.
Разметка мест для приклеивания магнитов была одной из самых сложных операций. В итоге методом проб и ошибок было решено распечатать шаблон на бумаге, вырезать в нем кружочки под неодимовые магниты – они круглые. И приклеить магниты по шаблону на ротор.
Основная загвоздка возникла в вырезании множественных кружочков в бумаге.
Все размеры подбираются сугубо индивидуально под каждый двигатель. Каких-то общих размеров размещения магнитов дать нельзя.
Неодимовые магниты приклеены на супер клей.
Была сделана сетка из капроновой нити для укрепления.
Далее обматывается все скотчем, снизу делается герметичная опалубка, герметизированная пластилином, а сверху заливная воронка из того же скотча. Заливается все эпоксидной смолой.
Смола потихоньку стекает сверху вниз.
После застывания эпоксидной смолы, снимаем скотч.
Теперь все готов к сборке генератора.
Загоняем ротор в статор. Делать это нужно особо осторожно, так как неодимовые магниты обладают огромной силой и ротор буквально залетает в статор.
Собираем, закрываем крышки.
Магниты не задевают. Залипания почти нет, крутится относительно легко.
Проверка работы. Вращаем генератор от дрели, с частотой вращения 1300 об/мин.
Двигатель подключен звездой, треугольником генераторы такого типа подключать нельзя, не будут работать.
Снимается напряжение для проверки между фазами.
Генератор из асинхронного двигателя работает отлично.Более подробную информацию смотрите в видеоролике.
Канал автора –
Материалы по технологии Стивена Марка – EnergyScience.ru
Что это такое бестопливный генератор
Это несложное устройство создано для генерации электроэнергии без использования различных видов топлива. Работает по принципу неодимовых магнитов. В простом двигателе магнитное поле создается электрическими катушками, обычно из меди или алюминия. Эти двигатели постоянно нуждаются в электропитании для создания магнитного поля. Потери энергии колоссальны. Но бестопливный генератор не содержит катушек из таких материалов. Следовательно, потери будут минимальными. Он использует постоянное магнитное поле для создания необходимой силы для перемещения двигателя.
Эта концепция генерации магнитного поля от постоянных магнитов стала применяться на практике только после введения неодимовых магнитов, которые работают лучше на полную мощность, чем предыдущие ферритовые магниты. Главное преимущество заключается в том, что устройство не требует постоянного электроснабжения или подзарядки.
Чтобы найти альтернативные способы генерации электроэнергии, существует ряд альтернатив из нетрадиционных источников энергии, которые также являются возобновляемыми. Одной из таких альтернатив является выработка электроэнергии из бестопливного двигателя в изолированной системе выработки электроэнергии с низкими затратами на техническое обслуживание.
Бестопливный двигатель (как и генератор) – это двигатель, который вырабатывает электроэнергию круглосуточно без топлива (бензин, дизель, масло, газ, солнце). Приводным механизмом является двигатель постоянного тока, который приводится в действие аккумулятором (12 В или более). Батарея приводит в движение электродвигатель постоянного тока, который в свою очередь вращает генератор переменного тока для выработки электроэнергии и в то же время с помощью диода заряжает батарею.
К числу источников энергии, которые могут работать без углекислого газа, относятся ветер, волны или прилив фотоэлектрической и осмотической энергии. Но бестопливные генераторы электроэнергии по-прежнему являются наиболее надежными источниками энергии с низкими эксплуатационными расходами, которые даже в некоторых случаях превосходят солнечные батареи.
Использование недорогих традиционных источников энергии, таких как топливо, будет оставаться основным источником энергии до следующих десятилетий, несмотря на их неблагоприятное воздействие на окружающую среду.
Применение бестопливного двигателя (или генератора) для выработки электроэнергии ограничено мощностью двигателя постоянного тока и генератора переменного тока. Это подразумевает, что наличие двигателя постоянного тока и генератора большой мощности дает бестопливному двигателю свои возможности. Исследования показали, что потенциал бестопливного двигателя во всем мире более чем в пять раз превышает потенциал ветра и солнца, потому что он работает 24/7, ежедневно, в любой точке планеты.
Схема соединения элементов
Получается агрегат с большим количеством выводов, которые необходимо правильно соединить. Схема соединения делится на четыре части:
- Вход.
- Управление.
- Катушки.
- Выход.
Задача состоит в обеспечении интерфейса и выдачи синхронизированных прямоугольных волн. Для этого применяется мультивибратор, который запитывает систему. Подбирается он исходя из размеров генератора.
Попробовать сделать это устройство можно, но необходимо помнить, что невозможно его собрать человеку без определенных знаний в физике и электронике.
Где и как используется БТГ генератор
Существует множество разнообразных способов генерировать энергию от бестопливного двигателя или генератора. В каждой сфере применение это устройство, вне всяких сомнений, принесёт пользу. Ниже приведены краткие описания некоторых этих сфер.
На дорогах
Бестопливный генератор может спокойно заменить дизельные двигатели, используемые в подавляющем большинстве современных тяжелых транспортных средств, таких как грузовые автомобили, автобусы, поезда, крупногабаритные переносные силовые двигатели. А также в этот перечень входит большинство сельскохозяйственных и карьерных транспортных средств.
В воздухе
И бензиновые, и дизельные двигатели, используемые в самолетах, могут быть заменены на альтернативные источники энергии, в том числе на бестопливные электрогенераторы.
На воде
Бестопливные генераторы также могут служить заменой для высокоскоростных двигателей, которые имеются у яхт, кораблей и линий вдоль открытого моря.
Под землей
Бестопливные двигатели и генераторы также могут заменить дизельные двигатели, а также двигатели, которые используются при добыче полезных ископаемых во всем мире. Аналогичным образом бестопливные устройства заменяют двигатели, которые применяются для добычи и природных ресурсов, таких как разные драгоценные металлы, железная руда, уголь и попутный нефтяной газ.
В медицинских учреждениях
Устройства также могут заменить аварийные резервные генераторы, которые должны быть в каждом крупном медицинском учреждении или больнице, в связи с наличием возможных критических ситуаций.
В центрах обработки данных
Бестопливные генераторы могут быть использованы для компьютеров, а также если не заряжается телефон, то генератор может служить хорошим зарядным устройством для мобильного аппарата. Когда серверы и системы выходят из строя, связь может быть потеряна, рабочий процесс останавливается, данные могут быть утеряны и даже весь рабой процесс может быть полностью остановлен.
Также бестопливные генераторы электроэнергии можно устанавливать на боковых сторонах двухколесного транспортного средства. Это надо делать таким образом, чтобы по мере движения транспортного средства вентилятор начинал вращаться и вырабатывал дополнительную энергию.
Когда двигатели постоянного тока мощностью более 500 л. с. подключены к генератору переменного тока, мощность которого ниже, чем у двигателей постоянного тока, можно получить максимальную выходную мощность генератора.
Электричество в атмосфере земли
Много лет ученые ищут идеальный альтернативный источник электроэнергии, который позволил бы добывать ток из возобновляемых ресурсов. О том, как получить статическое электричество из воздуха, задумывался еще Тесла в 19 веке, и сейчас ученые пришли к выводу, что да, это вполне реально. Как известно, электрический потенциал имеет свойство накапливаться в течение определенного времени. Сейчас атмосфера изнизана различными волнами, производящимися электрическими установками, приборами, естественным полем Земли. Это позволяет говорить о том, что электричество из атмосферного воздуха можно добыть своими руками, даже не имея никаких специальных приспособлений и схем, но про особенности токопроизводства по этому варианты мы расскажем ниже.
Кольцо стивена марка схема своими руками Тороидальный генератор стивена марка tpu схема На матриксе вроде неглупые.
Особенности конструкции
Простой бестопливный электрогенератор состоит из ротора и статора.
Статор машины не двигается и обычно является внешней рамой машины. Ротор может свободно двигаться и обычно расположен во внутренней части машины. Они оба, как правило, состоят из ферромагнитных материалов. Прорези сделаны по внутренней периферии статора и внешней периферии ротора. Проводники размещены в соответствующих пазах статора или ротора. Они связаны между собой, образуя круглые обмотки. Обмотка, в которой индуцируется напряжение, называется обмоткой якоря, а также это название носит ток, передающийся по ней. Постоянные магниты используются в некоторых машинах для обеспечения основного потока машины.
Устройство TPU Стивена Марка кардинально отличается от других бестопливных аппаратов своей оригинальной конструкцией. Такой генератор не является обладателем резонаторов радиочастотного типа. Рабочая часть устройства состоит из кольца из металла (диаметр приблизительно 20 см), на которое надеты катушки, сделанные из многожильного толстого провода. Автор не раз демонстрировал своё изобретение на публике, однако потом оригинальную разработку строго засекретили.
И всё же благодаря его последователям в свет вышла новая версия – Ottp Ronette, которая уже имела отличия от оригинальной версии. У неё уже было два кольца из пластика, к которым прикреплялся толстый парный провод. Сами же провода соединялись крест-накрест.
Элементы электрогенератора
Состоит он из нескольких основных частей:
- Основа кольцевидной формы.
- Внутренняя коллекторная катушка.
- Управляющие катушки.
- Внешняя катушка.
Основа кольцевидной формы. Внутренняя основа в виде кольца определенных размеров изобретателем была выполнена из фанеры, но можно использовать пластик или полиуретан. Эти материалы способны эффективно поглощать вибрацию внутреннего коллектора.
Внутренняя коллекторная катушка. Используется стандартный многожильный медный провод небольшого сечения – 1 мм. Намотку выполняют от одного до трех витков.
Схема генератора Cтивена Марка
Управляющие катушки. Четыре катушки плоского типа. Провод наматывается поперек основы на четырех сторонах под 90 град. Расстояние между катушками выдерживают до 15 мм. В качестве материала для намотки используют одножильный медный провод.
Внешняя катушка. Отдельным изолированным проводом плотно покрывается вся поверхность основы с катушками.
Как сделать бестопливный генератор своими руками
Существует два самых распространённых способа, как сделать БТГ своими руками:
- мокрый;
- сухой.
Для мокрого метода понадобится аккумулятор, в то время как при использовании сухого нужны будут батареи.
Мокрый способ
Необходимые составляющие:
- зарядное устройство нужного калибра;
- аккумулятор;
- усилитель мощности;
- трансформатор для переменного тока.
Аккумулятор служит в качестве накопителя энергии и также сохраняет её. Трансформатор необходим для генерации постоянных сигналов электрического тока. Усилитель, в свою очередь, повышает уровень подачи тока, так как изначальная мощность аккумулятора составляет порядка 12 или 24 В. Зарядное устройство понадобится для постоянной и бесперебойной работы аппарата.
Сначала необходимо подключить трансформатор к постоянной сети или к батарее, а затем и к усилителю мощности. После чего нужно будет подключить датчик для расширения к схеме зарядного устройства. Затем требуется подключить датчик обратно к аккумулятору.
TPU Стивена Марка
Как подключить бытовой генератор своими руками Генератор: агрегат, обеспечивающий комфорт В 21 веке человек обеспечил себе абсолютный комфорт с помощью современной техники. Декоративные занавески своими руками Декоративные занавески прекрасно вписываются в любой интерьер квартиры, создавая при этом необычный экзотический и оригинальный образ в. Водный ксилофон, колокольчики для ног и кастаньеты. Занятия музыкой могут оказаться весёлыми даже для самых непоседливых детей, если найти правильный подход к процессу. Один из самых необычных.
Общая информация
В течение многих лет ученые ищут альтернативный источник электрической энергии, который позволит получать электричество из доступных и восстанавливаемых ресурсов. Возможность добыть ценные ресурсы из воздуха интересовала еще Теслу в XIX веке. Но если энтузиасты прошлых веков не имели в своем распоряжении столько технологий и изобретений, как современные исследователи, то сегодня возможности по реализации самых сложных и безумных идей выглядят вполне реально. Получить альтернативное электричество из атмосферы можно двумя методами:
- благодаря ветрогенераторам;
- с помощью полей, которые пронизывают атмосферу.
Наукой доказано, что электрический потенциал способен накапливаться воздухом за определенный промежуток времени. Сегодня атмосфера настолько пронизана различными волнами, электроприборами, а также естественным полем Земли, что получить из нее энергоресурсы можно без особых усилий или сложных изобретений.
Классическим способом добычи энергии из воздуха является ветрогенератор. Его задача заключается в преобразовании силы ветра в электричество, которое поставляется для бытовых нужд. Мощные ветровые установки активно используются в ведущих странах мира, включая:
- Нидерланды;
- Российскую Федерацию;
- США.
Однако одна ветряная установка способна обслужить лишь несколько электроприборов, поэтому для питания населенных пунктов, фабрик или заводов приходится устанавливать огромные поля таких систем. Помимо существенных плюсов у этого способа есть и недостатки. Один из них — непостоянность ветра, из-за чего нельзя предугадать уровень напряжения и накопления электрического потенциала. В числе плюсов ветрогенераторов выделяют:
- практически бесшумную работу;
- отсутствие вредных выбросов в атмосферу.
Бесплатное электричество: 4 необычных способа получения энергии
Благодаря современным технологиям бесплатное электричество можно добывать из земли и воздухаВ наш век высоких технологий трудно представить свою жизнь без электричества. На этом ресурсе работает практически вся наша домашняя техника, без которой жизнь станет более сложной и менее интересной.
Однако с сегодняшними ценами на электричество, многие задумываются о возможности получать подобный вид энергии бесплатно. Поэтому, сегодня мы решили вам рассказать, о нескольких интересных вариантах. Нет, мы не будем описывать способы обмана коммунальных служб или убеждать вас, что без большинства электроприборов можно обойтись.
Мы расскажем вам о четырех самых необычных вариантов получения необходимого всем природного ресурса.
На данный момент стоимость коммунальных услуг достаточно высока. Поэтому многие люди задумываются об источниках необходимых ресурсов, более дешевых, чем централизованный газ и электроэнергия.
Для обеспечения дому тепла с минимальной затратой средств был изобретен твердотопливный пиролизный котел. В данном агрегате газ образуется за счет перегорания твердого топлива. Этого прибора достаточно для обогрева целого дома.
Более того, многие твердотопливные печи имеют варочные поверхности и духовки. Используя такой прибор, вы можете вовсе отказаться от проведения газа в свой дом.
С электричеством все намного сложнее. На данный момент в современных домах столько электроприборов, что обеспечить достаточное количество энергии альтернативными способами для них всех, действительно тяжело. Однако вы можете с помощью необычных способов получения бесплатной электроэнергии, сделать максимально дешевым обслуживание некоторой части электроприборов. Давайте посмотрим, что это за способы.
Какое может быть бесплатное электричество для дома:
- Самым распространенным считается электричество, полученное от энергии солнца;
- Также пользуется дармовая энергия, получаемая из воздуха и атмосферы;
- Очень интересно получение статического электричества из земли;
- Электрический ток также можно вырабатывать из эфира;
- На грани фантастики кажется халявное электричество из нечего;
- Как оказалось, из магнитного поля тоже можно добывать электричество;
- Возможна добыча электричества из дерева, воды и других подручных средств.
российские учёные раскритиковали заявления китайских коллег о создании бестопливного двигателя — РТ на русском
Короткая ссылка
Валерия Маслова
Китайские инженеры заявили, что им удалось провести успешные испытания бестопливного двигателя. Ранее о создании аналогичного источника энергии говорили в NASA. По мнению российских физиков, подобные заявления схожи с научной фантастикой: ведь чтобы привести в действие систему, необходимо приложить усилие в том или ином виде.
В Китае была создана рабочая версия двигателя EmDrive, который не нуждается в топливе. Об этом сообщают западные СМИ со ссылкой на видео, опубликованное китайским телеканалом CCTV-2.
Footage claims China have working version of fuel-free EmDrive that could take humans to Mars in just 10 weeks https://t.co/r1TpdEnDhW
— Daily Mail Online (@MailOnline) September 12, 2017
В ролике не объясняется, как именно функционирует двигатель. При этом, согласно заявлению китайской стороны, в скором времени изобретатели намерены провести испытания этого двигателя в космосе.
Работу устройства без топлива невозможно объяснить с точки зрения классической физики, поскольку это противоречит известным научным законам.
Бестопливный двигатель EmDrive представляет собой устройство, состоящее из магнетрона, который создаёт микроволны, и резонатора, накапливающего энергию их колебаний. Если устройство сделать в виде конуса, а резонатор поместить внутрь, то предполагается, что всё устройство начнёт с малой скоростью двигаться в сторону узкой части конуса.
Предполагается, что, если поместить подобное изобретение на космический корабль, станут возможны путешествия во Вселенной на дальние расстояния, поскольку будет решена проблема заправки двигателей.
- NASA
Научная фантастика
RT обратился к российским учёным за разъяснениями. По мнению доктора физико-математических наук, специалиста РАН в области астрокосмической индустрии Бориса Штерна, изобретение подобного двигателя всё ещё недоступно современным учёным.
«Подобные эксперименты невозможны. Учёные, которые подобное заявляют (о создании бестопливного двигателя. — RT), либо мошенники, либо неудачные экспериментаторы», — пояснил он.
В таком же ключе высказалась физик НИЦ «Курчатовский институт» Елена Лущевская. По её словам, работа двигателя без топлива невозможна, так как «необходимо что-то внести в систему, чтобы получить КПД».
«Такого не бывает», — заключила она, комментируя сообщения о создании рабочего образца принципиально нового двигателя в Китае.
Ведущий научный сотрудник Института космических исследований РАН Натан Эйсмонт пояснил RT, что «без отброса масс невозможно развивать тягу». Именно за счёт этого в настоящее время движутся космические ракеты: в одну сторону летят продукты сгорания в двигателе, а в другую — сама ракета. Всё остальное противоречит законам физики.
- globallookpress.com
- © Aubrey Gemignani/ZUMAPRESS. com
«Я сразу скажу, что это бред. <…> Все мы хотим чудес, причём хотим так сильно, что вполне грамотные и получившие соответствующее образование люди впадают в состояние, когда начинают верить в чудеса. Раньше вечный двигатель хотели изобрести, а сейчас пытаются создать двигатель, который не будет отбрасывать массы», — сказал Эйсмонт.
Академику Российской академии космонавтики Александру Железнякову заявления китайских коллег показались настолько неправдоподобными, что он отказался от комментариев, назвав публикации о бестопливном двигателе «фантастикой».
Мечтатели из NASA
В ноябре 2016 года стало известно о похожих исследованиях в NASA. В сеть просочились материалы, согласно которым работа такого двигателя действительно возможна. По убеждению американских инженеров, EmDrive производит постоянную тягу без потребления топлива, а направленный пучок излучения не вырабатывается, что противоречит, как утверждают эксперты, закону сохранения импульса.
Также по теме
Молекулярное кино: как будет работать мощнейший рентгеновский лазер на свободных электронах
В Гамбурге представители 12 стран, в том числе российские учёные, запустили уникальный рентгеновский лазер на свободных электронах,…
Физики утверждали, что бестопливный двигатель вырабатывает около 1,2 миллиньютонов тяги на каждый киловатт затраченной энергии. По их словам, EmDrive вырабатывал тягу как при наличии атмосферы, так и почти в полном вакууме, поэтому устройство можно использовать и на Земле, и в космосе.
Но и тогда чудо-двигатель подвергся жёсткой критике. Чешский физик Любош Мотль, прочтя отчёт американских коллег о работе изобретения, нашёл ошибки в документе. Он отметил, что в статье учёных вырабатываемая этим двигателем сила примерно в 360 раз больше, чем она должна быть, если бы «в её рождении были замешаны пары виртуальных частиц, постоянно появляющиеся и исчезающие в вакууме». Это означает, что в ходе эксперимента (или подсчётов) была допущена ошибка или всё же были какие-либо сторонние силы, которые породили тягу.
Впервые о разработке подобного двигателя стало известно в 2001 году. Американский инженер-авиаконструктор Роджер Шойер утверждал, что намерен создать устройство, которое нарушает все известные законы физики.
Последняя версия двигателя была запатентована Шойером в конце октября 2016 года. Новая модификация отличалась от предыдущих наличием сверхпроводящей пластины. По мнению учёного, она позволит уменьшить изменение частоты электромагнитной волны при её распространении в полости двигателя и таким образом увеличит тягу EmDrive.
10 альтернатив бензиновому двигателю
В то время как новые технологии бурения и запасы нефти снижают давление цен на бензин и пиковых объемов производства, спрос на автомобили, работающие на альтернативном топливе, продолжает расти. Экологические проблемы и правительственные постановления сделали поиск заменителей обычного бензинового двигателя внутреннего сгорания приоритетом как для производителей, так и для потребителей. Федеральное правительство требует к 2025 году среднего показателя в 54,5 мили на галлон, что является сложной задачей для традиционных технологий. Калифорния требует увеличения количества автомобилей с нулевым уровнем выбросов или подключаемых гибридных автомобилей. Но в каком направлении идти? В зависимости от таких соображений, как модели использования, эффективность и стоимость, существует по крайней мере дюжина заменителей бензина в качестве моторного топлива, включая электричество, природный газ, растительное масло и даже солнечный свет. Как отмечает Джон О’Делл из Edmunds.com, даже самые многообещающие источники энергии, такие как природный газ, имеют один и тот же недостаток: отсутствие инфраструктуры для заправки или подзарядки. Имея это в виду, вот взгляд на альтернативы, доступные сегодня, а также некоторые предварительные прогнозы относительно их перспектив на будущее.
1. Газоэлектрические гибриды
Первые гибридные модели Honda Insight и Toyota Prius (вверху) появились в США в 1999 году, и сегодня в продаже имеется около 40 газоэлектрических моделей. Использование электричества для частичного питания транспортных средств обеспечивает значительную экономию топлива и сокращение выбросов. Газоэлектрические гибриды используют аккумулятор для обеспечения питания на низких скоростях или для управления остановкой / запуском. Аккумулятор заряжается за счет рекуперативного торможения и двигателя внутреннего сгорания, и его не нужно подключать к розетке. В то время как популярный Prius от Toyota (TM) остается самым продаваемым гибридом — в 2013 году будет продано более 200 000 автомобилей — их число сейчас включают суперкары производства Ferrari и Porsche. Гибрид Porsche Panamera S имеет 3,0-литровый двигатель V6 и по-прежнему потребляет 22 мили на галлон по городу и 30 миль на галлон по шоссе.
2. Подключаемые гибриды
Подключаемые гибриды или PHEVS аналогичны газоэлектрическим гибридам, но имеют более крупные батареи, которые могут перемещать автомобиль на ограниченные расстояния только на электричестве, что приводит к нулевым выбросам. Затем батареи можно заряжать, подключив их к источнику электроэнергии. Стоимость аккумуляторов большего размера влечет за собой значительную надбавку к цене — дополнительные 7000 долларов за версию Prius с подключаемым модулем до недавнего снижения цен — и в настоящее время в США доступны только четыре модели PHEV. Продажи самой известной модели , General Motors (GM) Chevrolet Volt с расширенным ассортиментом (выше) работает менее 2000 в месяц.
3. Электрооборудование
Электромобили (ЭМ) работают без бензина; они используют батарею для хранения электроэнергии, питающей двигатель. Принятие чистых электромобилей медленно растет с тех пор, как они были представлены на массовом рынке три года назад, с повышенным спросом как в нижней части рынка после снижения цен на Nissan Leaf за 30 000 долларов (выше), так и в верхней части с Удивительный успех Tesla Model S за 80 000 долларов. Беспокойство по поводу запаса хода продолжает сдерживать рост интереса покупателей, равно как и ограниченное количество зарядных станций за пределами крупных городов. В 2013 году в продаже было 11 различных моделей электромобилей от основных производителей, в том числе Smart ForTwo Electric от Mercedes, который заявляет о запасе хода в 68 миль на одном заряде и продается за 20 740 долларов без учета льгот и скидок.
4. Этанол и гибкое топливо
Благодаря постановлению правительства о возобновляемых видах топлива от 2007 г., требующему добавления в бензин определенного количества жидкостей, изготовленных из возобновляемых источников, этанол, произведенный из кукурузы, нашел свое применение в топливе страны. Около 84 моделей легковых и грузовых автомобилей имеют обозначение «гибкое топливо», что означает, что они могут работать на смесях, содержащих до 85% этанола. В последнее время возникла негативная реакция на использование этанола, поскольку растет осознание того, что этанол содержит меньше энергии, чем бензин, что приводит к меньшему количеству миль на галлон и требует много энергии для производства, что может привести к увеличению выбросов углекислого газа. Оппоненты также утверждают, что этанол неэтичен, потому что он отвлекает 40% выращиваемой кукурузы от продуктов питания и увеличивает ее стоимость.
5. Биодизельное топливо
Изготовленное из растительного масла, животных жиров или переработанного ресторанного жира, биодизельное топливо повышает октановое число обычного дизельного топлива и сгорает более чисто, в дополнение к тому, что оно нетоксично и биоразлагаемо. Биодизель можно использовать в чистом виде, но чаще всего его можно найти в смеси с 80% обычного дизельного топлива. Постановления правительства требовали, чтобы в 2013 году было произведено 1,3 миллиарда галлонов биодизеля. Биодизель можно использовать в большинстве автомобилей с обычными дизельными двигателями без модификации, в том числе в пикапе Ford (F) F-250 Super Duty.
6. Пропан
Простота обслуживания и снижение выбросов стимулировали использование пропана в парках легковых автомобилей (полицейские машины и школьные автобусы), а также в большегрузных грузовиках с такими знакомыми шильдиками, как Kenworth и Peterbilt. В настоящее время на дорогах находится более 270 000 автомобилей, работающих на пропане. Также известный как сжиженный нефтяной газ (LPG), пропан производится как побочный продукт переработки природного газа и переработки сырой нефти. Несмотря на высокое октановое число и чистоту горения, пропан стоит примерно на треть дешевле бензина. Но он должен храниться в резервуаре под давлением, а инфраструктура заправки пропаном ограничена.
7. Сжиженный и сжатый природный газ
Транспортные средства, работающие на природном газе, работающие на сжиженном или сжатом газе, имеют такой же пробег, как и бензин, но горят чище. По оценкам Министерства энергетики, в настоящее время в эксплуатации находится около 112 000 автомобилей, работающих на природном газе. Большинство из них являются грузовиками средней и большой грузоподъемности, но Honda (HMC) предлагает Civic на природном газе (вверху) с 1998 года. Он медленнее бензинового, имеет ограниченный запас хода и сеть заправок и стоит на тысячи долларов дороже. В его пользу более дешевые цены на топливо отечественного производства и меньшие выбросы.
8. Топливные элементы
Подобно вымышленному Эльдорадо, мерцающему вдалеке, доступные топливные элементы на водороде были недостижимой целью для целого поколения исследователей. Водород привлекателен тем, что его можно производить внутри страны и он сгорает чисто, а автомобили на топливных элементах в два-три раза эффективнее бензиновых. Что сдерживало их, так это стоимость строительства самих ячеек и сети заправочных станций для распределения водорода. В результате производители тестируют небольшие парки FCV, но ни один автомобиль на топливных элементах не вышел на потребительский рынок. Две известные модели в ограниченных тестах: Honda FCX Clarity и Mercedes-Benz F-cell 2012 года (выше), который получает 52 мили на кг водорода (примерно эквивалентно галлону бензина).
9. Солнечная энергия
В октябре автомобиль, работающий на солнечной энергии, проехал почти 2000 миль по австралийской глубинке со средней скоростью 56 миль в час. Звучит идеально — солнечная энергия бесплатна и чиста — но есть несколько предостережений: автомобиль голландской разработки (вверху) просто перевозил водителя, ехал только в светлое время суток и использовал небольшую батарею для движения. Это будущее? Возможно нет. Фотогальванические элементы, которые улавливают солнечный свет и преобразуют его в электричество, дороги в производстве, а автомобиль сделан из дорогих легких материалов, таких как титановые композиты. Тем не менее, автомобили на солнечных батареях могут найти ограниченное применение в качестве пригородных автомобилей, где у них была возможность заряжаться в течение дня, а некоторые из них сегодня используются в качестве тележек для гольфа.
10. Steam
В период с 1899 по 1905 год Stanley Steamer (выше) продавался лучше всех автомобилей с бензиновым двигателем в США. Паровые двигатели разрабатывались с начала 18 века; бензин был младенцем по сравнению с ним. Но двигатели внутреннего сгорания быстро наверстали упущенное после того, как у них появился автозапуск, и пароходы были обречены на то, чтобы таскать с собой тяжелые котлы. Автомобили с паровым двигателем по-прежнему привлекают внимание, потому что они могут сжигать такое топливо, как мусор, древесину и сырую нефть — General Motors представила два экспериментальных автомобиля в 1919 году.69, но они относительно неэффективны и очень тяжелы. В 2009 году современный паровой автомобиль побил рекорд скорости, установленный Stanley Steamer в 1906 году, когда он превысил 130 миль в час, но он весил более трех тонн и содержал более двух миль паровых труб.
Использование биодизельного топлива в двигателе
Введение
Биодизельное топливо — это моторное топливо, полученное путем химической реакции жирных кислот и спирта. На практике это обычно означает объединение растительного масла с метанолом в присутствии катализатора (обычно гидроксида натрия). Биодизель гораздо более подходит для использования в качестве моторного топлива, чем чистое растительное масло, по ряду причин, наиболее заметной из которых является его более низкая вязкость. Многие крупные и мелкие производители начали производить биодизельное топливо, и теперь это топливо можно найти во многих частях Пенсильвании и за его пределами либо в виде «чистого биодизельного топлива», либо в виде смеси с традиционным нефтяным дизельным топливом (например, B5 — это 5-процентное биодизельное топливо, 95-процентное бензиновое дизельное топливо).
Процесс производства биодизеля достаточно прост, поэтому фермеры могут рассмотреть вопрос о производстве биодизеля для удовлетворения своих собственных потребностей, выращивая и собирая масличные культуры и превращая их в биодизель. Таким образом, фермеры могут «выращивать» свое собственное топливо (см. публикацию Penn State Extension «Безопасность биодизеля и лучшие практики управления для мелкомасштабного некоммерческого производства» ). Есть много возможных причин для выращивания или использования биодизеля, включая экономику, поддержку местной промышленности и экологические соображения.
Однако большое беспокойство вызывает влияние биодизеля на двигатели. Ходило много историй о снижении производительности, повреждении ключевых компонентов или даже отказах двигателей, в которых виновато биодизельное топливо. Некоторые производители опасаются соблюдать свои гарантии на двигатели, если используется биодизель, в то время как другие поощряют использование биодизеля. Учитывая широкий спектр запутанных сообщений, понять правду по этому вопросу непросто.
К счастью, существует и продолжается немало тщательных исследований эффективности биодизеля в двигателях как в лабораторных условиях, так и в реальных условиях эксплуатации. Эти контролируемые исследования проясняют большую часть путаницы в отношении использования биодизельного топлива и могут использоваться в качестве надежного руководства для реальных характеристик биодизельного топлива в двигателях.
Работа двигателя при использовании биодизеля
Хотя мы не знаем всего о его характеристиках, можно с уверенностью сказать, что качественное биодизельное топливо обычно хорошо работает в двигателях. Вот несколько наиболее важных моментов, о которых следует помнить:
- Мощность двигателя: при использовании биодизеля мощность и крутящий момент двигателя, как правило, снижаются на 3–5 процентов. Это связано с тем, что биодизельное топливо имеет меньшую энергию на единицу объема, чем традиционное дизельное топливо.
- Топливная эффективность: топливная экономичность при использовании биодизеля несколько ниже из-за меньшей энергоемкости топлива. Как правило, спад находится в том же диапазоне, что и снижение пиковой мощности двигателя (3-5 процентов).
- Износ двигателя: было измерено, что кратковременный износ двигателя при использовании биодизеля меньше, чем у нефтяного дизельного топлива. Хотя долгосрочные испытания не публиковались, ожидается, что двигатели будут меньше изнашиваться в долгосрочной перспективе при использовании биодизеля.
- Отложения и засорение: широко сообщалось об отложениях и засорении из-за биодизеля, но, как правило, они связаны с биодизелем низкого качества или окисленным. Если качество топлива высокое, отложения в двигателе обычно не должны быть проблемой.
- Загрязнение выхлопными газами двигателя: биодизель намного меньше загрязняет воздух из-за более высокого содержания кислорода и отсутствия «ароматических соединений» и серы. Единственным исключением являются выбросы оксидов азота (NOx), которые, как правило, несколько выше при использовании биодизеля. Однако правильная настройка двигателя может свести к минимуму эту проблему.
- Работа в холодную погоду: аналогично нефтяному дизелю, двигатели, испытанные в холодную погоду, обычно испытывают серьезные проблемы с работой, вызванные, прежде всего, засорением фильтров и/или закоксовыванием форсунок. Использование улучшающих текучесть присадок и «зимних смесей» биодизеля и керосина доказало свою эффективность в расширении диапазона рабочих температур биодизельного топлива. Чистое биодизельное топливо, как правило, хорошо работает при температурах до 5°C (значительно варьируется в зависимости от типа используемого масла). Добавки обычно уменьшают этот диапазон примерно на 5-8 градусов, в то время как зимние смеси доказали свою эффективность при температурах до -20°C и ниже.
Качество биодизеля имеет жизненно важное значение
Важно не путать характеристики высококачественного биодизеля с характеристиками низкокачественного биодизеля. Разница может быть огромной, и производители, которые не уделяют должного внимания своему процессу, почти гарантированно получат некачественное биодизельное топливо. Надлежащее качество топлива и уход за ним жизненно важны для любого моторного топлива, и это, безусловно, относится к биодизельному топливу.
Наиболее распространенные проблемы с качеством топлива: (1) биодизельное топливо может содержать некоторое количество «непереработанного» растительного масла (неполная переработка), (2) в нем могут оставаться следы химических веществ, образующихся при производстве биодизельного топлива (например, метанол, щелочь). биодизеля, (3) продукты реакции (например, глицерин, мыла) могут быть не полностью удалены из биодизеля, (4) избыточная вода, которая используется для «промывки» топлива, может оставаться в биодизельном топливе, и ( 5) топливо может полимеризоваться/окисляться из-за длительного хранения или воздействия умеренных и высоких температур.
Воздействие некачественного биодизеля, вероятно, не будет сразу заметно в работе вашего двигателя, но со временем отложения, коррозия и повреждения могут накапливаться до тех пор, пока ваш двигатель не выйдет из строя катастрофически. Определить разницу между хорошим и некачественным биодизелем непросто, а необходимые лабораторные анализы довольно дороги. Некоторые недорогие тестовые наборы имеются в продаже, и хотя они не так точны, как тесты в квалифицированной лаборатории, они обещают стать недорогой альтернативой. Основным стандартом качества биодизельного топлива в Соединенных Штатах является стандарт ASTM D6751, который требует, чтобы топливо прошло широкий спектр испытаний, прежде чем оно будет признано удовлетворительным. Если вы покупаете биодизельное топливо на коммерческой основе, вы должны настаивать на том, чтобы топливо было сертифицировано в соответствии со стандартом. Мелким производителям следует хотя бы подумать об инвестировании в тестовый набор.
Возможные проблемы с двигателем при использовании биодизеля
Люди, использующие биодизельное топливо, сообщали о многих проблемах. Тщательное исследование показывает, что большинство этих трудностей можно отнести к некачественному биодизельному топливу, и они почти идентичны проблемам, вызванным низкокачественным нефтяным дизельным топливом. Однако некоторые проблемы (в первую очередь проблемы с холодной погодой) связаны не с плохим качеством топлива, а с неотъемлемыми свойствами биодизельного топлива. К счастью, большинства этих проблем можно избежать или свести к минимуму. Распространенные проблемы с двигателем при использовании биодизеля, их возможные причины и решения представлены ниже. Этот список не предназначен для использования в качестве исчерпывающего руководства по ремонту, а скорее для того, чтобы дать представление о некоторых проблемах производительности, связанных с биодизельным топливом.
Проблема
Отложения на форсунках влияют на форму распыления топлива. Наиболее распространенными симптомами являются пропуски зажигания или затрудненный запуск. Это, скорее всего, вызвано либо работой в холодную погоду с частично затвердевшим топливом, либо топливом, которое не полностью преобразовалось из масла в биодизельное топливо. Растительное масло имеет тенденцию образовывать отложения на форсунках, особенно когда двигатель работает на частичная нагрузка.
Решение
Поручите очистку форсунок квалифицированному механику — особенности конструкции форсунок затрудняют очистку этих деталей, если у вас нет специального обучения и оборудования. Для улучшения работы топлива в холодных условиях и предотвращения этой проблемы в будущем можно использовать присадки, улучшающие текучесть при низких температурах. Также следует убедиться, что топливо не содержит загрязняющих примесей и полностью преобразовано из масла в биодизельное топливо. .
Проблема
Отложения в насосе-форсунке (лак и камедь) влияют на производительность. Наиболее распространенными симптомами являются затрудненный запуск, снижение мощности и пропуски зажигания. Это может быть вызвано либо неполностью преобразованным биодизельным топливом, либо частично окисленным биодизельным топливом.
Решение
Поручите квалифицированному механику очистить инжекторный насос. Как и в случае с форсунками, эта работа непрактична для домашнего механика из-за точной природы компонентов насоса.
Проблема
Смазочное масло разбавляется, что приводит к повышению уровня масла, падению давления масла и/или износу подшипников. Это часто происходит из-за чрезмерного прорыва газов в цилиндре из-за плохого распыления топлива и/или изношенных колец.
Решение
Регулярно контролируйте смазочное масло и принимайте корректирующие меры при появлении любых признаков разбавления.
Проблема
Двигатель либо отказывается запускаться в холодную погоду, либо работает только через несколько секунд после запуска. Возможно, фильтр забился частицами затвердевшего биодизеля.
Решение
Вы можете дождаться прихода весны или, возможно, попытаться прогреть топливный фильтр — доступны 12-вольтовые нагреватели рубашки. Противообледенительные присадки для нефтяного дизельного топлива можно использовать и для биодизеля. Если вы живете в холодном климате, вам следует подумать об использовании присадки, предназначенной для улучшения характеристик топлива в холодную погоду, или установить «предпусковой подогреватель» для прогрева топливного бака и фильтра. В самые холодные месяцы года может потребоваться подготовка топлива к зиме путем смешивания биодизеля с керосином или нефтяным дизельным топливом для зимних условий. Опыт фермы Penn State показал, что, если тракторы хранятся в теплом гараже (выше нуля), они обычно легко запускаются и хорошо работают в течение дня, даже при довольно низких температурах наружного воздуха.
Проблема
Утечка топлива из топливопровода. Биодизель является очень эффективным растворителем для некоторых материалов, включая определенные типы эластомеров (например, каучук Buna Nitrile).
Решение
Перед использованием биодизельного топлива в вашем двигателе убедитесь, что двигатель «рассчитан на использование биодизельного топлива», что означает, что все материалы совместимы с биодизельным топливом. В противном случае вам потребуется найти в двигателе все материалы (т. е. уплотнения и шланги), которые могут разлагаться под действием биодизеля, и заменить их компонентами, предназначенными для биодизеля. Это может быть довольно хлопотно. Обычно компоненты, изготовленные из «фторэластомеров» (например, витона или тефлона), можно считать безопасными для использования в биодизельном двигателе.
Проблема
Топливный фильтр забивается, но не из-за холодной погоды. Есть три основные возможности: низкое качество вашего биодизеля, что приводит к образованию смол или гелей в топливной системе; в вашем аквариуме растут водоросли; или биодизель «вычищает» старые отложения из шлама, который обычно накапливается на дне старых топливных баков. Операторы, которые переходят с нефтяного дизельного топлива на биодизельное топливо, с большей вероятностью столкнутся с этой проблемой, поскольку старые автомобили, которые использовали дизельное топливо в течение многих лет, вероятно, будут иметь довольно много отложений в топливном баке.
Решение
Если проблема вызвана некачественным топливом, устраните эту проблему, используя только топливо, сертифицированное ASTM. Если проблема вызвана водорослями, может помочь добавка альгицида. Кроме того, простые меры, такие как заправка топливного бака в конце рабочего дня, могут снизить уровень влажности топлива и подавить рост водорослей. Если вы просто переходите на биодизель после многих лет использования нефтяного дизельного топлива, вам сначала нужно будет часто менять фильтры, так как биодизель разрыхляет отложения внутри вашего топливного бака и двигателя. В крайних случаях вам может потребоваться тщательно очистить или заменить топливный бак перед добавлением следующего бака биодизеля.
Имеет ли значение тип двигателя?
Не все дизельные двигатели одинаковы. Дизайн каждого производителя включает в себя некоторые уникальные особенности, которые могут повлиять на его производительность при использовании биодизеля. Этот вопрос в настоящее время не имеет четкого понимания. Однако современные дизельные двигатели достаточно схожи в том смысле, что ожидается, что различия в характеристиках будут минимальными при условии, что все материалы, используемые в двигателе, совместимы с биодизелем.
Однако это может быть не так для старых двигателей, особенно для тех, в которых не используются системы зажигания Common-Rail, которые сегодня почти повсеместно используются. Некоторые тесты показали, что старые двигатели с непрямым впрыском испытывают меньше проблем при использовании биодизельного топлива и даже показывают перспективы работы на чистом растительном масле, которое не было химически переработано в биодизельное топливо. Потенциал может существовать для изучения старых конструкций двигателей, чтобы понять, как лучше всего создавать двигатели для использования биодизеля. В некоторых старых двигателях используются уплотнения и шланги, изготовленные из каучука Buna N, который может растворяться биодизелем. Обязательно проверьте это и при необходимости замените перед переходом на биодизель.
Уход за двигателем при работе на биодизеле
Как правило, биодизельное топливо можно использовать вместо традиционного дизельного топлива. Однако некоторые производители рекомендуют сократить интервал технического обслуживания (часто на 50 процентов), чтобы гарантировать, что фильтры не засорятся, а смазочное масло останется в хорошем состоянии. Тем не менее, важно проконсультироваться с производителем вашего двигателя для получения конкретных рекомендаций.
Кроме того, из-за склонности биодизеля к окислению вам следует проявлять осторожность, если вы планируете хранить двигатель в течение какого-либо периода времени. Может оказаться целесообразным слить из двигателя все топливо перед хранением, перейти обратно на дизельное топливо перед хранением или, в качестве альтернативы, добавить стабилизатор топлива.
Резюме
Высококачественное биодизельное топливо, за которым правильно ухаживают, должно обеспечить отличные эксплуатационные характеристики в течение всего срока службы. В целом, его можно использовать точно так же, как нефтяное дизельное топливо. Единственным заметным исключением являются холодные погодные условия, когда биодизель имеет тенденцию «застывать» раньше, чем традиционное дизельное топливо. На рынке доступно множество присадок, которые могут помочь сохранить качество и улучшить характеристики биодизеля в холодную погоду, и их использование является одним из вариантов улучшения характеристик топлива при использовании биодизеля. Тем не менее, использование «зимней топливной смеси» является рекомендуемым подходом для суровых зимних условий в Пенсильвании.
Однако качество топлива чрезвычайно важно, и некачественное топливо может иметь много негативных последствий для двигателя. Для защиты от этого любое биодизельное топливо, которое вы используете, должно соответствовать соответствующему стандарту для использования (например, стандарту ASTM D6751).
Для получения дополнительной информации см. следующие информационные бюллетени и отчеты Penn State Extension:
- Биодизель: возобновляемый внутренний источник энергии
- Информационный бюллетень по возобновляемым и альтернативным источникам энергии: чем отличается биодизельное топливо?
- Изготовление собственного биодизеля: краткие процедуры и меры предосторожности
- Безопасность биодизеля и лучшие практики управления для мелкомасштабного некоммерческого производства
Ссылки
- Agarwal, A. K., J. Bijwe, and L. Das. «Оценка износа двигателя с воспламенением от сжатия, работающего на биодизеле». Журнал техники для газовых турбин и энергетики 125 (2003): 820-26.
- Бэйл П., Н. Дешпанде и С. Томбре. «Улучшение низкотемпературных свойств биодизельного топлива». Возобновляемая энергия (2008 г.): 1-7.
- Камбрей, Г. «Помощь биодизелю отклеиться». Наука в Африке, декабрь 2007 г. .
- Четинская М.,Ю. Улусой,Ю. Текин и Ф. Караосманоглу. «Испытания двигателя и зимних дорожных испытаний биодизеля из отработанного растительного масла». Преобразование энергии и управление 46 (2005): 1279-91.
- Фернандо С., П. Карра, Р. Эрнандес и С. К. Джа. «Влияние неполностью преобразованного соевого масла на качество биодизеля». Энергия 32 (2007): 844-51.
- Flitney, R. 2007. «Какие эластомерные уплотнительные материалы подходят для использования в биотопливе?» Технология уплотнения 9(2007): 8–11.
- Грабоски М. и Р. Маккормик. «Сжигание топлива, полученного из жира и растительного масла, в дизельных двигателях». Progress in Energy Combustion Science 24 (1998): 125-64.
- Hancsok, J., M. Bubalik, A. Beck и J. Baladincz. «Разработка многофункциональных присадок на основе растительных масел для высококачественного дизеля и биодизеля». Исследования и проектирование в области химической инженерии 86 (2008): 793-99.
- Knothe, G. “Зависимость свойств биодизельного топлива от структуры алкиловых эфиров жирных кислот”. Технология переработки топлива 86 (2005): 1059-70.
- Лапуэрта М., О. Армас и Х. Родригес-Фернандес. «Влияние биодизельного топлива на выбросы дизельных двигателей». Прогресс в области энергетики и науки о горении 34 (2008): 198-223.
- Райан Т., Л. Додж и Т. Каллахан. «Влияние свойств растительного масла на впрыск и сгорание в двух разных дизельных двигателях». Журнал Американского общества нефтехимиков 61, вып. 10 (1984): 1610-19.
- Шарма Ю., Б. Сингх и С. Упадхьяй. «Достижения в разработке и характеристике биодизеля: обзор». Топливо 87 (2008): 2355-73.
- Чжэн М., М. Муленга, Г. Ридер, М. Ван, Д. Тинг и Дж. Тджонг. «Производительность биодизельного двигателя и выбросы при низкотемпературном сгорании». Топливо 87 (2008): 714-22.
- Центр энергии биомассы штата Пенсильвания
Подготовлено Даниэлем Циолкошом, сотрудником Центра энергии биомассы штата Пенсильвания и Департаментом сельскохозяйственной и биологической инженерии
Проверено Джозефом Пересом, Департаментом химического машиностроения, Деннисом Баффингтоном, Департаментом сельскохозяйственной и биологической инженерии, и Гленом Кауфманом, Penn State Farm Услуги
Правда об автомобилях на воде: Дневник механика
Команда разработчиков медиаплатформ
От стартапа, ловящего заголовки , до мастеров, публикующих планы, автомобили на воде в последнее время были повсюду в Интернете, не говоря уже о том, почтовый ящик.
Да, вы можете ездить на машине по воде. Все, что требуется для создания «гибрида, работающего на воде», — это установка простого, часто самодельного электролизера под капотом вашего автомобиля. Ключевым моментом является получение электроэнергии из электрической системы автомобиля для электролиза воды в газообразную смесь водорода и кислорода, которую часто называют газом Брауна, или HHO, или оксиводородом. Как правило, смесь находится в соотношении 2:1 атомов водорода к атомам кислорода. Затем он немедленно подается во впускной коллектор, чтобы заменить часть дорогого бензина, за который вы платили бешеные деньги в течение последних нескольких месяцев. Эти простые «наборы» увеличат вашу экономию топлива и уменьшат ваши счета и зависимость от иностранной нефти где-нибудь от 15 до 300 процентов.
Есть даже японская компания Genepax, демонстрирующая прототип, работающий только на воде. 13 июня агентство Reuters опубликовало отчет о прототипе, а также видео, которое теперь широко публикуется в блогах, на котором даже показана безобидная серая коробка в багажнике автомобиля Genepax, обеспечивающая всю мощность для движения автомобиля. Все, что вам нужно сделать, это добавить изредка бутылку Evian (или чая, или любой жидкости на водной основе), а затем ездить повсюду, даже не нуждаясь в бензине.
Что я обо всем этом думаю? Почему я не тестировал и не писал об этом материале? Это определенно изменит мир, каким мы его знаем… верно?
Мусор.
Единственное действительно определенное заявление, которое Genepax делает на своем веб-сайте, заключается в том, что его процесс спасет мир от глобального потепления. (Запрос на комментарий не был возвращен во время печати.) Их система водной энергии (WES), по-видимому, представляет собой не что иное, как топливный элемент, преобразующий водород и кислород обратно в электричество, которое используется для работы двигателя, который приводит в движение колеса. . Технология топливных элементов хорошо изучена и довольно эффективна при преобразовании водорода и кислорода в электричество и воду, и именно здесь мы пришли к этому, верно? За исключением того, что водород в первую очередь появился из воды — здесь что-то не сходится.
Вот в чем дело, народ: бесплатного обеда не бывает.
В воде есть энергия. Химически он заперт в атомных связях между атомами водорода и кислорода. Когда водород и кислород объединяются, будь то топливный элемент, двигатель внутреннего сгорания, работающий на водороде, или самодельный пикап с электролизером в кузове, остается энергия в виде тепла или электронов. Она преобразуется в механическую энергию поршнями и коленчатым валом или электрическими двигателями для движения автомобиля.
Проблема: Чтобы разделить атомы водорода и кислорода внутри электролизера, требуется столько же энергии, сколько и обратно, когда они рекомбинируют внутри топливного элемента. Законы термодинамики не изменились, несмотря на всю шумиху, которую вы читаете в каком-нибудь блоге или на новостном агрегаторе. Вычтите тепловые потери в двигателе, генераторе переменного тока и электролизере, и вы потеряете энергию, а не приобретете ее, и точка.
Но хватит о Genepax, который имеет отношение к моему основному тезису здесь, и к более распространенной теме в моей почте: HHO как средство увеличения экономии топлива обычных двигателей внутреннего сгорания.
Энтузиасты HHO — от гипермайлеров до обычных людей, отчаянно пытающихся сэкономить на заправке — предполагают, что водород изменяет способ сгорания бензина в камере сгорания, заставляя его сгорать более эффективно или быстрее. Хорошо, было несколько инженерных работ, в которых предполагалось, что следы водорода могут изменить характеристики сгорания в двигателях с расслоенным зарядом, работающих на сверхбедной смеси. Правильно управляемое обогащение H 2 , по-видимому, увеличивает скорость сгорания углеводородов в цилиндре, извлекая больше энергии. Тем не менее, эти исследования предполагают увеличение экономии топлива только на несколько процентных пунктов и не применимы, если только двигатель не работает слишком бедно для приличных выбросов. Это далеко от возмутительных заявлений о 300-процентном улучшении экономики, которые я вижу в Интернете и в своем почтовом ящике.
Нет никаких оснований полагать, что даже более скромные увеличения, заявленные в некоторых объявлениях, могут быть достигнуты с помощью обычного, управляемого компьютером автомобильного двигателя, работающего в режиме замкнутого цикла, то есть способности компьютера измерять выход кислорода из выхлоп двигателя в режиме реального времени и уменьшил соотношение топливо/воздух для больших миль на галлон и малых выбросов.