Установка, монтаж терморегулятора отопления недорого в Москве, Одинцово. Цена и сроки. ОВК-Сервис.
НАПИСАТЬ НАМ
Установка терморегулятора – наш ответ растущим тарифам!
Для регулирования температуры в помещении наиболее рационально использование автоматических терморегуляторов, имеющих неоспоримые преимущества перед традиционными устройствами запорно-регулирущей арматуры, такими как шаровой кран и конусный вентиль.
Особенно актуальным такое устройство оказывается в ситуации постоянно растущих тарифов на услуги ЖКХ.
Достоинства терморегуляторов
Современные терморегуляторы обладают эргономичным дизайном, отлично вписывающимся в интерьер помещения;
Терморегуляторы достаточно просто монтируются как в новых, так и в уже действующих системах отопления. Могут эксплуатироваться без профилактики и техобслуживания на протяжении всего срока службы, который благодаря простой и надёжной конструкции может достигать несколько десятков лет;
Отпадает нужда в постоянном открывании/закрывании окон для регулирования температуры в помещении;
Терморегуляторы рассчитаны на работу в температурном диапазоне от 5 °С до 27°С. Необходимая температура устанавливается на любом значении этого диапазона и поддерживается с точностью до 1°С;
При попадании в помещение прямых солнечных лучей или при наличии включенных электроприборов терморегулятор исключит лишнее нагревание воздуха;
Используя терморегуляторы в автономных системах отопления, вы
Установка терморегуляторов наиболее оправдана в системах отопления частных домов и коттеджах, где важна выровненность комфортной температуры по этажам. Кроме этого, достигается максимальная экономия энергоносителей.
В условиях централизованного отопления (квартиры), терморегулятор незаменим для плавного регулирования температуры воздуха.
Установка терморегуляторов в Москве, Одинцово
Эта процедура выполняется специалистами ОВК-Сервис всего за 4 шага:
1. Радиатор отсоединяется от системы отопления и сливаются остатки воды. Существующий кран (вентиль) также снимается.
2. Терморегулятор устанавливают способом резьбового соединения. Регулятор вкручивают в отверстие радиатора, через которое поступает теплоноситель. В зависимости от конструкции и местоположения радиатора отопления, термостат может монтироваться в наиболее удобном месте: сверху или снизу, справа или слева от радиатора без снижения потребительских качеств.
Важно! При однотрубной системе отопления обязательно устанавливается байпас (труба-перемычка), чтобы теплоноситель циркулировал даже при отключенном радиаторе!
3. Устанавливается термостатический элемент. Он должен располагаться строго горизонтально, так как от этого зависит точность и качество работы термостата.
4. Проводится регулировка и настройка прибора согласно рекомендациям компании-производителя.
Цены на установку терморегулятора на радиатор (батарею) отопления
Услуга | Цена |
---|
Установка радиаторного терморегулятора | 750 руб/шт |
Установка радиаторного терморегулятора при установке (замене) радиатора отопления | 500 руб/шт |
Монтаж перемычки (байпаса) | Цена договорная |
Сделать заявку на установку терморегуляторов можно по телефонам +7(499)390-84-44; +7(925)370-50-83
Виды терморегуляторов
Механические.
Рабочее вещество – парафин или стеарин.
Достоинства: надежно и недорого.
Недостатки: Задержка регулировки температуры в связи с тепловой инерцией термоэлемента.
Жидкостные.
Рабочее вещество – спирт или масло.
Достоинства: высокая точность измерения температуры окружающего воздуха (погрешность измерения не более 1,5°С).
Недостатки: малая скорость отклика на перепад температуры.
Газонаполненные.
Рабочее вещество – сжиженный газ.
Достоинства: самый быстрый терморегулятор (срабатывает при изменении температуры воздуха на 2-4°С).
Недостатки: стоимость относительно других терморегуляторов.
Программируемые.
Серьёзный многофункциональный прибор, применяемый для автономных систем отопления. Осуществляет контроль температуры теплоносителя, управляет работой циркуляционного насоса, нагрузкой отопительного котла и собирает информацию от выносных датчиков, установленных во всех отапливаемых помещениях.
Монтаж отопления – наша профильная задача, которую мы выполняем с максимальным эффектом. Оставляйте заявки или звоните +7(499)390-84-44; +7(925)370-50-83, чтобы получить бесплатное консультирование прямо сейчас. Доверьтесь профессионалам: вы будете приятно поражены стоимостью и качеством!
Звоните нам ежедневно +7 (966) 117-17-03
Регулятор для батареи отопления принцип работы
- ручными;
- механическими;
- электронными.
Когда нужно отрегулировать температурный режим в помещении, на выручку приходит терморегулятор для батарей. Ставят его на любые отопительные приборы, исключение — чугунные батареи. Особенность терморегулятора в том, что он помогает снизить температуру, но сделать её выше с помощью этого устройства не получится.
Материал изготовления
Корпус вентиля делают из стойкого к коррозии металла, сверху никелируют либо хромируют. Клапана делают из следующих материалов:
- бронзовые с покрытием никеля или хрома;
- латунные с никелевым слоем;
- из нержавеющей стали.
Лучшими считаются клапана из нержавеющей стали. Они химически нейтральны, не подвержены коррозии, не вступают в реакцию с другими металлами. Цена у них выше, чем у никелированных или хромированных. В продаже клапана из нержавейки бывают не часто, поэтому чаще всего в домах или квартирах можно увидеть бронзовые или латунные изделия.
Вентили из бронзы или латуни по длительности срока службы не различаются. Всё зависит от того, насколько качественно выполнен сплав. Что касается изделий известных производителей, вопроса о качестве не возникает. Доверять или нет неизвестным производителям — дело спорное. Однако при покупке нужно обратить внимание на то, чтобы на корпусе был изображён вектор потока. Без этой стрелки изделие не качественное.
Различают клапана и по способу исполнения. В зависимости от того, как установлен отопительный прибор, клапаны могут быть угловыми либо прямыми.
Электронные терморегуляторные приборы можно условно разделить на:
Основные разновидности терморегуляторовТермостаты – это большая группа приборов, предназначенных для поддержания температуры на определенном постоянном уровне. Существует несколько разновидностей термостатов, классифицируемых по принципу действия, а именно:
- пассивные. Такие устройства работают в изолированных условиях. Для ограждения от окружающей среды применяются специальные материалы;
- активные. Автоматически поддерживают температуру на заданном уровне;
- фазового перехода. Принцип действия таких устройств основывается на свойстве рабочего вещества менять свое физическое состояние, к примеру, из жидкого в газообразное.
В быту наибольшую популярность получили активные термостаты. Именно их и принято называть терморегуляторами. Большинство существующих приборов, предназначенных для контроля температуры, комплектуются подходящим терморегулятором еще на этапе своей фабричной сборки. Необходимо лишь внимательно разобраться с инструкцией к устройству перед его использованием.Также существуют выносные терморегуляторы. Они выполнены в виде отдельного блока. Подключение к радиатору выполняется в соответствии с определенной технологией, без соблюдения требований которой нельзя рассчитывать на эффективную, экономичную, безопасную и долговечную работу установки.
4 Советы перед началом установки
Термоголовка на радиаторе отопления работает благодаря физическому явлению расширения веществ под воздействием температуры. Монтаж можно осуществить своими руками, не прибегая к помощи специалистов. Главное, правильно установить оборудование. Основные рекомендации:
1. Перед началом монтажа механизма желательно ознакомиться с инструкцией от производителя.Во время работы следует соблюдать особую осторожность, так как конструкция имеет уязвимые места. Механические нагрузки могут повредить элемент.Поставить термостат необходимо так, чтобы он находился в горизонтальном положении.4. На корпусе имеются подсказки, которые указывают необходимое направление движения воды. Это обязательно следует учитывать во время установки.5. Если отопительная система является однотрубной, то следует установить байпасы. Это позволяет демонтировать один радиатор без отключения всего обогрева.Полуэлектронные устройства обычно устанавливают на батареях, которые не закрываются шторами или различными декоративными элементами. В противном случае оборудование может неправильно работать. Электронные приборы не рекомендуется монтировать в кухне, холле или вблизи котельной, так как они более чувствительные.
Варианты подключения и установки регулирующей арматуры. Но для возможности ремонта радиатора без останова системы до регулятора нужно поставить шаровой кран (кликните по картинке для увеличения ее размера)
В первую очередь скажем о том, когда нужны термостаты на радиаторы. Они нужны в тех помещениях, где нужно снизить температуру. Чаще всего это верхние квартиры многоэтажек с верхней подачей теплоносителя и вертикальной разводкой. Установив терморегулятор на батарею, выставив желаемую температуру, вы будете гарантированно иметь заданный параметр с погрешностью в один градус.
Термостаты и вентили выполняют одну функцию, но предоставляют разную степень комфортаКогда термостаты не помогут? Если нужно повысить теплоотдачу отопительного прибора. Они только могут снизить, а поднять — нет. С какими радиаторами хорошо работают термостаты? Со всеми, кроме чугунных: у них очень большая тепловая инерция и такое устройство практически бесполезно. Теперь подробнее о видах и особенностях их установки и эксплуатации.
Тип термостатических элементов
Термоголовка для радиатора — это верхняя, сменная часть устройства. Она может быть нескольких видов:
- ручной;
- механической;
- электронной.
Практически все серьезные производители делают вентиль (корпус) совместимым с любым типом термоэлемента. Описанный выше принцип работы — это термостат, укомплектованный механической головкой. Эта комплектация считается базовой и модификаций в этой категории очень много. Отличаются они по характеристикам и по цене.Чтобы можно было ориентироваться по ценам: европейские производители механические термоголовки продают от 15 евро до 25 евро, есть антивандальные модели, они стоят от 40 евро. Есть устройства с выносным датчиком. Их ставят, если условия не позволяют регулировать температуру на радиаторе (например, он установлен за шкафом, закрыт в нише и т.д.). Тут большое значение играет длина капиллярной трубки, которым связан датчик с терморегулятором. Цены в этом сегмента от 40-50 евро.
Так выглядит ручное устройство для регулировки температуры радиаторов в разрезеРучной терморегулятор — это тот же регулирующий вентиль для радиатора. И принцип работы тот же: вращаете ручку, изменяете количество проходящего теплоносителя. С той лишь разницей, что при желании вы сможете просто снять этот термоэлемент и поставить механический или электронный. Корпус при этом откручивать или менять не нужно. Они универсальны. Головки для ручной регулировки имеют невысокую цену — от 4 евро.Электронные термоголовки — это самые дорогостоящие варианты, они же и самые массивные: в корпусе есть место для двух батареек. Отличаются тем, что имеют больше возможностей. Кроме поддержания стабильной температуры на протяжении всего времени, можно запрограммировать температуру по дням недели или по времени суток. Например, после 9 утра все домочадцы расходятся, и появляются только после 18 часов. Получается, что незачем тратить деньги на поддержание высокой температуры в дневное время. Электронные термоэлементы и дают возможность во все дни, кроме выходных, выставить в этот промежуток более низкую температуру. Ставьте хоть 6-8 о С, а к вечеру можно снова нагреть воздух до комфортных 20 градусов. С этими устройствами есть возможность сэкономить на отоплении без снижения уровня комфорта.
Электронные модели имеют функционал намного ширеЕще термоголовки делят по типу температурного агента (вещества, который находится в сильфоне). Они бывают:
- жидкостные;
- газовые.
Газовый терморегулятор считается менее инерционным, говорят, он быстрее реагирует на изменение температуры. Но разница не настолько большая, чтобы отдавать предпочтение конкретно какому-то виду. Главное — качество, а не вид температурного агента. Жидкостные же терморегуляторы не менее качественные. Причем в изготовлении они проще, потому выпускаются в более широком ассортименте.При выборе термоэлемента нужно обращать внимание на диапазон температур, который устройство может поддерживать. Обычно это от +6 o C до +26-28 o C. Но могут быть отличия. Чем шире диапазон, тем выше цена. Изменяются также габариты и дизайн, способ подключения.
Терморегуляторы на батарею снижают интенсивность обогрева тем, что уменьшают количество поступающего теплоносителя. Они никак не влияют на температуру воды в трубах отопления!
Регуляторы температуры отопления с середины прошлого века активно используются на Западе. Изначально они предназначались для экономии расходов на отопление. На эту функцию европейские производители делают упор до сих пор, развивая направление электронных терморегуляторов и термостатов для отопления с экономичными режимами работы. Однако в России зачастую регуляторы тепла приобретаются ради другого – побочного – их предназначения: снижения температуры обогрева помещения. Некоторые квартиры отапливаются так интенсивно, что их хозяевам приходится распахивать окна даже в тридцатиградусный мороз. В таких случаях основной задачей является нормализация температурного режима и создание комфортной для человека жилой среды. Впрочем, в последние годы вопрос экономии ресурсов постепенно выходит на первый план, и устройства, помогающие сократить расходы на содержание жилья, становятся все более востребованными.Итак, кому нужен регулятор температуры на батарею отопления:
- тем, кто в отопительный сезон страдает от жары в своей квартире,
- тем, кто хочет сэкономить на отоплении.
Конструкция регулятора с термоголовкой
Регуляторы с термоголовкой — самые распространенные регуляторы температуры на батарею отопления. Поговорим о том, как они работают.Внутри термоголовки расположен сильфон с термочувствительным составом (жидким или газообразным). Сильфон представляет собой герметичную камеру, гофрированные стенки которой могут растягиваться при нагревании и возвращаться к исходной форме при охлаждении.Проходя через трубу батареи отопления, теплоноситель нагревает состав внутри сильфона. Увеличиваясь в объеме, сильфон давит на шток, который, в свою очередь, нажимает на рабочий конус. Приток теплоносителя к радиатору частично или полностью перекрывается. Постепенно сильфон остывает и сжимается. Конус поднимается и открывает проход для теплоносителя.
Состав внутри сильфона (рабочая среда) может быть жидким или газообразным. Жидкостные сильфоны, как правило, стоят дешевле, потому что медленнее реагируют на изменения температуры. Газовый более чувствителен и потому позволяет регулировать интенсивность отопления более точно. Если Вы имеете дело с большими площадями, хотите оснастить терморегуляторами несколько радиаторов и стремитесь к экономии ресурсов, то отдавайте предпочтение газовым сильфонам. Если же Вы приобретаете регулятор на одну батарею, то скорость реагирования рабочей среды не будет иметь для Вас принципиального значения.
Блокирующий регуляторпредотвращает глубокую разрядку батареи
Abstract
В системах, использующих перезаряжаемые батареи, важно отключить нагрузку до того, как батарея войдет в глубокую разрядку, которая может разрушить или повредить элемент. Эта схема отключает цепь до того, как батарея войдет в состояние глубокой разрядки, и обеспечивает достаточное время для обслуживания микроконтроллера.
Нагрузка на аккумуляторную батарею должна быть удалена в момент полной разрядки, чтобы избежать дальнейшей (глубокой) разрядки, которая может сократить срок ее службы или полностью разрушить ее.
Поскольку напряжение на клеммах батареи восстанавливается при отключении нагрузки, вы не можете просто отключить нагрузку, когда напряжение на клеммах падает ниже установленного порога, а затем снова подключить ее, когда напряжение вернется выше этого порога. Такое действие может вызвать дребезг в разъединителе.Напряжение разряженного элемента возвращается почти к уровню полностью заряженного элемента, поэтому гистерезис также не обязательно может компенсировать эффект восстановления. Что необходимо, так это схема, которая отключает нагрузку от батареи и удерживает их отдельно до тех пор, пока внешний сигнал (например, от зарядного устройства батареи или кнопочного выключателя) не укажет, что батарея перезаряжена или заменена.
Такая схема может включать компаратор с низким зарядом батареи в линейный стабилизатор с малым падением напряжения (рис. 1). В этой схеме компаратор с низким зарядом батареи и усилитель ошибки используют общий источник опорного напряжения и внешний резистивный делитель. С показанными значениями резистора выход низкого заряда батареи (LBO) становится низким и отключает как батарею, так и нагрузку, когда выходное значение падает на восемь процентов ниже его номинального значения. В этом случае батарея и нагрузка остаются отключенными до тех пор, пока S1 не даст другую команду.
Рисунок 1. Для защиты батареи эта схема отключает нагрузку до того, как батарея войдет в глубокую разрядку. Для повторного подключения необходимо нажать S1.
Два фактора обеспечивают блокировку в этой схеме: компаратор низкого заряда батареи остается активным во время выключения (большинство регуляторов деактивируют этот компаратор во время выключения), и схема контролирует регулируемое выходное напряжение вместо напряжения батареи (напряжение регулятора не может восстановиться). пока регулятор не будет включен).
Схема также обеспечивает сигнал %-overbar_pre%POWER FAIL%-overbar_post% (LBO, контакт 1), который становится низким за 50 мс до отключения выхода (рис. 2). Этот сигнал может предоставить управляющему микропроцессору время для выполнения функций обслуживания и отключения. Когда LBO становится низким, C1 разряжается через R3 до тех пор, пока вход %-overbar_pre%STBY%-overbar_post% не достигнет своего порога (1,15 В). Затем микросхема переходит в режим ожидания и отключает аккумулятор. IC1 представляет собой линейный стабилизатор, способный выдавать 150 мА с падением напряжения 350 мВ. Он имеет ток в режиме ожидания 10 мкА и принимает входное напряжение до 11,5 В.
Рисунок 2. Эти формы сигналов иллюстрируют временные соотношения в схеме, показанной на рисунке 1.
Соответствующая идея появилась в выпуске EDN от 16.03.95.
Топологии регуляторов для систем с батарейным питанием
Скачать PDF
Аннотация
В этом учебном пособии представлен обзор топологий регуляторов для оборудования с батарейным питанием. Обсуждение охватывает линейные регуляторы, зарядовые насосы, понижающие и повышающие регуляторы, инверторы и обратноходовые схемы. Объясняется важность пикового тока и показаны схемы каждой топологии.
Аналогичная версия этой статьи появилась в выпуске EDN от 20 января 1994 года.
Введение
Источники питания, пожалуй, самые важные элементы системы с батарейным питанием. Знание некоторых основных топологий регуляторов поможет вам выбрать и спроектировать правильные конфигурации источников питания для ваших нужд. В этом учебном пособии представлен обзор топологий регуляторов для оборудования с батарейным питанием. Обсуждение охватывает линейные регуляторы, зарядовые насосы, понижающие и повышающие регуляторы, инверторы и обратноходовые схемы. Объясняется важность пикового тока и показаны схемы каждой топологии.
Обзор топологии регулятораНастольные компьютеры, ноутбуки, нетбуки, смартфоны, КПК и многие другие бытовые электронные устройства обычно требуют более одного источника питания. Этим устройствам может потребоваться адаптер переменного/постоянного тока, зарядное устройство, высоковольтный преобразователь постоянного/переменного тока для подсветки и другие расходные материалы для лазеров, сотовых радиопередатчиков и вспомогательного оборудования. В таблице 1 показаны семь наиболее распространенных топологий регуляторов, начиная с самой простой (линейный регулятор) и заканчивая более специализированными типами (такими как обратноходовой регулятор). В таблице также перечислены плюсы и минусы каждой топологии.
Замена компонентов в базовой компоновке импульсного регулятора изменяет топологию схемы для создания регуляторов, которые повышают (повышают), понижают (понижают) или инвертируют входное напряжение. Замена катушки индуктивности трансформатором дает как минимум еще две схемы регулятора или вспомогательные выходные напряжения.
Плюсы | Минусы | |
Линейный регулятор | • Недорогой • Очень маленький • Низкий ток покоя (I Q ) • Низкий уровень шума/ЭМП | • V OUT должно быть меньше V IN • Неэффективно при высоких входных напряжениях и/или больших нагрузках |
Загрузочный насос | • Недорогой • Очень маленький • Может повышать или инвертировать | • Ограниченная выходная мощность • Ограниченный диапазон отношения входного/выходного напряжения |
Понижающий (Buck) | • Самый низкий пиковый ток среди всех конфигураций импульсного регулятора • Падение напряжения только на одном ключе • Низкие пульсации тока в конденсаторе выходного фильтра • Простая катушка индуктивности | • V OUT должно быть меньше, чем V IN • Переключатель верхнего плеча |
Повышение (повышение) | • Низкий пиковый ток • Переключатель нижнего плеча • Простая катушка индуктивности • Низкое напряжение переключения | • V OUT должно быть больше, чем V IN • Выход нельзя полностью отключить • Нет защиты от короткого замыкания |
Инвертор | • Простой индуктор | • Только отрицательный выход • Переключатель верхней стороны • Высокие пиковые токи |
Обратный ход | • Изолированный выход • Несколько выходов • Шаги вверх/вниз, инвертирование • Переключатель нижней стороны | • Трансформатор вместо катушки индуктивности • Высокие пиковые токи • Высокое напряжение переключения |
В таблице 1 опущены сложные топологии, такие как регуляторы с резонансным режимом, поскольку их схемы управления потребляют слишком много энергии для небольших систем с батарейным питанием. Правило для этих систем — простота: чем проще схема, тем лучше. В простых схемах нет магнитов, простых катушек индуктивности или трансформаторов 1:1. Готовые магниты упрощают сборку и минимизируют затраты. Другие топологии могут быть получены из базовых топологий, представленных в Таблице 1. Сюда входит преобразователь Кука, который сочетает в себе понижающую и повышающую топологии, и прямой преобразователь, который сочетает в себе понижающий преобразователь и половину двухтактного преобразователя. Однако в этом руководстве эти топологии подробно не обсуждаются.
Линейные регуляторы
Линейные регуляторы являются самыми простыми и наименее дорогими из цепей питания, но за эту простоту использования обычно приходится платить. Как показано в таблице 1, линейный регулятор включает в себя цепь обратной связи, которая контролирует выходное напряжение и регулирует его, управляя внутренним проходным транзистором (BJT или FET). Когда входное напряжение значительно превышает выходное, этот проходной транзистор рассеивает большое количество энергии (в виде тепла) при высоких нагрузках. Это приводит к более низкой эффективности, чем у сопоставимого импульсного регулятора.
Линейные регуляторы особенно полезны при генерировании нескольких напряжений при использовании в сочетании с импульсным стабилизатором. Импульсный регулятор может повысить низкое напряжение батареи. Однако вместо включения нескольких коммутаторов на небольшой плате разработчик может использовать линейные стабилизаторы из-за их низкого напряжения падения напряжения для генерирования напряжения для последующих цепей.
При использовании линейных стабилизаторов в системах с батарейным питанием важно учитывать ток покоя (типовой и при полной нагрузке), падение напряжения, тепловые характеристики и возможность отключения. В таблице 2 приведено краткое сравнение некоторых доступных регуляторов Maxim.
Таблица 2. Сравнение линейных регуляторовЧасть | Диапазон входного напряжения (В) | Ток покоя | Напряжение отпускания (при нагрузке 500 мА) (мВ) | Ток выключения (мкА) | Пакет | |
без нагрузки | I НАГРУЗКА = 500 мА (мкА) | |||||
МАКС15029 | от 1,425 до 3,6 | 275 мкА | 315 | 40 | 5,5 | ТДФН |
МАКС1806 | от 2,25 до 5,5 | 210 мкА | 575 | 201 | 0,02 | мкМАКС ® |
МАКС1589 | от 1,62 до 3,6 | 70 мкА | 90 | 175 | 0,01 | ЦОТ, ТДФН |
МАКС1935 | от 2,25 до 5,5 | 210 мкА | 575 | 201 | 0,02 | TQFN |
Подробное обсуждение использования линейных стабилизаторов в схемах с батарейным питанием см. в примечании Максима по применению 751 «Линейные регуляторы в портативных устройствах».
Зарядные насосы
В зарядных насосах вместо схемы индуктор-переключатель используются конденсаторы для создания выходного напряжения, которое выше или ниже входного напряжения. Регулируемые зарядовые насосы также могут инвертировать входное напряжение.
Как правило, ток нагрузки, который может быть получен от зарядного насоса, ограничен несколькими десятками миллиампер. Выходное напряжение нерегулируемого зарядового насоса зависит от входного напряжения и падает пропорционально увеличению выходной нагрузки. Регулируемые зарядовые насосы не зависят от входного напряжения для установки выходного напряжения, и, поскольку они регулируются, выходное напряжение остается постоянным во всем диапазоне нагрузки. Некоторые зарядные насосы способны работать с током до 125 мА (например, MAX159).5), а некоторые способны управлять нагрузкой до 250 мА (MAX682).
Зарядные насосы создают шум, поскольку они заряжают и разряжают конденсаторы, подключенные к устройству. Из-за пределов легкой нагрузки и отсутствия катушки индуктивности этот шум обычно меньше по величине, чем у сравнимого импульсного регулятора.
Импульсные регуляторы
Импульсные регуляторы более эффективны и универсальны, чем их линейные аналоги; однако они также заметно сложнее. Параметры, влияющие на выбор топологии импульсного регулятора, включают пиковые токи нагрузки и катушки индуктивности, уровень напряжения на силовых транзисторах и необходимость магнитного и емкостного накопления энергии.
Импульсные регуляторы имеют два основных режима работы: прерывистая проводимость и непрерывная проводимость. Прерывистая проводимость позволяет току катушки индуктивности уменьшаться до нуля в течение каждого периода отключения, что приводит к передаче накопленной энергии на выходной фильтр во время каждого цикла переключения. В режиме непрерывной проводимости ток дросселя включает постоянную составляющую, пропорциональную нагрузке. Работа в режиме непрерывной проводимости снижает отношение пикового тока катушки индуктивности к постоянному току нагрузки. Это, в свою очередь, снижает размах пульсаций тока и уменьшает потери в сердечнике.
Пиковый ток является критическим
В преобразователях с батарейным питанием важен пиковый ток дросселя, поскольку он напрямую влияет на срок службы батареи и паразитные потери. Это частично зависит от среднего тока нагрузки, который зависит от топологии регулятора, схемы управления и от того, является ли ток катушки индуктивности непрерывным. Некоторые примеры уравнений для пикового тока дросселя для повышающих, понижающих и инверторных регуляторов показаны в таблице 3.
Таблица 3. Примеры уравнений пикового тока индуктораКонфигурация | Устройство | Пиковый ток дросселя (А) |
Понижающий/понижающий | МАКС8566 | |
Повышение/повышение | МАКС15059 | |
Инвертор | МАКС1846 |
*LIR — отношение пульсирующего тока катушки индуктивности к среднему длительному току при минимальной нагрузке. цикл. Для достижения максимальной производительности и стабильности рекомендуется выбирать LIR в диапазоне от 20% до 40%.
**T S — период переключения устройства, η — КПД.
***D MAX — максимальный рабочий цикл.
Стресс напряжения на переключающем транзисторе обычно не является проблемой в преобразователях с батарейным питанием. Номинальное напряжение пробоя 20 В и 50 В для стандартных полевых МОП-транзисторов с логическим уровнем соответствует низким входным и выходным напряжениям, характерным для систем с батарейным питанием.
Потери на рассеяние возникают в резистивных паразитных элементах схемы регулятора. Эти потери включают последовательное сопротивление батареи; эквивалентное последовательное сопротивление (ESR) конденсаторов фильтра; сопротивление переключающего элемента во включенном состоянии; и сопротивления в проводниках, разъемах и проводке. Потери на рассеяние пропорциональны квадрату пикового тока, поэтому уменьшение пикового тока может значительно минимизировать эти потери. Кроме того, внутренний нагрев ухудшает химический состав батареи; таким образом, чрезмерные пиковые токи могут сократить срок службы батареи.
Другие топологии
Понижающий стабилизатор — лучший выбор для большинства приложений с батарейным питанием, при условии, что вы можете позволить себе несколько ячеек, необходимых для создания напряжения батареи, превышающего выходное напряжение. Ток дросселя течет к нагрузке во время обеих фаз цикла переключения, поэтому средний выходной ток равен среднему току дросселя. Теоретически наивысшая эффективность достигается при низком входном напряжении, что подразумевает меньшее количество последовательно соединенных аккумуляторных элементов. Если предположить, что падение напряжения на ключе во включенном состоянии намного меньше, чем входное напряжение, низкое входное напряжение снижает коммутационные потери переменного тока и среднеквадратичное значение входного тока.
Повышающие или повышающие топологии генерируют выходное напряжение, превышающее входное напряжение. Эти топологии подходят для систем с ограниченным количеством аккумуляторных ячеек. Поскольку напряжение источника и индуктор включены последовательно, средний ток индуктора равен входному постоянному току, определяемому как:
I = P IN /V IN .
Топология инвертора, которую иногда называют повышающе-понижающей схемой, генерирует выходное напряжение, полярность которого противоположна входному напряжению. Инвертирующие и обратноходовые регуляторы электрически эквивалентны с точки зрения пиковых токов и скачков напряжения. Эти топологии наиболее подходят для приложений, требующих отрицательных или гальванизированных изолированных выходов. В целом, однако, высокие пиковые токи делают инвертирующую и обратноходовую топологии наименее привлекательными из простых регуляторов.
Топологии инвертирования и повышения напряжения работают аналогично, но выпрямленный ток дросселя инвертора создает отрицательное выходное напряжение, которому не помогает напряжение источника. Переключающий элемент инвертирующего регулятора испытывает большие перепады напряжения, что приводит к высоким потерям при переключении и нагрузке на транзистор. Кроме того, инвертирующие и обратноходовые регуляторы имеют входные и выходные фильтрующие конденсаторы, которые должны поглощать токовые формы с большими резкими переходами. На входном конденсаторе повышающего регулятора или выходном конденсаторе понижающего регулятора отсутствуют быстро движущиеся фронты сигнала.
В перевернутых топологиях используется переключатель нижнего плеча
Вы можете реализовать три отрицательные топологии, соединив классическую понижающую, повышающую и инвертирующую топологии вверх ногами. Поскольку источник входного сигнала инвертирован, вы должны поменять полярность переключателя и выпрямителя (рис. 1). Хотя в настоящее время нет IC для отрицательных топологий, вы можете использовать IC с положительным выходом. Отрицательные понижающие регуляторы обладают всеми преимуществами положительных понижающих регуляторов, а также дополнительным преимуществом переключателя на нижней стороне. В расположении переключателя на нижней стороне используется низкое сопротивление R9.0071 ON n-канальный МОП-транзистор с простыми требованиями к приводу. Отрицательный понижающий стабилизатор имеет некоторую привлекательность в качестве альтернативы основному положительному стабилизатору, если батарея может плавать относительно заземления системы. Если возможно плавание батареи, вы можете подключить заземление к отрицательному выходу, а положительную клемму батареи к V OUT .
Рисунок 1. Вы можете инвертировать источник входного сигнала, чтобы создать три топологии. Отрицательный понижающий регулятор (а) имеет выходное напряжение меньше, чем входное. Регулятор отрицательного наддува (b) имеет более отрицательный выходной сигнал, чем входной. Регулятор отрицательного инвертора (c) преобразует отрицательное напряжение в положительное.
Обычно создание нескольких независимых источников питания является лучшим способом создания нескольких выходов в системе с батарейным питанием. Используя простые топологии, вы можете генерировать оставшиеся выходы, используя готовые трансформаторы или отводы подкачки заряда.
Схемы со связанными индукторами (рис. 2) добавляют дополнительную обмотку обратного хода к базовым понижающим, повышающим и инвертирующим топологиям. Эти гибридные схемы важны, потому что они сочетают в себе преимущества обратноходовой схемы (изоляция и недорогие несколько выходов) с преимуществами понижающей и повышающей схем (низкий пиковый ток и низкое напряжение на коммутаторе). Схема со связанными индукторами уменьшает количество обмоток, необходимых для обратноходовой цепи, на одну. Это уменьшение позволяет использовать недорогой трансформатор 1:1 для создания двойных выходных напряжений.
Рисунок 2. Вы можете создать вспомогательные выходы, используя обратноходовой трансформатор вместо катушки индуктивности в базовой (а) понижающей, (б) повышающей и (в) инверторной конфигурациях.
Понижающий регулятор с обратноходовой обмоткой представляет собой топологию с превосходными характеристиками для многих приложений с батарейным питанием. Конфигурация отличается превосходной стабильностью, малыми пиковыми токами и низкой пульсацией на выходе. Выходная мощность вторичной обмотки зависит от тока нагрузки основного выхода и величины дифференциального напряжения на первичной обмотке. Оба этих параметра определяют изменение потока ядра, которое запускает механизм обратного хода.
Как правило, общая доступная вторичная мощность равна или меньше половины основной выходной мощности. Это правило применимо только к высоким входным напряжениям. Оценка вторичной мощности должна быть уменьшена для входных напряжений, менее чем в полтора раза превышающих выходное напряжение. Правило также не распространяется на схемы, содержащие вместо простого диода синхронный выпрямитель. Синхронные выпрямители имеют короткий период, когда первичный ток меняется на противоположный, что приводит к тому, что схема ведет себя как прямоходовой преобразователь, а не как обратноходовой преобразователь. Чтобы эффективно передавать мощность в этом режиме прямой проводимости, вы должны минимизировать индуктивность рассеяния, уменьшить импеданс обмотки и выпрямителя и сделать конденсатор фильтра вторичного выхода настолько малым, насколько позволяют пульсации напряжения.
Диодно-конденсаторные зарядные насосы предлагают еще один недорогой способ генерировать несколько выходных напряжений. Любой узел с повторяющимися импульсами может управлять диодно-конденсаторной сетью. Выход драйвера затвора или основной коммутационный узел импульсного стабилизатора является хорошим кандидатом. Повышающие регуляторы, например, могут заряжать летающий конденсатор через заземленный диод, когда на коммутационном узле высокий уровень (рис. 3а). Включение повышающего транзистора приводит к тому, что коммутационный узел и положительное напряжение летучего конденсатора становятся равными 0 В. Когда повышающий транзистор включается, летающий конденсатор генерирует отрицательное напряжение, разряжаясь во вспомогательный выходной конденсатор.
Рис. 3. Отвод подкачки заряда предлагает недорогой способ получения вспомогательного выходного напряжения. Отвод повышающей цепи с летающим конденсатором (а) создает насос отрицательного заряда.