Гидролизный котел: Гидролизный котел отопления – характеристики, особенности и производительность

Содержание

Гидролизный котел отопления – характеристики, особенности и производительность

Автор admin На чтение 3 мин. Просмотров 15 Обновлено

Под гидролизными отопительными котлами принято понимать оборудование, которое в процессе работы используют твердое топливо. Солома, древесные отходы, дрова – все это может использоваться гидролизными котлами в процессе работы. Наиболее широко это оборудование используется в бытовых и производственных помещениях, будь то фабрики, цеха, склады или фермы. В качестве основных достоинств данных котлов можно назвать то, что они недороги в процессе эксплуатации, отличаются экологической безопасностью, а также просты в обслуживании и управлении.

Работают гидролизные устройства по следующей схеме:

  • Топливо помещается в специальный бункер, где поджигается. Дверца бункера закрывается, задействуется дымосос;
  • Повышение температуры до 800 градусов приводит к тому, что сгораемый материал обугливается, выделяя значительные количества древесного газа. Именно этот процесс и получил название гидролиза;
  • Попадание продуктов гидролиза в колосник приводит к их смешиванию с вторичным воздухом;
  • Процесс гидролиза является постоянным из-за того, что часть тепла постоянно возвращается к слою дров, расположенному внизу.

Монтаж и обслуживание

Когда гидролизный котел устанавливается на пол, то необходимо заранее выполнить монтаж опорной рамы с высотой в 10-20 сантиметров, либо фундаментной подушки. При помощи монтажа опорной рамы можно добиться того, что все посадочные поверхности будут находиться точно в горизонтальной плоскости.

Как правило, котлы монтируются на кирпичную кладку, высота которой не более 36 сантиметров от поверхности пола. Такой подход нужен для того, чтобы нижние коллекторы экранов, расположенных сбоку были на одном уровне с решетниками колосников, а потому служили в качестве охлаждаемых панелей. Установка дымососов также начинается с монтажа опорной рамы, которая фиксируется на фундаменте прочными болтовыми соединениями.

Важное отличие гидролизных котлов состоит в материале, из которого они изготовлены.

 Особенности и срок службы

Теплообменник можно сделать на основе стали или чугуна. Твердотопливные котлы, которые изготовлены на чугунной основе, считаются более долговечными. Их главный нюанс заключается в том, что они достаточно долго прогреваются, но и остывают крайне медленно, отдавая максимум тепла.

Отрицательная черта заключается в хрупкости оборудования: чугун крайне чувствителен к резким температурным перепадам, которые неизбежно станут причиной разрушения стенок устройства и дальнейшему полному выходу его из строя. К счастью, современные технологические решения при производстве чугуна дали возможность улучшить его свойства, увеличив прочностные показатели.

Твердотопливные котлы на стальной основе способны более стойко переносить температурные колебания, но их слабость заключается в восприимчивости к ржавчине, которая начинает активно развиваться из-за скоплений конденсата. Именно эта особенность приводит к тому, что стальной теплообменник заметно снижает эксплуатационный срок котлов. Во многом, продолжительность службы стального котла зависит от качества материала, его толщины, а также осторожности обращения.

[box type=”info” ]С учетом этого фактора можно заявить, что чугунный котел, несмотря на свою изначальную дороговизну, в итоге, будет более выгодной покупкой.[/box]

Также стоит отметить такую дополнительную деталь гидролизного котла, как наличие специального вентилятора, нагнетающего воздух внутрь камеры сгорания. Это, в общем-то, простое приспособление способно ощутимо увеличить эффективность работы устройства.

Пиролизный котел в быту, или когда цена на газ не имеет значения / Хабр

Можно ли построить систему отопления собственного жилища без газовой трубы так, чтобы это было комфортно, не утомительно и даже увлекательно? И что может получиться, если приправить всё это информационными технологиями?
Давайте вместе в этом разберемся.

Немного теории

Системы отопления (СО) с твердотопливным котлом (ТТК) – это системы периодического действия, в которых котел генерирует тепло только когда в нем есть топливо. В этой связи, владельцы ТТК, рано или поздно, обзаводятся теплоаккумуляторами, которые накапливают излишек тепла, генерируемый в процессе работы ТТК и отдают его дому уже после того как топливо в котле закончилось.

ТТК принято делить на классические (колосниковые) и пиролизные (газогенераторные). Классический вариант подразумевает обыкновенное сгорание топлива с выделением тепла. Твердотопливные пиролизные котлы отличаются тем, что топливо и горючий газ, выделяемый при его горении, сжигаются раздельно. Это обеспечивает более высокий КПД, широкий диапазон мощности, простоту требований к дымоходу.

Под «обыкновенным сгоранием топлива» подразумевается, что топливо в таких котлах сгорает в камере загрузки, где одновременно идут все те же процессы что и при пиролизе древесины. По этой причине в классических (колосниковый) котлах нет возможности получить качественное (полное) сгорание топлива. В результате неполного сгорания топлива на теплообменнике котла оседают деготь, смолы, (продукты пиролиза), сажа, зола и образуется теплоизолирующий слой, что в свою очередь вынуждает котел щедро делится, вырабатываемым теплом с окружающей средой.

Как преимущество классических котлов иногда указывают то, что в них, якобы, можно сжигать дрова с высокой влажностью, но как по мне, топить сырыми дровами – себя не уважать.

Не важно, в каком котле, пиролизном или традиционном, дрова, прежде чем начать давать тепло, должны пройти начальные стадии пиролиза, а именно нагрев и испарение влаги. Значит если мы используем для отопления дрова с влажностью 20% (это на 10 кг. сухих дров вылить сверху 2 литра воды), то есть пятая часть по весу в них балласт, на нагрев и испарение которого также придется потратить часть топлива, которая уже не будет использовано для отопление дома.


Если уж быть абсолютно точным, то топливо не горит «напрямую», горят газообразные продукты пиролиза. Это означает, что прежде чем дрова начнут гореть, то есть окислятся кислородом воздуха с выделением тепла, они должны быть нагреты до температуры испарения влаги в них, после этого должен пройти сам процесс испарения этой влаги, а уже потом начнется собственно пиролиз и горение пиролизных газов. Причем, процессы первой и второй стадии идут с поглощением тепла, так необходимого для пиролиза самой древесины, без которого не будет и самого процесса горения.
Мой выбор

Если после прочитанного, вы уже не планируете топить сырыми дровами, то исходя из своего жизненного опыта, я бы рекомендовал именно пиролизный котел.

До этого, у меня уже был двухлетний опыт эксплуатации шахтного колосникового котла KALVIS–2-70. Из выявленных недостатков отмечу, что его теплообменник невозможно было почистить от осевших на нем смол без предварительного разогрева до температуры выше 60°С. В конечном итоге, осознав все технологические изъяны этой конструкции, я решил обратиться к специалистам для её радикальной переделки. В результате этой глубокой модернизации я и стал обладателем пиролизного котла.

Установка

Котел лучше располагать в специально отведенном для него помещении, так как я еще не встречал котлов, которые не дымят в помещении при догрузке топливом (а мой, к тому же, иногда дымит еще и по причине несовершенства конструкции).
Кроме того котлы обычно комплектуются дымососом или вентилятором наддува, которые обычно, довольно прилично шумят. Остальные механизмы управления узлами СО (циркуляционные насосы, приводы воздушных заслонок, заслонка дымохода и шаровые краны с электроприводами) работают почти бесшумно.

Кроме прочего, нужно учитывать, котел для своей работы потребует большого притока воздуха в то помещение, в котором он находится, что станет причиной возникновения холодных сквозняков. Из всего выше сказанного, котел лучше располагать в отдельном помещении в теле дома.

Дымоход у меня расположен вертикально без изгибов и является частью внутренней стены дома, и во время работы котла дополнительно излучает тепло в дом.

Так как котел – это агрегат, в котором генерируемое тепло передается теплоносителю воде, то на его поверхности нет «раскаленных» частей, так как он не нагревается выше температуры кипения воды. Кроме того водяная рубашка снаружи, обычно защищена кожухом, температура которой редко превышает 30 — 35 град.

Заготовка дров и не только.

Основным видом топлива для пиролизного котла является древесина.

Годятся любые дрова: хвойные, лиственные, сосновые, дубовые, березовые и т.д. Все они имеют примерно одинаковую теплотворную способность. Твердые породы, такие как дуб, имеют теплотворную способность выше, но они и стоят дороже, так что гонятся за ними я особого смысла не вижу. Для заготовки отлично подходит любое мертвое дерево, упавшее или сухостой. Главное, что бы дрова были не сырые и не дорогие, лучше лично заготовленные, и для кошелька и для здоровья полезнее (можно запросто сэкономить на абонемент в фитнес-клуб). Отчасти потому, что при покупке на стороне трудно соблюсти все выше перечисленные условия, я и не люблю покупать дрова. Мне как-то в первый отопительный сезон привезли машину дров из лесхоза, так их остатки весной выпустили побеги и укоренились у меня во дворе. С тех пор, дрова заготавливаю только самостоятельно.

Кроме дров пиролизный котел с удовольствием потребляет солому, пеллету, стружку, торфяные брикеты и обычный торф, сортированные бытовые отходы (бумага, пластик, упаковка, все кроме ПВХ) и все это приправленное отработанным маслом или любыми другими отходами жидких углеводородов.

Но лучшим топливом для котла может стать автомобильная покрышка. Теплотворная способность автомобильной покрышки значительно превышает теплотворную способность лучших пород древесины и составляет 32 ГДж/т. Сравнится с ней может, разве что, теплотворная способность высококачественного угля. Ко всему этому покрышка имеет нулевую влажность, что тоже является положительным моментом. Ну а если у кого-то еще есть сомнения в том, что покрышка может довольно прилично гореть, можете глянуть на выходящие газы из моей трубы и на огонь в пиролизной камере.

Газы от сжигаемых покрышек
Огонь горящих покрышек
Так выглядят, подготовленные к загрузке в котел, автомобильные шины
То, что не только я расцениваю шину как прекрасное топливо, можно оценить по количеству
объявлений, которые предлагают металлокорд, остающийся после ее сжигания.
Экологические нормы и их нарушение

Также должен акцентировать внимание на том, что ни в ком случае не призываю к повсеместному сжиганию автомобильных шин в домашних отопительных агрегатах. Живя в обществе среди людей, обустраивая свой быт, мы не должны причинять неудобства своим соседям, в том числе наши действия не должны нарушать законодательства государств, гражданами которых мы являемся.
Шина как топливо упоминается мною в этой статье только как частный удачный опыт, который стал возможен после основательной модернизации серийного бытового котла, при условии постоянного пристального контроля за процессом горения через видеокамеру и оперативного управления.


Для обеспечения пожарной безопасности в котельной я на ее потолке разместил два автоматических порошковых огнетушителя типа Буран 2,5 и автономный датчик дыма.
Розжиг

Котел легче разжечь небольшим количеством дров (такая закладка осуществляется через нижнее окно загрузи дров), но при желании можно запустить котел и с полной загрузкой (для такой загрузки используется верхнее окно загрузки дров).

При запуске с полной загрузкой разжигаю котел через пиролизную горелку с помощью заранее вставленного в нее фитиля из гофрокартона (вид сверху на пиролизную горелку через нижнее окно загрузки топлива). Также облегчает розжиг небольшое количество отработанного моторного масла и мелкие дровяные щепки.

Продукты сгорания

Пиролизную камеру котла (он же зольник), чистить приходится каждый раз после отопительного цикла (примерно 10 – 12 часов непрерывной работы), так как объем ее ограничен, а пиролизным газам все же нужно где-то гореть.Теплообменники котла я стараюсь чистить через отопительный цикл, то есть примерно два раза в месяц, так как от степени их чистоты зависит эффективность отбора тепла сгенерированного в пиролизной камере. Обычно, после одного цикла отопления остается ведро золы и почти чистый металлокорд от шин. И зола и металлокорд, как оказалось, являются ценным продуктом для дальнейшего использования.

Продуктами полного сгорания топлива ТТК являются углекислый газ, вода и зола. Вот именно водяной пар и окрашивает дым в белый цвет на непрогретом дымоходе. Продуктом неполного сгорания топлива ТТК может стать сажа. Значительное ее количество может окрашивать дым в черный цвет, а незначительное, в смеси с водяным паром, в различные оттенки серого.

Конструкция котла

На фронтальной стороне моего котла расположены три дверцы:

  • Верхняя дверца нужна для того, чтобы увеличить объем разовой загрузки. Чем больше за один раз удается загрузить дров, тем реже приходится это делать.
  • Средняя дверца нужна для обслуживания котла (чистка от золы, подготовка к новой растопке), через самую верхнюю дверцу этого просто невозможно сделать. За ней находится камера загрузки.Внешний вид камеры загрузки Эта камера ещё называется газогенераторной, так как именно в ней и происходит процесс пиролиза дров.
  • За нижней дверцей находится камера сгорания пиролизных газов.Некоторые подробности про расположение камеры сгоранияКамера сгорания (камера дожига) расположена под камерой загрузки топлива для того, чтобы локализовать определенный объем топлива участвующего в процессе горения. То есть, в пиролизном котле горят только те дрова, которые находятся в зоне охвата воздушных заслонок (это ниже средней дверцы и немного на высоте самой средней дверцы), остальное топливо — просто запас, который по мере выгорания опускается в зону горения. Если же пиролизную камеру расположить сверху, а топливо поджигать снизу, то пламя подымаясь снизу вверх по дровам будет пиролизовать все топливо сразу и вместо горения мы получим много дыма и как следствие смолистые вещества на теплообменнике.

Воздух на топливо в моем ТТК подается через три воздушные заслонки в разные зоны котла, что дает возможность получить наиболее эффективное сгорание топлива.

Наличие 3-х воздушных заслонок, графика температуры в дымоходе и видеокамеры в пиролизной камере позволяет минимизировать тепловые потери и получить наиболее эффективное сгорание не только различных видов древесины, но и более калорийного топлива, такого как сортированные бытовые отходы и изношенные автомобильные шины.

Немного теории

Обычно в ТТ пиролизные котлы воздух подается в строгом заранее спроектированном соотношении без учета особенности топлива, его фактической влажности и стадий, которые оно проходит по мере его выгорания в котле. Это приводит к тому, что иногда воздуха вполне достаточно для эффективного сгорания проектного топлива (к примеру сосновых дров), но чаще воздуха либо меньше чем нужно, (и тогда продукты неполного сгорания топлива конденсируются на теплообменнике ТТК в виде дегтя), либо больше чем нужно (и тогда лишний воздух не участвующий в процессе горения остужает теплообменник, и уносит в атмосферу драгоценное тепло которое сгенерировал ТТК).


Мой котел, как и большинство пиролизных котлов, родился с одной заслонкой (сейчас она средняя по высоте, она же и основная). Заслонка расположена на фронтальной части котла, ниже нижней двери загрузки топлива.

Воздух через нее подается на топливо, расположенное, над горелкой и охватывает примерно 100 см3 дров. Это тот объем топлива, который участвует в основном процессе горения. Этот же объем топлива формирует угольную подушку, на которой воспламеняются пиролизные газы.

Верхняя заслонка расположена под обшивкой, выше нижней двери загрузки топлива. Она появилась уже позже, в ее задачу входит формирование дополнительного объема пиролизных газов, уже после того как топливо расположенное в зоне охвата средней заслонкой прошло с первой по третью стадии пиролиза, и уже не выделяет в достаточном количестве горючих газов, по отношению к подаваемому через нее (среднюю заслонку) объему воздуха.

Верхняя заслонка
Нижняя заслонка появилась уже последней по причине необходимости подачи дополнительного объема воздуха при сжигании более калорийного топлива, чем дрова, к примеру, автомобильная шина. Расположена нижняя заслонка над дверью камеры сгорания и подает дополнительный воздух в камеру сгорания.Средняя и нижняя заслонки
В качестве приводов для этих заслонок используются недорогие, но вполне пригодные для этой цели сервомашинки MG996R 15кг.
Система отопления

Обычно, счастливые обладатели ТТК, проходят естественные стадии эволюции:
  1. Приобретение котла и познание первой радость от тепла, принесенного им в дом. Кормят его маленькими порциями дров, кормят часто и с удовольствием.
  2. Потом пытаются растянуть время между кормежкой. Потом пытаются экспериментировать с различными видами корма: топят исключительно дубом, акацией, и даже редким в наших краях, углем.
  3. В конце концов, приходит понимание, что «котел существует для меня», а не «я для котла».
  4. После этого владелец котла начинает подыскивать в доме место под теплоаккумулятор (ТА).

Мне повезло больше чем остальным, еще в процессе проектирования дома я спланировал себе место под ТА, благополучно миновав эту начальную стадию.

В качестве теплоаккумулятора можно использовать любую емкость, которая выдержит давление в Вашей СО (у меня оно не превышает 1,5 кг/см2), либо сделать ТА косвенного нагрева (водяной контур такого ТА обменивается теплом с контуром котла через дополнительный теплообменник), тогда его будет легче вписать в пространство комнаты. Здесь можно подробнее ознакомится с моим.

Необходимо также учитывать, что температура воды в ТА нередко доходит до 94°С, поэтому материал из которого изготовлен ТА и труба подводящая в него теплоноситель должны выдерживать эти температуры.

Теплоаккумулятор не обязательно ставить в котельной рядом с ТТК (даже лучше за ее пределами), монтировать его можно в любом удобном для Вас помещении дома (можно даже так).

Также пришлось приобрести Ладдомат 21, хотя вполне можно было обойтись трехходовым смесительным клапаном и циркуляционным насосом контура котла.

Понадобились так же термостатические смесительные клапаны для контура теплого пола и контура радиаторов, хотя жизнь в последствии показала, что радиаторы в СО с ТТК и ТА бессмысленны.

Оказался не лишним в СО с ТТК и бойлер косвенного нагрева, ну и дальше уже по мелочи: расширительный бак, кран шаровый с электроприводом контура ТА, контура котла и контура бойлера. Насосы циркуляционные для контуров бойлера косвенного нагрева, теплых полов и радиаторов.


Легенда

1. Заслонка подачи воздуха
2. Привод заслонки подачи воздуха TowerPro MG996R
3. Датчик температуры воды на входе в котел ( температура обратки) — ds18b20
4. Привод заслонки дымохода
5. Дымосос
6. Датчик температуры дыма — (ТХА)
7. Кран шаровый с электроприводом контура котла
8. Датчик температуры воды на выходе из котла ( температура подачи) — ds18b20
9. Насос циркуляционный контура котла, входящий в состав Ладдомат 21
10. Датчик температуры воды нижней части ТА №1 — ds18b20
11. Теплоаккумулятор №1 — 4м3
12. Датчик температуры воды в верхнем патрубке ТА №1 — ds18b20
13. Кран шаровый с электроприводом контура ТА
14. Расширительный бак
15. Насос циркуляционный бойлера косвенного нагрева
16. Вход системы водоснабжения
17. Бойлер косвенного нагрева
18. Термостатический смесительный клапан контура радиаторов
19. Радиаторы отопления
20. Насосы циркуляционные контура теплых полов и контура радиаторов
21. Теплый пол
22. Термостатический смесительный клапан контура теплого пола
23. Датчик температуры воды нижней части ТА №2- ds18b20
24. Датчик температуры воды в верхнем патрубке ТА №2 — ds18b20
25. Кран шаровый подпитки водой системы отопления
26. Теплоаккумулятор №2 (косвенного нагрева) — 4м3
27. Показания температуры с устройства «Комнатный термостат».
28. Показания температуры с устройства «Шлагбаум»


Автоматика

По мере эксплуатации своей СО постепенно пришло понимание, что система, в том виде в котором она родилась, имела существенные недоработки.

Оказалось, что системах отопления на базе ТТК + ТА, есть смысл соблюсти ряд условий:

  1. Стремится отправлять в ТА только излишек тепла от ТТК.
  2. Отсекать ТТК от остальной системы отопления (СО) после прекращения им генерации тепла, так как после выгорание топлива нем, ТТК из генератора тепла превращается в его потребителя и начинает высасывать ранее запасенное тепло из ТА.

Поначалу приходилось вручную подключать ТТК к СО во время запуска и так же вручную его отключать от нее. Вручную делить тепловые потоки как в начале запуска ТТК, так и уже в процессе работы котла, когда формируется избыток тепла. К тому же штатный регулятор воздушной заслонки был слишком инерционен и не справлялся с поставленными перед ним задачами.

И тогда некоторые свои простые функции по управлению котлом было решено переложить на хрупкие плечи автоматики. Использование электронного блока управления (БУ), избавило меня от выполнения множества рутинных операций. Также, попутно, БУ справляется с такой тривиальной задачей как, защита ТТК от перегрева, то есть делает то, что делают подавляющее большинство фабричных БУ ТТ котлов.

Мой первый блок управления ТТК был далёк от совершенства.

Принципиальная схема

Каждый раз, когда мне нужно было подправить или изменить логику работы СО у меня пухла голова когда я смотрел на эту схему и пытался понять как же она работает.

В конце концов, при участии добрых людей, БУ приобрел тот вид, который он имеет сегодня, а также столь необходимый для меня функционал.
На экране в графическом виде отображается текущее состояние основных узлов СО, которые необходимо контролировать. При этом экран не перегружен информацией, и она легко читается.
Дополнительную информацию о том, какое оборудование в данный момент задействовано блоком управления можно получить от светодиодов блока реле.

Схемотехника

БУ моего котла собран на базе модуля Arduino Mega 2560. Выбор пал на Ардуино, потому что широко распространено, легко доступно, хорошо документировано, в сети множество уроков по его программированию, огромное дружелюбное интернет-сообщество, которое поможет, подскажет, научит.

Именно Ардуино позволяет реализовать функционал Вашего устройства, ограниченный лишь Вашей фантазией. К примеру, Ваш БУ зимой может управлять ТТК, но достаточно сменить в нем прошивку и подключить разъем силовых устройств к другой группе, и он станет управлять системой полива Вашего приусадебного участка или, к примеру, теплицей. С фабричным БУ ТТК таких фокусов не проделаешь.

Список элементов блока управления1. Arduino Mega 2560
2. Arduino Ethernet Shield W5100
3. Графический дисплей QC12864B
4. 4-канальный реле модуль – 2 шт.
5. DC-DC конвертер понижающий 4…38В в 1.25…32В для питания блока реле и дисплея.
6. DC-DC конвертер понижающий 4.5…28 В в 0.8…20 В 3А на MP1584 для отдельного питания «бутерброда» Arduino Mega 2560 + Arduino Ethernet Shield W5100
7. Цифровой усилитель термопары MAX31855
8. Термопара ТХА
9. Датчик температуры Dallas DS18B20 – 4 шт.
10. Привод заслонки подачи воздуха TowerPro MG996R
11. Резистор металлопленочный 4.7 кОм

Для питания БУ используется 12 вольтовый аккумулятор, который в свою очередь подключён к инвертору (600Вт). Он же обеспечивает работоспособность циркуляционных насосов СО.

Программное обеспечение

Мой блок управления котла, подключён к облачному сервису, это позволяет удаленно контролировать состояние системы, и при необходимости, так же удаленно, вносить корректировки в работу котла и системы отопления в целом. Зачем спрашивается удаленный контроль системы отопления и в частности удаленный контроль за работой ТТК? Полагаю, что только очень смелый человек может себе позволить оставить работающий котёл только под присмотром БУ стоимостью чуть больше 100 долларов. Я же приобрел уверенность в необходимости удаленного контроля, по мере приобретения своего личного восьмилетнего опыта эксплуатации ТТК.

Этот сервис предоставляет чрезвычайно полезную возможность графического представления данных с температурных датчиков, расположенных в ключевых точках СО, что в свою очередь не только дает представление о текущем статическом состоянии СО, но и о динамике развития происходящих там процессов. Так в частности данные полученные из вкладки «Графики» дают представление о текущем состоянии СО, корректность работы отдельных ее составляющих в соответствии заданной БУ программой, и в отличие от данных полученных с монитора БУ, дают представление о динамике этих данных, скорость изменения и направления движения (рост или понижение), что особенно важно в момент пороговых (критических) значений температур.

Произошла ли подпитка ТТК холодной водой из ТА или нет, мы можем удаленно, оперативно отследить на графике «Котел вход», а имела ли эта подпитка ожидаемый результат по защите котла от перегрева можем отследить на графике «Котел выход». Если же ожидаемого снижения температуры воды на входе/выходе из котла не произошло, значит по какой-то причине не открылся кран контура ТА и владельцу котла нужно принять адекватные меры по защите ТТК.

Так же данные полученные с этих графиков позволяю оперативно заметить и устранить ошибки котельщика допущенные при управление котлом.

В частности, благодаря графику «Дымовая труба» я вовремя заметил, что забыл вернуть в рабочее положение распределительную заслонку, которая направляет продукты сгорания топлива минуя теплообменник котла в дымоход (обычно ее переводят в такое положение при догрузке топлива, для снижения дымления в помещение), что в свою очередь привело к забросу температуры в дымоходе выше 250°С.

Графики работы Ладдомата

Противофазное поведение температур на графиках «Котел выход» и «Котел вход» обусловлено особенностями работы такого узла СО как Ладдомат 21 (на схеме обозначен № 9). Дело в том, что в его обязанность входить обеспечение поддержания температуры теплоносителя (в нашем случае вода) на входе в котел выше 55°С. Эта функция обеспечивается термостатическим клапаном, который входит в состав Ладдомат 21.
Так как система ТТК + Ладдомат 21 достаточна инерционна, то мы и наблюдаем на графике противофазное колебание температур. Такое колебание температур, на графиках «Котел выход» и «Котел вход» свидетельствует о нормальной работе СО в целом.

Графики работы теплообменника

По достижении пороговой температуры на выходе из котла выше 85°С. БУ ТТК дает команду на открытие шарового крана (№13), при этом горячая вода поступает уже не только в отопительные приборы дома (теплый пол и радиаторы), но и в ТА (№12), при этом холодная вода выходящая из ТА поступает на вход в ТТК, что в свою очередь приводит к снижению температуры на выходе из котла. Другими словами, всё избыточное тепло направляется в теплоаккумулятор.

Графики защиты от перегрева

Если обычной меры (подпитки котла водой из ТА) оказалось не достаточной и температура на выходе из котла продолжает расти, то БУ ТТК даёт команду на закрытие воздушных заслонок и заслонки дымохода. Это позволяет снизить мощность котла и нормализовать температуру воды на его выходе. Таким образом происходит защита котла от перегрева.

Графики ручного регулирование воздушных заслонок

График температуры в дымовой трубе, дает представление о стадии в которой находится ТТК (розжиг, активный пиролиз или выгорание остатка топлива) и в совокупности с видео, получаемым из пиролизной камеры, позволяет сделать вывод о состоянии пиролизной камеры и при необходимости удаленно (через сайт) откорректировать положение воздушных заслонок управляющих качеством сгорания топлива.
Так к примеру через 85 минут после запуска котла, уменьшилось выделение пиролизных газов в зоне охвата средней воздушной заслонкой, что привело к снижению температуры дыма. После смены положение заслонок, верхней — с 0% на 48% и средней — с 100% на 50% (где 0 – полностью закрыта, 100% — полностью открыта) температура дымовых газов снова выросла.

Графики начала активной стадии пиролиза
На этой части графика отображено начало активной стадии пиролиза шины, это видно по стремительному росту температуры дыма и температуры теплоносителя на выходе из котла, и как следствие увеличичение мощности котла. В этот момент нужно откорректировать положение воздушный заслонок на период активной стадии пиролиза шины.
График дымохода

Глядя на этот график можно сделать вывод, что продолжительность работы котла составила примерно 20 часов 30 минут. После розжига котел перешел в активный режим (температура дыма более 110°С) примерно через 30 минут поджога дров. Еще через 30 минут температура дыма перешла границу 135°С и котел перешел в режим свободной тяги (БУ отключил дымосос и открыл заслонку дымохода). Далее котел работал на максимальной своей мощности, примерно, до 14 часов 30 минут (в это время, скорее всего, была произведена догрузка котла топливом).
В таком режиме котел доработал до 5 часов утра следующего дня и при понижении температуры в дымоходе ниже 110 град. БУ ТТК перевел котел в спящий режим (отключил циркуляционный насос («Ладдомат 21»), №9, закрыл шаровый кран контура котла №7, выключил дымосос №5, закрыл заслонку дымососа №4, открыл кран шаровый контура ТА №13).
Далее БУ снабжал дом теплом из ТА. У меня всего два ТА, каждый объемом, примерно по 4 м3. Разряжал я их поочередно, тепла накопленного в них мне хватило примерно на пять дней.


Таким образом, графики во вкладке «История» дают возможность анализировать работу всей системы за уже прошедшие периоды и прогнозировать очередной запуск ТТК в соответствии с потребностями жильцов дома. Кроме того, такой взгляд со стороны даёт понимание для дальнейшего совершенствования системы отопления.
Заключение

Иногда у меня спрашивают, почему я выбрал дровяное отопление? Я отвечаю, мне просто повезло что у меня не было рядом газовой трубы. Теперь я счастливый человек, я не знаю, сколько стоит «газ для населения», не принимаю участия в обсуждении тарифов за отопление, меня просто это не беспокоит.

Справится ли женщина или подросток с твердотопливным котлом? Думаю, да, особенно если не будет другой альтернативы. Справлялись ведь как-то раньше, пока не развилась всеобщая «газовая зависимость».

Справляются и сейчас в далеко не бедных странах, к примеру, Германии или Испании.

К слову сказать, я как-то, на всякий случай (ну там болезнь одолеет, или откровенно лень будет) установил дополнительно к ТТК еще и электрокотел на 45кВт, но за 6 лет я включал его только один раз, когда проверял после монтажа.

Мои хорошие знакомые, беспокоясь обо мне, иногда спрашивают: «Не в тягость ли тебе вся это возня? Не возникало ли желания бросить всё и переехать туда, где есть центральное отопление?». Так вот, не в тягость, наоборот, для меня это очень увлекательное занятие для реализации своих творческих потребностей. Я, видите ли, пою ужасно, танцую плохо, картины вовсе не пишу, чем спрашивается еще можно скрасить долгие зимние вечера?

Пиролизный котел своими руками: принцип работы, видео-уроки

На значительной территории России дрова по-прежнему самый доступный вид топлива и многие отапливаются дровяными котлами. Все бы ничего, но в обычных твердотопливных котлах закладка прогорает за 2-3 часа, что совсем неудобно — дом надолго не оставишь. Есть котлы длительного горения. В них одна закладка дров может гореть до 8-10 часов, но стоят они солидных денег. Однако, как обычно, выход есть — сделать пиролизный котел своими руками. Не сказать, что это простая работа — навыки сварки должны быть на высоком уровне, да и материалы стоят немало. Тем не менее, самодельных пиролизников много. 

Содержание статьи

Принцип работы пиролизного котла

Применительно к отопительным котлам пиролизом называется горение топлива при недостаточном количестве кислорода. При этом топливо выделяет большое количество газов, практически все из них горючие. Эти газы направляются в специальную камеру сгорания и дожига, куда подается вторичный воздух. Газовоздушная смесь вспыхивает, выделяя большое количество тепла. Тепловой энергии выделяется намного больше, чем можно извлечь при обычном горении дров или угля. Дело в том, что многие из образовавшихся при горении топлива летучих веществ, имеют очень высокую температуру сгорания. В результате, из того же количества топлива, пиролизные котлы извлекают больше тепла.

Из-за особенностей процесса горения (выделения большого количества газов) такие установки называют еще газогенераторными котлами.

Конструктивная особенность пиролизных котлов — топка, состоящая из двух камер. В одну закладывается топливо (часто это верхняя часть топки), в ней же происходит выделение газов, и потому эта часть называется камерой газогенарации. Через неширокую горловину газы попадают во вторую камеру — дожига. Тут перемешиваются с вторичным воздухом, вспыхивают и сгорают практически без остатка.

Пиролизный котел с нижней камерой дожига

В среднем КПД пиролизников — выше 85%. Есть модели, способные выдавать 92% и даже немного больше. Но данные показатели возможны только и исключительно при использовании сухого топлива. Его влажность должна быть 5-8%. При 40% содержании влаги горение может полностью затухнуть, а при 20% просто буде неэффективным. И это — один из главных недостатков этой технологии: дрова и уголь приходится предварительно сушить, например, сделав площадку возле дымовой трубы. Просто дрова, просушенные в дровнике не пойдут, как и уголь, взятый из кучи на улице.

В видео продемонстрирован котел, в котором камера дожига находится вверху. Хотя котлы такого типа имеют более простое строение (образовавшиеся газы сами поднимаются вверх), самодельщики предпочитают камеру с нижним располодением камеры дожига (как на фото выше).

На что обратить внимание при изготовлении

Если вы собираетесь делать пиролизный котел своими руками, вам надо четко представлять не только механизм и принцип его работы, но и учитывать все неприятные моменты, которыми данные агрегаты обладают. В первую очередь необходимо сказать о том, что практически все пиролизные газы ядовиты. То есть, агрегат должен быть полностью герметичным, сварные швы должны быть высшего качества.

Кроме того, для обеспечения безопасности необходима система контроля за процессом горения (датчики температуры, дыма, наличия тяги) и автоматика, которая в зависимости от показаний датчиков регулирует процессы горения. Если самодельный пиролизный котел собираетесь делать на естественной тяге, автоматика может быть простейшей — энергонезависимой. При наличии вентилятора наддува для подачи воздуха в току, нужны уже более серьезные (и дорогие) устройства, а они питаются от сети 220 В. Работа котла такого типа без автоматики опасна, потому необходим источник бесперебойного питания, который обеспечит работу вентилятора и автоматики на 10-12 часов — время прогорания закладки.

Примерная компоновка пиролизного котла

Второй момент. В некоторых моделях пиролизников температура в активной фазе достигает 1000°C и выше. Обычная конструкционная сталь при таких условиях быстро прогорит. Чтобы котел существовал долго, необходима жаростойкая сталь и внутренняя футеровка самых термонагруженных частей. Если пиролизный котел делают своими руками, футеровку чаще всего делают из шамотного кирпича. В рабочей фазе шамот разогревается до малинового свечения и становится очень хрупким. Если, вдруг, вам придется в это время орудовать в печи, будьте аккуратны — повредить футеровку в данный момент легко, а ремонтировать — долго и сложно.

Сколько будут стоить материалы и запчасти

Сколько точно будет стоить пиролизный котел, сделанный своими руками, зависит от требуемой мощности и выбранной конструкции. Однако, если покупать жаростойкую сталь, колосники, делать футеровку, ставить автоматику (пусть и недорогую), сумма набегает 850-1200$. Это затраты на материалы и компоненты, но с самостоятельной сваркой. Они озвучены теми, кто уже пиролизник сварил и использует. Если за сварку придется платить, то расходы надо удвоить.

Как видим, в случае владения сваркой, экономия есть, но далеко не самая большая. Можно найти готовые варианты твердотопливный пиролизных котлов за 1500$. Хотя, как известно, дешевый товар имеет низкую цену не просто так. На чем-то там сэкономили. И даже можно предположить на чем: на футеровке. Именно секреты предохранения стенок топки от перегорания берегут производители больше всего, и тратят на исследования в этой области большие деньги. Потому качественное оборудование и стоит больших денег.

Видео-проект пиролизного кола, процесс сборки

<

устройство, преимущества, характеристики и отзывы

Применение метода пиролиза в конструкции твердотопливных устройств отопления позволяет добиться удивительной эффективности даже при работе на таком низкокалорийном топливе как дрова. Однако у него есть один существенный минус: хороший КПД будет только при использовании сухих дров. Герой нашего сегодняшнего обзора — пиролизный котел «Мотор Сич» лишен этого недостатка, и может спокойно работать даже на свежеспиленных дровах. В этом обзоре мы рассмотрим конструкцию газогенераторного котла «Мотор Сич», его преимущества, технические характеристики и отзывы владельцев, использующих его для отопления своих домов.

Производством котлов длительного горения «Мотор Сич» занимается Лебединский Моторостроительный Завод. Данное предприятие базируется на Украине и занимается производством отопительных устройств пиролизного типа как бытового, так и промышленного назначения. На российском рынке реализацию водогрейных котлов «Мотор Сич» осуществляет компания «Атом».

Устройство дровяного котла «Мотор Сич»

Котлы «Мотор Сич» работают с использованием метода пиролиза. Его отличие от классического горения в том, что сжигание проходит в два этапа. Вначале, заложенная в котел древесина разогревается и медленно тлеет при недостатке кислорода. Из нее начинает выделяться пиролизный газ, который затем дожигается в отдельной камере при смешивании со вторичным воздухом. Такой метод горения гораздо эффективнее традиционного, но реализовать его сложнее. Поэтому пиролизные котлы обычно дороже котлов прямого горения.

Фото 1: Газогенераторный котел «Мотор Сич» с водяным контуром

Корпус котла на дровах «Мотор Сич» изготавливается из стали толщиной от 6 до 10 мм. Внутри него расположены друг под другом две камеры. В верхнюю загружаются дрова, а нижняя используется для сжигания древесного газа. Всю заднюю часть котла занимает трубчатый теплообменник, пройдя который, отработанные газы выводятся в атмосферу через дымовую трубу.

Фото 2: Топка водогрейного котла на дровах «Мотор Сич»

Обычно в пиролизных отопительных устройствах, таких как бытовой котел длительного горения на дровах «Атмос» применяется футеровка только камеры дожига. Модель «Мотор Сич» имеет футеровку керамобетоном как верхней, так и нижней камеры. Это позволяет добиться высоких температур сжигания дров исключая вероятность прогорания стенок. Именно благодаря этому особому покрытию эффективно сгорают даже сырые дрова.

Фото 3: Устройство бытового котла отопления «Мотор Сич»

Принцип работы котла «Мотор Сич» заключается в следующем. Дрова загружаются в камеру сгорания и поджигаются. Дверца топки плотно закрывается и через специальные отверстия в стенках начинает подаваться первичный воздух. Топливо медленно тлеет выделяя пиролизный газ, которые нагнетается в нижнюю камеру через соединительное сопло. В нижней камере он смешивается со вторичным воздухом и сгорает при высокой температуре. Дымовые газы пройдя по трубам теплообменника и передав энергию теплоносителю, выводятся в окружающую среду через дымоход.

Завод «Мотор Сич» выпускает как бытовые модели мощностью от 16 до 80 кВт, так и промышленные от 100 до 300 кВт. Ниже приведены технические характеристики пиролизных котлов подходящих для использования в частных домах или небольших производственных помещениях:

Модель МС-16 МС-25 МС-32 МС-40 МС-60 МС-80
Мощность, кВт 8-19 13-30 16-38 20-48 30-72 40-96
Площадь помещения, м² 80-190 130-300 160-380 200-480 300-720 400-960
КПД при влажности дров 20, % 90
Длинна дров, м 0,З8 0,5 1,0
Диаметр дымохода, мм 168 200 219
Цена, руб 109 000 125 000 147 000 168 000 250 000 343 000

Как видите эффективность пиролизных моделей «Мотор Сич» выше чем у традиционных устройств, таких как классические бытовые чугунные отопительные котлы на твердом топливе. Давайте посмотрим какие у них еще есть достоинства и может мы сумеем найти и пару недостатков.

Плюсы и минусы котлов «Мотор Сич»

Как вы успели узнать, устройство пиролизного котла сложнее чем типового твердотопливного отопителя. Да и стоимость таких устройств обычно существенно выше. Какие же еще преимущества дает эта замысловатая конструкция, попробуем разобраться:

  • Долгий срок службы

    Применение особой толстой стали, футеровки камер загрузки и сгорания, прочных сварных швов и надежной электронной системы управления — все это позволяет значительно увеличить срок эксплуатации котлов «Мотор Сич», по сравнению с аналогичными моделями.

  • Возможность использования сырых дров

    Чувствительность к влажности топлива — одна из самых главных проблем пиролизных котлов. Наличие футеровки загрузочной камеры дает возможность использовать древесину влажностью до 50%.

  • Высокая эффективность

    При обычном горении эффективность оставляет желать лучшего. Топливо сгорает не полностью и большой процент полезной энергии улетает в трубу. В котле «Мотор Сич» из дров выжимается все, что возможно. В итоге КПД котла на сухой древесине достигает 90%.

  • Экономичность

    Используя потенциал топлива по максимуму, вы направляете всю его энергию на отопление своего помещения, не расходуя ее понапрасну.

  • Длительная автономная работа

    Классические твердотопливные котлы необходимо загружать каждые несколько часов. При использовании достаточно сухой древесины, котел «Мотор Сич» способен проработать без дозагрузки до полусуток.

Фото 4: Блок управления пиролизным котлом «Мотор Сич»

В дополнение к тем преимуществам, которые озвучены выше стоит отметить и некоторые недостатки усложненной конструкции пиролизного котла «Мотор Сич»:

  • Обязательно наличие электропитания

    Процесс горения в котле «Мотор Сич» организован таким образом, что возможна только принудительная тяга, которая осуществляется электрическими вентиляторами.

  • Высокая цена

    Пиролизные котлы ощутимо дороже классических. Скорее всего такое устройство не будут покупать те, кто ориентирован на более бюджетные модели.

Эти минусы наблюдаются не только у украинских котлов «Мотор Сич», но и у всех водогрейных пиролизных котлов длительного горения произведенных в России, о которых мы рассказывали в наших предыдущих обзорах на сайте kotlydlyadoma.ru. Давайте теперь узнаем, что о моделях «Мотор Сич» думают их владельцы.

Отзывы о работе газогенераторных котлов «Мотор Сич»

После покупки, монтажа и обвязки многие из владельцев твердотопливных котлов «Мотор Сич» делятся своим опытом эксплуатации этих отопительных приборов на различных форумах. Предлагаем вашему вниманию несколько отзывов:

Котел «Мотор Сич» МС-16 использую в отопительной системе загородного дома площадью 150 квадратов. Отопление помещений происходит с помощью теплого пола. Котел топлю брикетами. По расходу топлива могу сказать следующее: при температуре -20 °C за окном в сутки делаю 2 закладки по 30 кг, при это в доме стабильно +22 °C. Единственный минус который хочется отметить — не очень удобно чистить теплообменник.

Алексей Сергеевич, Москва
Фото 5: Дожиг пиролизных газов в отопительном котле «Мотор Сич»

Отапливаю котлом «Мотор Сич» МС-25 частный трехэтажный дом общей площадью 160 м². Первый этаж построен из бетонных блоков, а два других из круглого бревна. Утепление первого этажа пенопласт + обшивка, второй и третий обшиты минватой. Первое время топил сырыми дровами, эффективность была пониже поэтому приходилось делать около 3 закладок в сутки. При переходе на сухое топливо количество закладок сократилось до 2. Без электропитания он не работает, т.к. тяга принудительная. Так, что если есть перебои с электроэнергией — ставьте ИБП.

Василий Николаевич, Архангельск

Уже больше года как в моем доме установлен «Мотор Сич» МС-16. Котел основательный, массивный, все швы качественно проварены. За то время, что отапливаю им, понял, что он всеядный. Пробовал топить дровами, брикетами, опилками и другими отходами деревообработки. Сейчас использую только дрова. За отопительный сезон расход составил 6,5 тонн. При установке делайте прочный фундамент под него, т.к. из-за футеровки он весит не мало.

Андрей Дмитриевич, Нижний Новгород

Больше информации о котлах «Мотор Сич» вы сможете узнать из видео с официального сайта производителя:

В котлах «Мотор Сич» устранен главный недостаток пиролизных котлов — чувствительность к влажности топлива. Помимо этого сделан он качественно и основательно. За все время эксплуатации многими пользователями, существенных недостатков выявлено не было. Однако из-за сложной международной ситуации купить котел «Мотор Сич» на территории России может быть проблематично.

Отопительный котел-утилизатор пиролизный длительного горения , твердотопливный СИВ-50

Технические характеристики

Мощность, кВт: 50
Пиролизный: да 
Время сгорания дров, до ч: 10 
Длина полена. до мм: 700
Тип: твердотопливные, с возможностью утилизации (сжигания) горючих, твердых бытовых отходов 
КПД, % 92 
Число контуров одноконтурный 
Тип камеры горения закрытая, с каналом дожига 
Объем камеры загрузки, м3 600х580х850, 0,295м3 
Вес. кг: 520
Диаметр дымохода. мм: 170 
Отапливаемая площадь до, м2 при H-потолка=2,5м 450 
Габариты, мм: 1100х750х1200

 

 Комплектация:

  • Техническая документация
  • Вентилятор поддува воздуха в топку котла
  • Система автоматического управления САУК-2017

 

Произведено: 

ООО “СтройИндустрия-В”

Россия – страна изготовителя.

 

Особенности / Преимущества

небольшие габариты при современном дизайне

отсутствие критических точек перегрева
простота эксплуатации и технического обслуживания экологическая чистота за счет полного сжигания
регулировка и поддержание мощности контроллером управления возможность обслуживания котла без приостановки работы котла (один раз за отопительный сезон)
высокий КПД 92%, благодаря пиролизному сжиганию топлива и уникальной конструкции теплообменника  пожаробезопасность (за счет секущего теплообменника, выполняющего роль искрогасителя)

 

 

Не знаете, как обеспечить эффективное отопление площади до 450 кв. м? Тогда станет Вашим верным помощником в решении любых проблем, связанных с отоплением. Мощность данного котла утилизатора достигает 50 кВт, что вполне достаточно для Вашей цели, обогрев помещения площадью около 450 м².

Вместительной топка котла способна принять в себя дрова длиной до 70 см, заправка может осуществляться не только дровами, но и углем, торфом и любыми видами твёрдых отходов, начиная от бытовых отходов и заканчивая автошинами. На одной закладке котёл  может спокойно непрерывно работать до 10 часов, это возможно вследствие использования принципа пиролиза, то есть происходит сгорание газа, которое выделяется используемым органическим топливом. Вдобавок одним из достоинств данного котла является лёгкость управления. Совладать с настройкой и контролем сможет любой диспетчер.

Технология пиролиза предоставляет возможность существенно увеличить период непрерывной работы на одной закладке, что делает его в 4 раза экономичнее дровяного котла прямого горения, и в 3 раза, чем газовый.

Отопительный котел-утилизатор пиролизный длительного горения , твердотопливный СИВ-50 — лучшее решение Ваших проблем.

энергоэффективное отопительное оборудование: поставка, монтаж, сервис

Приглашаем в демонстрационный зал салона отопительного оборудования “АТМОС”, где представлены пиролизные котлы длительного горения ATMOS, пеллетные автоматические котлы ATMOS, накопительные косвенные и комбинированные бойлеры DRAZICE, солнечные панели, вакуумные коллекторы и тепловые насосы REGULUS, теплоаккумуляторы DRAZICE, напольные газовые котлы ATTACK, насосные группы быстрого монтажа REGULUS и многое другое, необходимое для качественного монтажа и установки твердотопливных и газовых котлов.

Доступные цены, рассрочки, акции, скидки – множество выгодных предложений от импортера чешского отопительного оборудования.


ОФИЦИАЛЬНЫЙ ДИСТРИБЬЮТОР


Акции

Условия акции: купить пиролизный котел ATMOS в 2021 году ! Подарок – 5 м 3 дров! В период с 20 марта по 31 декабря 2021 года при покупке пиролизного котла ATMOS мощностью от 20 кВт до 35 кВт мы дарим 5 м 3 дров. …

подробнее

С 01.04.2021 года ожидается существенное подорожание цен на отопительное оборудование ATMOS , DRAZICE , MORA-TOP . Предлагаем купить пиролизный или пеллетный котел ATMOS , бойлер косвенного или комбинированного нагрева DRAZICE , купить электрический котел MORA-TOP по супер–ценам 2020 года! Успейте …

подробнее

Успейте укомплектовать объекты и приобрести оборудование по ценам 2020 года! До 01.03.2021 года мы замораживаем цены на весь товар нашего сайта! Предлагаем купить твердотопливный котел, бойлер косвенного нагрева или комбинированный водонагреватель, а также купить электрический котел или газовый …

подробнее

Новое на сайте

При выборе электрического котла помимо мощности необходимо обратить внимание на следующие вопросы: 1. Из какого материала изготовлены ТЭНы? 2. Есть ли ротация ТЭНов и почему эта функция необходима? 3. Какой насос установлен в электрическом котле? 4. Можно ли заливать “Теплый дом” в электрокотел? 5.

подробнее

Ниже приведены наиболее частые вопросы владельцев водонагревателей по эксплуатации и обслуживанию бойлеров DRAZICE. 1. Для чего необходимо устанавливать предохранительный клапан? 2. Как установить обратный клапанан в комбинированных бойлерах? 3. Почему горячая вода может иметь запах? 4. Как слить

подробнее

С 2021 года бойлер комбинированного нагрева DRAZICE OKC 200/1м² объемом 200 литров выпускается в новом современном дизайне с усовершенствованными пластиковыми крышками и держателями для удобной эксплуатации бойлера. Купить комбинированный бойлер DRAZICE OKC 200/1м² в новом дизайне!

подробнее

ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ Солнечная энергия представляет собой большую часть энергии, которая находится и используется на Земле. Количество солнечной энергии, ежегодно поступающей на Землю, варьируется в Европе от 900 кВт/ч/м2 на севере до примерно 1500 кВт/ч/м2 на юге. Солнечные тепловые

подробнее

ООО “Торговый дом “Атмос” ООО “Торговый дом “Атмос” – официальный дилер в Беларуси торговых марок – ATMOS , DRAZICE , ATTACK , REGULUS, HANSA . г. Минск, ул.Каменногорская, 47, офис 4 +375 29 374-13-45 +375 29 604-04-11 тел.+375 17 323-69-47 Демонстрационный зал широкого ассортимента

подробнее

Решение купить пеллетный котел ATMOS основывается на главных аргументах – полная автоматизация процесса отопления, надежность, автономность, комфорт, эффективность и экономичность. Пеллетные автоматические котлы ATMOS – это: широкий диапазон мощности – от 15 кВт до 80 кВт. цельносварной

подробнее

Эквитермальное управление ATMOS ACD 03 и 04 – это новый элемент управления с сенсорным цветным дисплеем, позволяющий легко управлять котлом и системой отопления интуитивно понятным способом в соответствии с последними тенденциями. Блок управления ACD 03 предназначен для дополнительной установки в

подробнее

Водонагреватели DRAZICE – современные высокотехнологичные бойлеры для комфортного приготовления горячей воды. Предлагаем пройти тест и узнать ответы на многие острые вопросы. Победителю конкурса – фирменный подарок от фирмы

подробнее

Мы рады сообщить, что чешская торговая марка DRAZICE получила две медали в конкурсе “Чешский продукт года 2020”! Призовые места занял водонагреватель малой объема TO 10.1 . Водонагреватель предназначен для быстрого нагрева воды с помощью погружного ТЭНа мощностью 1,5 кВт. Этот успех,

подробнее

энергоэффективное отопительное оборудование: поставка, монтаж, сервис

Приглашаем в демонстрационный зал салона отопительного оборудования “АТМОС”, где представлены пиролизные котлы длительного горения ATMOS, пеллетные автоматические котлы ATMOS, накопительные косвенные и комбинированные бойлеры DRAZICE, солнечные панели, вакуумные коллекторы и тепловые насосы REGULUS, теплоаккумуляторы DRAZICE, напольные газовые котлы ATTACK, насосные группы быстрого монтажа REGULUS и многое другое, необходимое для качественного монтажа и установки твердотопливных и газовых котлов.

Доступные цены, рассрочки, акции, скидки – множество выгодных предложений от импортера чешского отопительного оборудования.


ОФИЦИАЛЬНЫЙ ДИСТРИБЬЮТОР


Акции

Условия акции: купить пиролизный котел ATMOS в 2021 году ! Подарок – 5 м 3 дров! В период с 20 марта по 31 декабря 2021 года при покупке пиролизного котла ATMOS мощностью от 20 кВт до 35 кВт мы дарим 5 м 3 дров. …

подробнее

С 01.04.2021 года ожидается существенное подорожание цен на отопительное оборудование ATMOS , DRAZICE , MORA-TOP . Предлагаем купить пиролизный или пеллетный котел ATMOS , бойлер косвенного или комбинированного нагрева DRAZICE , купить электрический котел MORA-TOP по супер–ценам 2020 года! Успейте …

подробнее

Успейте укомплектовать объекты и приобрести оборудование по ценам 2020 года! До 01.03.2021 года мы замораживаем цены на весь товар нашего сайта! Предлагаем купить твердотопливный котел, бойлер косвенного нагрева или комбинированный водонагреватель, а также купить электрический котел или газовый …

подробнее

Новое на сайте

При выборе электрического котла помимо мощности необходимо обратить внимание на следующие вопросы: 1. Из какого материала изготовлены ТЭНы? 2. Есть ли ротация ТЭНов и почему эта функция необходима? 3. Какой насос установлен в электрическом котле? 4. Можно ли заливать “Теплый дом” в электрокотел? 5.

подробнее

Ниже приведены наиболее частые вопросы владельцев водонагревателей по эксплуатации и обслуживанию бойлеров DRAZICE. 1. Для чего необходимо устанавливать предохранительный клапан? 2. Как установить обратный клапанан в комбинированных бойлерах? 3. Почему горячая вода может иметь запах? 4. Как слить

подробнее

С 2021 года бойлер комбинированного нагрева DRAZICE OKC 200/1м² объемом 200 литров выпускается в новом современном дизайне с усовершенствованными пластиковыми крышками и держателями для удобной эксплуатации бойлера. Купить комбинированный бойлер DRAZICE OKC 200/1м² в новом дизайне!

подробнее

ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ Солнечная энергия представляет собой большую часть энергии, которая находится и используется на Земле. Количество солнечной энергии, ежегодно поступающей на Землю, варьируется в Европе от 900 кВт/ч/м2 на севере до примерно 1500 кВт/ч/м2 на юге. Солнечные тепловые

подробнее

ООО “Торговый дом “Атмос” ООО “Торговый дом “Атмос” – официальный дилер в Беларуси торговых марок – ATMOS , DRAZICE , ATTACK , REGULUS, HANSA . г. Минск, ул.Каменногорская, 47, офис 4 +375 29 374-13-45 +375 29 604-04-11 тел.+375 17 323-69-47 Демонстрационный зал широкого ассортимента

подробнее

Решение купить пеллетный котел ATMOS основывается на главных аргументах – полная автоматизация процесса отопления, надежность, автономность, комфорт, эффективность и экономичность. Пеллетные автоматические котлы ATMOS – это: широкий диапазон мощности – от 15 кВт до 80 кВт. цельносварной

подробнее

Эквитермальное управление ATMOS ACD 03 и 04 – это новый элемент управления с сенсорным цветным дисплеем, позволяющий легко управлять котлом и системой отопления интуитивно понятным способом в соответствии с последними тенденциями. Блок управления ACD 03 предназначен для дополнительной установки в

подробнее

Водонагреватели DRAZICE – современные высокотехнологичные бойлеры для комфортного приготовления горячей воды. Предлагаем пройти тест и узнать ответы на многие острые вопросы. Победителю конкурса – фирменный подарок от фирмы

подробнее

Мы рады сообщить, что чешская торговая марка DRAZICE получила две медали в конкурсе “Чешский продукт года 2020”! Призовые места занял водонагреватель малой объема TO 10.1 . Водонагреватель предназначен для быстрого нагрева воды с помощью погружного ТЭНа мощностью 1,5 кВт. Этот успех,

подробнее Справочник

Water – Отложения в котлах: возникновение и контроль

Отложения являются серьезной проблемой при работе парогенерирующего оборудования. Скопление материала на поверхностях котла может вызвать перегрев и / или коррозию. Оба эти условия часто приводят к незапланированным простоям.

Системы предварительной обработки питательной воды для котлов достигли такого уровня развития, что теперь стало возможным снабжать котлы сверхчистой водой. Однако такая степень очистки требует использования сложных систем предварительной обработки.Капитальные затраты на такие комплекты оборудования для предварительной обработки могут быть значительными и часто не оправданы, если сопоставить их с возможностями внутренней обработки.

Необходимость обеспечить котлы питательной водой высокого качества является естественным результатом прогресса, достигнутого в производительности котлов. Отношение поверхности нагрева к испарению уменьшилось. Следовательно, скорость теплопередачи через излучающие водяные стенки трубы увеличивалась, иногда превышая 200 000 БТЕ / фут² / час. Допуск к осаждению в этих системах очень низкий.

Требуемое качество питательной воды зависит от рабочего давления котла, конструкции, скорости теплопередачи и использования пара. В большинстве котельных систем используется подпиточная вода, умягченная на основе цеолита натрия или деминерализованная. Жесткость питательной воды обычно составляет от 0,01 до 2,0 частей на миллион, но даже вода такой чистоты не обеспечивает работу без отложений. Следовательно, необходимы хорошие программы внутренней очистки котловой воды.

ДЕПОЗИТЫ

Обычные загрязнители питательной воды, которые могут образовывать отложения в котлах, включают кальций, магний, железо, медь, алюминий, кремнезем и (в меньшей степени) ил и нефть.Большинство депозитов можно разделить на два типа (рис. 12-1):

  • окалина, кристаллизовавшаяся непосредственно на поверхности трубы
  • иловые отложения, которые выпали в другом месте и были перенесены на поверхность металла проточной водой

Накипь образована солями, которые имеют ограниченную растворимость, но не полностью не растворяются в котловой воде. Эти соли достигают места отложения в растворимой форме и выпадают в осадок при концентрировании путем испарения. Образующиеся осадки обычно имеют достаточно однородный состав и кристаллическую структуру.

Высокая скорость теплопередачи вызывает высокую скорость испарения, которая концентрирует оставшуюся воду в зоне испарения. Из концентрированной воды может выпадать в осадок ряд различных соединений, образующих накипь. Характер образовавшейся накипи зависит от химического состава концентрированной воды. Обычные компоненты отложений – это кальций, магний, кремнезем, алюминий, железо и (в некоторых случаях) натрий.

Точные комбинации, в которых они существуют, варьируются от котла к котлу и от места к месту внутри котла (Таблица 12-1).Накипь может образовываться в виде силиката кальция в одном котле и в виде силиката натрия и железа в другом.

По сравнению с некоторыми другими реакциями осаждения, такими как образование фосфата кальция, кристаллизация окалины является медленным процессом. В результате образующиеся кристаллы становятся четко очерченными, а на металле трубки образуется твердый, плотный и хорошо изолирующий материал. Некоторые виды накипи настолько устойчивы, что сопротивляются любому механическому или химическому удалению.

Шлам – это скопление твердых частиц, которые осаждаются в основной массе котловой воды или попадают в котел в виде взвешенных твердых частиц.Отложения ила могут быть твердыми, плотными и вязкими. При воздействии высоких температур (например, когда из бойлера сливают горячий воздух) на месте часто накапливаются отложения ила. Затвердевшие таким образом отложения ила могут быть такими же неприятными, как накипь.

Как только начинается осаждение, частицы, присутствующие в циркулирующей воде, могут связываться с отложением. Связывание внутри частиц не обязательно должно происходить между каждой частицей в массе отложений. Некоторые несвязанные частицы могут быть захвачены в сеть связанных частиц.

Таблица 12-1. Компоненты кристаллической окалины, идентифицированные с помощью дифракции рентгеновских лучей.

Имя Формула
Акмит Na 2 OFe 2 O 3 4SiO 2
Анальцит Na 2 OAl 2 O 3 4SiO 2 2H 2 O
Ангидрит CaSO 4
Арагонит CaCO 3
Брусит Мг (OH) 2
Кальцит CaCO 3
канкринит 4Na 2 OCaO4Al 2 O 3 2CO 2 9SiO 2 3H 2 O
Гематит Fe 2 O 3
Гидроксиапатит Ca 10 (OH) 2 (PO 4 ) 6
Магнетит Fe 3 O 4
Нозелит 4Na 2 O3Al 2 O 3 6SiO 2 SO 4
Пектолит Na 2 O4CaO6SiO 2 H 2 O
Кварц SiO 2
Серпантин 3MgO2SiO 2 2H 2 O
Тенардит Na 2 SO 4
Валластонит CaSiO 3
Ксонотлит 5CaO5SiO 2 H 2 O

Связывание часто является функцией поверхностного заряда и потери гидратации воды.Оксид железа, который существует во многих гидратированных и оксидных формах, особенно склонен к связыванию. Некоторые силикаты будут делать то же самое, а многие масляные загрязнения являются печально известными связующими отложениями из-за реакций полимеризации и разложения.

Помимо причинения материального ущерба из-за изоляции пути теплопередачи от пламени котла к воде (Рисунок 12-2), отложения ограничивают циркуляцию воды в котле. Они делают поверхность трубы шероховатой и увеличивают коэффициент лобового сопротивления в контуре котла.Сниженная циркуляция в генераторной трубе способствует ускоренному осаждению, перегреву и преждевременному разделению водяного пара.

ЦИРКУЛЯЦИЯ КОТЛА

На рисунках 12-3 и 12-4 показан процесс циркуляции котла. Левые ножки U-образных трубок представляют собой сливные стаканы и заполнены относительно прохладной водой. Правые ноги представляют собой генераторные трубы и нагреваются. Тепло создает пузырьки пара, а конвекционные потоки создают циркуляцию. Чем больше тепла прикладывается, тем больше пара вырабатывается и скорость циркуляции увеличивается.

Если образуются отложения (Рисунок 12-4), шероховатая поверхность и частично ограниченное отверстие препятствуют потоку, уменьшая циркуляцию. При постоянном подводе тепла вырабатывается такое же количество пара, поэтому соотношение пара и воды в генерирующей трубе увеличивается. Вода в трубке становится более концентрированной, что увеличивает вероятность отложения солей в котловой воде.

В крайних случаях осаждение становится достаточно тяжелым, чтобы уменьшить циркуляцию до точки, при которой происходит преждевременное разделение пара и воды.Когда это происходит в трубе печи, выход из строя из-за перегрева происходит быстро. Когда отложения небольшие, они могут не вызывать поломки труб, но они снижают запас прочности конструкции котла.

До точки преждевременного отделения пара от воды скорость циркуляции котла увеличивается с увеличением тепловложения. Часто, как показано на Рисунке 12-5, точка перегиба (A) выше номинальной мощности котла. Когда контур загрязнен, точка перегиба кривой «циркуляция-теплоподвод» смещается влево, и общая циркуляция воды уменьшается.Это показано нижней пунктирной линией.

Обращение и депонирование тесно связаны. Осаждение частиц является функцией вытеснения воды, а также поверхностного заряда (рис. 12-6). Если поверхностный заряд на частице относительно нейтрален в своей тенденции вызывать прилипание частицы к стенке трубки или оставаться во взвешенном состоянии, адекватный водный поток удержит ее от трубки. Если циркуляции в контуре недостаточно для обеспечения достаточного отвода воды, нейтральная частица может прилипнуть к трубке.В случае крайне низкой циркуляции может происходить полное испарение и осаждение обычно растворимых солей натрия.

ХИМИЧЕСКАЯ ОБРАБОТКА

Обработка карбонатом натрия была оригинальным методом борьбы с отложениями сульфата кальция. Современные методы основаны на использовании фосфатов и хелантов. Первая – это программа осаждения, вторая – программа растворения.

Карбонатный контроль

До принятия фосфатной обработки в 1930-х годах образование отложений сульфата кальция было серьезной проблемой для котлов.Обработка карбонатом натрия использовалась для осаждения кальция в виде карбоната кальция для предотвращения образования сульфата кальция. Движущей силой образования карбоната кальция было поддержание высокой концентрации карбонат-иона в котловой воде. Даже там, где это было достигнуто, обычно происходило сильное отложение карбоната кальция. Поскольку давление в котле и скорость теплопередачи медленно увеличивались, накипь карбоната кальция становилась неприемлемой, так как это приводило к перегреву и выходу труб из строя.

Контроль фосфатов

Фосфат кальция практически не растворяется в котловой воде.Можно поддерживать даже небольшие уровни фосфата, чтобы обеспечить осаждение фосфата кальция в основной воде котла вдали от поверхностей нагрева. Таким образом, введение фосфатной обработки устранило проблему отложений карбоната кальция. Когда фосфат кальция образуется в котловой воде с достаточной щелочностью (pH 11,0–12,0), образуются частицы с относительно неадгезивным поверхностным зарядом. Это не предотвращает развитие отложений с течением времени, но их можно достаточно хорошо контролировать с помощью продувки.

В программе обработки фосфатным осаждением магниевая часть твердых примесей осаждается преимущественно в виде силиката магния. Если кремнезема нет, магний выпадет в осадок в виде гидроксида магния. Если поддерживается недостаточная щелочность котловой воды, магний может соединяться с фосфатом. Фосфат магния имеет поверхностный заряд, который может привести к его прилипанию к поверхностям трубок и накоплению других твердых частиц. По этой причине щелочность является важной частью программы осаждения фосфатов.

Силикат магния, образованный в программе осаждения, не имеет особой адгезии. Однако он способствует накоплению отложений наравне с другими загрязнителями. Анализ типичных котловых отложений показывает, что силикат магния присутствует примерно в таком же соотношении к фосфату кальция, как магний к кальцию в питательной воде котла.

Контроль фосфатов / полимеров

Органические добавки улучшают результаты обработки фосфатом. Первыми добавками были натуральные органические вещества, такие как лигнины, дубильные вещества и крахмалы.Органические вещества были добавлены, чтобы способствовать образованию жидкого осадка, который оседал в барабане для бурового раствора. Нижняя продувка из грязевого барабана удалила ил.

Было много достижений в области органических обработок (рис. 12-7). В настоящее время широко используются синтетические полимеры, и упор делается на диспергирование частиц, а не на образование жидкого осадка. Хотя этот механизм довольно сложен, полимеры изменяют площадь поверхности и отношение поверхностного заряда к массе типичных твердых частиц котла. При правильном выборе и нанесении полимера поверхностный заряд частицы может быть изменен в лучшую сторону (рис. 12-8).

Многие синтетические полимеры используются в программах осаждения фосфатов. Большинство из них эффективны при диспергировании силиката магния и гидроксида магния, а также фосфата кальция. Полимеры обычно имеют низкую молекулярную массу и многочисленные активные центры. Некоторые полимеры используются специально для солей жесткости или железа; некоторые эффективны для широкого спектра ионов. На рис. 12-9 показаны относительные характеристики различных полимеров, используемых для обработки котловой воды.

Таблица 12-2.Характеристики фосфата / полимера можно поддерживать при высоких скоростях теплопередачи за счет выбора подходящего полимера.

Chelant Control

Хеланты являются основными добавками в программе обработки солюбилизирующей котловой воды. Хеланты обладают способностью образовывать комплекс многих катионов (твердость и тяжелые металлы в условиях котловой воды). Они достигают этого, запирая металлы в растворимую органическую кольцевую структуру. Хелатные катионы не осаждаются в котле.При нанесении с диспергатором хелатирующие агенты образуют чистые водные поверхности.

Поставщики и пользователи хелатирующих агентов многое узнали об их успешном применении с момента их внедрения в качестве метода очистки питательной воды котлов в начале 1960-х годов. Хеланты были объявлены добавками для «чудесного лечения». Однако, как и в случае с любым другим материалом, самой большой проблемой было понять правильное применение.

Хеланты – это слабые органические кислоты, которые вводятся в питательную воду котла в форме нейтрализованной натриевой соли.Вода гидролизует хелатирующий агент с образованием органического аниона. Степень гидролиза зависит от pH; полный гидролиз требует относительно высокого pH.

Анионный хелатор имеет реактивные центры, которые привлекают координационные центры на катионах (твердость и примеси тяжелых металлов). Координационные центры – это области на ионе, которые восприимчивы к химическому связыванию. Например, у железа есть шесть координационных центров, как и у ЭДТА (этилендиаминтетрауксусная кислота). Ионы железа, попадающие в котел (например,g., как загрязнение из системы конденсата) в сочетании с ЭДТА. Все координационные центры на ионе железа используются EDTA, и образуется стабильный хелат металла (рис. 12-10).

NTA (нитрилотриуксусная кислота), еще один хелатирующий агент, применяемый в питательной воде котлов, имеет четыре координационных центра и не образует такой стабильный комплекс, как EDTA. В случае NTA неиспользуемые координационные центры катиона подвержены реакциям с конкурирующими анионами.

Хеланты соединяются с катионами, образующими отложения, такими как кальций, магний, железо и медь.Образовавшийся хелат металла растворим в воде. Когда хелат стабилен, осаждения не происходит. Хотя существует множество веществ, обладающих хелатирующими свойствами, на сегодняшний день EDTA и NTA являются наиболее подходящими хелатирующими агентами для обработки питательной воды котлов.

Логарифм константы равновесия реакции хелат-ион металла, часто называемый константой стабильности (Ks), можно использовать для оценки химической стабильности образованного комплекса. Для реакции кальций-ЭДТА:

(Ca) 2+ (EDTA) 4

В таблице 12-3 перечислены константы стабильности для EDTA и NTA с обычными загрязнителями питательной воды.

Таблица 12-3. Константы стабильности обеспечивают меру химической стабильности комплексов хелат-ион металла.

Металл-ион

ЭДТА

НТА

Ca + 2 10,59 6,41
мг + 2 8,69 5,41
Fe + 2 14.33 8,82
Fe + 3 25,1 15,9

Эффективность хелатирующей программы ограничена концентрацией конкурирующих анионов. За исключением фосфата, конкурирующие анионные ограничения на хелатирование EDTA обычно не являются серьезными. Щелочность и диоксид кремния, в дополнение к фосфату, являются ограничивающими факторами при использовании NTA.

Chelant / Polymer Control

Оксид железа является предметом особого внимания в современных программах очистки котловой воды.Отложения из питательной воды котлов низкой жесткости (менее 1,0 ppm) устраняются с помощью программ хелатирования и могут быть уменьшены до 95% с помощью хорошей программы обработки полимером / фосфатом. Оксид железа становится все более значительным фактором образования отложений в котлах из-за фактического устранения отложений твердости во многих системах и из-за того, что высокая скорость теплопередачи многих котлов способствует отложению железа.

Хелатирующие агенты с высокими показателями стабильности, такие как ЭДТА, могут образовывать комплексные отложения железа.Однако эта способность ограничена конкуренцией с гидрат-ионами. Опыт показал, что использование только ЭДТА или других хелатирующих агентов не является наиболее эффективным методом контроля железа.

При нормальной скорости подачи хелатирующего агента происходит ограниченное хелатирование поступающего твердого железа. Обычно этого достаточно для растворения некоторого количества конденсата, содержащего железо. Хелатирование магнетита (оксид, образовавшийся в условиях котла – смесь Fe2O3 и FeO) возможно, потому что хелатирующий агент соединяется с железистой (FeO) частью магнетита.

Избыточная подача (высокие уровни) хелатирующего агента может удалить большое количество оксида железа. Однако это нежелательно, поскольку высокий избыток хелатирующего агента не позволяет отличить оксид железа, образующий защитное магнетитовое покрытие, от оксида железа, образующего отложения.

Комбинация хелатирующего агента / полимера – эффективный подход к контролю над оксидом железа. Адекватный хелатный агент подается на комплексную твердость и растворимое железо с небольшим избытком для растворения примесей железа. Затем добавляются полимеры для кондиционирования и рассеивания любых оставшихся загрязнений оксида железа (Рисунок 12-11).

Программа хелатирования / полимера может обеспечить чистую водную поверхность, способствуя гораздо более надежной работе котла (рис. 12-12). График очистки вышедшего из строя котла может быть продлен, а в некоторых случаях отменен. Это зависит от оперативного контроля и качества питательной воды. Хелатирующие агенты с высокой стабильностью комплексообразования являются «щадящими» обработками – они могут удалять отложения, которые образуются, когда качество питательной воды или контроль обработки периодически отклоняются от стандарта.

Котлы с умеренными отложениями карбоната кальция и фосфата кальция могут быть эффективно очищены с помощью программы очистки хелантами в процессе эксплуатации.Программы очистки хелантами в процессе эксплуатации следует контролировать и не пытаться применять на сильно осажденном котле или применять слишком быстро. Хеланты могут вызвать сползание больших скоплений отложений за короткий период времени. Эти скопления могут закупоривать коллекторы или откладываться в критических зонах циркуляции, таких как трубы стенки печи.

В программе очистки хелатирующим агентом добавляется достаточное количество хелатирующего агента для растворения жесткости поступающей питательной воды и железа. После этого следует рекомендуемый избыток хелатирующей подкормки.Настоятельно рекомендуются регулярные осмотры (обычно каждые 90 дней), чтобы можно было отслеживать ход лечения.

Уровень полимера в котле также должен быть выше нормальной концентрации. Это удерживает частицы в объеме воды в максимально возможной степени, пока они не оседают в барабане для бурового раствора. Для удаления частиц из котла необходимо проводить повышенное количество «ударов» грязевого барабана.

Программы очистки хелантами в процессе эксплуатации не рекомендуется, если анализ отложений показывает, что основные компоненты состоят из силикатов, оксида железа или любых отложений, которые кажутся твердыми, плотно связанными или непористыми.Поскольку такие накипи не удаляются успешно в большинстве случаев, очистка хелантом в процессе эксплуатации не может быть оправдана в этих ситуациях.

Комбинации фосфатов / хелаторов / полимеров

Комбинации полимера, фосфата и хелатирующего агента обычно используются для получения результатов, сравнимых с обработкой хелатирующим агентом / полимером в котлах низкого и среднего давления. Чистота котла улучшается по сравнению с фосфатной обработкой, а наличие фосфата обеспечивает простой способ проверки для подтверждения наличия обработки в котловой воде.

Обработка только полимером

Программы обработки только полимером также используются с некоторой долей успеха. В этой обработке полимер обычно используется в качестве слабого хелатирующего агента, усложняющего жесткость питательной воды. Эти методы обработки наиболее успешны, когда жесткость питательной воды постоянно очень низкая.

Очистка котловой воды высокого давления

Котлы высокого давления обычно имеют зоны с высоким тепловым потоком и питательной водой, состоящие из деминерализованной подпиточной воды и большого процента возвратного конденсата.Из-за этих условий котлы высокого давления подвержены воздействию щелочи. Котлы низкого давления, использующие деминерализованную воду и конденсат в качестве питательной воды, также подвержены воздействию щелочи.

Существует несколько способов повышения концентрации котловой воды. Одним из наиболее распространенных является осаждение оксида железа на трубах с излучающими стенками. Отложения оксида железа часто довольно пористые и действуют как миниатюрные котлы. Вода втягивается в отложения оксида железа. Тепло, приложенное к осадку от стенки трубы, генерирует пар, который выходит через осадок.В осадок поступает больше воды, занимая место пара. Этот цикл повторяется, и вода под отложением концентрируется до чрезвычайно высокого уровня. Под отложением может находиться 100 000 ppm щелочи, в то время как основная вода содержит только около 5-10 ppm щелочи (рис. 12-13).

Парогенераторы, снабжаемые деминерализованной или испарившейся подпиточной водой или чистым конденсатом, могут быть защищены от щелочной коррозии с помощью обработки, известной под общим термином «скоординированный контроль фосфат / pH».«Фосфат является буфером pH в этой программе и ограничивает локальную концентрацию каустика. Подробное обсуждение этой обработки включено в главу 11.

Если отложения сведены к минимуму, площади, в которых может концентрироваться щелочь, будут уменьшены. Чтобы свести к минимуму отложение железа в котлах высокого давления (1000-1750 фунтов на кв. Дюйм), были разработаны специальные полимеры, которые диспергируют железо и удерживают его в воде.

Как и в случае программ осаждения фосфатов и контроля хелантов, использование этих полимеров с координированной обработкой фосфатом / pH улучшает контроль отложений.На рис. 12-14 показана эффективность диспергентов в борьбе с отложениями оксида железа. Условия испытаний: 1500 фунтов на квадратный дюйм (590 ° F), тепловой поток 240 000 БТЕ / фут² / час и скоординированный химический режим воды по программе фосфат / pH. Сравнение необработанной поверхности теплопередачи (показано слева) с условиями, обработанными полимерным диспергатором (показано справа), дает графическую иллюстрацию значения диспергентов в предотвращении осаждения парогенератора. Способность уменьшать накопление оксида железа является важным требованием при очистке котельных систем, работающих при высоком давлении и с питательной водой высокой чистоты.

В котлах сверхкритического давления используются полностью летучие компоненты, обычно состоящие из аммиака и гидразина. Из-за чрезвычайно высокой вероятности образования отложений и загрязнения паром в сверхкритической прямоточной котловой воде недопустимо наличие твердых частиц, включая твердые частицы для обработки.

Рисунок 12-1. Классификация вкладов.

Икс

Рисунок 12-2. Осаждение снижает передачу тепла от котловой трубы к котловой воде, увеличивая температуру металла трубы.Может произойти перегрев металла трубки и выход из строя.

Икс

Рисунок 12-4. U-образная трубка показывает циркуляцию воды и парообразование с отложениями.

Икс

Рисунок 12-5. Циркуляция как функция количества тепла в контуре котла.

Икс

Рисунок 12-6. Противодействующие силы действуют на частицы, переносимые водой. Поверхностные заряды могут притягивать частицы к отложению. Водяной поток «сметает» частицу.

Икс

Рисунок 12-7.Экспериментальные котлы используются для оценки программ химической обработки в жестких условиях.

Икс

Рисунок 12-8. (Слева) Сканирующая электронная микрофотография (увеличение 4000X) кристаллов фосфата кальция и силиката магния, образовавшихся в котловой воде, не обработанной диспергатором. (Справа) С помощью сульфированного полимера рост кристаллов контролируется.

Икс

Рисунок 12-9. Хотя для обработки котловой воды доступно много полимеров, уровни их эффективности различаются.

Икс

Рисунок 12-10. Большинство металлов имеют шесть реактивных координационных центров. EDTA может эффективно связываться с каждым координационным центром и образовывать стабильный комплекс.

Икс

Рисунок 12-11. Хелатирующий агент / полимер может обеспечить высокую степень защиты от отложений железа при условии использования подходящего полимера. Даже члены одного и того же семейства полимеров, такие как полиметакрилат (ПМА), могут сильно различаться по характеристикам.

Икс

Таблица 12-2.Характеристики фосфата / полимера можно поддерживать при высоких скоростях теплопередачи за счет выбора подходящего полимера.

Икс
Тип обработки Концентрация обработки котла (ppm) Скорость теплопередачи (БТЕ / фут 2 / час) Рабочее давление (фунт / кв. Дюйм) 900 40% уменьшение масштаба
Синтетический полимер А 10 185 000 300 44
Синтетический полимер B 10 185 000 300 93
Синтетический полимер C 10 185 000 300 94
Синтетический полимер B 5 185 000 300 56
Синтетический полимер C 5 185 000 300 94
Синтетический полимер B 10 185 000 900 64
Синтетический полимер C 10 185 000 900 92
Синтетический полимер B 10 300 000 900 44
Синтетический полимер C 10 300 000 900 86
Синтетический полимер B 10 300 000 1200 30
Синтетический полимер C 10 240 000 1200 90
Синтетический полимер C 10 300 000 1200 83

Рисунок 12-12.Хелант / полимер обеспечивает режим внутренней обработки без образования отложений. Условия испытаний: 600 фунтов на квадратный дюйм; 60 000 (большой зонд) + 180 000 (малый зонд) БТЕ / фут2 / ч питательной воды, постоянная подпитки.

Икс

Фосфатный цикл – без обработки

Phosphate Cycle – Натуральный кондиционер

Phosphate Cycle – Кондиционер для лигнина

Фосфатный цикл – Полимерные диспергаторы

Фосфатный цикл – смесь хелатирующего агента и полимерного диспергатора

Цикл хелатирования – смесь хелатирующего агента и полимерного диспергатора

Рисунок 12-13.Пористые отложения создают условия, способствующие высокой концентрации твердых частиц в котловой воде, таких как гидроксид натрия (NaOH).

Икс

Рисунок 12-14. Экспериментальные теплообменные панели котла (увеличение в 800 раз), подверженные загрязнению питательной водой железом. Отложение тяжелого оксида железа (слева) происходило без использования полимера. Практически чистая серая была достигнута с помощью специальной полимерной программы для железа (справа).

Икс

Последствия коррозии котла

Коррозия котла и ее последствия

Коррозия котла вызывает серьезные разветвления, являясь причиной половины отключений и почти всех отказов труб котлов на электростанциях.Не только электростанции пострадали от коррозии и выхода из строя котлов. На любом предприятии, где используются паровые котлы, могут возникнуть перебои из-за коррозии.

Устранение последствий коррозии – дело дорогостоящее и сложное. Чтобы сэкономить на затратах на ремонт и замену, вы должны сделать все возможное, чтобы предотвратить эрозию. Хотя защита котла от коррозии может показаться сложной битвой, это сэкономит деньги и время простоя вашего предприятия.

Причины коррозии

Коррозия имеет несколько причин, но многие из них связаны с химическим составом воды.Кислотность, растворенный кислород и твердые частицы могут способствовать коррозии котла. Поддержание баланса этих веществ может предотвратить повреждение системы, если вы поймете, почему уровни, выходящие за пределы допустимого диапазона, могут вызвать точечную коррозию металла.

1. Растворенный кислород

В присутствии кислорода сталь распадается на нерастворимые или растворимые соединения железа. Кислород вызовет точечную коррозию в секции предварительного кипячения и в трубах. Удаление кислорода с помощью катализированного сульфита натрия или гидразина химически удаляет кислород.Этот процесс помогает либо вместо механической деаэрации, либо после процесса.

2. Кислотность

Кислотность также влияет на коррозию материала котла. Кислотная коррозия часто возникает в части системы возврата конденсата. Низкий уровень pH, указывающий на более кислую воду, входит в тройку основных причин коррозии, наряду с растворенным кислородом и ослабленными участками металла. Хотя вода кажется доброкачественной, растворенные в ней газы могут повлиять на ее уровень pH, что приведет к износу поверхностей внутри вашего бойлера.Например, углекислый газ может сделать воду кислой, что способствует питтингу металла.

Кислотные атаки могут происходить не только от двуокиси углерода, но и от других химических веществ. В котлах высокого давления растворимые соли никеля или магния могут гидролизоваться в кислоты. Эти кислоты разъедают поверхности внутри котла, вызывая точечную коррозию и коррозию.

3. Растворенные твердые вещества

Твердые частицы в воде также могут способствовать образованию коррозии. Например, соли кальция и магния, кремнезем, марганец и железо могут образовывать накипь в бойлере.Когда они осаждаются на металле, эти образующие накипь минералы могут удерживать под собой соли натрия. Хотя натриевые соли не вызывают отложений, они могут вызвать точечную коррозию и коррозию под накипью, которые останутся невидимыми до тех пор, пока вы не удалите накипь.

Хотя натрий вызывает проблемы из-за накипи, он также может способствовать возникновению других проблем с коррозией в системе. Карбонат натрия может превращаться в гидроксид натрия путем гидролиза. Последнее соединение вступает в реакцию с железом в котле, растворяя его и образуя феррат натрия.Затем этот продукт снова подвергается гидролизу, снова превращаясь в гидроксид натрия, продолжая процесс. Суставы и изгибы особенно подвержены этому типу повреждений из-за содержания натрия в воде.

Хотя повторное использование как можно большего количества конденсата для экономии затрат на топливо становится все более популярным вариантом, оно может привести к большему количеству проблем, чем решить. Другая причина коррозии может произойти, когда неочищенный конденсат возвращается в систему, принося растворенные оксиды железа и меди обратно в котел.Чтобы предотвратить этот тип коррозии, на предприятиях часто используются летучие амины в форме нейтрализующих или пленочных обработок, которые предотвращают повреждение загрязняющими веществами в конденсате.

Нейтрализаторы превращаются в пар, где они могут реагировать с диоксидом углерода и нейтрализовать его, что снижает кислотность за счет повышения pH конденсации. Пленочные агенты превращаются в пар, но конденсируются в защитную пленку, которая не дает коррозии повредить металл.

Влияние коррозии котла

Коррозия может повредить внутреннюю работу вашего котла двумя возможными способами – общим и точечным.Общая коррозия вызывает повреждение всей системы. Однако точечная коррозия вызывает локальную эрозию небольших частей котла, например, труб.

Хотя вы должны следить за появлением коррозии при минимальном использовании котла, повреждение может произойти в любой момент. Поддержание химического состава воды и регулярная обработка системы предотвратит коррозию, которая может вывести вашу систему из строя или снизить ее эффективность.

1. Потеря эффективности

Коррозия и отложения накипи снижают эффективность системы.Продукты коррозии также способствуют образованию накипи. Таким образом, даже если у вас еще нет накипи, чем больше происходит коррозия, тем больше вероятность того, что вынутый металл вызовет отложения, снижающие эффективность. Даже небольшое нарастание накипи, составляющее одну восьмую дюйма, может значительно снизить эффективность.

Накипи циклически усиливают коррозию. Он может задерживать натрий под накипью, которая удаляет внутреннюю поверхность, что приводит к дальнейшему повреждению внутри котла и его трубопроводов.

Коррозия, разъедающая металл, также снижает эффективность системы.Отверстия в металле вызывают утечки, которые могут вызвать серьезные проблемы в работе и остановить котел либо для устранения повреждений, либо неожиданно вызвать отказ системы.

2. Сокращение срока службы системы

Отсутствие контроля над коррозией сокращает срок службы всей системы. Коррозия со временем усугубится, особенно если химическому составу воды не уделяется внимания. Потеря эффективности, которую вы испытываете, будет только ухудшаться до тех пор, пока система не выключится.

Например, коррозия, вызванная оксидами железа или меди из конденсата, может уменьшить циркуляцию воды, что может привести к истощению труб.Это может серьезно повредить трубы и другие части котельной системы. Чем больше частей котла нужно заменить, тем больше финансовая целесообразность в замене системы. Однако такая покупка сократит прибыль вашего предприятия больше, чем предотвратит коррозию.

3. Более высокие затраты

Коррозия может привести к чрезмерным затратам на ремонт системы или замену поврежденных деталей. Во многих случаях трубы или детали с изъянами требуют замены вместо ремонта. Чтобы устранить повреждение, вам необходимо выключить систему, что снизит производительность вашего предприятия.Чем чаще вам нужно делать ремонт, тем менее эффективным становится ваше предприятие, что приводит к упущенной выгоде из-за невозможности эксплуатировать ваши котлы на пике их мощности.

Кроме того, время простоя сокращает ваши операции и прибыль. Например, за пять лет косвенные расходы на коррозию со стороны Pacific Gas and Electric Co. составили 80 миллионов долларов. Другой пример, который показывает серьезность затрат, понесенных из-за несоблюдения надлежащего химического состава котловой воды, – это отключения электроэнергии, которые могут составлять более 1 миллиона долларов в день.

Снижение производительности и затраты на ремонт складываются. Если вам придется заменить всю систему из-за коррозии, ваша халатность будет еще дороже.

4. Отверстия

Отверстия возникают, когда вы продолжаете эксплуатировать систему, которая уже имеет серьезную точечную коррозию. Ямы не восстановятся сами по себе или не изменят свою серьезность. Вместо этого они ухудшаются, поскольку химическая реакция, которая вызвала их эрозию, продолжается до тех пор, пока у металла не появится казенная часть.

5. Точечная коррозия

Точечная коррозия – это больше, чем небольшая проблема.В областях котла с высоким содержанием кислорода кислород вступает в реакцию с металлом, вызывая ямки на поверхности. Если не установить флажок, эти ямки продолжают углубляться, пока не образуют отверстия в металле. Как уже отмечалось, дыры могут привести к выходу системы из строя.

Точечная коррозия, возникающая под окалиной, называется «коррозия под отложениями». Этот тип коррозии в сочетании с накипью вызывает серьезные повреждения системы. На заводе со скоростью отложений 7,8 г / фут 2 / год и 8,9 г / фут 2 / год отложения вызвали сильное образование накипи на поверхностях трубок.Дополнительный слой увеличивал температуру в этой области и задерживал минералы под накипью. Комбинированный эффект дополнительного напряжения и коррозии под отложениями привел к полному выходу из строя котельной трубы при ее растрескивании. Если бы предприятие сохранило свои депозитные ставки ниже 1–2 г / фут 2 / год, оно не понесло бы такого серьезного ущерба.

Как предотвратить коррозию котла

Какими бы серьезными ни были последствия коррозии, вы можете предотвратить их путем надлежащего мониторинга и очистки воды в системе.И мониторинг pH, и регулировка подачи воды являются жизненно важными компонентами программы предотвращения коррозии. Они предотвращают повреждение металлических компонентов котла и его трубопроводов кислотой и растворенными газами.

1. Мониторинг системы

Мониторинг кислотно-щелочного баланса воды – важный шаг для предотвращения повреждения котла кислотностью. Даже при точной регулировке питательной воды в самом бойлере могут оставаться загрязнения. Когда вы кипятите воду, загрязнения остаются, со временем концентрируясь, где они могут вызвать отложения накипи и коррозию.Мониторинг pH поможет вам определить, когда произвести продувку системы, чтобы удалить часть загрязненной воды и уменьшить воздействие этих продуктов.

Идеальный pH для питательной воды составляет от 7 до 9, слабощелочной. Чтобы вода оставалась в этом диапазоне, вам нужно будет добавить соли фосфата натрия или гидроксид натрия. К сожалению, вы не можете напрямую контролировать pH в тепле бойлера. Скорее, вы должны измерять pH в более холодном боковом потоке с более низким давлением.

Контроль воды и пара на содержание натрия также поможет вам предотвратить коррозию, выяснив, нужно ли вам контролировать присутствие минералов в системе.

Измерение количества железа в воде позволит определить наличие чрезмерных количеств железа, которые могут отложиться в системе и снизить ее эффективность.

2. Регулировка питательной воды

Регулировка питательной воды предотвращает воздействие растворенного кислорода на металлические поверхности системы. В зависимости от результатов мониторинга вам может потребоваться добавить нейтрализующие вещества или использовать деаэратор для удаления кислорода.

В зависимости от системы для удаления кислорода используются три химиката.

  • Сульфит натрия: Обычно используется в системах среднего или низкого давления
  • Гидразин: Предпочтительно для котлов высокого давления
  • Эриторбат натрия: Нетоксичен и может заменить другой два химиката для использования на предприятиях пищевой промышленности

Давление в системе имеет значение. При использовании в системах с давлением более 1000 фунтов на квадратный дюйм сульфит натрия превращается в сероводород или диоксид серы, которые вызывают коррозию.Дополнительное давление заставляет сульфит натрия также увеличивать содержание твердых веществ в воде, поэтому это химическое вещество лучше всего работает в системах, работающих под давлением менее 1000 фунтов на квадратный дюйм.

Для систем с более высоким давлением хорошо подходит гидразин, превращающий кислород в воду и азот. Однако Управление по санитарному надзору за качеством пищевых продуктов и медикаментов запрещает использование этого продукта на предприятиях пищевой промышленности.

Эриторбат натрия является нетоксичной альтернативой любому из перечисленных выше поглотителей, что делает его безопасным для использования на предприятиях пищевой промышленности.

Механические деаэраторы также могут удалять кислород, но не устранять его.В этих механизмах используется обращение того же процесса, что приводит к попаданию растворенных газов в воду. Многие механические очистители кислорода уменьшают его количество до 7 частей на миллиард, но они могут удалить свободный диоксид углерода из воды. Снижение уровня кислорода ниже этого количества не приведет к улучшению работы системы.

Метод вывода кислорода начинается с подогрева воды и использования воздуха с низким содержанием кислорода над деаэратором. Нагревание воды уменьшает количество кислорода, которое она может удерживать, в то время как воздух с низким содержанием кислорода над водой дает кислороду место, куда можно пойти.

Чем могут помочь лаборатории Chardon

Вы не одиноки в защите от коррозии. В Chardon Laboratories есть химикаты, необходимые для поддержания pH воды, и детали для замены поврежденных компонентов. Кроме того, вы найдете детали, необходимые для поддержания правильного химического состава воды и уменьшения коррозии. Некоторое из имеющегося у нас котельного оборудования включает в себя следующее:

  • Соленоид продувки
  • Емкости для химической смеси с мешалками
  • Химические насосы
  • Контактные водомеры
  • Контроллеры
  • Пакет талонов на коррозию
  • Датчики

В дополнение к оборудованию Чтобы помочь вам поддерживать химический состав воды, мы также будем обрабатывать воду и запланировать регулярные повторные посещения, чтобы помочь вам сохранить соответствующий баланс химических веществ.Для поглощения растворенного кислорода мы используем сульфит. Кроме того, наш процесс смешивания предотвращает оседание отложений, которые могут привести к питтингу в будущем.

Мы осознаем важность предотвращения отложений, способствующих образованию накипи. Увеличение накипи на внутренних поверхностях стоит денег из-за потраченного впустую топлива. При толщине окалины всего 0,03 дюйма требуется на 7% больше топлива для достижения того же тепла, что и для устройства без накипи. Хотя потраченное впустую топливо стоит ваших денег, накипь также может способствовать коррозии.Предотвращение образования отложений и защита вашего устройства от коррозии сэкономят ваши деньги.

Чтобы найти правильный баланс химикатов для вашего котла, нужны опыт и знания. Доверьтесь нашим сертифицированным ISO техническим специалистам и процедурам, чтобы получить водостойкий водный баланс, необходимый для продления срока службы вашей системы.

Узнайте больше об оптимизации вашего котла

Защитите котел от разрушительного воздействия коррозии с помощью профилактических мер, которые со временем сэкономят вам деньги.Позвольте команде Chardon Laboratories помочь. Вы можете доверять всем нашим процессам и техническим специалистам, оба из которых имеют сертификаты ISO. Кроме того, мы гарантируем результат и устанавливаем необходимое оборудование. Мы не просто продаем химикаты. Продаем чистые системы.

Если вы хотите предотвратить ущерб, нанесенный газами или минералами в вашей котловой воде, свяжитесь с нами в Chardon Laboratories.

Поделиться:

Коррозия в котлах – Lenntech

Коррозия – это превращение металла в рудную форму.Железо, например, превращается в оксид железа в результате коррозии. Однако процесс коррозии представляет собой сложную электрохимическую реакцию, принимающую множество форм. Коррозия может привести к общему прилипанию к большой металлической поверхности или к точечному проникновению металла. Коррозия – серьезная проблема, вызванная водой в котлах. Коррозия может иметь различное происхождение и природу из-за действия растворенного кислорода, коррозионных токов, возникающих в результате неоднородностей на металлических поверхностях, или из-за прямого воздействия воды на железо.
Хотя основная коррозия в котлах может быть в первую очередь вызвана реакцией металла с кислородом, другие факторы, такие как напряжения, кислотные условия и конкретные химические корроденты, могут иметь важное влияние и вызывать различные формы воздействия. Необходимо учитывать количество различных вредных веществ, которые могут быть допущены в котловую воду без риска повреждения котла. Коррозия может возникнуть в системе питательной воды из-за низкого pH воды и присутствия растворенного кислорода и углекислого газа.
Исходя из этих цифр и с учетом количества, которое может быть сброшено, таким образом определяется допустимая концентрация в подпиточной воде.


Растрескивание металла котла может происходить по двум разным причинам. В первом механизме циклические напряжения создаются за счет быстрого нагрева и охлаждения и концентрируются в точках, где коррозия делает поверхность металла шероховатой или изъеденной. Обычно это связано с неправильной защитой от коррозии. Второй тип коррозионно-усталостного растрескивания возникает в котлах с правильно очищенной водой.В этих случаях, вероятно, неправильно употреблять термин «коррозионная усталость». Эти трещины часто возникают там, где плотная защитная оксидная пленка покрывает металлические поверхности, и растрескивание возникает в результате действия приложенных циклических напряжений. Трещины от коррозионной усталости обычно толстые, тупые и пересекают зерна металла. Обычно они начинаются на внутренней поверхности трубы и чаще всего располагаются по окружности трубы.

Методы контроля коррозии различаются в зависимости от типа коррозии. Основные методы включают поддержание надлежащего pH, контроль кислорода, контроль отложений и снижение нагрузок с помощью конструкции и методов эксплуатации.
Деаэрация и в последнее время использование мембранных подрядчиков – лучший и наиболее распространенный способ избежать коррозии, удаляя растворенные газы (в основном O 2 и CO 2 ).

Для получения дополнительной информации о различных типах коррозии посетите следующие веб-страницы:

Защита стали в котельной системе зависит от температуры, pH и содержания кислорода. Как правило, более высокие температуры, высокие или низкие уровни pH и более высокие концентрации кислорода увеличивают скорость коррозии стали.Механические и эксплуатационные факторы, такие как скорости, напряжения металла и жесткость эксплуатации, могут сильно влиять на скорость коррозии. Системы различаются по склонности к коррозии, и их следует оценивать индивидуально.

Найдите информацию о других основных проблемах, возникающих в котлах: образование накипи, пенообразование и заливка. Чтобы узнать о характеристиках идеальной котловой воды, нажмите здесь.
Посетите нашу веб-страницу, посвященную обработке питательной и котловой воды.

Связанная тема:

Индекс Ланжелье

Ссылки
« Справочник по очистке воды» Vol.1-2, Degremont, 1991
«Промышленное водоподготовка», BeltsDearborn, 1991
http://www.thermidaire.on.ca/boiler-feed.html

Химические вещества для воды | CleanBoiler.org

Поглотители кислорода

Сульфиты – обычно для котлов до 800 фунтов на квадратный дюйм; сульфиты реагируют с кислородом с образованием сульфатов, которые удаляются из котла продувкой. Существует две формы сульфита: Катализированный – использует катализатор для уменьшения времени реакции; Некаталитический – более медленное время реакции и должен использоваться в горячей воде

Гидразин – обычно для котлов с давлением более 800 фунтов на квадратный дюйм.При давлении выше 800 фунтов на квадратный дюйм сульфит начинает распадаться на кислые газы серы. Сульфит также создает дополнительное количество растворенных твердых веществ (TDS), что является проблемой для приложений с высоким давлением. Гидразин удаляет O2 без образования кислых газов или TDS, но считается возможным канцерогеном.

Гидроксиды

Гидроксид натрия – NaOH, каустическая сода или кальцинированная сода – используется для поддержания pH котловой воды в диапазоне 10,0–11,5. Гидроксид увеличивает щелочность котла, чтобы предотвратить кислотную коррозию.Если присутствует сильная накипь, едкий натр может накапливаться и вызывать едкую атаку. См. PH Treatment

.

Гидроксид кальция – реагирует с бикарбонатами кальция и магния с образованием осадка, который удаляется продувкой.

Фосфаты

Фосфатная обработка вызывает осаждение кальция и магния в ил, из которого его можно удалить продувкой.

Полимеры

Полимеры – это длинные сложные молекулы, которые прикрепляются к примесям и предотвращают их прилипание к металлу котла с образованием накипи.Это создает TDS, которые удаляются продувкой.

Хеланты

Хеланты могут предотвратить образование накипи и со временем удалить существующий накипь. Хеланты, контактирующие с 02, вызывают коррозию. Поэтому его следует использовать в среде, свободной от 02.

Нейтрализующие амины

Нейтрализующие амины гидролизуются в воде с образованием необходимых гидроксид-ионов, необходимых для нейтрализации диоксида углерода. Обычный подход к обработке систем этими аминами состоит в том, чтобы подавать достаточное количество для нейтрализации диоксида углерода, а затем вводить небольшие дополнительные количества для буферизации pH до 8.5 или 9.0. При этом pH также достигается длительная консервация пленки магнетита (котельного металла). Также подразумевается, что коррозии не будет при pH> 8,0-8,5.

Пленочные амины

Пленочные амины действуют, образуя защитный барьер против воздействия кислорода и углекислого газа. Эти амины образуют пленки непосредственно с металлом конденсатопровода и создают барьер, предотвращающий контакт коррозионного конденсата с возвратным трубопроводом. По своей конструкции пленкообразователи лучше всего работают при pH 5.5-7,5. Кроме того, эти амины обладают высокой поверхностной активностью и отталкивают неплотно приставший оксид железа и другие продукты коррозии обратно в точки приема или в котел. Следует проявлять осторожность с подачей пленочных аминов.

Комбинированные амины . За последние несколько лет было показано, что комбинации пленкообразующих и нейтрализующих аминов чрезвычайно эффективны, особенно в сложных системах. Хотя комбинированный амин по-прежнему функционально является пленкой, части нейтрализующего амина обеспечивают снижение потенциала загрязнения и более равномерное покрытие пленкой.

Пленочные амины и комбинированные амины обычно подают в паровые коллекторы. Дозировки основаны на производстве пара.

Дополнительная информация

Мониторинг качества воды

Очистка воды

Обработка pH

Разъяснение

Производители и поставщики


Nalco Company

1601 W. Diehl Road
Naperville, IL 60563-1198
Телефон: 877-813-3523
Факс: 630-305-2900

Зайдите на их веб-сайт по адресу www.nalco.com

Разогрев до термического гидролиза

Грег Найт, Скотт Карр и Эндрю Шоу

Термический гидролиз – это инновационный процесс кондиционирования твердых веществ в сточных водах, который имеет множество преимуществ – финансовых, экологических и других. Ваше растение – хороший кандидат?

Процесс термического гидролиза (THP) сравнивают с скороваркой. Он кондиционирует твердые частицы сточных вод при высокой температуре и давлении для улучшения усвояемости.Вводимый пар нагревает твердые частицы и поддерживает их температуру приблизительно 165 ° C и манометрическое давление 600 кПа (кПа), или 87 фунтов на квадратный дюйм, в течение 20–30 минут, после чего давление сбрасывается. Сочетание высокой температуры и быстрого сброса давления делает материал более биоразлагаемым для последующего анаэробного разложения. Дополнительным преимуществом является то, что полученные твердые биологические вещества не содержат патогенов и достигают статуса «Класс А».

Доступен ряд конфигураций, включая периодические и непрерывные процессы.Компания Cambi Group AS разработала технологию THP примерно 20 лет назад, но другие европейские и американские поставщики теперь также предлагают версии этой технологии.

Преимущества THP
Повышенная биоразлагаемость остатков сточных вод приводит к увеличению скорости загрузки варочного котла, получению жмыха с более высоким содержанием твердых веществ, продукту биологических твердых веществ, который соответствует высшим стандартам для внесения в почву, и увеличению производства биогаза. Поскольку он улучшает усвояемость, а твердые вещества легче смешивать и перекачивать при более высоких концентрациях твердых веществ, THP можно использовать для увеличения скорости загрузки метантенка.Это делает его привлекательным для предприятий, которым необходимо перерабатывать больше твердых веществ в существующих системах или минимизировать размер и количество новых варочных котлов.

Улучшенное преобразование летучих твердых веществ в процессе разложения приводит к другим преимуществам, включая лучшую обезвоживаемость и более сухой кек. Обработка твердых веществ при высокой температуре также дает продукт класса А для использования в качестве удобрений в соответствии с правилами Агентства по охране окружающей среды США для внесения в почву. Пирог с установок THP также имеет меньше запахов, чем от традиционных установок для разложения, что делает его более привлекательным для полезного повторного использования.

Фермеры тратят много денег на удобрения, богатые азотом и фосфором. Биологические твердые вещества также богаты азотом и фосфором, поэтому повторное использование очень стабильных биологических твердых веществ в качестве удобрения снижает затраты на удобрения для фермеров, снижает затраты на управление коммунальными услугами и обеспечивает очень реальную экологическую выгоду за счет устойчивого повторного использования. Мы также знаем, что во всем мире наши ресурсы фосфора ограничены, поэтому повторное использование фосфора путем внесения твердых биологических веществ на землю является экологически устойчивой практикой.

Коммунальные предприятия с относительно высокими затратами на управление остаточными отходами могут извлечь выгоду из процесса, который снижает массу и объем твердых биологических веществ.

Важно понимать, что THP не обязательно увеличивает рекуперацию энергии из заданного количества твердых частиц из-за необходимости подачи технологического пара. Однако добавление THP позволяет объектам с существующими варочными котлами более чем вдвое увеличивать их пропускную способность, что приводит к значительному увеличению чистого производства биогаза. Это может привести к эквивалентному увеличению производства энергии на объектах с комбинированным производством тепла и электроэнергии (ТЭЦ) или на предприятиях, производящих возобновляемый природный газ (ГСЧ).

Включение THP – не панацея, и не во всех ситуациях. Но там, где заводы работают на полную мощность и им необходимо приспособиться к будущему росту, THP позволяет владельцам и операторам увеличивать мощность очистки существующих анаэробных варочных котлов. Коммунальные предприятия с относительно высокими затратами на управление остаточными отходами могут извлечь выгоду из процесса, который снижает массу и объем твердых биологических веществ. А создание более качественного и ценного конечного продукта может повысить эффективность повторного использования и снизить затраты на управление.

Погружение глубже
Опыт работы с THP в Великобритании и США.С. выявил некоторые важные соображения по переоборудованию THP на существующие объекты. Во-первых, твердые частицы необходимо отсеивать перед поступлением на объекты ТЭЦ. Экран толщиной примерно 5 мм необходим для предотвращения проблем, связанных с накоплением ветоши и другого мусора в последующем оборудовании.

В то время как обычное сбраживание требует сгущения перед процессом, термический гидролиз требует обезвоживания перед процессом; Таким образом, THP требует двух стадий обезвоживания – одну перед THP и дигерированием, а другую – после нее.Хранилище кексов также необходимо перед THP для обеспечения стабильной пропускной способности и эксплуатационной гибкости.

Поскольку для термогидролиза требуется пар, заводы, которые добавляют ТНР, обычно должны заменять свои водогрейные котлы паровыми. Те, у кого есть ТЭЦ, захотят вырабатывать пар, а не горячую воду из отработанного тепла ТЭЦ для обеспечения работы ТЭЦ.

Необходимо охлаждать твердые биологические вещества после термического гидролиза и перед перевариванием. Еще одно соображение при модернизации существующих варочных котлов заключается в том, что газовый трубопровод может быть недостаточно большим для увеличения производства биогаза на один варочный котел с ТНР.

Добавление THP улучшает производство газа за счет улучшения преобразования энергии твердых биологических веществ в биогаз. Однако для этого процесса требуется пар, поэтому часть образующегося биогаза обычно используется для производства пара.

Хотя многие существующие объекты ТЭЦ также имеют ТЭЦ, эта технология не всегда идет рука об руку с ТЭЦ. Там, где затраты на электроэнергию высоки и доступны кредиты на экологически чистую энергию – как в Европе и некоторых регионах США – производство дополнительного биогаза дает значительную выгоду.ТЭЦ может очень хорошо подходить для ТЭЦ, потому что ТЭЦ генерирует горячий выхлопной газ, который можно использовать для выработки пара. По этой причине в Европе довольно распространено использование ТЭЦ с ТЭЦ, где средняя цена на электроэнергию выше, чем в США. В последнее время производство ГСЧ также тщательно рассматривается как альтернативное использование биогаза (например, для трубопроводный впрыск или для автомобильного топлива). Важно изучать экономику вариантов использования биогаза в каждом конкретном случае, чтобы выработать наилучшее и максимальное использование газа в данной ситуации.

Последние инновации THP
Сегодня в большинстве применений термический гидролиз используется до анаэробного сбраживания, но теперь существует процесс, который позволяет использовать термический гидролиз после анаэробного сбраживания. Солюбилизированный материал, покидающий THP, обезвоживается до концентрации твердых веществ 40% или выше. Побочный поток от обезвоживания, который требует высокого уровня биоразлагаемого химического кислорода, отправляется обратно в варочные котлы, что приводит к улучшенному производству газа и улучшенному преобразованию летучих твердых веществ.Подобная система дает возможность упростить модернизацию THP для существующих процессов.

Еще одна новая возможность – промежуточный термогидролиз. Это влечет за собой включение термического гидролиза между двумя стадиями пищеварения. Владельцы будут обрабатывать остатки с помощью обычного сбраживания, затем THP, затем еще одну стадию сбраживания, чтобы максимизировать преобразование твердых веществ и регенерацию энергии.

Оба этих новых подхода потенциально могут быть полезны для предприятий с большой производительностью варочного котла.В таких ситуациях владельцы не стремятся получать больше твердых веществ через ограниченное количество варочных котлов, но могут получить другие выгоды. Они могут извлечь выгоду из улучшенных характеристик сбраживания за счет лучшей конверсии твердых веществ и увеличения добычи газа, строительства и обслуживания меньшего по размеру объекта THP, а также производства более качественного жмыха для полезного использования.


Об авторах

Грег Найт является техническим руководителем компании Black & Veatch по термогидролизу в США.С. и руководил технологическим проектированием проектов анаэробного сбраживания и THP по обе стороны Атлантики. Он имеет 14-летний опыт разработки технологических процессов в сфере управления водными ресурсами, сточными водами и твердыми биохимическими веществами.

Скотт Карр – руководитель международной практики и технологий Black & Veatch в области обращения с твердыми и остаточными биологическими отходами. Обладая 30-летним опытом, он сосредоточил свою карьеру на всех аспектах управления твердыми и остаточными биологическими веществами, включая переработку и полезное использование твердых биологических веществ.

Эндрю Шоу (Andrew Shaw) – руководитель международной практики и технологий в области сточных вод и устойчивого развития компании Black & Veatch, а также заместитель вице-президента.Он имеет докторскую степень в области инженерии окружающей среды и имеет 20-летний опыт работы в области очистки сточных вод по всему миру.

Глоссарий Hotwork | Hotwork

Air Dry – Этот термин часто используется для обозначения периода отверждения вновь размещенного огнеупора. В действительности огнеупор не высыхает, но за это время при температуре окружающей среды происходят химические реакции, что увеличивает прочность огнеупора.

Щелочной гидролиз – Механизм разрушения легких бетонов из-за реакции углекислого газа в атмосфере с известью в цементе.Обычно поверхностные слои огнеупора становятся рыхлыми и расслаиваются. Разрушение происходит, когда огнеупор подвергается воздействию определенных условий окружающей среды после укладки и по прошествии некоторого времени до высыхания. Одна из самых эффективных профилактических мер – своевременное просушивание огнеупора.

Bake Out – Этот термин иногда используется для обозначения высыхания огнеупора.

Насыпная плотность – Показатель качества, используемый для огнеупоров. Это вес объекта, деленный на объем, который он занимает.У огнеупоров объемная плотность может быть уменьшена из-за избыточной пористости.

Burnout Fibers – Производители огнеупоров часто создают преднамеренную пористость и проницаемость в своих материалах, добавляя в смесь волокна, которые выгорают (и оставляют пустоты) при низких температурах.

Возможность отклонения горелки – это отношение максимальной мощности горелки к ее минимальной мощности. Многие горелки с предварительным смешиванием имеют диапазон регулирования от 3 до 1.

Жидкие огнеупоры – Смесь жаропрочных заполнителей и термостойкого гидравлического цемента. Обычно его смешивают с водой для заливки, трамбовки или торкретирования. Литые огнеупоры могут быть установлены в полевых условиях, чтобы соответствовать форме печи, емкости, желоба, циклона или воздуховода.

Керамическая связка – Механическая прочность огнеупора, которая развивается во время термообработки и является результатом когезии между соседними частицами заполнителя.

Котел с циркулирующим псевдоожиженным слоем (CFB) – Эта технология удерживает частицы топлива и известняка в потоке воздуха, чтобы создать эффективное низкотемпературное горение и ограничить образование загрязняющих веществ, таких как NOX и SO2. Эта технология имеет экологические преимущества и гибкость в отношении качества топлива.

Checker Burnout – Термин, используемый некоторыми для обозначения процесса выгорания сульфата для открытия забитых регенераторов на стекловаренной печи.

Химическая очистка – Процесс ввода в эксплуатацию, используемый при запуске новых котлов. Различные чистящие и пассивирующие жидкости контролируются по температуре и циркулируют по трубам котла для их очистки и кондиционирования перед вводом в эксплуатацию.

Coating Cure – Различные покрытия используются в промышленных процессах для уменьшения коррозионного воздействия и / или изменения излучательной способности поверхности. Часто эти покрытия наносятся влажными, и их необходимо просушить и отвердить перед вводом в эксплуатацию.

Прочность на раздавливание в холодном состоянии (CCS) – это показатель качества огнеупора, который измеряет его сопротивление сжимающим силам.

Слив стекловаренной печи с холодной водой (CWD) – В конце кампании стекловаренной печи необходимо удалить жидкое стекло из печи, чтобы можно было отремонтировать огнеупор. Один из способов удаления жидкого стекла – просверлить отверстие в печи и слить горячее стекло в струю воды, которая закаляет его и транспортирует на место хранения.В канализации для холодной воды вода используется «однократно».

Crown Rise Monitor (CRM) – При нагреве стекловаренной печи огнеупор расширяется, и стальную ограничивающую конструкцию необходимо отрегулировать для учета расширения. Для того, чтобы контролировать и управлять этим процессом, это выгодно, чтобы измерить положение огнеупорной короны на печи. Традиционно это делалось путем ручного измерения «контрольных сигналов», которые сравнивают положение заводной головки с ее первоначальным возвышением.Crown Rise Monitor (CRM) использует датчики линейного положения и регистратор данных для постоянного наблюдения за положением заводной головки.

Cullet – Осколки стекла, собранные либо как побочный продукт производства стекла, либо в результате вторичной переработки. Этот материал часто используется в качестве сырья при производстве стекла.

Заполнение стеклобоя – Когда стекловаренная печь впервые запускается в производство, она нагревается и должна иметь первоначальную загрузку стекла для начала производственного процесса.Заполнение стеклобоя часто используется для обеспечения этой начальной загрузки. Стеклобой часто загружают в горячую печь путем вдувания или вибрации его в плавильную печь.

Горелка с избыточным воздухом – Горелка этого типа не пытается поддерживать фиксированное соотношение топлива и воздуха для горения. Его преимущество состоит в том, что он обеспечивает большой объем и низкотемпературный поток газа на выпускном сопле горелки при понижении мощности горения. Эта функция особенно хорошо подходит для сушки огнеупоров.

Контроль расширения (ECS) – Во время нагрева стекловаренной печи огнеупор удерживается стальной конструкцией и большими регулировочными болтами. По мере того, как печь нагревается и расширяется, стальную конструкцию необходимо отрегулировать, чтобы приспособиться к росту огнеупора. Надзор за расширением – это услуга, позволяющая управлять этими настройками.

Защита от замерзания – Иногда критически важные активы должны быть защищены от замерзания из-за условий окружающей среды.Обычно эти проблемы возникают либо во время строительства, либо во время длительного простоя. Защита от замерзания – это услуга, которую можно использовать для защиты критически важных активов в холодную погоду.

Обогрев печи – Многие промышленные печи рециркулируют отходящее тепло, и они полагаются на это рециркулируемое тепло для поддержания процесса. Печи, регенераторы, насадки и рекуператоры – все это примеры технологий, используемых для рециркуляции технологического тепла. Когда один из этих процессов полностью охлаждается (либо из-за простоя, либо из-за нового строительства), часто необходимо «запустить» процесс с помощью внешнего источника тепла.Нагрев печи – это услуга по доведению этих промышленных печей от температуры окружающей среды до устойчивого рабочего состояния.

Горячее удержание печи – Когда промышленная печь прерывает выработку технологического тепла, но нежелательно, чтобы процесс остывал, часто используется режим горячего удержания печи. Служба экстренного удержания в горячем состоянии иногда используется из-за перебоев в электроснабжении или стихийных бедствий. Плановое удержание горячего режима может использоваться, когда часть технологического процесса нуждается в ремонте, и нежелательно охлаждение всего процесса.

Отказ печи – Многие крупные промышленные печи работают 24 часа в сутки и 7 дней в неделю. Процессы непрерывны и редко прерываются. Иногда планируется отключение печи для проведения технического обслуживания и ремонта, которые могут произойти только во время остановки технологического процесса. В некоторых отраслях простои называют ремонтом.

Торкрет-огнеупоры – Огнеупорный материал можно укладывать методом торкретирования. Огнеупорный материал транспортируется в потоке сжатого воздуха и проецируется на огнеупорную поверхность.Материал может иметь воду, добавленную в сопло, или может быть предварительно увлажнен. Цель состоит в том, чтобы материал прилипал к целевой поверхности и избегал отскока.

Парогенератор-утилизатор (HRSG) – это тип котла, улавливающего избыточное технологическое тепло. Их можно установить перед вытяжной трубой промышленной печи или использовать вместе с генератором комбинированного цикла. Турбина с комбинированным циклом имеет одну ступень, приводимую в действие продуктами сгорания, и вторую ступень, приводимую в действие паром от ПГРТ, который улавливает часть тепла, оставшегося после первой ступени.

Отрасли по переработке углеводородов (HPI) – Эта отраслевая категория относится к нефтеперерабатывающей, газоперерабатывающей, СПГ и нефтехимической отраслям.

Meltouts – Иногда жидкие материалы затвердевают не в том месте, и их необходимо удалить. Один из способов удаления этих материалов состоит в том, чтобы снова растворить их в жидкости и позволить жидкости течь в желаемое место.

Модуль разрыва (MOR) – Показатель качества огнеупора, который измеряет его прочность при сопротивлении изгибным (изгибающим) силам.

Монолитный огнеупор – Огнеупор, который наносится на строительной площадке в необожженном состоянии и образует сплошную массу. Примеры монолитных огнеупоров включают литейные, торкрет-бетон, торкрет-смеси, пластмассы и набивные материалы. После размещения огнеупор необходимо высушить для создания огнеупорных свойств.

Проницаемость – способность газа проходить через огнеупорную конструкцию. Проницаемость повышается, когда пористость соединяется между собой и обеспечивает прохождение газа.Пористость не обязательно создает проницаемость. Во время высыхания огнеупора пар использует проницаемость для выхода из конструкции огнеупора.

Пористость – Пустоты в структуре огнеупора создают пористость. Пористость может проявляться в виде больших отдельных пустот или микропустот, рассредоточенных по всей структуре.

Пластиковый огнеупор – огнеупорная смесь, в которой используются связующие вещества, такие как глины, фосфаты или смолы. Материал обычно поставляется для монтажа в виде мокрых блоков.При установке пластмассы не требуют такого большого уплотнения / деформации, как набивной материал. Блоки обычно утрамбовываются вместе, образуя непрерывную облицовку. После размещения требуется высыхание для создания огнеупорных свойств.

Термическая обработка после сварки (PWHT) – При сварке металлических конструкций в зоне термического влияния изменяются металлургические свойства по сравнению с основным металлом. Для восстановления металлургических свойств часто требуется термический цикл.Большая часть термообработки после сварки проводится локально на сварном шве с помощью электрического резистивного нагрева. В некоторых случаях целесообразно нагревать весь резервуар или сварную конструкцию, и в этих случаях часто применяется термообработка шва после сварки после сжигания.

Набивной огнеупор – Огнеупорная смесь, в которой используются связующие вещества, такие как глина, органические вещества, фосфаты, диоксид кремния или гудрон. Материал может поставляться для монтажа как в мокром, так и в сухом виде. Материал обычно уплотняют с помощью пневматического молотка или другого инструмента для уплотнения.Сдвиг, возникающий во время набивки, способствует плотности материала и конечным свойствам. После размещения требуется высыхание для создания огнеупорных свойств.

Горелка Ratio – Горелки Ratio стараются поддерживать оптимальную смесь воздуха и топлива. Это соотношение обычно немного больше стехиометрического, чтобы обеспечить полное сгорание всего топлива. Горелки этого типа обычно выбирают для технологических горелок, поскольку они обладают хорошей энергоэффективностью, экологическими преимуществами и хорошо подходят для поддержания высокотемпературных процессов.

Слив из стекловаренной печи с переработанной водой (RHWD) – Эта услуга аналогична сливу из стекловаренной печи с холодной водой, за исключением того, что вода собирается после отделения от стеклобоя и повторно используется для повторного использования в непрерывном замкнутом контуре.

Refractory Cure – Это начальный период после установки литого огнеупора перед началом высыхания. В этот период происходят реакции, которые приводят к жесткому схватыванию огнеупора.Обычно производитель огнеупора указывает продолжительность периода отверждения, который может зависеть от температуры окружающей среды.

Сушка огнеупора – Для монолитного огнеупора, после установки и периода отверждения, тепло применяется в соответствии с графиком производителя, чтобы удалить как свободную, так и химически связанную воду. Эта термическая обработка является последним шагом на пути к достижению желаемых свойств установленного огнеупора. Этот процесс иногда называют отжигом, термообработкой, сушкой, сушкой или предварительным нагревом.

огнеупорный Сполл – механический выход из строя огнеупорной футеровки в результате трещин, трещин, расслаивания, разрушающейся и / или взрывной недостаточности. Выкрашивание огнеупора может происходить по разным причинам, но, если оно происходит, обычно происходит во время высыхания огнеупора. Во время высыхания огнеупорная футеровка подвергается высоким нагрузкам, поскольку вода превращается в пар и пытается выйти из футеровки. Если огнеупорные свойства были нарушены из-за каких-либо предшествующих работ, то во время высыхания вероятно возникновение разрушения.Выкрашивание огнеупора обычно происходит из-за того, что материал не имеет прочности, чтобы выдерживать силы, вызываемые выделяющимся паром во время высыхания. Двумя основными проблемами являются свойства материала и скорость парообразования. Это состояние также называют взрывным растрескиванием или выбросом огнеупора. Процедуры контроля качества и соблюдение инструкций производителя по смешиванию, размещению, отверждению и сушке являются лучшими профилактическими мерами, позволяющими избежать этого состояния.

Регенератор разгрузки – это еще один термин, обозначающий процесс выгорания сульфатов.

Торкрет-бетон – Огнеупорный материал, который смешивают (например, литье), а затем наносят путем перекачивания смеси в сопло, где он смешивается с воздухом и активатором для начала отверждения. Смесь пневматически «выстреливается» на монтажную поверхность. После размещения требуется высыхание для создания огнеупорных свойств.

Выжигание сульфатов (SBO) – В стекловаренных печах с регенераторами сульфаты имеют тенденцию со временем конденсироваться в насадке. Накопление сульфатов ограничивает прохождение воздуха и, в конечном итоге, ухудшает работу печи.Один из методов удаления сульфатов из насадок включает установку горелки в нижней части регенератора и нагрев насадки до температуры выше точки плавления сульфатов. Это позволяет сульфатам стекать из насадок на дно регенератора, и поток воздуха восстанавливается в печь. Этот процесс также называют разгрузкой регенератора или сгоранием контролера.

Капитальный ремонт – На нефтеперерабатывающих заводах и в других перерабатывающих отраслях планируется периодическое техническое обслуживание, при котором процесс полностью останавливается.Для оптимизации проделанной работы и сведения к минимуму времени простоя выполняется тщательное планирование и подготовка. Эти простои часто называют ремонтными работами.

% PDF-1.6 % 550 0 объект > эндобдж xref 550 75 0000000016 00000 н. 0000003095 00000 н. 0000003309 00000 н. 0000003361 00000 н. 0000003490 00000 н. 0000003739 00000 н. 0000003829 00000 н. 0000003924 00000 н. 0000005116 00000 п. 0000171743 00000 н. 0000171815 00000 н. 0000171902 00000 н. 0000172013 00000 н. 0000172062 00000 н. 0000172199 00000 н. 0000172248 00000 н. 0000172345 00000 н. 0000172394 00000 н. 0000172492 00000 н. 0000172541 00000 н. 0000172674 00000 н. 0000172723 00000 н. 0000172827 00000 н. 0000172926 00000 н. 0000173075 00000 н. 0000173124 00000 н. 0000173214 00000 н. 0000173342 00000 н. 0000173445 00000 н. 0000173494 00000 н. 0000173652 00000 н. 0000173700 00000 н. 0000173796 00000 н. 0000173928 00000 н. 0000174071 00000 н. 0000174119 00000 н. 0000174218 00000 н. 0000174322 00000 н.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *