Гидравлический разделитель схема: Гидравлическая стрелка для систем отопления схема

Содержание

Калькулятор расчета гидрострелки с учетом мощности котла

Ссылка на статью успешно отправлена!

Отправим материал вам на e-mail

Для отопительной системы с различными контурами требуется специальный элемент, который бы поддерживал баланс в системе, а также подходящий температурный режим. Данная сложная проблема решается быстро и просто с помощью специального гидравлического усилителя, который часто именуют гидрострелкой. Подобные устройства продаются в специальных магазинах. Его можно сделать и самостоятельно, но для этого должен быть опыт в сварочных работах. В этом случае важно понимать и знать основные параметры подобной конструкции. Для этого и требуется калькулятор для вычислений гидрострелки с учетом мощности котла. Ниже приводятся специальные разъяснения по поводу работы с программой.

Использование гидрострелки

Содержание статьи

Калькулятор расчета гидрострелки с учетом мощности котла

Что следует знать?

Гидрострелка является дополнительным узлом, которая располагается в вертикальном положении. Она выполняется в виде цилиндра, но может иметь и сечение в виде прямоугольника. В это устройство врезаются патрубки, которые подходят к котлу, а также к теплообменным контурам. В этом приборе осуществляется деление небольшого контура, а также протяженных отопительных контуров. Часто используются традиционные схемы гидравлических разделителей.

Схема устройства

Подобное устройство поддерживает температурный и гидравлический баланс. С его помощью можно добиться небольших потерь давления, а также тепловой энергии и производительности. Конструкция позволяет увеличить КПД отопительной системы и снизить сопротивление в системе.

К важным характеристикам стоит отнести показатели диаметров патрубков и основного устройства. Остальные параметры можно узнать из стандартных схем.

Вмонтированный гидроулавливатель

У программы есть некоторые нюансы:

  • при расчетах обязательно используется мощность отопительного оборудования. Чтобы определить данный показатель также можно воспользоваться специальной расчетной программой;
  • важной характеристикой является скорость передвижения теплоносителя в направлении вертикали. Чем этот показатель меньше, тем лучше теплоноситель будет избавляться от газов и шлама. Также в этом случае будет происходить более плавное перемешивание охлажденного и горячего потоков. Самый оптимальный вариант 0,1-0,2 м/с. В программе можно подобрать необходимый параметр;
  • особенной характеристикой является режим работы всей конструкции. При этом учитываются температурные уровни в магистрали, проходящей от отопительного прибора. Все показатели вносятся в калькулятор.

Специальная формула расчета предусмотрена в применяемом алгоритме проведения расчетов. В итоге будет показан результат, который покажет подходящий диаметр для гидрострелки, а также сечения используемых патрубков. Остальные параметры линейного типа определить еще проще.

Прежде чем приступить к монтажу подобного устройства, стоит изучить все функции гидрострелки.

Статья по теме:

Экономьте время: отборные статьи каждую неделю по почте

Гидрострелка. Принцип работы, назначение и расчеты.

Чтобы понять, как работает гидрострелка, мы затронем гидравлику и теплотехнику. С помощью гидравлики мы поймем, как движется вода в гидрострелке. А с помощью теплотехники, мы поймем, как проходит и распределяется нагретая вода.
Я как гидравлик, предлагаю рассматривать любую систему отопления через много связующие трубки способные пропускать определенный расход воды внутри себя. Например, в этой трубе - идет такой-то расход в другой трубе - другой расход. Или в этом кольце (контуре) - идет один расход в другом кольце - производится другой расход.

Напутствие будущим специалистам
Для того, чтобы правильно считать систему отопления, необходимо систему отопления рассматривать как систему из труб образующие кольца в которой происходит, какой-либо расход. По расходу можно будет вычислять диаметр трубопровода, а также расход нам дает точный перевод, сколько требуется передать тепла по трубе теплоносителем. Также понадобиться понимать разницу напоров на подающем и обратном трубопроводе. Об этом как-нибудь в других статьях напишу, по качественному расчету схем систем отопления.
О формах гидрострелки:

В разрезе:

Как видите ничего сложного внутри. Существуют, конечно, всякие модификации еще и с фильтрами. Может в будущем какой-нибудь дядя Ваня и придумает более сложные структуру, а пока будем изучать такие гидрострелки. По принципу работы круглые гидрострелки от профильной гидрострелки практически не отличаются. Прямоугольная (профильная) гидрострелка, больше красивая, чем лучше работающая. С точки зрения гидравлики, лучше круглая гидрострелка. А профильная гидрострелка скорее уменьшает расположение в пространстве и увеличивает емкость гидрострелки. Но все это не влияет на параметры гидрострелок.
Гидрострелка - служит для гидравлического разделения потоков. То есть гидравлический разделитель является неким каналом между контурами и делает контура динамически независимыми при передачи движения теплоностителя. Но при этом хорошо передает тепло от одного контура другому. Поэтому официальное название гидрострелки: Гидравлический разделитель.


Назначение гидрострелки для систем отопления:

Первое назначение. Получить при малом расходе теплоносителя - большой расход во втором искусственно-созданном контуре. То есть, например, у Вас имеется котел с расходом 40 литров в минуту, а система отопления получилась в два-три раза больше по расходу - это к примеру, расход = 120 литров в минуту. Первым контуром будет являться контур котла, а вторым контуром будет - система развязки отопления. Экономически не целесообразно разгонять контур котла - до расхода больше чем это было предусмотрено производителем котла. Иначе увеличится гидравлическое сопротивление, которое либо не даст необходимый расход, либо увеличит нагрузку на движение жидкости, что приведет - к дополнительным расходом насоса на электроэнергию.

Второе назначение. Исключить гидродинамическое влияние, на включение и отключение определенных контуров систем отопления на общий гидродинамический баланс всей системы отопления. Например, если у Вас имеются теплые полы, радиаторное отопление и контур горячего водоснабжения (бойлер косвенного нагрева), то имеет смысл разделить эти потоки на отдельные контура. Чтобы они друг на друга не влияли. Схемы рассмотрим ниже.
Гидрострелка является связующим звеном двух отдельных контуров по передаче тепла и полностью исключает динамическое влияние двух контуров между собой.
Нет динамического или гидродинамического влияния в гидрострелке между контурами - это когда - движение (скорость и расход) теплоносителя в гидрострелке не передается от одного контура к другому. Имеется ввиду: Влияние толкательной силы движущегося теплоносителя не передается от контура к контуру.
Смотри изображение простого примера. Далее будут схемы сложнее.

Насос Н1 создает расход в первом контуре равный Q1. Наос Н2 создает расход во втором контуре равный Q2.
Принцип работы
Насос Н1 создает циркуляцию теплоносителя через гидрострелку по первому контуру. Насос Н2 создает циркуляцию теплоносителя через гидрострелку по второму контуру. Тем самым происходит перемешивание теплоносителя в гидрострелке. Но если расход Q1=Q2, то происходит взаимное проникновение теплоносителя из контура в контур, тем самым как бы создавая один общий контур. В этом случае вертикальное движение в гидрострелке не происходит или это движение стремится к нулю. В случаях, когда Q1>Q2, движение теплоносителя в гидрострелке происходит сверху в низ. В случаях, когда Q1 При расчете гидрострелки, очень важно получить очень медленное вертикальное движение в гидрострелке. Экономический фактор указывает на скорость не более 0,1 метр в секунду, для первых двух причин (смотри ниже).
Почему нужная маленькая вертикальная скорость в гидрострелке?
Первая, основная причина маленькой скорости - это дать возможность осесть (упасть вниз) плавающему мусору (крошки песка, шлама) в системе отопления. То есть со временем некоторые крошки постепенно оседают в гидрострелке. Гидрострелка еще может служить как накопителем шлама в системе отопления.

Вторая причина - это возможность создать естественную конвекции теплоносителя в гидрострелке. То есть дать возможность холодному теплоносителю уходить вниз, а горячему устремляться вверх. Это нужно для того, чтобы использовать гидрострелку как возможность получения из температурного градиента гидрострелки, необходимый температурный напор. Например, для теплого пола можно получить второстепенный контур отопления с пониженной температурой теплоносителя. Также для бойлера косвенного нагрева можно получить более высокую температуру, которая способна будет перехватить максимальный температурный напор, чтобы быстрее нагреть воду для горячего потребления.
Третья причина - это уменьшить гидравлическое сопротивление в гидрострелке. Оно в принципе и так уменьшено, почти до нуля, но если опустить две первые причины, можно сделать гидрострелку как смесительный узел. То есть уменьшить диаметр гидрострелки и увеличить вертикальную скорость гидрострелки, сделать более - повышенную. Этот метод позволяет сэкономить на материалах и может быть использован в тех случаях, когда не нужен температурный градиент и получить всего один контур отопления. Данный метод существенно экономит средства на материалах. Ниже представлю схему.
Четвертая причина - это выделить из теплоносителя микроскопические пузырьки воздуха и выпустить их через автовоздушник.
В каких случаях становятся нужна гидрострелка?
Опишу приблизительно, для чайников. Обычно, гидрострелка стоит в доме, площадь которого превышает 200 квадратных метров. Там где имеется сложная система отопления. Имеется в виду, что распределение теплоносителя делится на множество контуров отопления. Данные контура, которых следует делать динамически независимыми от общей системы отопления. Система отопления с гидрострелкой становится идиально стабильной системой отопления, в которой тепло распространяется по дому в точных выверенных пропорциях. В-которых отклонение пропорций в передаче тепла - исключено!
Может ли гидрострелка стоять под углом 90 градусов к горизонту?
Если по-простому, то - может! Ведь правильно заданный вопрос половина ответа! Если Вы опускаете две первых причины (описанных выше), то смело можно вращать ее как хотите. Если необходимо накопить шлам(грязь) и выпускать воздух в автоматическом режиме, то необходимо ставить как положено. А также если необходимо разделить контура по температурным показателям.
Расчет гидрострелки
В интернете гуляет очень раскрученный расчет по расчету гидрострелок, но не объясняется принцип каждой переменной цифры. Откуда взялась эта формула? Нет доказательств данной формулы! Мне как математику происхождение формулы очень волнует...

В особенности самый простой метод это:
Метод трех диаметров и метод чередующихся патрубков

Я Вам расскажу, чем отличаются эти два вида гидрострелок, и который лучше. И стоит ли прибегать к какому-либо варианту или все равно. Об этом ниже.
И так разбираем по кусочкам эту формулу:

Цифра (1000) - это перевод количество метров в миллиметры. 1 метр = 1000 мм.
[ 3 • d ] - это экономический показатель найденный опытным путем. (Этот показатель для чайников, кому лень считать). Ниже предоставлю расчет по всем диаметрам.

Для того, чтобы вычислить диаметр гидрострелки, необходимо знать:

Для примера возьмем это изображение:

Расходом первого контура будет являться максимальный расход выдаваемый насосом Н1. Примем за 40 литров в минуту.

Расходом второго контура будет являться максимальный расход выдавемый насосом Н2. Примем за 120 литров в минуту.
Максимально-возможная вертикальная скорость теплоносителя в гидрострелке, будет являться скорость 0,1 м/с.
Для вычисления диаметра вспомним эти формулы:

Отсюда формула диаметра:

Чтобы соблюсти скорость в гидрострелке просто вставляем в формулу V = 0,1 м/с
Что касается расхода в гидрострелке, он равен:
Q = Q1-Q2 = 40-120 = -80 литр/мин.
Избавляемся от минуса! Он нам не нужен. И того Q=80л/мин.
Переводим: 80 л/мин = 0,001333 м3/сек.

Ну как Вам расчет? Мы нашли диаметр гидрострелки, ни прибегая к температурным и тепловым значениям, нам даже не нужно знать мощность котла и температурные перепады! Достаточно знать только расходы контуров.
А теперь попытаемся понять, как пришли к расчетам такой формулы:

Рассмотрим формулу нахождения мощности котла:


Данные расчеты по этой формуле производились здесь: Расчеты теплопотерь водяного контура.

Вставляя в формулу получаем:

ΔT и С по правилам математики сокращаются или взаимно уничтожаются, так как делятся друг на друга (ΔT/ ΔT, С/ С). Остается Q - расход.

Можно не указывать коэффициент 1000 - это перевод метра в миллиметры.
В итоге мы пришли к этой формуле [ V=W ]:

Также на некоторых сайтах гуляет такая формула:

[ 3 • d ] - это экономический показатель найденный опытным путем. (Этот показатель для чайников, кому лень считать). Ниже предоставлю расчет по всем диаметрам.
Цифра (3600) - это перевод скорости (м/с) количества секунд в часы. 1 час = 3600 секунд. Так как расход указан в (м3/час).
Теперь рассмотрим, как нашли цифру 18,8

Объем гидрострелки?
Влияет ли объем гидрострелки на качество работы системы отопления?
- Конечно, влияет и чем оно больше, тем лучше. Но для чего лучше?
- Для того, чтобы уровнять температурные скачки для системы отопления!
Эффективным объемом для уравнивания температурных скачков будет объем равный 100-300 литров. В особенности в той системе отопления, где имеется твердотопливный котел. Твердотопливный котел, к сожалению, может выдавать очень не приятные температурные скачки для системы отопления.

Если нет, то смотри изображение:
Емкостной гидравлический разделитель - это гидрострелка ввиде бочки.

Такая бочка служит неким накопителем тепла. И создает плавное изменение температуры во втором контуре. Защищает систему отопления от твердотопливного котла, который способен резко повышать температуру до критического уровня.

Подробнее о местах соединения.

Расстояния от дна бочки до трубопровода К2 = a = g - является запасом для скопления шлама. Должно быть равно примерно 10-20 см. (Чтобы хватило лет на 10, так как чистка там обычно не делается, место для шлама - много).
Размер d - необходим для скопления воздуха (5-10 см) в случаях не предвиденного скопления воздуха и неровности потолка бочки. Обязательно поставьте автоматический воздухоотводчик на верхнюю точку бочки.
(В динамике) Чем выше трубопровод К3 тем, быстрее поступает высокая температура, проходящая во второй контур (в динамике). Если опустить трубопровод К3, то высокая температура начнет попадать тогда, когда полностью нагреется теплоноситель заполняющий пространство по высоте d (Между потолком и трубопроводом К3). Поэтому чем ниже трубопровод К3, тем более инерционной получается система отопления в температурных скачках.
Расстояние от трубопровода К3 и К4 = f - будет являться температурным градиентом, поэтому можно смело подбирать необходимый потенциал (температуру в динамике) для определенных контуров отопления. Например, для теплых полов, можно сделать пониженную температуру. Или например, необходимо какие-то контура сделать менее приоритетными в потребление тепла.
Трубопровод К1 - является питающим теплом бочку. Чем выше трубопровод К1, тем быстрее и без сильного остывания достигает теплоноситель трубопровода К3. Чем ниже трубопровод К1, тем сильнее теплоноситель разбавляется с температурным градиентом тепла. И это означает, что сильно высокая температура, больше разбавляется с остывшим теплоносителем в бочке. Чем ниже трубопровод К1, тем более инерционной получается система отопления в температурных скачках. Для более инерционной системы лучше опустить трубопровод К1.
Имейте ввиду, что бочку лучше теплоизолировать. Так как неизолированная бочка начнет терять тепло и отапливать котельную, в которой она находиться.
Для максимального получения и выравнивания температурных скачков, необходимо оба трубопровода К1 и К3 опускать вниз до середины бочки по высоте.
Если вы желаете уменьшить влияние температурного напора на котел? То можно поменять трубопровод К1 и К2 между собой. То есть поменять направление теплоносителя в первом контуре. Это даст возможность не загонять в котел сильно холодный теплоноситель, который сможет разрушить нагревательный элемент или приводить к сильному конденсату и коррозии. В этом случае необходимо по высоте подобрать необходимый потенциал, который даст необходимый температурный напор. Также трубопроводы не должны быть расположены друг над другом. Так как горячий теплоноситель может, не разбавляясь поступать сразу в выходящий трубопровод. Имейте в виду, что мощность котла падает. То есть падает количество получаемого тепла в единицу времени. Это вызвано тем, что мы уменьшаем температурный напор, что приводит к получению тепла в меньших количествах. Но это не означает, что Ваш котел будет потреблять, то же самое количество топлива и давать меньше тепла. Просто автоматически увеличиться температура на выходе из котла. Но в котлах стоит регулятор температуры, и он попросту уменьшит поступление топлива. Что касается твердотопливных котлов, то там регулируется поступлением воздуха.
Температурный напор котла - это разница между выдаваемым котлом температуры и приходящим остывшим теплоносителем.
Теперь перейдем к обычным маленьким гидрострелкам (объемом до 20 литров)...
Какая должна быть высота гидрострелки?
Высота гидрострелки может быть абсолютно любой. Как Вам удобно расположить трубы.
Диаметр гидрострелки?
Диаметр гидрострелки должен быть не менее определенного значения, который находиться по формуле:

На самом деле все просто до безумия. Скорость выбираем экономически оправданную 0,1м/с, а расход делаем равным разнице между контуром котла и остальными расходами. Расходы можно посчитать по насосам, в которых по паспорту указаны максимальные расходы.
Выше был пример расчетов диаметра гидрострелок.

Косые или коленные переходы в гидрострелке
Часто мы видим вот такие гидрострелки:

Но бывают и с коленным переходом или сдвигом по высоте:

Рассмотрим схему со сдвигом по высоте.

Трубопровод Т1 относительно Т3 находится выше, для того, чтобы теплоноситель от котла смог, немного притормозить движение и лучше отделить микроскопические пузырьки воздуха. При прямом соединении по инерции может возникнуть прямое движение и процесс отделения пузырьков воздуха будет слабым.
Трубопровод Т2 относительно Т4 находится выше, для того, чтобы микроскопический шлам и мусор приходящий из трубопровода Т4 смогли отделиться и не попасть в трубопровод Т2.
Можно ли в гидрострелке сделать больше 4х соединений?
- Можно! Но стоит, кое-что узнать. Смотри изображение:

Используя гидрострелку в такой форме, мы хотим получить различный температурный напор на определенных контурах. Но не все так просто...
При такой схеме Вы не получите качественный температурный напор, так как существует ряд особенностей которые мешают этому:
1. Горячий теплоноситель в трубопроводе Т1 полностью поглощается трубопроводом Т2, если расход Q1=Q2.
2. При условии Q1=Q2. Теплоноститель попадающий в трубопровод Т3 становиться равный средней температуре обратных трубопроводов Т6, Т7, Т8. При этом разница температур между Т3 и Т4 не значительна.
3. При условии Q1=Q2+Q3•0,5. Наблюдаем более распределенный температурный напор между контурами. То есть:
Температура Т1=Т2, Т3=(Т1+Т5)/2, Т4=Т5.
4. При условии Q1=Q2+Q3+Q4. Наблюдаем что Т1=Т2=Т3=Т4.

Потому что отсутствуют факторы, формирующие качественное распределение температуры по высоте!
Факторы:
1. Отсутствует естественная конвекция в пространстве гидрострелки, потому что мало пространства и потоки проходят между собой так близко, что перемешиваются между собой, исключая температурное распределение.
2. Трубопровод Т1 находится в верхней точки и поэтому естественной конвекции не может быть. Так как заходящая высокая температура не может опускаться вниз и остается вверху заполняя все верхнее пространство высокой температурой. Естественным путем остывший холодный теплоноситель не перемешивается с верхним горячим теплоносителем.
Что касается теплопроводности и теплового излучения, то они очень малы и в таких малых объемах влияние их еще меньше.
Если попытаться опустить трубопровод Т1 до трубопровода Т4, то в этом случае температуры Т2,Т3,Т4 будут равны между собой.
Существует способ, как сделать качественный температурный градиент, для отбора заданной температуры!
Смотри изображение:

В этой схеме первый отопительный контур расходуется дозировано по высоте гидрострелки. Это дает возможность в динамике сделать регулировку температурного градиента. То есть мы можем точно выставить температурные потенциалы на контурах. На трубопроводах Т1, Т9, Т10 стоят балансировочные клапаны, которыми регулируется температурный градиент. Такие клапаны стоят дорого, и поэтому могу рекомендовать любой вентиль способный плавно регулировать проходное сечение. Потому что балансировочные клапана ну очень дорого стоят (Не оправдано!).
Трубопровод Т5 расположен выше трубопроводов Т6,Т7,Т8, для того, чтобы в трубопровод Т5 поступала средняя температура трубопроводов Т6,Т7,Т8. Так как они между собой перемешиваются.
Трубопроводы Т10 и Т5 должны друг от друга находиться на расстояние хотя бы 20 см (0,2 м.).
Расстояния между трубопроводами (Т2,Т3,Т4,Т6,Т7,Т8), должно быть не менее 10 см (0,1 м.).
Трубопровод Т9, должен находиться строго по середине между трубопроводами (Т3,Т4).
Старайтесь, сделать расстояния пропорциональными между собой (Т2,Т3,Т4) для нормального температурного градиента. Чтобы настройка потоков (Т9,Т10) в будущем не принесла хлопот.
Достоинства:
1. Огромное достоинство!!! Получить нужную температуру для определенных контуров. В особенности для бойлера нагрева воды, который требует повышенной температуры в отличие от отопления. И понизить температуру для теплого пола.
2. Схема не требует точного расстояния между трубопроводами (Т2,Т3,Т4).
3. Возможность регулировать температурный градиент.
4. Возможность сделать температуры трубопроводов Т2,Т3,Т4 одинаковыми или распределить по температуре.
5. Высота гидрострелки не ограничена, можете сделать хоть в два метра в высоту.
6. Такая схема работает без дополнительного распределительного коллектора.
7. Если все правильно рассчитать, то можно избавиться от дополнительных термостабилизирующих элементов по температуре.
8. Большинство встроенных бойлеров (Водонагреватель косвенного нагрева) имеют в себе реле автоматического включения по мере остывания воды. Цепью реле необходимо запитать насос, который будет - включать и отключать насос. И поэтому, в такой схеме можно не использовать трехходовой клапан для перенаправления горячего потока для того, чтобы быстро нагреть воду. Так как при таком градиенте температур можно получить особенность, когда практически весь поток контура котла может отбираться контуром бойлера для нагревания воды. А отопительные контуры могут питаться остывшим теплоносителем. В динамике - это так.
На практике сталкивался с некоторыми схемами, которые имея трехходовой клапан, и если что-то выходило из строя, например, реле, то это приводило к риску отключить отопление. Или кто-то закрыл вентиль питания бойлера, и это привело к тому, что бойлер не нагревается, а реле не включает насос отопления. Так как завязана логика с отключением и включением отопления.

Диаметры входящих в гидрострелку патрубков.
Выбор диаметра для входящего патрубка в гидрострелку определяется тоже по специальной формуле:

Только расход выбирается исходя из расхода теплоносителя для каждого трубопровода в отдельности.
Скорость выбирается исходя из экономического фактора и равен от 0,7-1,2 м/с
Например, чтобы вычислить диаметр патрубка отопительного контура, необходимо знать максимальный расход насоса находящийся в этом контуре. К примеру, он будет 40 литров в минуту (2,4м3/ч), скорость возьмем 1м/с.
Дано:

Ответ: Внутренний диаметр трубопровода Т1 и Т5 равен 29мм.
На самом деле насос с указанным максимальным расходом, это значение при котором насос выдает такой расход без гидравлического сопротивления. А если жидкость движется по трубе прямо или с поворотами - это уже гидравлическое сопротивление. Так что очень часто этот предел в 1 м/с всего лишь экономический фактор, которым пренебрегают и увеличивают скорость на 10-30%, чтобы попасть под нужный диаметр трубы.
На короткую трубу можно закрыть глаза, а когда эта труба исчисляется десятками метров, тут стоит задуматься! И рассчитать потерю напора по длине трубопровода, если это дойдет до сотни метров в длину, то вообще стоит удвоить диаметр для экономии. Иначе возможно придется подбирать более мощный насос, который будет потреблять энергию больше.
О том как рассчитать потери напора по длине можно узнать здесь: Гидравлический расчет на потерю напора по длине трубопровода
Различные метаморфозы с гидрострелками
Давайте исключим две особенно не важные причины для гидрострелок: - это удаление воздуха и отделение шлама. И оставим основную задачу для гидрострелки: - Это получение динамически независимого контура для увеличения расхода теплоносителя.
Тогда получим такое превращение гидрострелки: (Лучший вариант).


При таком способе отопительный контур в гидрострелке становиться скоростным. А контур котла по расходу может быть не занчительным. То есть: Q1

Вообще если у Вас система работает на больших температурах свыше 70 градусов цельсия или есть риск придти к таким температурам, то следует циркуляционные насосы ставить на обратный трубопровод. Если у Вас низкотемпературное отопление 40-50 °C, то лучше на подачу поставить, так как горячий теплоноситель обладает меньшим гидравлическим сопротивлением, и насос будет потреблять меньше энергии.

Вы заметили петлю?

Это не позволительная роскошь! При движении теплоносителя происходит два лишних поворота. От петли можно избавиться таким образом:

Как видите гидрострелку можно вращать в пространстве как угодно... Все зависит от направления трубопроводов. Длина гидрострелки и места соединения на гидрострелке - могут быть любыми на Ваш выбор по расположению труб, главное соблюсти направление теплоносителя, как показано на рисунках стрелками. Но лучше расстояние между патрубками подающего и обратного трубопровода, сделать не менее 20 см (0,2м). Это нужно для того, чтобы исключить попадания подающего теплоносителя в обратный трубопровод. Необходимо сделать расстояние длиннее. Необходимо создать условие для качественного перемешивания теплоносителя. Расстояние между патрубками должно быть не менее диаметра патрубка помноженное на 4. То есть:

L>d•4, где L-расстояние между патрубками (общего контура по расходу, например, подача Q1 и обратка Q1), d-диаметр патрубка.

А теперь посмотрите фото из реального примера подобных стрелок:

Диаметр гидрострелок доходит до безумия...
Вообще если у Вас система работает на больших температурах свыше 70 градусов цельсия или есть риск придти к таким температурам, то следует циркуляционные насосы ставить на обратный трубопровод. Если у Вас низкотемпературное отопление 40-50 °C, то лучше на подачу поставить, так как горячий теплоноситель обладает меньшим гидравлическим сопротивлением, и насос будет потреблять меньше энергии.
Вы заметили петлю?

Это не позволительная роскошь! При движении теплоносителя происходит два лишних поворота. От петли можно избавиться таким образом:





Как видите гидрострелку можно вращать в пространстве как угодно... Все зависит от направления трубопроводов. Длина гидрострелки и места соединения на гидрострелке - могут быть любыми на Ваш выбор по расположению труб, главное соблюсти направление теплоносителя, как показано на рисунках стрелками. Но лучше расстояние между патрубками подающего и обратного трубопровода, сделать не менее 20 см (0,2м). Это нужно для того, чтобы исключить попадания подающего теплоносителя в обратный трубопровод. Необходимо сделать расстояние длиннее. Необходимо создать условие для качественного перемешивания теплоносителя. Расстояние между патрубками должно быть не менее диаметра патрубка помноженное на 4. То есть:
L>d•4, где L-расстояние между патрубками (общего контура по расходу, например, подача Q1 и обратка Q1), d-диаметр патрубка.
А теперь посмотрите фото из реального примера подобных стрелок:

Скорость теплоносителя в таких гидрострелках может достигать 0,5-1м/с.
А достоинство: Это упрощенный вид, легче монтаж и дешево обходится.
Не стандартное решение по изготовлению гидрострелок
В большинстве случаев гидрострелки изготавливают из стали или железных труб большого диаметра. А если у Вас есть желание не устанавливать в систему отопления железные элементы, которые ржавеют и ржавчину разносят по системе отопления? Да и трубы большого диаметра проблематично найти из пластика или нержавейки.
Тогда на помощь придет схема в виде решеток из труб маленького диаметра:

Данную конструкцию можно собрать из труб оригинального диаметра патрубков, соединив любыми тройниками. Например, из металлопластиковой трубы диаметром 32 мм. Также можно использовать полипропилен, только для низких температур отопления не выше 70 градусов. Можно использовать медную трубу.
Дешевле и проще будет за место этой конструкции поставить радиатор (отопительный прибор). Но в этом случае придется нести теплопотери. Или теплоизолировать радиатор.
Смотри изображение:

Очень часто с гидрострелкой используют такой коллектор:

Для такой схемы температура, поступающая в контура(Q1,Q2,Q3,Q4) на подачу у всех одинакова.
Диаметр коллектора берется большим, чтобы исключить гидравлическое сопротивление на повороте для каждого контура. Если не увеличивать диаметр коллектора, то гидравлическое сопротивление на поворотах может достигать таких величин, что может вызвать не равномерное потребление теплоносителя между контурами.
Расчет диаметров тоже вычисляется банально по такой формуле:

Q=Q1+Q2+Q3+Q4

Хотите сделать температурный градиент в коллекторе?
Это возможно! Смотри изображение:

В этой схеме между подающим и обратным коллекторами - установлены балансировочные клапана, которые дают возможность снизить температурный напор - на последних (правых) контурах. Проходимость балансировочных клапанов должна быть по возможности максимальной и равняться трубопроводу (d). На трубопровод (d), тоже необходимо поставить балансировочный клапан, для более сильного распределения градиента. Или уменьшить его диаметр, согласно расчетам по гидравлическому сопротивлению.

Стоит ли покупать готовую гидрострелку?
Вообще говоря гидрострелки это дорогое удовольствие.
Выше были описаны многочисленные варианты, как сделать гидрострелку самому или применить не стандартный метод решения. Если вы не желаете экономить средства и сделать красиво, то можете покупать. Если есть проблемы, то можно воспользоваться вышеописанными методами.
Почему температура теплоносителя после стрелки (гидравлического разделителя) меньше чем на входе?
Это связано с разными расходами между контурами. Поступающая температура в гидрострелку быстро разбавляется с остывшем теплоносителем, потому что расход остывшего теплоносителя больше чем расход нагретого.
Основные преимущества применения гидравлических стрелок

Если сравнивать с обычной системой, где все завязано одним контуром, то при отключение некоторых веток, возникает маленький расход в котле, что увеличивает резкое повышение температуры в котле и последующий приход сильно остывшего теплоносителя.
Гидрострелка помогает поддерживать постоянный расход котла, что уменьшает разницу температуры между подающим и обратным трубопроводом.
Для значительного уменьшения температурного напора необходимо в гидрострелке поменять направление движения теплоностителя, что уменьшит температурный напор!
Также ставят трехходовые клапаны с терморегулирующим элементом, который в автоматическом режиме, не дает холодному теплоносителю попасть в обратный трубопровод котла.

Скорее есть возможность купить несколько слабеньких насосов и увеличить функциональность системы. Распределяя их на отдельные контура.

Скорее всего, имелось ввиду, что расход через котел всегда стабильный и исключаются резкие скачки температурного напора.
Если сравнивать с обычной системой, где все завязано одним контуром, то при отключение некоторых веток, возникает маленький расход в котле, что увеличивает резкое повышение температуры в котле, а следом и приход сильно остывшего теплоносителя в котел.

Имеется ввиду, когда контуров или веток (распределение потоков) в системе отопления становиться много, то возникает нехватка расходов теплоносителя. То есть мы не можем в котле увеличить расход больше чем установлено ее проходным диаметром. Да и одним слабеньким насосом не увеличишь расход до требуемого значения. И на помощь приходит гидрострелка, которая дает возможность получить дополнительный расход теплоносителя.

Гидрострелка для отопления. Для чего нужен гидравлический разделитель в системе отопления

В каждом жилом доме предусматривается собственная система отопления, которая может быть самой разнообразной. Стоит отметить, что в больших, многоэтажных постройках она не обойдется без такого специального устройства как гидрострелка или гидравлический распределитель, который отвечает за создание естественной конвекции в теплоносителе. Данное устройство можно как смастерить своими руками, так и приобрести в уже готовом виде. Об этом и пойдет речь далее в статье.

Оглавление:

  1. Что представляет собой гидрострелка для отопления? Ее принцип работы
  2. Для чего нужна гидрострелка в системе отопления    
  3. Разновидности гидравлического распределителя
  4. На что обратить внимание при покупке гидрострелки для отопления?
  5. Особенности сборки гидрострелки своими руками
  6. Правила относительно установки гидрострелки в системе отопления

Что представляет собой гидрострелка для отопления? Ее принцип работы

Гидрострелка для отопления - это своего рода защитный элемент, отвечающий за балансировку и безопасность отопительной системы. Данное устройство отличается своей простотой и выступает в роли дополнительного узла, рабочая функция которого направлена на сохранение теплообменников в чугунных котлах. Установка гидростаспределительного оборудования особо необходима в таких системах отопления, в состав которых входят батареи,  водонагревательные элементы и другие многоконтурные детали. Оно позволяет сохранять равенство давления во всех секторах котла в пределах нормы и поддерживает бесперебойную режимную работу теплообменников.

Для того, чтобы гидрораспределитель максимально выполнял свои функции, прежде чем его покупать, мастерить и устанавливать, проводят специальные расчеты относительно габаритов и параметров мощности устройства. Для этого есть специальные формулы, ознакомится с которыми можно на специальных форумах в интернете. Так вот, если все расчеты произведены правильно и в параметрах оборудования не были допущены ошибки, то гидрострелка выполняет и свои дополнительные обязанности: нейтрализует накопившиеся осадки ржавчины, накипи в отопительной системе, таким образом продлевая работоспособность насосов, датчиков и других функциональных деталей. Не менее важной задачей гидрострелки считается удаление накопившегося воздуха в контурах отопительной системы. Этот момент важен для сохранения рабочего состояния металлических элементов, которые под его воздействием сильно окисляются и приводят к серьезным поломкам.

Для чего нужна гидрострелка в системе отопления    

Гидравлический распределитель в системе отопления - это прежде всего помощник, который отвечает за разделение потоков жидкости и защищает котел от возможных внутренних поломок, то есть это многофункциональный аппарат, установка которого нужна во множествах ситуаций, связанных с работой отопления.

  • Внедрение гидрострелки необходимо в отопительную систему габаритных помещений, площадь которых составляет более 200 кв.м.
  • Когда в системе отопления предусмотрено несколько контуров, в них могут возникать нестандартные ситуации с перепадами нагрузки на оборудование, появятся большие затраты тепловой энергии, а сам тепловой поток станет несбалансированным. Именно такие факторы свидетельствуют о необходимости установки гидрораспределителя.
  • Наличие данного устройства необходимо в тех помещениях где оборудованы теплые полы, работают бойлеры и т.п. оборудование. Так как в таких системах требуется включение не всей отопительной системы, а только ее некоторых контуров и, чтобы не навредить одному элементу за счет другого устанавливают гидрострелки, которые способствуют полноценному функционированию отдельных частей системы и ее балансировке.
  • Бывают случаи, когда в больших загородных коттеджах и т.п. предусмотрено отопление с несколькими котлами, для объединения которых также используют гидравлическую стрелку.
  • Случается так, что во время проведения ремонтных работ батарейное отопление отключают, а в его внутренней среде господствуют холодные тепловые массы, которые при резком запуске соединяются с теплыми, а это чревато тепловым ударом, который приводит к неполадкам, трещинам в чугунном материале и т.д., именно гидрострелка способствует равномерному распределению тепла по контурам системы и защищает ее от таких нештатных ситуаций.

Таким образом, можно сказать, что гидрострелка - это устройство, способное выполнить множество защитных функций в системе отопления, имеющее массу преимуществ и положительных сторон, способствующих налаженной работе насосов и увеличению уровня КПД котлов.

Разновидности гидравлического распределителя

Гидравлические распределители на современном рынке представлены несколькими разновидностями. Они отличаются конструкциями, габаритами, а также расположением патрубков. Об этом детальнее в таблице.

 Разновидности гидравлических распределителей
 по конструкции по расположению патрубков  по габаритам
  •  устройство с 4 патрубками, которое отвечает за работоспособность 2 контуров;
  • агрегат KV серии, в состав которого входит 2 патрубка на одной стороне и 8 или 10 патрубками на другой;
  • коллектор отопления с гидрострелкой, в состав которого входит неограниченное количество патрубков, что способствует организации отдельных ветвей отопления и подключения к ним циркуляционного насоса.
  •  патрубки располагаются на одной оси, что способствует увеличению скорости теплоносителя, а это часто приводит к тому, что частицы мусора попадают в отделение второго контура;
  • чередующиеся патрубки, отличающиеся медленной работоспособностью теплоносителя, что способствует очищению воздуха и контуров от различных примесей.
  •  малогабаритные, объемом менее 20 литров;
  • средних размеров, не более 150 л;
  • большие, объем которых достигает 300 литров.

Таким образом, можно сказать, что гидрострелка максимально способствует снижению нагрузок в трубопроводах отопительной системы и приводит к увеличению ее энергоэффективности. Данное устройство считается очень востребованным в области тепловой структуры, хотя и не применяется в комплектации с твердотопливными котлами.

На что обратить внимание при покупке гидрострелки для отопления?

С понятиями гидрострелка для отопления зачем она нужна и другими базовыми данными о ней разобрались, теперь стоит рассмотреть критерии выбора уже готовых заводских конструкций, что позволит не только обезопасить тепловую систему, а и уберечь семейный бюджет хозяевов, которые планируют осуществить такую технологическую покупку.

Приобрести данный агрегат можно во многих специализированных магазинах, а также на сайтах онлайн-ресурсов. Но прежде чем остановить, свой выбор на конкретной модели рекомендуется проконсультироваться с продавцами, уточнить данные и отзывы о производителе, убедится, что параметры выбранного прибора соответствуют всем расчетам относительно внутренней отопительной системы владений.

Стоит обратить внимание на объем гидрострелки, внимательно учитывать сумму тепловых мощностей всех контуров. Заранее определитесь с моделью, посоветуйтесь с профессионалами на счет расположения патрубков гидрострелки, узнайте какой из вариантов будет выгодней в вашем жилом пространстве.

Все расчеты параметров стоит произвести заранее, чтобы в магазине консультанты предлагали самые подходящие устройства. Гидрострелка для отопления купить которую можно по оптимальной цене, должна способствовать теплоотдачи, а не наоборот задерживать этот процесс.    

Особенности сборки гидрострелки своими руками

Для того, чтобы сделанная гидрострелка для отопления своими руками была пригодной для использование мастеру понадобится смекалка, четкие расчеты и полная материально-инструментальная база. Чаще всего с этой целью применяют два материала - это сталь и пропилен. Стоит сразу сказать, что сделать гидравлический распределитель в домашних условиях, тем более хорошего качества не всем под силу. Некоторые умельцы думают, что для работы подойдет обычный отрезок металлической трубы и этого будет достаточно.

Однако, это совсем не так, так как в случае с сталью, нужно еще правильно подобрать ее марку, так как в отопительной системе господствуют слишком высокие температуры и необходимо чтобы ресурс был устойчив к ним. Для этого лучшим вариантом станет либо нержавеющая сталь, либо конструкционная, с которыми очень сложно работать новичкам, поэтому людям без опыта лучше всего купить готовую гидрострелку. Далее рассмотрим вариант сборки стального гидрораспределителя из трубы с внутренней окружностью диаметра 76 мм.

1. Начинается работа из подготовки отверстий в металлической трубе, по всему ее периметру. С помощью сварочного аппарата к проделанным дырам приваривается резьба. В готовом варианте их должно получится восемь - две предназначаются для соединения с котлом, а шесть отвечают за подачу и обратку тепловых масс.

2. Далее привариваются заглушки для концевых отверстий трубы. Неровности сварных швов необходимо нейтрализовать с помощью болгарки. Трубу шлифуют, обрабатывают шпаклевкой и по окончанию всех работ вскрывают красочным материалом из баллончика. Перед тем как пускать самодельную гидрострелку в ход, ее необходимо проверить под воздействием пресса.

Требованиям норм современных отопительных систем соответствует и такой материал как пропилен, который также используют в процессе изготовления гидравлического распределителя своим руками. Именно пропилен характеризуется способностью выдерживать температуру горячей воды до 95 градусов, что соответствует нормам для жилых помещений. Гидрострелка отопления частного дома из этого ресурса не только способствует повышению протока теплоносителя, а и позволяет системе расходовать энергию так, чтобы не возникали значительные потери тепла, что кстати связано с металлическими агрегатами.

Преимуществом пропилена также можно назвать его стойкое противостояние процессам развития коррозии и гниению. К тому же, этот материал на порядок дешевле других, подходящих для изготовления гидрострелки. Готовые конструкции из данного ресурса можно окрашивать в любой предпочтительный цвет. Но рядом с вышеуказанными преимуществами пропилена, необходимо отметить и то, что работать с данным материалом в домашних условиях не стоит, особенно тем мастерам, которые не имею большого опыта работы в технологической сфере. Это еще связано и с тем, что в домашних условиях могут быть неправильно проведены расчеты отопительной системы, ее мощности, а рядом с тем и ее комплектующих элементов, к тому же схема отопления с гидрострелкой может быть неправильно подобранной.

Правила относительно установки гидрострелки в системе отопления

Для того, чтобы работа гидрострелки отопления была продуктивной и безопасной при ее установке мастера должны руководствоваться общепринятыми правилами и рекомендациями профессионалов. В первую очередь это касается расположения агрегата - он должен располагаться исключительно в вертикальном положении, иначе его функциональность будет нарушена, что может привести к серьезным проблемам в отопительной системе частного дома.

Перед установкой и во время самого процесса, мастер должен контролировать скорость теплоносителя в камере. Его показатели должны быть на отметке ниже 0,1 м/с. В деле с гидрораспределительным устройством также действует правило трех диаметров, согласно которому высота разделителя гидрострелки должна быть на порядок меньше высоты распределителя. Также при установке гидрораспределительного элемента должно быть взято во внимание правило, которое говорит о том, что контур, который отличается показателями максимально высоких температур, должен быть присоединен к верхней части разделителя.

Подведем итоги, итак, гидрострелка для отопления является практически незаменимым элементом в современных многоконтурных системах. Она выполняет огромное количество функций, которые напрямую направлены на безопасную работу теплообмена в помещении. Данное устройство не только страхует оборудование от неполадок, а и проводит внутренние санитарные операции, способствующие продлению эксплуатационного периода котлов, насосов и других системных элементов. Для более подробной информации о расчетах гидрострелки отопления смотрите видео:

ЖАТКИ С НИЗКИМИ ПОТЕРЯМИ В СИСТЕМАХ ОТОПЛЕНИЯ

ЖАТКИ С НИЗКИМИ ПОТЕРЯМИ В СИСТЕМАХ ОТОПЛЕНИЯ

Видео: Видео: ЖАТКИ С НИЗКИМИ ПОТЕРЯМИ В СИСТЕМАХ ОТОПЛЕНИЯ

Заголовки с малыми потерями в системах отопления объяснены со специальным гостем Drew Styles. Мы говорим о том, как они могут повысить эффективность системы отопления, как они устанавливаются в систему отопления, как они могут помочь в работе нескольких контуров и почему вы хотели бы иметь один. Большое спасибо Дрю за то, что он появился, следите за ним в Instagram и Twitter @StylesPlumbing МАГАЗИН ИНСТРУМЕНТОВ AMAZON ЗДЕСЬ: https: // www.amazon.co.uk/shop/plumberparts #plumberparts # сантехника #LLH TWITTER

Jalen Hurts

Словарь

Закрытие школы

Drive

Джаред Кушнер

Jeff Sessions

Kmart

0005 9000 Университет Клмарт

Rose

Calculator

Alabama Vs Clemson

Lola Kirke

Tree Man

NCAA

Браузер не поддерживается.
Обновите до Chrome / Firefox.
Также включите JavaScript.

Войти

Откройте для себя лучшие видео.

Смотрите популярные видео в социальных сетях.

Следите за новостями в Интернете.

Играть в тренды


Скачать приложение

Скоро запуск. Взгляните!

Проверить адрес электронной почты

Запросить приглашение

Спасибо! Вскоре вы получите приглашение.

Найти отличное видео еще никогда не было так просто.
Ваши персонализированные стримы с собой.

SubtleTV позволяет легко находить отличные вирусные видео в ваших любимых социальных сетях. Когда вы смотрите, SubtleTV фильтрует ваши плейлисты в соответствии с вашими интересами. SubtleTV обеспечивает настоящее телевидение, автоматически воспроизводя самые популярные видео с Reddit, YouTube, Vimeo, Dailymotion и Twitter. Читайте комментарии и смотрите видео-рекомендации со всего Интернета!


Упомянутые видео

для Reddit

Блок-схема системы связи с подробным объяснением

Система связи

Связь - это процесс установления соединения между двумя точками для обмена информацией.

ИЛИ

Коммуникация - это просто основной процесс обмена информацией.

Электронное оборудование, которое используется для целей связи, называется оборудованием связи. Различное оборудование связи, собранное вместе, образует систему связи .

Типичными примерами системы связи являются линейная телефония и линейная телеграфия, радиотелефония и радиотелеграфия, радиовещание, двухточечная и мобильная связь, компьютерная связь, радиолокационная связь, телевизионное вещание, радиотелеметрия, средства радионавигации, радио. средства приземления самолета и т. д.

Процесс общения

В самом фундаментальном смысле коммуникация включает в себя передачу информации из одной точки в другую посредством последовательности процессов, перечисленных ниже:

  1. Создание образа мысли или образа в сознании создателя.
  2. Описание этого изображения с определенной степенью точности с помощью набора устных визуальных символов.
  3. Кодирование этих символов в форме, пригодной для передачи по интересующей физической среде.
  4. Передача закодированных символов в желаемое место назначения.
  5. Декодирование и воспроизведение оригинальных символов.
  6. Воссоздание исходного мысленного образа или образа с определенным ухудшением качества в сознании получателя.

Блок-схема системы связи

На фиг.1 показана блок-схема общей системы связи, в которой различные функциональные элементы представлены блоками.

Рис 1

Пожалуйста, подпишитесь на канал электронной почты, если вам нравятся мои уроки.

Важнейшими компонентами системы связи являются источник информации, входной преобразователь, передатчик, канал связи, приемник и место назначения.

Теперь поговорим о функционировании этих блоков.

(i) Источник информации

Как мы знаем, система связи служит для передачи сообщения или информации. Эта информация исходит из источника информации.

Как правило, это могут быть различные сообщения в виде слов, группы слов, кода, символов, звукового сигнала и т. Д.Однако из этих сообщений выбирается и передается только желаемое сообщение.

Таким образом, можно сказать, что функция источника информации состоит в том, чтобы произвести необходимое сообщение, которое необходимо передать.

(ii) Входной преобразователь

Преобразователь - это устройство, преобразующее одну форму энергии в другую.

Сообщение от источника информации может быть или не иметь электрического характера. В случае, когда сообщение, создаваемое источником информации, не является электрическим по своей природе, используется входной преобразователь для преобразования его в изменяющийся во времени электрический сигнал.

Например, в случае радиовещания микрофон преобразует информацию или массаж в форме звуковых волн в соответствующий электрический сигнал.

(iii) Передатчик

Функция передатчика - обрабатывать электрический сигнал с разных сторон.

Например, в радиовещании электрический сигнал, полученный из звукового сигнала, обрабатывается для ограничения диапазона звуковых частот (до 5 кГц при радиовещании с амплитудной модуляцией) и часто усиливается.

В проводной телефонной связи никакой реальной обработки не требуется. Однако при дальней радиосвязи необходимо усиление сигнала перед модуляцией.

Модуляция - основная функция передатчика. При модуляции сигнал сообщения накладывается на высокочастотный несущий сигнал.

Короче говоря, можно сказать, что внутри передатчика выполняются такие обработки сигналов, как ограничение диапазона звуковых частот, усиление и модуляция сигнала.

Все эти обработки сигнала сообщения выполняются только для облегчения передачи сигнала по каналу.

(iv) Канал и шум

Термин канал означает среду, через которую сообщение проходит от передатчика к приемнику. Другими словами, мы можем сказать, что функция канала заключается в обеспечении физического соединения между передатчиком и приемником.

Существует два типа каналов: двухточечные и широковещательные.

Примером двухточечных каналов являются проводные линии, микроволновые линии связи и оптические волокна. Проводные линии работают с помощью управляемых электромагнитных волн и используются для местной телефонной связи.

В случае микроволновых каналов передаваемый сигнал излучается в виде электромагнитной волны в свободном пространстве. СВЧ-каналы используются при телефонной передаче на большие расстояния.

Оптическое волокно - это хорошо управляемая и управляемая оптическая среда с низкими потерями. Оптические волокна используются в оптической связи.

Хотя эти три канала работают по-разному, все они обеспечивают физическую среду для передачи сигналов из одной точки в другую. Поэтому для этих каналов используется термин «точка-точка».

С другой стороны, широковещательный канал обеспечивает возможность одновременного доступа к нескольким приемным станциям с одного передатчика.

Примером вещательного канала является спутник на геостационарной орбите, который покрывает около одной трети поверхности Земли.

В процессе передачи и приема сигнал искажается из-за шума, вносимого в систему.

Шум - это нежелательный сигнал, который может мешать требуемому сигналу. Шумовой сигнал всегда носит случайный характер. Шум может мешать сигналу в любой точке системы связи. Однако наибольшее влияние на сигнал в канале оказывает шум.

(v) Ресивер

Основной функцией приемника является воспроизведение сигнала сообщения в электрической форме из искаженного принятого сигнала.Это воспроизведение исходного сигнала выполняется с помощью процесса, известного как демодуляция или обнаружение. Демодуляция - это процесс, обратный модуляции, выполняемой в передатчике.

(vi) Пункт назначения

Пункт назначения - это заключительный этап, который используется для преобразования сигнала электрического сообщения в его исходную форму.

Например, в радиовещании местом назначения является громкоговоритель, который работает как преобразователь, то есть преобразует электрический сигнал в форму исходного звукового сигнала.

Разработка проекта> Результаты> Диаграмма потерь

Диаграмма потерь позволяет быстро оценить качество проектирования фотоэлектрической системы путем определения основных источников потерь.

Он всегда присутствует в отчете моделирования за весь год. Он также доступен для каждого месяца с помощью кнопок «Подробные результаты> Предопределенные графики» в диалоговом окне проекта. Это позволяет оценить сезонный эффект и влияние различных потерь.

Общие сведения о потерях в PVsyst см. В разделе «Потери в массиве, общие соображения».

Потери массива начинаются с грубой оценки номинальной энергии с использованием общей эффективной освещенности и номинального КПД массива MPP в STC. Затем он дает подробную информацию о поведении модели PV в соответствии с переменными окружающей среды.

В автономных системах диаграмма показывает детали использования батареи, то есть какая часть энергии эффективно проходит через батарею. Сведение к минимуму использования батареи имеет некоторое значение для срока службы (количества циклов зарядки / разрядки).

NB: Каждая потеря определяется как процент от предыдущего количества энергии. Следовательно, процентные значения, конечно, не складываются: при группировке потерь общий процент не является суммой подробных значений!
NB: Учет индивидуальных потерь - далеко не тривиальная задача! Процесс моделирования и некоторые определения переменных пришлось глубоко переформулировать для получения согласованной фигуры.
А некоторые вклады невозможно строго оценить. Например, в автономных системах омические потери оцениваются с использованием обычного соотношения Ploss = R * I². Но на самом деле сопротивление массива изменяет рабочую точку фотоэлектрической системы и равновесие всей схемы, так что более точный расчет, вероятно, будет имитировать всю систему с этим сопротивлением и без него, а также оценить различия. Но даже при использовании этого метода одни убытки будут перенесены на другие.

Между прочим, даже если некоторые индивидуальные потери не совсем точно определены, значения энергии на каждом основном шаге моделирования в принципе правильно рассчитываются.

Подробное описание отдельных переменных можно найти на следующих страницах:

- Метеостанция, облучение и фотоэлектрическая установка,

- Система, подключенная к сети,

- Автономная система,

- Система электросетей постоянного тока.

Национальный центр биотехнологической информации

  • NCBI
  • Перейти на главную содержание
  • Перейти к навигация
  • Ресурсы
    • Все ресурсы
    • Химические вещества и биотесты
      • BioSystems
      • PubChem BioAssay
      • PubChem Compound
      • Поиск структуры PubChem
      • PubChem Substance
      • Все ресурсы по химическим веществам и биотестам...
    • ДНК и РНК
      • BLAST (Базовый инструмент поиска локального сопоставления)
      • BLAST (автономный)
      • Электронные утилиты
      • GenBank
      • GenBank: BankIt
      • GenBank: Sequin
      • GenBank: tbl2asn
      • Genome Workbench
      • Вирус гриппа
      • База данных нуклеотидов
      • PopSet
      • Primer-BLAST
      • ProSplign
      • Эталонная последовательность (RefSeq)
      • RefSeqGene
      • Архив чтения последовательности (SRA)
      • Расщепленный архив
      • Сплайн-архив Все ресурсы ДНК и РНК...
    • Данные и программное обеспечение
      • BLAST (Базовый инструмент поиска локального согласования)
      • BLAST (автономный)
      • Cn3D
      • Служба поиска сохраненных доменов (поиск по компакт-дискам)
      • E-Utilities
      • GenBank: BankIt
      • GenBank: Sequin
      • GenBank: tbl2asn
      • Genome ProtMap
      • Genome Workbench
      • Primer-BLAST
      • ProSplign
      • PubChem Structure Search
      • Инструмент отправки SNP
      • Splign
      • Инструмент поиска выравнивания вектора Все ресурсы данных и программного обеспечения...
    • Домены и структуры
      • BioSystems
      • Cn3D
      • База данных сохраненных доменов (CDD)
      • Служба поиска сохраненных доменов (поиск по компакт-дискам)
      • Структура (база данных молекулярного моделирования)
      • Инструмент поиска выравнивания векторов (VAST)
      • Все ресурсы доменов и структур ...
    • Гены и экспрессия
      • BioSystems
      • База данных генотипов и фенотипов (dbGaP)
      • E-Utilities
      • Ген
      • Омнибус экспрессии генов (GEO) База данных
      • Ген Наборы данных Expression Omnibus (GEO)
      • Профили Omnibus экспрессии генов (GEO)
      • Genome Workbench
      • HomoloGene
      • Онлайн-менделевское наследование в человеке (OMIM)
      • RefSeqGene
      • Все гены и ресурсы экспрессии...
    • Генетика и медицина
      • Книжная полка
      • База данных генотипов и фенотипов (dbGaP)
      • Реестр генетического тестирования
      • Вирус гриппа
      • Менделирующее наследование у человека в Интернете (OMIM)
      • PubMed
      • PubMed Central )
      • PubMed Clinical Queries
      • RefSeqGene
      • Все ресурсы по генетике и медицине ...
    • Геномы и карты
      • База данных структурных вариаций генома (dbVar)
      • GenBank: tbl2asn
      • Genome
      • Genome Project
      • Средство просмотра геномных данных (GDV)
      • Genome ProtMap
      • Genome Workbench
      • Вирус гриппа
      • База данных нуклеотидов
      • PopSet
      • ProSplign
      • Архив чтения последовательности (SRA)
      • Splign
      • Архив карт трассировки
      • Все ресурсы ...
    • Гомология
      • BLAST (Базовый инструмент поиска локального выравнивания)
      • BLAST (автономный)
      • BLAST Link (BLink)
      • База данных сохраненных доменов (CDD)
      • Служба поиска сохраненных доменов (поиск по компакт-дискам)
      • Genome ProtMap
      • HomoloGene
      • Белковые кластеры
      • Все ресурсы по гомологии ...
    • Литература
      • Книжная полка
      • Электронные утилиты
      • Журналы в базах данных NCBI
      • База данных MeSH
      • Справочник NCBI Руководство
      • Новости и блог NCBI
      • PubMed
      • PubMed Central (PMC)
      • Клинические запросы PubMed
      • Все литературные ресурсы...
    • Белки
      • BioSystems
      • BLAST (Базовый инструмент поиска локального выравнивания)
      • BLAST (Автономный)
      • BLAST Link (BLink)
      • База данных сохраненных доменов (CDD)
      • Служба поиска сохраненных доменов ( CD Search)
      • E-Utilities
      • ProSplign
      • Кластеры белков
      • База данных белков
      • Контрольная последовательность (RefSeq)
      • Все ресурсы белков ...
    • Анализ последовательности
      • BLAST (Инструмент поиска базового локального выравнивания)
      • BLAST (автономный)
      • BLAST Link (BLink)
      • Служба поиска сохраненных доменов (поиск по компакт-дискам)
      • Genome ProtMap
      • Genome Workbench
      • Вирус гриппа
      • Primer-BLAST
      • ProSplign
      • Splign
      • Все ресурсы по анализу последовательностей...
    • Таксономия
      • Таксономия
      • Браузер таксономии
      • Общее дерево таксономии
      • Все ресурсы по таксономии ...
    • Обучение и учебные пособия
      • Страница образования NCBI
      • Справочник NCBI
      • Справочное руководство NCBI
      • Новости и блог NCBI
      • Все учебные материалы и учебные материалы ...
    • Вариация
      • База данных геномных структурных вариаций (dbVar)
      • База данных генотипов и фенотипов (dbGaP)
      • База данных однонуклеотидных полиморфизмов (d92bSNP) 900
      • Инструмент представления SNP
      • Все ресурсы по вариациям.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *