Электрический нагревательный элемент: Электрические нагревательные элементы (тэны)

Содержание

Электрические нагревательные элементы (тэны)

  • Каталог
  • Дополнительная комплектация
  • Электрические нагревательные элементы (тэны)

Электрические нагревательные элементы для водонагревателей

Масса3 кг
Напряжение380 В
Гарантия1 год

  • Стоимость
  • Описание
  • Сравнение
    моделей
  • Схемы
  • Документация
    для скачивания

СтоимостьОписаниеСравнение моделейСхемыДокументация для скачивания

Простой способ выбрать водонагреватель

Если у вас есть вопросы по выбору и расчёту водонагревателя, отправьте запрос на подбор и наши консультанты подберут подходящий водонагреватель. Также вы можете отправить письмо с вашим вопросом на адрес track DOT etrm AT gmail DOT com

Как производится расчёт

Консультант собирает всю необходимую информацию о вашем объекте (тип объекта, потребление воды, пиковые расходы, количество потребителей и т.д.), предлагает вам несколько вариантов с обоснованием расчёта, по запросу высылает техническую и иную документацию, коммерческое предложение.

Вы получаете бесплатно

  • Наш опыт в сфере подбора и производства водонагревателей для различных предприятий и объектов
  • Экономию времени на изучение вопроса, по запросу мы предоставим вам обоснование расчета водонагревателя
  • Разработку индивидуального изделия под конкретный объект (при необходимости), расчет его стоимости

Отправить заявку на подбор

Электрические водонагреватели

Нагрев воды при помощи электрических тэнов

500 л 1500 л 4000 л
600 л 2000 л 5000 л
750 л 2500 л 6500 л
1000 л 3000 л 8500 л

Комбинированные водонагреватели

Нагрев воды при помощи теплообменника и тэнов

500 л 1500 л 4000 л
600 л 2000 л 5000 л
750 л 2500 л 6500 л
1000 л 3000 л 8500 л

Водонагреватели косвенного нагрева

Нагрев воды при помощи теплообменника

500 л 1500 л 4000 л
600 л 2000 л 5000 л
750 л 2500 л 6500 л
1000 л 3000 л 8500 л

Теплоаккумуляторы

Буферные емкости для систем отопления

500 л 2000 л 5000 л
750 л 2500 л
1000 л 3000 л
1500 л 4000 л

Холодоаккумуляторы

Для систем кондиционирования

750 л 2500 л
1000 л 3000 л
1500 л 4000 л
2000 л 5000 л

Дополнительная комплектация

Для водонагревателей и теплоаккумуляторов

Шкафы управления Комплекты КИПиА
Тэны Термостаты
Арматура

Проектировщикам

3D-модели и чертежи
Полезные статьи
Вопросы и ответы

Почему выбирают нас

Электрические нагревательные элементы.

Виды и устройство

Известные большинству пользователей электрические нагревательные элементы относятся к категории устройств, преобразующих энергию тока в тепло. Эти изделия устанавливаются в большинство бытовых нагревательных приборов, а также в обогреватели, используемые на предприятиях общественного питания. Агрегаты, в которые встроены электрические ТЭНы или спирали из нихрома, очень часто применяются и в промышленных целях.

По своей конструкции и функциональным особенностям электрические нагревательные элементы подразделяются на изделия открытого типа или спирали и на закрытые ТЭНы. Первые отдают тепло окружающей среде (воздуху) за счет эффекта конвекции, вызванного тепловым излучением источника. Этот тип нагревателей монтируется на термостойких диэлектрических основаниях в специально обустраиваемых канавках или подвешивается на непроводящих ток кронштейнах. Исходным материалом для изготовления таких оснований чаще всего служит керамика.

Нагреватели закрытого типа изготавливаются в виде законченных и готовых к эксплуатации изделий (ТЭНов), применяемых для нагрева жидких сред.

Полностью герметичные электрические нагревательные элементы закрытого типа в свою очередь подразделяются на трубчатые и ребристые. Обе эти разновидности имеют одинаковое устройство с той лишь разницей, что у ребристых изделий или РЭНов рабочая поверхность значительно больше, чем у трубчатых.

При производстве РЭНов величина их тепловой отдачи задается путем изменения площади наружной поверхности нагревательного элемента. Количество ребер в них варьируется в зависимости от требуемой эффективности обогрева. Низкий показатель удельной мощности этих устройств позволяет применять их для нагрева жидких сред путем конвекции без опасности перегрева и перегорания рабочей спирали.

Устройство и принцип работы нагревателей
Электрические нагревательные элементы закрытого типа состоят из следующих основных частей:
  • Теплопроводящая трубчатая оболочка (электрически изолированный кожух).
  • Токопроводящая спираль из материалов с низким показателем электропроводности (нихром).
  • Проводники, подводящие к нагревателю сетевое электропитание 220 В.

Теплопроводящая оболочка изделия, как правило, делается из чистой меди или латуни. Иногда для ее изготовления используются сталь или алюминий с нанесенным поверх них защитным покрытием.

При производстве спиралей обычно используются сплавы никеля с хромом, в которые иногда добавляются железо с алюминием. Концы проволоки навиваются на контактные стержни из малоуглеродистой или нержавеющей стали. Чтобы исключить возможность попадания влаги во внутренние полости трубки – ее торцевые части тщательно герметизируются. К этой категории устройств относятся и известные всем кипятильники, широко применяемые в быту.

Принцип работы приборов закрытого типа (ТЭНов) предельно прост. При протекании тока по спирали, изготовленной из проводящего материала с высоким удельным сопротивлением, она раскаляется. За счет эффекта теплопередачи спиралеобразный проводник нагревает защитную оболочку устройства. Последняя при контакте с жидкостями передает ей энергию тепла, обеспечивая прогрев до нужной температуры.

Электрические нагреватели открытого типа обеспечивают обогрев воздушной среды за счет конвекции в близлежащие слои. При передаче тепла от одной воздушной прослойки к другой происходит постепенный нагрев всего окружающего пространства.

Области применения

Электрические нагревательные элементы, входящие в состав обогревателей открытого и закрытого типа, широко применяются в быту (в электропечах, в ТЭНах и в кипятильниках). Они устанавливаются в стиральных и посудомоечных машинах, а также в бойлерах различного типа и мощности (например, в проточных и накопительных агрегатах). Большим спросом пользуются эти приборы и на предприятиях общественного питания: в столовых, кафе и ресторанах.

На промышленных производствах устройства открытого типа востребованы при необходимости обогрева замкнутых воздушных пространств и при изготовлении специальных печей и тепловых пушек. Закрытые нагревательные элементы часто используются в бойлерах и в ТЭНах промышленного назначения. Специальные образцы электрических нагревателей применяются в жарочных шкафах, в электрических плитах и духовках, а также в кофеварках, чайниках и в отопительных приборах различной конструкции.

Преимущества и недостатки
К преимуществам нагревательных элементов, работающих за счет электрической энергии, относят:
  • Эффективность используемого оборудования (высокий КПД).
  • Возможность автоматизации процесса обогрева и регулировки температуры в широких пределах.
  • Экологическая чистота.
  • Устойчивость к вибрациям, к механическим воздействиям и климатическим факторам (к резким перепадам температур и колебаниям давления, в частности).
  • Простота обслуживания и ремонта.
  • Надежность и защищенность от случайного возгорания.

Существенный недостаток электрических нагревателей открытого типа – непосредственный контакт материала спиралей с окружающим воздухом и возможность его окисления.

Поскольку этот процесс происходит при высоких температурах – сроки эксплуатации таких приборов строго ограничены. Этим и объясняется то, что гораздо чаще на практике используются герметичные электронагреватели закрытого типа: ТЭНы или РЭНы. Минусом последних считаются проблемы с изготовлением нагревателей сложной конфигурации, что существенно сокращает ассортимент выпускаемых изделий и повышает их стоимость.

Какими показателями характеризуются электрические нагревательные элементы

Одна из важнейших характеристик закрытых ТЭНов – конфигурация трубчатого кожуха, выбираемая из множества вариантов. Она зависит от условий эксплуатации конкретного изделия и от объемов обогреваемой жидкости.

К другой характеристике этих элементов относят состав изолятора, заполняющего пространство между спиралью и корпусом трубки. Его функцию выполняют либо периклазовый порошок, засыпаемый в трубку при производстве изделия, либо кварцевый песок или шамот.

Все перечисленные изоляционные материалы отличаются следующими свойствами:
  • Большое удельное сопротивление и низкое влагопоглощение.
  • Высокий показатель теплопроводности.
  • Инертность (они не вступают в химические реакции с материалом спирали).
  • Механическая прочность.

Периклаз – это особый кристаллический порошок, получаемый путем расплава окиси магния с содержанием до 96%. Он получается в результате плавления увлажненной магнезии в электродуговых печах специальной конструкции.

В отличие от периклаза кварцевый песок – это практически чистая окись кремния (98-99%) с минимальным содержанием добавок. Шамот представляет собой огнеупорную глину, хорошо прокаленную и измельченную до порошкообразного состояния. К техническим показателям можно отнести и вид теплового оборудования, в котором используются нагревательные элементы.

Так, устройства типа «ТЭН» устанавливаются в следующие виды нагревательного оборудования:
  • Электрические котлы с промежуточным обогревом.
  • Проточные и накопительные водонагреватели.
  • Бытовые кипятильники.
  • Жарочные и пекарные шкафы, а также фритюрницы и подобные им агрегаты.

Электрические нагревательные элементы изготавливаются из материалов, которые выбираются в зависимости от температуры и химических свойств обогреваемой среды. От этих показателей зависят и такие характеристики, как диаметр трубки, удельная мощность прибора и сроки его эксплуатации. Один из основных параметров, характеризующих работу таких нагревательных элементов – удельная поверхностная мощность, измеряемая в ваттах на метр квадратный.

Изменять этот показатель можно двумя способами. Первый реализуется путем повышения скорости прогона воздуха через обогреватель, а второй – за счет изменения рабочей температуры ТЭНа, достигающей значений порядка 450-650°C. При таком показателе на наружной поверхности нагревательного элемента начинает проявляться эффект, называемый «лучистым теплообменом». За счет этого мощность обогрева резко возрастает. При оценке электрических показателей таких приборов следует отметить, что они рассчитаны на напряжение 220 В и питаются переменным током частотой 50 Герц.

Методика расчета спирали нагревателей

Расчет рабочих характеристик спирали нагревателей чаще всего производится с помощью таблиц токовых нагрузок. При желании получить более точные результаты прибегают к формулам, в основу которых заложен показатель удельной мощности (ее величина, приходящаяся на единицу площади). Соответственно определению этот параметр измеряется в ваттах на сантиметр квадратный. При проведении расчетов обязательно учитывается температура поверхности самого излучателя и скорость отведения тепла.

Электрические нагревательные элементы выпускаются в исполнениях, с удельными мощностями в диапазоне от 0,01 до 12,0 КВт. Максимально возможное значение зависит от следующих данных:
  • Диаметр трубчатой греющей части нагревателя (ТЭНа) и ее длина.
  • Материал защитной оболочки.
  • Среда, в которой предполагается эксплуатировать агрегат.
  • Номинальная величина удельной мощности.

Электрические нагревательные элементы способны обеспечить нужную тепловую отдачу лишь в том случае, если последний показатель будет соответствовать номинальному значению. Существенные отклонения от него приведут к нежелательным последствиям. При снижении этого показателя невозможно обеспечить требуемую теплоотдачу, а при его увеличении ТЭН может просто перегореть.

Похожие темы:
  • Силиконовые нагреватели. Виды и особенности. Применение
  • Миканитовые нагреватели. Особенности. Виды и применение
  • Элементы Пельтье. Работа и применение. Обратный эффект
  • Провод ПНСВ. Устройство и применение. Маркировка и параметры
  • Греющий кабель. Виды и устройство. Применение и установка. Работа

информационная статья компании Полимернагрев на сайте tvoy-nagrev.ru

Огонь был одним из самых ранних и величайших открытий человечества – примерно один или два миллиона лет назад. В наш современный век реактивных двигателей, космических ракет, стальных небоскребов и синтетических пластмасс дым и пламя могут показаться доисторическими. Но все четыре из этих изобретений – и десятки других – в той или иной степени полагаются на огонь.

Иногда на то, чтобы разжечь огонь, уходит много времени: например, угольные паровозы нужно разжечь за несколько часов до того, как они потянут поезда. В других случаях пожар вспыхивает тогда, когда вы меньше всего этого ожидаете, угрожая жизни, зданиям и всему, что вам дорого. Разве не было бы замечательно, если бы огонь можно было контролировать так же легко, как электричество, чтобы вы могли включать и выключать его в любой момент? Это основная идея нагревательных элементов. Они – «огонь» внутри таких вещей, как электрические обогреватели, душевые , тостеры , плиты, фены, сушилки для одежды, паяльники и всякая другая бытовая техника. Нагревательные элементы дают нам силу огня с удобством электричества. Давайте подробнее разберемся, что это такое и как они работают!

На фото: электрический нагреватель с открытой спиралью. При нагревании спираль начинает светиться красным.

Производство тепла из электричества

В школе мы узнаем, что одни материалы хорошо переносят электричество, другие – плохо. Хорошие носители электричества называются проводниками, а плохие носители – изоляторами. Проводники и изоляторы часто лучше описывать, говоря о том, какое сопротивление они оказывают, когда через них протекает электрический ток. Таким образом, проводники имеют низкое сопротивление (через них легко проходит электричество), в то время как изоляторы имеют гораздо более высокое сопротивление (это настоящая борьба за прохождение электричества). В электрической или электронной схеме мы можем использовать устройства, называемые резисторами, для контроля протекания тока; используя циферблат, чтобы увеличить сопротивление и снизить ток. В схеме громкоговорителя, например, это способ уменьшения громкости.


На фото: крупный план скрученной вольфрамовой нити в лампе накаливания, которая излучает свет, выделяя большое количество тепла. Количество света, излучаемого нитью накала, напрямую зависит от ее длины: чем длиннее нить, тем больше света она излучает. Вот почему он скручен: катушка помещает больше длины (и света) в то же пространство.

Резисторы работают путем преобразования электрической энергии в тепловую; другими словами, они нагреваются, когда через них проходит электричество. Но это делают не только резисторы. Даже тонкий кусок проволоки нагреется, если вы пропустите через него достаточное количество электричества. Это основная идея ламп накаливания (старомодных ламп в форме лампочек). Внутри стеклянной колбы находится очень тонкий моток проволоки, называемый нитью накала. Когда через него проходит достаточно электричества, он становится раскаленным добела, очень ярко – так что он действительно излучает свет, выделяя тепло. Около 95 процентов энергии, потребляемой такой лампой, превращается в тепло и полностью расходуется (при использовании энергосберегающей люминесцентной лампы намного более эффективен, потому что большая часть потребляемой лампой электроэнергии преобразуется в свет без потери тепла).

А теперь забудьте о свете – что, если бы нас действительно интересовало тепло? Внезапно мы обнаруживаем, что наша расточительная лампа накаливания на самом деле очень эффективна, потому что она преобразует 95 процентов энергии, которую мы в нее подаем, в тепло. Фантастика! Только вот проблема. Если вы когда-либо приближались к лампе накаливания, вы знаете, что она становится достаточно горячей, чтобы обжечь вас, если вы дотронетесь до нее (не поддавайтесь соблазну попробовать). Но если вы встанете даже на метр или около того, тепло от чего-то вроде 100-ваттной лампы будет слишком слабым, чтобы достичь вас.

Итак, что, если бы мы хотели создать электрический обогреватель по той же схеме, что и электрическую лампу? Нам понадобится что-то вроде увеличенной в масштабе нити накала лампы – может быть, в 20–30 раз мощнее, чтобы мы действительно могли чувствовать тепло. Нам понадобится довольно прочный материал (тот, который не плавится и прослужит долгое время при многократном нагревании и охлаждении), и он нам понадобится, чтобы выделять много тепла при разумной температуре. Здесь мы говорим о сути нагревательного элемента: прочного электрического компонента, предназначенного для отвода тепла, когда через него протекает большой электрический ток.

Что такое нагревательный элемент?


На фото: нагревательный элемент, скрытый внутри керамической варочной панели. Это один непрерывный элемент, начинающийся с синей точки и изгибающийся в форме лабиринта, пока не достигнет красной точки. Нет никакого смысла в том, чтобы этот элемент имел другую форму или размер: он должен концентрировать тепло именно под сковородой – и это наиболее эффективный способ добиться этого.

Типичный нагревательный элемент обычно представляет собой катушку,  ленту (прямую или гофрированную) или полоску проволоки, которая излучает тепло, как нить накала лампы. Когда через него протекает электрический ток, он накаляется докрасна и преобразует проходящую через него электрическую энергию в тепло, которое излучается во всех направлениях.

Нагревательные элементы обычно изготавливаются на основе никеля или железа. Сплавы на основе никеля обычно представляют собой нихром, сплав, состоящий примерно из 80 процентов никеля и 20 процентов хрома (доступны другие составы нихрома, но смесь 80–20 является наиболее предпочтительной). Нихром является наиболее популярным материалом для нагревательных элементов по разным причинам:

  • он имеет высокую температуру плавления (около 1400 ° C),

  • не окисляется (даже при высоких температурах),

  • не слишком расширяется при нагревании,

  • имеет разумное (не слишком низкое, не слишком высокое и достаточно постоянное) сопротивление (оно увеличивается только примерно на 10 процентов между комнатной температурой и максимальной рабочей температурой).

Сплав на основе железа называется фехраль. Это железо-хромо-алюминиевый сплав с незначительным включением никеля (примерно 0,6%). Он также часто используется в нагревательных элементах, потому как имеет ряд преимуществ перед нихромом:

  • Низкая стоимость (в несколько раз ниже, чем у нихрома)

  • Высокая температура плавления (около 1500° C)

  • Высокая жаростойкость

Однако у фехрали есть и недостатки:

 

Типы нагревательных элементов

Есть много разных видов нагревательных элементов. Иногда спирали из нихрома или фехрали используется как таковой; в других случаях спирали встроены в керамический материал, чтобы сделать его более прочным и долговечным (керамика отлично справляется с высокими температурами и не боится большого нагрева и охлаждения), или изолированы в миканите и помещены в металлический корпус (к примеру, кольцевые и плоские нагреватели для экструдеров).

Размер и форма нагревательного элемента в значительной степени определяется размерами прибора, внутри которого он должен помещаться, и площадью, на которой он должен производить тепло. Щипцы для завивки волос имеют короткие спиральные элементы, потому что они должны выделять тепло через тонкую трубку, вокруг которой можно обернуть волосы. Электрические радиаторы имеют длинные стержневые элементы, потому что они должны рассеивать тепло через большую площадь комнаты. Электрические плиты имеют спиральные нагревательные элементы, подходящие по размеру для нагрева кастрюль и сковородок (часто элементы плиты покрыты металлическими, стеклянными или керамическими пластинами, чтобы их было легче чистить). Нагреватели нефтепродуктов для больших емкостей или цистерн представляют собой огромные металлические трубы с керамическими нагревательными элементами, потому что они должны производить мягкий нагрев на большой площади соприкосновения с легко воспламеняемыми жидкостями.


На фото: два вида нагревательных элементов. 1) Светящиеся нихромовые ленты внутри инфракрасного кварцевого нагревателя для сушки. 2) Вы можете четко видеть спиральный электрический ТЭН внизу чайника. Он никогда не накаляется докрасна так же, как провода ик обогревателя, потому что обычно он недостаточно нагревается. Однако, если вы достаточно глупы, чтобы включить чайник без воды внутри (как я однажды случайно сделал), вы обнаружите, что элемент чайника вполне может раскалиться докрасна. Этот опасный и катастрофический эпизод навсегда повредил мой чайник и мог поджечь мою кухню.

В некоторых приборах нагревательные элементы хорошо видны: в электрическом тостере легко заметить ленты из нихрома, встроенные в стенки тостера, потому что они раскалены докрасна. Электрические радиаторы выделяют тепло с помощью светящихся красных полос (по сути, просто спиральные, проволочные нагревательные элементы, которые выделяют тепло за счет излучения), в то время как электрические конвекторные нагреватели обычно имеют концентрические круглые нагревательные элементы, расположенные перед электрическими вентиляторами (поэтому они быстрее переносят тепло за счет конвекции).

У некоторых приборов есть видимые элементы, которые работают при более низких температурах и не светятся; электрические чайники, которым никогда не нужно работать выше точки кипения воды (100 ° C), являются хорошим примером. В других приборах нагревательные элементы полностью скрыты, как правило, из соображений безопасности. Электрический душ и щипцы для завивки волос имеют скрытые элементы, поэтому (надеюсь) нет риска поражения электрическим током.

Проектирование нагревательных элементов

Все это делает нагревательные элементы очень простыми и понятными, но на самом деле существует множество различных факторов, которые инженеры-электрики должны учитывать при их проектировании. В своей превосходной книге по этому вопросу Тор Хегбом перечисляет примерно 20–30 различных факторов, которые влияют на работу типичного нагревательного элемента, включая такие очевидные вещи, как напряжение и ток, длина и диаметр элемента, тип материала и рабочая температура. Есть также определенные факторы, которые необходимо учитывать для каждого типа элемента. Например, для витого элемента из круглой проволоки диаметр проволоки и форма витков (диаметр, длина, шаг, растяжение и т. д.) являются одними из факторов, которые критически влияют на производительность. С элементом ленты толщина и ширина ленты.

И это только часть истории, потому что нагревательный элемент не работает изолированно: вы должны учитывать, как он впишется в более крупный прибор и как он будет вести себя во время использования (когда он используется или неправильно используется по-разному) . Как, например, ваш элемент будет поддерживаться внутри устройства изоляторами? Насколько большими и толстыми они должны быть, и повлияет ли это на размер производимого вами прибора? Например, подумайте о различных типах нагревательных элементов, которые вам понадобятся в паяльнике, размере ручки и большом нагревателе конвектора. Если у вас есть элемент, «задрапированный» между опорными изоляторами, что произойдет с нагревательным элементом при сильном нагреве? Не будет ли он слишком сильно провисать, и это вызовет проблемы? Вам нужно больше изоляторов, чтобы это не произошло, или вам нужно изменить материал или элемент? размеры?

Если вы разрабатываете что-то вроде электрического камина с несколькими близко расположенными нагревательными элементами, что произойдет, когда они будут использоваться по отдельности или в комбинации? Если вы разрабатываете нагревательный элемент, через который проходит воздух (например, конвекторный обогреватель или фен), сможете ли вы создать достаточный поток воздуха, чтобы остановить его перегрев и значительно увеличить срок его службы? Все эти факторы должны быть сбалансированы, чтобы сделать продукт эффективным, экономичным, долговечным и безопасным.

Нужно ли нагревательному элементу высокое или низкое сопротивление?

Вы можете подумать, что нагревательный элемент должен иметь действительно высокое сопротивление – в конце концов, именно сопротивление позволяет материалу выделять тепло. Но на самом деле это не так. Тепло генерирует ток, протекающий через элемент, а не сопротивление, которое он испытывает. Получение максимального тока, протекающего через нагревательный элемент, намного важнее, чем проталкивание этого тока через большое сопротивление. Это может показаться запутанным и нелогичным, но довольно легко понять, почему это (и должно быть) истина, как интуитивно, так и математически.

Интуитивно …

Предположим, вы сделали сопротивление вашего нагревательного элемента настолько большим, насколько это возможно – фактически бесконечно большим. Тогда закон Ома (напряжение = ток ∙ сопротивление или V = I ∙ R) говорит нам, что ток, протекающий через ваш элемент, должен быть бесконечно малым (если I = V / R, I приближается к нулю, когда R приближается к бесконечности). У вас будет колоссальное сопротивление, отсутствие тока и, следовательно, отсутствие тепла. Итак, что, если мы впадем в противоположную крайность и сделаем сопротивление бесконечно маленьким. Тогда у нас была бы другая проблема. Хотя ток I может быть огромным, R будет практически равным нулю, поэтому ток будет проходить через элемент, как скоростной поезд, даже не останавливаясь, не производя тепла вообще.

Поэтому в нагревательном элементе нам нужен баланс между двумя крайностями: сопротивление, достаточное для выработки тепла, но не такое, чтобы оно слишком сильно уменьшало ток. Нихром и фехраль – отличный выбор. Сопротивление нихромовой проволоки (примерно) в 100 раз выше, чем у проволоки того же диаметра, сделанной из меди (отличный проводник), но только на четверть меньше, чем у графитового стержня аналогичного размера (довольно хороший изолятор) и может быть, только в миллионную триллионную часть меньше действительно хорошего изолятора, такого как стекло. Цифры говорят сами за себя: нихром – это средний проводник с умеренным сопротивлением, и никак не изолятор!

Математически.

..

Мы можем прийти к точно такому же выводу с помощью математики. Мощность, производимая или потребляемая потоком электричества, равна напряжению, умноженному на ток (ватты = вольт∙ ампер или P = V ∙ I). Мы также знаем из закона Ома, что V = IR. Исключите V из этих уравнений, и мы обнаружим, что мощность, рассеиваемая в нашем элементе, равна I2 R. Другими словами, тепло пропорционально сопротивлению, но также пропорционально квадрату тока. Таким образом, ток оказывает гораздо большее влияние на выделяемое тепло, чем сопротивление. Удвойте сопротивление, и вы удвоите мощность (отлично!), Но удвоите ток, и вы увеличите мощность в четыре раза (фантастически!). Так что ток – вот что действительно важно.

Несложно подсчитать, что сопротивление нити накаливания типичной лампы накаливания составляет несколько сотен Ом.

Нагреватели сопротивления?

Мы часто называем электрический нагрев – то, что делают нагревательные элементы – «джоулевым нагревом» или «резистивным нагревом», как будто сопротивление является единственным фактором, который имеет значение. Но на самом деле, как я объяснил выше, существует множество взаимосвязанных факторов, которые следует учитывать при разработке нагревательного элемента, который эффективно работает в конкретном приборе. Сопротивление не всегда является тем, что вы контролируете и определяете: оно часто определяется для вас вашим выбором материала, размерами нагревательного элемента и т. д.

Металлические нагревательные элементы — Kanthal®

Информация

Типы элементов

Мы можем изготовить металлические нагревательные элементы по любым спецификациям и в короткие сроки. Примеры типов элементов:

  • Спиральные элементы (т. е. спиральные элементы и элементы с кромками)
  • ROB – Элементы меандра
  • Картриджные элементы (т.е. элементы пучковых стержней и клеточные элементы)
  • Tubothal ® нагревательный элемент

Характеристики

Сплавы металлических нагревательных элементов

Сплавы Kanthal ® и Alkrothal ® FeCrAl характеризуются высоким удельным сопротивлением и способностью выдерживать высокие поверхностные нагрузки. Их можно использовать при максимальной температуре элемента 1425°C (2600°F).

Сплавы на основе NiCr характеризуются очень хорошими механическими свойствами в горячем состоянии, а также хорошими свойствами окисления и коррозии. Они подходят для температур элементов до 1250°C (2282°F).

Использование FeCrAl-сплавов Kanthal ® вместо NiCr-сплавов приводит к снижению веса и увеличению срока службы элементов, что приводит к значительной экономии средств. Сравните вес и стоимость сплавов Kanthal ® FeCrAl со сплавами NiCr

Марка Максимальная непрерывная рабочая температура Удельное сопротивление при 20ºC Ом мм 2 м -1 / 68ºF Ом/см
FeCrAl сплавы
Кантал ® АПМ 1425ºC (2600ºF) 1,45/872
Кантал ® A-1 1400ºC (2550ºF) 1,45/872
Кантал ® AF 1300ºC (2370ºF) 1,39/836
Кантал ® D 1300ºC (2370ºF) 1,35/812
Алкротал ® 1100ºC (2010ºF) 1,25/744
Никель-хромовые сплавы
Никротал ® 80 1200ºC (2190ºF) 1,09/255
Никротал ® 70 1250ºC (2280ºF) 1,18/709
Никротал ® 60 1150ºC (2100ºF) 1. 11/668
Никротал ® 40 1100ºC (2010ºF) 1,04/626

Перейти к описаниям материалов для сплавов Kanthal ® и Nikrothal ® в форме проволоки, ленты (плоской проволоки) и полосы

Загрузки

Сплавы и системы нагрева сопротивления для промышленных печей.pdf (PDF-документ, 1,9 МБ)

Связанные продукты

Другие продукты, которые могут вас заинтересовать

Нагревательные элементы Globar® SiC

Нагревательные элементы из карбида кремния (SiC) для температуры элемента до 1625°C (2927°F).

См. сведения о продукте

Кантал® Супер

Нагревательные элементы из дисилицида молибдена (MoSi 2 ) для температур элементов до 1850°C (3360°F).

См. сведения о продукте

Нагревательный элемент Tubothal®

Металлические нагревательные элементы картриджного типа, рассчитанные на долгий срок службы и бесперебойную работу. Элементы Tubothal ® можно использовать внутри всех типов радиационных труб или как отдельные элементы.

См. сведения о продукте

Примеры из практики

Удовлетворение растущей мировой потребности в литий-ионных батареях

Мировое производство литий-ионных аккумуляторов, которое уже быстро росло в последнее десятилетие, должно значительно вырасти в следующем десятилетии. Это скажется на спросе на высококачественный катодный материал.

Читать далее

Повышение производительности в термической промышленности

Grupo T. T.T., расположенная в районе Бильбао в Испании, представляет собой группу компаний, специализирующихся на термообработке и обработке поверхности металлов.

Читать далее

Надежность в установке термообработки

Компания Hughes Christensen признана во всем мире как один из ведущих мировых производителей буровых долот. Завод в Белфасте, Северная Ирландия, специализируется на производстве и разработке шарошечных долот.

Читать далее

Точность температуры на авиационном литейном заводе

Французская компания Snecma Moteurs является частью группы аэрокосмических двигателей и оборудования Snecma, которая специализируется, среди прочего, на производстве двигателей для гражданских и военных самолетов, ракетных двигателей, турбин и авиационного оборудования, такого как шасси, тормозные системы. , реверсивные подруливающие устройства, компоненты двигателей и многое другое.

Читать далее

Минимальное обслуживание плавильных и раздаточных печей

STG, Svensk Компания Tryckgjutning AB, расположенная на юге Швеции, специализируется на литье под давлением изделий из алюминия и цинка для клиентов из автомобильной, электронной, машиностроительной, транспортной и строительной отраслей.

Читать далее

Необслуживаемая система в печном производстве

Науглероживание обычно происходит при 930°C (1700°F), но в этом случае японская компания Dowa Mining Co. увеличила температуру до 1050°C (1920°F) и производительность печи примерно на 30 % с помощью Система Tubothal®. Первая коммерческая высокотемпературная печь непрерывного науглероживания стала реальностью, и она существует.

Читать далее

Послать сообщение

Нагревательные элементы Kanthal Super — Kanthal®

Информация

Семь марок для различных применений

Программа Kanthal ® из MoSi 2 нагревательных элементов включает семь марок со специфическими характеристиками для использования в сложных условиях и средах, включая азот , водород, вакуум и смеси эндогаза и восстановительной атмосферы.
Подробнее о различных марках нагревательных элементов Kanthal ® Super MoSi2

Характеристики

Специальная конструкция

Kanthal® Super долгое время был предпочтительным выбором для строителей и операторов печей, заботящихся о качестве. Гибкая конструкция, широкий выбор сортов, низкое энергопотребление, долгий срок службы и превосходное техническое обслуживание позволили создать лидирующую на рынке марку, предлагающую максимальную производительность и быструю окупаемость инвестиций пользователям
Kanthal® Super по всему миру.

В дополнение к элементам MoSi 2 стандартных форм и размеров мы предлагаем специальные элементы MoSi 2 элементы в соответствии с потребностями заказчика, что позволяет оптимизировать конструкцию элемента для каждого конкретного применения.

Программа Kanthal ® также включает аксессуары для элементов.

Загрузки

Kanthal® Super Handbook_B_ENG_.pdf (документ в формате PDF, 7,9 МБ)

Электрические нагревательные элементы Kanthal Super (брошюра)

Защитные трубки для термопар.pdf (документ в формате PDF, 700 кБ)

Связанные продукты

Другие продукты, которые могут вас заинтересовать

Элементные марки Kanthal® Super

Программа супернагревательных элементов Kanthal ® включает семь марок со специфическими характеристиками для использования в сложных условиях и средах.

См. сведения о продукте

Металлические нагревательные элементы

Металлические нагревательные элементы для температуры элемента до 1425°C (2600°F).

См. сведения о продукте

Нагревательные элементы Globar® SiC

Нагревательные элементы из карбида кремния (SiC) для температуры элемента до 1625°C (2927°F).

См. сведения о продукте

Примеры из практики

Точная температура обеспечивает высокое качество продукции

Даже после более чем 25 лет эксплуатации шахтная печь Kanthal остается чистой, тихой и обеспечивает превосходную точность температуры благодаря использованию электрического нагрева.

Читать далее

Невероятная мощность нагрева в печи с шагающими балками

На проволочном стане горячей прокатки в Гальстахаммаре, Швеция, электрическая печь с шагающими балками Kanthal обеспечивает чистый, эффективный и надежный нагрев.

Читать далее

Высокая гибкость и производительность в печах для декорирования

Gmundener Keramik, известная австрийская компания, является крупным производителем фарфора, сувениров и посуды. Большая часть ее продукции экспортируется.

Читать далее

Непрерывная закалка в атмосфере печи

Badia S.A. (Tratamientos Badia, S.a.) была основана в 1964 году как независимая компания по термообработке в пригороде Барселоны, Испания. В настоящее время компания эксплуатирует ряд различных печей, таких как печи с вращающимся подом, вращающиеся печи непрерывного действия, вибростенды непрерывного действия, печи с закрытой закалкой, шахтные печи и индукционные печи, все электрические. Печи оснащены металлическими нагревательными элементами Kanthal®, элементами Tubothal® в излучающих трубках Kanthal® apM и нагревательными элементами из дисилицида молибдена Kanthal® Super (MoSi2).

Читать далее

Повышение качества и улучшение экономических показателей в стекольной промышленности

Kosta-Boda известна во всем мире художественным совершенством и техническим качеством своего хрусталя и изделий из хрусталя. Коста-Бода ведет свою историю с 18 века. Питатель с электрическим нагревом и нагревательными элементами из дисилицида молибдена Kanthal® Super (MoSi2) играет свою роль в поддержании превосходного качества продукции Boda

Читать далее

Послать сообщение

Нагревательные элементы Globar® — Kanthal®

Информация

Информация о геометрии

  • Диаметры от 10 мм до 55 мм
  • Горячие зоны до 4,2 м
  • Общая длина от 100 мм до 6 м

Стандартные марки

Марка Описание
Глобар ® SD Элементы, подходящие для большинства применений, в которых используются элементы из карбида кремния. Нагревательные элементы Globar ® SD SiC имеют горячие зоны из рекристаллизованного карбида кремния, оптимизированного для устойчивости к окислению и обычным технологическим газам. Доступны в стержневой или многоножевой конструкции.
Глобар ® КАК Плотный рекристаллизованный материал SiC с пористостью примерно 20 %, высоким модулем Вейбулла, намного прочнее, чем SD и продукты наших конкурентов, и особенно подходит для циклических применений, больших пролетов или подверженных сильной механической вибрации.
Глобар ® HD Нагревательные элементы из карбида кремния предназначены для самых сложных применений, где обычные элементы из карбида кремния не подходят. Нагревательные элементы Globar ® HD SiC имеют горячие зоны из карбида кремния с высокой плотностью, низкой проницаемостью, химически связанного карбида кремния, который обладает высокой устойчивостью к окислению и химическому воздействию технологических летучих веществ и реактивных атмосфер. Доступны в стержневой или многоножевой конструкции.
Globar ® SG и SR Трубчатые спиралевидные элементы SiC из материала Globar ® HD.

Характеристики

Конфигурация элемента


Тип B: ориентация обогрева крыши/крышки; ограниченное пространство

Тип U: Вертикальная или горизонтальная ориентация; удобные соединения

Тип W: Флоат-стекло, стандартное; 3-фазный элемент

Тип SG: Спиральный HZ, длительный срок службы; агрессивные среды

Тип SR: Спираль HZ, долгий срок службы; применение при высоких температурах

применение

Лабораторная печь

Читать далее

Отжиговые печи

Читать далее

Агломерационные печи

Читать далее

Плавильные, дозирующие и раздаточные печи

Читать далее

Производство литий-ионных аккумуляторов

Читать далее

Сжигание отходов

Читать далее

Загрузки

Связанные продукты

Другие продукты, которые могут вас заинтересовать

Диапазон точности Globar®

Продукция Kanthal ® Precision Range разработана для конкретных применений или сегментов и обеспечивает дополнительную ценность для наших клиентов.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *