Как рассчитать количество секций батареи на комнату
Главная » Отопление » Как рассчитать количество секций радиатора
Как рассчитать количество секций радиатора
При модернизации системы отопления кроме замены труб меняют и радиаторы. Причем сегодня они есть из разных материалов, разных форм и размеров. Что не менее важно, имеют они разную теплоотдачу: количество тепла, которые могут передать воздуху. И это обязательно учитывают, когда делают расчет секций радиаторов.
В помещении будет тепло, если количество тепла, которое уходит, будет компенсироваться. Поэтому в расчетах за основу берут теплопотери помещений (они зависят от климатической зоны, от материала стен, утепления, площади окон и т.д.). Второй параметр — тепловая мощность одной секции. Это то количество тепла, которое она может выдать при максимальных параметрах системы (90°C на входе и 70°C на выходе). Эта характеристика обязательно указывается в паспорте, зачастую присутствует на упаковке.
Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещений и системы отопления
Один важный момент: проводя расчеты самостоятельно, учтите, что большинство производителей указывают максимальную цифру, которую они получили при идеальных условиях. Потому любое округление производите в большую сторону. В случае с низкотемпературным отоплением (температура теплоносителя на входе ниже 85°C) ищут тепловую мощность для соответствующих параметров или делают перерасчет (описан ниже).
Расчет по площади
Это — самая простая методика, позволяющая примерно оценить число секций, необходимое для отопления помещения. На основании многих расчетов выведены нормы по средней мощности отопления одного квадрата площади. Чтобы учесть климатические особенности региона, в СНиПе прописали две нормы:
- для регионов средней полосы России необходимо от 60 Вт до 100 Вт;
- для районов, находящихся выше 60°, норма отопления на один квадратный метр 150-200 Вт.
Почему в нормах дан такой большой диапазон? Для того, чтобы можно было учесть материалы стен и степень утепления. Для домов из бетона берут максимальные значения, для кирпичных можно использовать средние. Для утепленных домов — минимальные. Еще одна важная деталь: эти нормы просчитаны для средней высоты потолка — не выше 2,7 метра.
Как рассчитать количество секций радиатора: формула
Зная площадь помещения, умножаете ее норму затрат тепла, наиболее подходящую для ваших условий. Получаете общие теплопотери помещения. В технических данных к выбранной модели радиатора, находите тепловую мощность одной секции. Общие теплопотери делите на мощность, получаете их количество. Несложно, но чтобы было понятнее, приведем пример.
Пример расчета количества секций радиаторов по площади помещения
Угловое помещение 16 м 2. в средней полосе, в кирпичном доме. Устанавливать будут батареи с тепловой мощностью 140 Вт.
Для кирпичного дома берем теплопотери в середине диапазона. Так как помещение угловое, лучше взять большее значение. Пусть это будет 95 Вт. Тогда получается, что для обогрева помещения требуется 16 м 2 * 95 Вт = 1520 Вт.
Теперь считаем количество: 1520 Вт / 140 Вт = 10,86 шт. Округляем, получается 11 шт. Столько секций радиаторов необходимо будет установить.
Расчет батарей отопления на площадь прост, но далеко не идеален: высота потолков не учитывается совершенно. При нестандартной высоте используют другую методику: по объему.
Считаем батареи по объему
Есть в СНиПе нормы и для обогрева одного кубометра помещений. Они даны для разных типов зданий:
- для кирпичных на 1 м 3 требуется 34 Вт тепла;
- для панельных — 41 Вт
Этот расчет секций радиаторов похож на предыдущий, только теперь нужна не площадь, а объем и нормы берем другие. Объем умножаем на норму, полученную цифру делим на мощность одной секции радиатора (алюминиевого, биметаллического или чугунного).
Формула расчета количества секций по объему
Пример расчета по объему
Для примера рассчитаем, сколько нужно секций в комнату площадью 16 м 2 и высотой потолка 3 метра. Здание построено из кирпича. Радиаторы возьмем той же мощности: 140 Вт:
- Находим объем. 16 м 2 * 3 м = 48 м 3
- Считаем необходимое количество тепла (норма для кирпичных зданий 34 Вт). 48 м 3 * 34 Вт = 1632 Вт.
- Определяем, сколько нужно секций. 1632 Вт / 140 Вт = 11,66 шт. Округляем, получаем 12 шт.
Теперь вы знаете два способа того, как рассчитать количество радиаторов на комнату.
Теплоотдача одной секции
Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.
Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500). Еще более ощутимые отличия могут быть у разных производителей.
Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу
Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средине значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):
- Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
- Алюминиевый — 190 Вт (0,19 кВт).
- Чугунные — 120 Вт (0,120 кВт).
Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.
Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше
Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м 2 :
- биметаллическая секция обогреет 1,8 м 2 ;
- алюминиевая — 1,9-2,0 м 2 ;
- чугунная — 1,4-1,5 м 2 ;
Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м 2. для ее отопления примерно понадобится:
- биметаллических 16 м 2 / 1,8 м 2 = 8,88 шт, округляем — 9 шт.
- алюминиевых 16 м 2 / 2 м 2 = 8 шт.
- чугунных 16 м 2 / 1,4 м 2 = 11,4 шт, округляем — 12 шт.
Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.
Расчет секций радиаторов в зависимости от реальных условий
Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.
Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе 60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.
Формула расчета температурного напора системы отопления
Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.
Таблица коэффициентов для систем отопления с разной дельтой температур
Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов.
Только с учетом индивидуальных параметров в помещении будет тепло.Расчет количества секций радиаторов отопления: разбор 3-х различных подходов + примеры
Правильный расчет радиаторов отопления — довольно важная задача для каждого домовладельца. Если будет использовано недостаточное количество секций, помещение не прогреется во время зимних холодов, а приобретение и эксплуатация слишком больших радиаторов повлечет неоправданно высокие расходы на отопление. Поэтому при замене старой отопительной системы или монтаже новой необходимо знать как рассчитать радиаторы отопления. Для стандартных помещений можно воспользоваться самыми простыми расчетами, однако иногда возникает необходимость учесть различные нюансы, чтобы получить максимально точный результат.
Расчет по площади помещения
Предварительный расчет можно сделать, ориентируясь на площадь помещения, для которого покупаются радиаторы.
Вычисляем количество тепла, которое понадобится для всей комнаты. Для этого площадь умножаем на 100 Вт, т. е. для комнаты в 20 кв. м. расчетная тепловая мощность составит 2000 Вт (20 кв.м Х 100 Вт) или 2 кВт.
Правильный расчет радиаторов отопления необходим, чтобы гарантировать достаточное количество тепла в доме
Этот результат нужно разделить на теплоотдачу одной секции, указанную производителем. Например, если она равна 170 Вт, то в нашем случае необходимое количество секций радиатора будет составлять:
2000 Вт / 170 Вт = 11,76, т. е. 12, поскольку результат следует округлить до целого числа. Округление обычно осуществляется в сторону увеличения, однако для помещений, в которых теплопотери ниже среднего, например, для кухни, можно округлять в меньшую сторону.
Обязательно следует учесть возможные теплопотери в зависимости от конкретной ситуации. Разумеется, комната с балконом или расположенная в углу здания теряет тепло быстрее. В этом случае следует увеличить значение расчетной тепловой мощности для комнаты на 20%. Примерно на 15-20% стоит повысить расчеты, если планируется скрыть радиаторы за экраном или монтировать их в нишу.
А чтобы вам было удобнее считать, мы сделали для вас этот калькулятор:
Расчеты в зависимости от объема помещения
Более точные данные можно получить, если сделать расчет секций радиаторов отопления с учетом высоты потолка, т. е. по объему помещения. Принцип здесь примерно такой же, как и в предыдущем случае. Сначала вычисляется общая потребность в тепле, затем рассчитывают количество секций радиаторов.
Если радиатор будет скрыт экраном, нужно увеличить потребность помещения в тепловой энергии на 15-20%
Согласно рекомендациям СНИП на обогрев каждого кубического метра жилого помещения в панельном доме необходим 41 Вт тепловой мощности. Умножив площадь комнаты на высоту потолка, получаем общий объем, который умножаем на это нормативное значение. Для квартир с современными стеклопакетами и наружным утеплением понадобится меньше тепла, всего 34 Вт на кубический метр.
Например, рассчитаем необходимое количество тепла для комнаты площадью 20 кв.м. с потолком высотой 3 метра. Объем помещения составит 60 куб.м (20 кв.м. Х 3 м.). Расчетная тепловая мощность в этом случае будет равна 2460 Вт (60 куб.м. Х 41 Вт).
А как рассчитать количество радиаторов отопления? Для этого нужно разделить полученные данные на указанную производителем теплоотдачу одной секции. Если взять, как и в предыдущем примере, 170 Вт, то для комнаты будет нужно: 2460 Вт / 170 Вт = 14,47, т. е. 15 секций радиатора.
Производители стремятся указывать завышенные показатели теплоотдачи своей продукции, предполагая, что температура теплоносителя в системе будет максимальной. В реальных условиях это требование соблюдается редко, поэтому следует ориентироваться на минимальные показатели теплоотдачи одной секции, которые отражены в паспорте изделия. Это сделает расчеты более реалистичными и точными.
Что делать если нужен очень точный расчет?
К сожалению, далеко не каждая квартира может считаться стандартной. Еще в большей степени это относится к частным жилым домам. Возникает вопрос: как рассчитать количество радиаторов отопления с учетом индивидуальных условий их эксплуатации? Для это понадобится учесть множество различных факторов.
При расчете количества секций отопления нужно учесть высоту потолка, количество и размеры окон, наличие утепления стен и т.п.
Особенность этого метода состоит в том, что при вычислении необходимого количества тепла используется ряд коэффициентов, учитывающих особенности конкретного помещения, способные повлиять на его способность сохранять или отдавать тепловую энергию. Формула для расчетов выглядит так:
КТ = 100Вт/кв.м. * П * К1 * К2 * К3 * К4 * К5 * К6 * К7. где
КТ — количество тепла, необходимого для конкретного помещения;
П — площадь комнаты, кв. м.;
К1 — коэффициент, учитывающий остекление оконных проемов:
- для окон с обычным двойным остеклением — 1,27;
- для окон с двойным стеклопакетом — 1,0;
- для окон с тройным стеклопакетом — 0,85.
К2 — коэффициент теплоизоляции стен:
- низкая степень теплоизоляции — 1,27;
- хорошая теплоизоляция (кладка в два кирпича или слой утеплителя) — 1,0;
- высокая степень теплоизоляции — 0,85.
К3 — соотношение площади окон и пола в помещении:
К4 — коэффициент, позволяющий учесть среднюю температуру воздуха в самую холодную неделю года:
- для -35 градусов — 1,5;
- для -25 градусов — 1,3;
- для -20 градусов — 1,1;
- для -15 градусов — 0,9;
- для -10 градусов — 0,7.
К5 — корректирует потребность в тепле с учетом количества наружных стен:
К6 — учет типа помещения, которое расположено выше:
- холодный чердак — 1,0;
- отапливаемый чердак — 0,9;
- отапливаемое жилое помещение — 0,8
К7 — коэффициент, учитывающий высоту потолков:
Такой расчет количества радиаторов отопления включает практически все нюансы и базируется на довольно точном определении потребности помещения в тепловой энергии.
Остается полученный результат разделить на значение теплоотдачи одной секции радиатора и полученный результат округлить до целого числа.
Некоторые производители предлагают более простой способ получить ответ. На их сайтах можно найти удобный калькулятор, специально предназначенный для того, чтобы сделать данные вычисления. Чтобы воспользоваться программой, нужно ввести необходимые значения в соответствующие поля, после чего будет выдан точный результат. Или же можно воспользоваться специальным софтом.
Когда получали квартиру не задумывались о том, какие у нас радиаторы и подходят ли они к нашему дому. Но со временем потребовалась замена и тут уже стали подходить с научной точки зрения. Так как мощности старых радиаторов явно не хватало. После всех вычислений пришли к выводу, что 12 достаточно. Но нужно еще учесть вот какой момент — если ТЕЦ плохо выполняет свою работу и батареи чуть теплые, то тут уже никакое количество вас не спасет.
Последняя формула для более точного расчета понравилась, но не понятен коэффициент К2. Как определить степень теплоизоляции стен? Например, стена толщиной 375мм из пеноблока “ГРАС”, это низкая или средняя степень? А если добавить снаружи стены 100мм плотного строительного пенопласта, это будет высокая, или все еще средняя?
Ок, последняя формула добротная вроде бы, окна учитываются, но а если в помещении еще и дверь есть наружная? А если это гараж в котором 3 окна 800*600 + дверь 205*85 + гаражные секционные ворота толщиной 45мм размерами 3000*2400?
Если делать для себя — я бы увеличил кол-во секций и поставил бы регулятор. И вуаля — мы уже значительно в меньшей степени зависим от прихотей ТЭЦ.
Пример расчета секций алюминиевых радиаторов отоплениия на квадратный метр
Мало знать, что алюминиевые батареи обладают высоким уровнем теплоотдачи.
Перед их установкой обязательно нужно произвести расчет, какое именно их количество должно быть в каждом отдельном помещении.
Только зная, сколько алюминиевых радиаторов нужно на 1 м2, можно с уверенностью покупать необходимое количество секций.
Расчет секций алюминиевых радиаторов на квадратный метр
Как правило, производителями заранее просчитаны нормы мощности батарей из алюминия. которые зависят от таких параметров, как высота потолков и площадь помещения. Так считается, что на то, чтобы нагреть 1 м2 комнаты с потолком до 3 м высоты потребует тепловая мощность в 100 Вт.
Эти цифры приблизительны, так как расчет алюминиевых радиаторов отопления по площади в данном случае не предусматривает возможных теплопотерь в помещении или более высокие или низкие потолки. Это общепринятые строительные нормы, которые указывают в техпаспорте своей продукции производители.
- Немалую важность играет параметр тепловой мощности одного ребра радиатора. Для алюминиевого обогревателя она составляет 180-190 Вт.
- Температура носителя так же должна учитываться. Ее можно узнать в управляющем тепловом хозяйстве, если отопление централизованное, либо измерить самостоятельно в автономной системе. Для алюминиевых батарей показатель равен 100-130 градусам. Разделив температуру на тепловую мощность радиатора, получается, что для обогрева 1 м2 потребуется 0.55 секций.
- В том случае, если высота потолков «переросла» классические стандарты, то необходимо применять специальный коэффициент:
- если потолок равен 3 м, то параметры умножаются на 1.05;
- при высоте 3.5 м он составляет 1.1;
- при показателе 4 м – это 1.15;
- высота стены 4.5 м – коэффициент равен 1.2.
- Можно воспользоваться таблицей, которую предоставляют производители к своей продукции.
Сколько нужно секций алюминиевого радиатора?
Расчет количества секций алюминиевого радиатора производится по форме, подходящей для обогревателей любого типа:
- S – площадь помещения, где требуется установка батареи;
- k – коэффициент корректировки показателя 100 Вт/м2 в зависимости от высоты потолка;
- P – мощность одного элемента радиатора.
При расчете количества секций алюминиевых радиаторов отопления получается, что в помещении площадью 20 м2 при высоте потолка 2.7 м для алюминиевого радиатора с мощностью одной секции 0.138 кВт потребуется 14 секций.
Q = 20 х 100 / 0.138 = 14.49
В данном примере коэффициент не применяется, так как высота потолка менее 3 м. Но даже такой секций алюминиевых радиаторов отопления не будут верными, так как не взяты во внимание возможные теплопотери помещения. Следует учитывать, что в зависимости от того, сколько в комнате окон, является ли она угловой и есть ли в ней балкон: все это указывает на количество источников теплопотерь.
Делая расчет алюминиевых радиаторов по площади помещения, следует в формуле учитывать процент потери тепла в зависимости от того, где они будут установлены:
- если они закреплены под подоконником, то потери составят до 4%;
- установка в нише моментально увеличивает этот показатель до 7%;
- если алюминиевый радиатор для красоты прикрыть с одной стороны экраном, то потери составят до 7-8%;
- закрытый экраном полностью, он будет терять до 25%, что делает его в принципе малорентабельным.
Это далеко не все показатели, которые следует учесть при установке алюминиевых батарей.
Пример расчета
Если рассчитывать, сколько секций алюминиевого радиатора надо на комнату площадью 20 м2 при норме 100 Вт/м2, то так же следует вносить корректировочные коэффициенты потери тепла:
- каждое окно добавляет к показателю 0.2 кВт;
- дверь «обходится» в 0.1 кВт.
Если предполагается, что радиатор будет размещен под подоконником, то корректирующий коэффициент составит 1.04, а сама формула будет выглядеть следующим образом:
Q = (20 х 100 + 0,2 + 0,1) х 1,3 х 1,04 / 72 = 37,56
- первый показатель – это площадь комнаты;
- второй – стандартное количество Вт на м2;
- третий и четвертый указывают на то, что в комнате по одному окну и двери;
- следующий показатель – это уровень теплоотдачи алюминиевого радиатора в кВт;
- шестой – корректирующий коэффициент касаемо расположения батареи.
Все следует разделить на теплоотдачу одного ребра обогревателя. Его можно определить из таблицы от производителя, где указаны коэффициенты нагрева носителя по отношению к мощности устройства. Средний показатель для одного ребра равен 180 Вт, а корректировка – 0.4. Таким образом, умножив эти цифры, получается, что 72 Вт дает одна секция при нагреве воды до +60 градусов.
Так как округление производится в большую сторону, то максимальное количество секций в алюминиевом радиаторе конкретно для этого помещения составит 38 ребер. Для улучшения работы конструкции, ее следует разделить на 2 части по 19 ребер каждая.
Узнайте полезную информацию об алюминиевых батареях на нашем сайте:
Вычисление по объему
Если производить подобные вычисления, то потребуются обратиться к нормативам, установленным в СНиП. В них учитываются не только показатели радиатора, но и то, из какого материала построено здание.
Например, для дома из кирпича нормой для 1 м2 будет 34 Вт, а для панельных строений – 41 Вт. Чтобы рассчитать количество секций батареи по объему помещения, следует: объем помещения умножить на нормы теплозатрат и разделить на теплоотдачу 1 секции.
- Чтобы высчитать объем комнаты площадью 16 м2, нужно умножить этот показатель на высоту потолков, например, 3 м (16х3 = 43 м3).
- Норма тепла для кирпичного здания = 34 Вт, чтобы узнать какое требуется количество для данной комнаты, 48 м3 х 34 Вт (для панельного дома на 41 Вт) = 1632 Вт.
- Определяем, сколько требуется секций при мощности радиатора, например, 140 Вт. Для этого 1632 Вт/ 140 Вт =11.66.
Округлив этот показатель, получаем результат, что для комнаты объемом 48 м3 требуется алюминиевый радиатор из 12 секций.
Тепловая мощность 1 секции
Как правило, производители указывают в технических характеристиках обогревателей средние показатели теплоотдачи. Так для обогревателей из алюминия он составляет 1.9-2.0 м2. Чтобы высчитать, какое количество секций потребуется, нужно площадь помещения разделить на этот коэффициент.
Например, для той же комнаты площадью 16 м2 потребуется 8 секций, так как 16/ 2 = 8.
Эти расчеты приблизительные и использовать их без учета теплопотерь и реальных условий размещения батареи нельзя, так как можно получить после монтажа конструкции холодную комнату.
Чтобы получить самые точные показатели, придется рассчитать количество тепла, которое необходимо для обогрева конкретной жилой площади. Для этого придется учитывать многие корректирующие коэффициенты. Особенно важен такой подход, когда требуется расчет алюминиевых радиаторов отопления для частного дома.
Формула, необходимая для этого выглядит следующим образом:
КТ = 100Вт/м2 х S х К1 х К2 х К3 х К4 х К5 х К6 х К7
- КТ – это то количество тепла, которое требуется данному помещению.
- S – площадь.
- К1 – обозначение коэффициента для остекленного окна. Для стандартного двойного остекления он равен 1. 27, для двойного стеклопакета – 1.0, а для тройного – 0.85.
- К2 – это коэффициент уровня утепления стены. Для неутепленной панели он = 1.27, для кирпичной стены с кладкой в один слой = 1.0, а в два кирпича = 0.85.
- К3 – это соотношение площади, занимаемой окном и полом.Когда между ними:
- 50% — коэффициент составляет 1.2;
- 40% — 1.1;
- 30% — 1.0;
- 20% — 0.9;
- 10% — 0.8.
- К4 – это коэффициент, учитывающий температуру воздуха по СНиП в самые холодные дни года:
- +35 = 1.5;
- +25 = 1.2;
- +20 = 1.1;
- +15 = 0.9;
- +10 = 0.7.
- К5 указывает на корректировку при наличии наружных стен.Например:
- когда она одна, показатель равен 1.1;
- две наружные стены – 1.2;
- 3 стены – 1.3;
- все четыре стены – 1.4.
- К6 учитывает наличие помещения над комнатой, для которой производятся расчеты. При наличии:
- неотапливаемого чердака – коэффициент 1.0;
- чердак с обогревом – 0.9;
- жилая комната – 0.8.
- К7 – это коэффициент, который указывает на высоту потолка в комнате:
- 2.5 м = 1.0;
- 3.0 м = 1.05;
- 3.5 м = 1.1;
- 4.0 м = 1.15;
- 4.5 м = 1.2.
Если применить эту формулу, то можно предусмотреть и учесть практически все нюансы, которые могут повлиять на обогрев жилой площади. Сделав расчет по ней, можно быть точно уверенным, что полученный результат указывает на оптимальное количество секций алюминиевого радиатора для конкретного помещения.
Если вы решили установить алюминиевые радиаторы отопления важно знать следующее:
Какой бы принцип расчетов ни был предпринят, важно сделать его в целом, так как правильно подобранные батареи позволяют не только наслаждаться теплом, но и значительно экономят на энергозатратах. Последнее особенно важно в условиях постоянно растущих тарифов.
Полезное видео
Источники: http://stroychik.ru/otoplenie/raschet-sekcij-radiatorov, http://aqua-rmnt.com/otoplenie/raschety/raschet-radiatorov-otopleniya.html, http://netholodu.com/elementy-otopleniya/radiatory/alyuminievye/raschet-sektsij.html
Расчет количества секций радиаторов отопления
Скорее всего Вы уже решили для себя Какие радиаторы отопления лучше, но необходим расчет количества секций. Как его выполнить безошибочно и точно, учесть все погрешности и теплопотери?
Существует несколько вариантов расчета:
- по площади помещения
- и полный расчет включающий все факторы.
Рассмотрим каждый из них
Расчет количества секций радиаторов отопления по объему
Чаще всего используется значение, рекомендованное СНиП, для домов панельного типа на 1 куб. метр объема требуется 41 Вт тепловой мощности.
Если у Вас квартира в современном доме, со стеклопакетами, утепленными наружными стенами и откосами из гипсокартона, то для расчета уже используется значение тепловой мощности 34вт на 1куб.метр объема.
Пример расчета количества секций:
Комната 4*5м, высота потолка 2,65м
Получаем 4*5*2,65=53 куб.м Объем комнаты и умножаем на 41вт. Итого, требуемая тепловая мощность для обогрева: 2173Вт.
Исходя из полученных данных, не трудно рассчитать количество секций радиаторов. Для этого необходимо знать теплоотдачу одной секции, выбранного Вами радиатора.
Допустим:
Чугунный МС-140, одна секция 140Вт
Global 500,170Вт
Sira RS, 190Вт
Тут следует заметить, что производитель или продавец, часто указывает завышенную теплоотдачу, рассчитанную при повышенной температуре теплоносителя в системе. Поэтому ориентируйтесь на меньшее значение, указанное в паспорте на изделие.
Продолжим расчет: 2173 Вт делим на теплоотдачу одной секции 170Вт, получаем 2173Вт/170Вт=12,78 секций. Округляем в сторону целого числа, и получаем 12 или 14 секций.
Некоторые продавцы предлагают услугу по сборке радиаторов с необходимым числом секций, то есть 13. Но это уже будет не заводская сборка.
Этот метод, как и следующий является приблизительным.
Расчет количества секций радиаторов отопления по площади помещения
Является актуальным для высоты потолков помещения 2,45-2,6 метра. Принимается равным, что для обогрева 1кв.метра площади достаточно 100Вт.
То есть для комнаты 18 кв.метров, требуется 18кв.м*100Вт=1800Вт тепловой мощности.
Делим на теплоотдачу одной секции: 1800Вт/170Вт=10,59, то есть 11 секций.
В какую сторону лучше округлить результаты расчетов?
Комната угловая или с балконом, то к расчетам добавляем 20%
Если батарея будет устанавливаться за экраном или в нишу, то потери тепла могут достигать 15-20%
Но в то же время, для кухни, можно смело округлить в меньшую сторону, до 10 секций.
Кроме того, на кухне, очень часто монтируется электрический теплый пол. А это минимум 120 Вт тепловой помощи с одного квадратного метра.
Точный расчет количества секций радиаторов
Определяем требуемую тепловую мощность радиатора по формуле
Qт= 100ватт/м2 х S(помещения)м2 х q1 х q2 х q3 х q4 х q5 х q6 х q7
Где учитываются следующие коэффициенты:
Вид остекления (q1)
- Тройной стеклопакет q1=0,85
- Двойной стеклопакет q1=1,0
- Обычное(двойное) остекленение q1=1,27
Теплоизоляция стен (q2)
- Качественная современная изоляция q2=0,85
- Кирпич (в 2 кирпича) или утеплитель q3= 1,0
- Плохая изоляция q3=1,27
Отношение площади окон к площади пола в помещении (q3)
Минимальная температура снаружи помещения (q4)
Количество наружных стен (q5)
- Одна (обычно) q5=1,1
- Две (угловая квартира) q5=1,2
Тип помещения над расчетным (q6)
- Обогреваемое помещение q6=0,8
- Отапливаемый чердак q6=0,9
- Холодный чердак q6=1,0
Высота потолков (q7)
Пример расчета:
100 вт/м2*18м2*0,85 (тройной стеклопакет)*1 (кирпич)*0,8
(2,1 м2 окно/18м2*100%=12%)*1,5(-35)*
1,1(одна наружная)*0,8(обогреваемое,квартира)*1(2,7м)=1616Вт
Плохая теплоизоляция стен увеличит это значение до 2052 Вт!
количество секций радиатора отопления: 1616Вт/170Вт=9,51 (10 секций)
Мы рассмотрели 3 варианта расчета требуемой тепловой мощности и на основании этого получили возможность расчета необходимого количества секций радиаторов отопления. Но тут следует отметить, что для того чтобы радиатор выдал паспортную мощность его следует правильно установить. Как это сделать правильно или проконтролировать не всегда грамотных работников ЖЭКа, читайте в следующих статьях на официальном сайте Школы ремонта Remontofil
Как рассчитать количество секций радиаторов отопления
Важно понимать, что каждая комната нуждается в индивидуальном подходе. Для расчета мощности, необходимой для обогрева комнаты необходимо знать площадь комнаты, высоту потолков, а также учесть количество окон и их исполнение, стен, выходящих на улицу, помещение, которое находится над комнатой и мощность радиатора отопления. В большинстве своем количество радиаторов равно количеству оконных проемов в помещении.
СТАНДАРТНЫЙ РАСЧЕТ:
Стандартная формула расчета мощности выглядит следующим образом:
С*100/Р=К, где
К- мощность одной секции вашей радиаторной батареи исходя из технических характеристик производителя;
С- площадь помещения. Она равна произведению длины комнаты на ее ширину.
Например, комната имеет 5 метров длину и 4 метра ширину: 4*5=20, это площадь отапливаемого помещения. Тепловая мощность, заявленная производителем одной секции радиатора равна 130 Вт. Пользуясь формулой получаем 20*100/130=15,38. Округляем до 15. Итог, для отапливания помещения необходимо 15 секций радиатора. В случае, если комната угловая необходимо добавить 20% к необходимой мощности получаем 18,46, округляем в большую сторону и получаем 19 секций.
ТОЧНЫЙ РАСЧЕТ, С УЧЕТОМ ТЕПЛОВЫХ ПОТЕРЬ:
Данный способ учитывает множество различных факторов и коэффициентов и учитывает все особенности отапливаемого помещения.
Формула расчета для этого способа выглядит следующим образом:
КТ = 100Вт/кв.м. х П х К1 х К2 х К3 х К4 х К5 х К6 х К7
Где:
Кт – это необходимая тепловая мощность для отопления помещения;
П – площадь помещения;
К1 – это коэффициент, учитывающий остекление окон:
Если окно с простым остеклением двойного типа, то коэффициент составляет 1.27.
Для окна со стеклопакетом двойного типа – 1.00.
Для тройного стеклопакета коэффициент составляет 0.87.
К2 – это коэффициент стеновой теплоизоляции:
Если теплоизоляция низкая, то коэффициент составляет 1.27.
Для средней теплоизоляции = 1.0.
Для высокой теплоизоляции = 0.85.
К3 – это соотношение площади пола и площади окон в комнате.
Для 50% он будет равен 1,2.
Для 40% — 1,1.
Для 30% — 1.0.
Для 20% — 0.9.
Для 10% — 0.8.
К4 – коэффициент средней температуры воздуха зимой:
Для температуры воздуха -35 градусов он будет равен значению 1,5.
Для -25 – 1.3.
Для -20 – 1.1.
Для -15 – 0.9
Для -10 – 0.7.
К5 – это коэффициент тепловых потерь с учетом количества стен в помещении
Для помещения с одной стеной коэффициент составляет 1.1.
Две стены – 1.2.
Три стены 1.3.
К6 – учитывает помещение, расположенное над отапливаемым:
Если чердак не отапливается, то он составляет 1.0.
Если чердак отапливается, то коэффициент равен 0.9.
Если выше расположено жилое помещение, которое отапливается, то за основу берется коэффициент 0.7.
К7 – это учет высоты потолков в помещении.
Для высоты потолков в 2,5м коэффициент будет равен 1,0.
При высоте потолков в 3 метра коэффициент составит 1,05.
Если высота потолков составляет 3,5 метра, то берется за основу коэффициент в 1,1.
При 4 метрах – 1,15.
Результат, вычисленный по данной формуле, необходимо разделить на тепло, которое выдает одна секция радиатора отопления, и округлить полученный результат. Округление необходимо делать в большую сторону, так как производители зачастую завышают заявленную тепловую мощность своих изделий.
Расчет секций батареи на комнату. Расчет количества секций радиатора: онлайн-калькулятор, инструкция
Проблема отопления в наших широтах стоит гораздо острее, чем в Европе с ее мягким климатом и теплой зимой. В России значительная часть территории находится под властью зимы до 9 месяцев в году. Поэтому очень важно уделить достаточное внимание выбору систем отопления и расчету мощности радиаторов отопления.
В отличие от того, где учитывается только площадь, расчет мощности радиаторов отопления ведется по другой схеме. При этом следует учитывать и высоту потолков, то есть общий объем помещения, в котором планируется установка или замена системы отопления. Не бойся. В конечном итоге весь расчет строится по элементарным формулам, справиться с которыми не составит труда. Радиаторы будут обогревать помещение за счет конвекции, то есть циркуляции воздуха в помещении.Нагретый воздух поднимается вверх и вытесняет холодный. В этой статье вы получите простейший расчет мощности радиаторов отопления
.Возьмем комнату площадью 15 квадратных метров с высотой потолков 3 метра. Объем нагретого в системе отопления воздуха составит:
. V = 15×3 = 45 кубометровДалее считаем мощность, которая потребуется для обогрева помещения заданного объема. В нашем случае 45 куб. Для этого необходимо объем помещения умножить на мощность, необходимую для нагрева одного кубометра воздуха в данном регионе.Для Азии, Кавказа это 45 Вт, для среднего диапазона 50 Вт, для севера около 60 Вт. В качестве примера возьмем мощность 45 Вт и получим:
45 × 45 = 2025 Вт – мощность, необходимая для обогрева помещения кубатурой 45 метров
Выбор радиатора исходя из расчета
Радиаторы стальные
Оставим сравнение радиаторов отопления за скобками и отметим только те нюансы, о которых нужно иметь представление при выборе радиатора для своей системы отопления.
В случае с расчетом мощности стальных радиаторов отопления все просто. Требуемая мощность для уже известного помещения – 2025 Вт. Смотрим на таблицу и ищем стальные батареи, вырабатывающие необходимое количество ватт. Такие таблицы легко найти на сайтах производителей и продавцов аналогичных товаров. Обратите внимание на температурные режимы, при которых будет работать система отопления. Оптимально использовать аккумулятор на 70/50 С.
В таблице указан тип радиатора.Возьмем тип 22, как один из самых популярных и вполне достойных по своим потребительским качествам. Радиатор 600 × 1400 отлично подойдет. Мощность радиатора отопления будет 2015 Вт. Лучше взять немного с запасом.
Радиаторы алюминиевые и биметаллические
Алюминиевые и биметаллические радиаторы часто продаются секциями. Мощность в таблицах и каталогах указана для одного раздела. Необходимо мощность, необходимую для обогрева данного помещения, разделить на мощность одной секции такого радиатора, например:
2025/150 = 14 (округлено в большую сторону)Получили необходимое количество секций для помещения объемом 45 кубометров.
Не переусердствуйте!
Максимум 14-15 секций на один радиатор. Устанавливать радиаторы в 20 и более секций неэффективно. В этом случае разделите количество секций пополам и установите 2 радиатора по 10 секций в каждом. Например, один радиатор поставить возле окна, а другой у входа в комнату или на противоположной стене.
То же и со стальными радиаторами. Если комната достаточно большая и радиатор выходит слишком большим, лучше поставить два меньших, но с одинаковой суммарной мощностью.
Если в комнате одинакового объема 2 и более окон, то хорошим решением будет установка радиатора под каждым из окон. В случае с секционными радиаторами все довольно просто.
14/2 = 7 секций под каждым окном для помещения такого же объемаРадиаторы обычно продаются по 10 секций, лучше брать четное, например 8. Запас в 1 секцию не будет лишним при сильных морозах. Мощность от этого сильно не изменится, однако инерция нагрева радиаторов уменьшится.Это может быть полезно, если в комнату часто проникает холодный воздух. Например, если это офисное помещение, которое часто посещают клиенты. В таких случаях радиаторы будут нагревать воздух немного быстрее.
Что делать после расчета?
После расчета мощности радиаторов отопления для всех помещений необходимо будет выбрать трубопровод по диаметру, отводы. Количество радиаторов, длина труб, количество клапанов для радиаторов. Рассчитайте объем всей системы и выберите для нее подходящий котел.
Для человека дом часто ассоциируется с теплом и уютом. Чтобы в доме было тепло, необходимо уделить должное внимание системе отопления. Современные производители используют новейшие технологии для производства элементов систем отопления. Однако без правильного проектирования такой системы эти технологии могут оказаться бесполезными для определенных помещений.
Прежде всего, нужно понять, для каких целей будет использоваться помещение. Какой температурный режим в ней желателен.При этом необходимо учитывать множество тонкостей. Делать это желательно с точным расчетом мощности радиаторов отопления и теплопотерь. Радиаторы отопления лучше всего устанавливать в самой холодной части помещения. В приведенном выше примере рассматривалась установка радиаторов отопления возле окон. Это один из самых выгодных и эффективных вариантов размещения элементов системы отопления.
Видео расчета мощности аккумулятора
Чаще всего владельцы приобретают биметаллические радиаторы на замену чугунным батареям, которые по тем или иным причинам вышли из строя или начали плохо обогревать помещение.Чтобы данная модель радиаторов хорошо справлялась со своей задачей, необходимо ознакомиться с правилами расчета количества секций для всего помещения.
Необходимые данные для подсчета
Самым правильным решением будет обращение к опытным специалистам. Профессионалы могут достаточно точно и качественно рассчитать количество биметаллических радиаторов отопления. Такой расчет поможет определить, сколько секций понадобится не только для одной комнаты, но и для всего помещения, а также для любого типа объекта.
При расчете количества батарей все профессионалы учитывают следующие данные:
- из какого материала построено здание;
- какая толщина стен в комнатах;
- тип окон, которые были установлены в этой комнате;
- в каких климатических условиях находится здание;
- есть ли отопление в помещении над помещением, где установлены радиаторы;
- сколько «холодных» стен в комнате;
- какова площадь расчетного помещения;
- какая высота стен.
Все эти данные позволяют сделать расчет при установке биметаллических батарей максимально точным.
Коэффициент теплопотерь
Чтобы произвести расчет правильно, необходимо сначала рассчитать, какими будут теплопотери, а затем рассчитать их коэффициент. Для точных данных нужно учитывать одно неизвестное, то есть стены. В первую очередь это касается угловых комнат. Например, в комнате представлены следующие параметры: высота – два с половиной метра, ширина – три метра, длина – шесть метров.
- Ф – площадь стены;
- а – его длина;
- x – его высота.
Расчет ведется в метрах. Согласно этим расчетам, площадь стены будет равна семи с половиной квадратным метрам. После этого необходимо рассчитать теплопотери по формуле P = F * K.
Также умножьте на разницу между температурами внутри и снаружи, где:
- P – площадь теплопотерь;
- F – площадь стены в квадратных метрах;
- K – коэффициент теплопроводности.
Для правильного расчета нужно учитывать температуру. Если на улице около двадцати одного градуса, а в комнате восемнадцать, то для расчета этой комнаты нужно прибавить еще два градуса. К получившейся фигуре нужно добавить П окон и П дверей. Полученный результат нужно разделить на число, обозначающее тепловую мощность одной секции. В результате несложных расчетов вы узнаете, сколько батарей нужно для обогрева одной комнаты.
Однако все эти расчеты верны только для помещений со средними значениями теплоизоляции. Как известно, одинаковых комнат не бывает, поэтому для точного расчета обязательно нужно учитывать поправочные коэффициенты. Их нужно умножить на результат, полученный расчетом по формуле. Коэффициент поправки для угловых помещений составляет 1,3, для помещений в очень холодных местах – 1,6, для чердаков – 1,5.
Питание от аккумулятора
Для определения мощности одного радиатора необходимо рассчитать, сколько киловатт тепла потребуется от установленной системы отопления.Мощность, необходимая для обогрева каждого квадратного метра, составляет 100 Вт. Полученное число умножается на количество квадратных метров комнаты. Затем цифра делится на мощность каждой отдельной секции современного радиатора. Некоторые модели батарей имеют две и более секции. Делая расчет, нужно выбирать радиатор, имеющий количество секций, близкое к идеальному. Но все же он должен быть немного больше расчетного.
Это сделано для того, чтобы в помещении было теплее и не замерзало в холодные дни.
Производители биметаллических радиаторов указывают свою мощность по некоторым данным системы отопления. Поэтому при покупке любой модели необходимо учитывать термоголовку, которая характеризует, как нагревается теплоноситель, а также как нагревает систему отопления. В технической документации часто указывается мощность одной секции для теплового напора в шестьдесят градусов. Это соответствует температуре воды в радиаторе девяносто градусов.В тех домах, где отапливаются помещения чугунными батареями, это оправдано, но для новостроек, где все более современно, температура воды в радиаторе вполне может быть ниже. Тепловая голова в таких системах отопления может достигать пятидесяти градусов.
Расчет здесь тоже произвести несложно. Необходимо разделить мощность радиатора на цифру, обозначающую термоголовку. Число делится на число, указанное в документах. В этом случае эффективная мощность батарей будет немного меньше.
Это то, что нужно ставить во все формулы.
Популярные методы
Для вычета необходимого количества секций в установленном радиаторе можно использовать не одну формулу, а несколько. Поэтому стоит оценить все варианты и выбрать тот, который подходит для получения более точных данных. Для этого нужно знать, что по нормам СНиП на 1 м² одна биметаллическая секция может обогреть один метр восемьдесят сантиметров площади.Чтобы рассчитать, сколько секций нужно на 16 м², нужно эту цифру разделить на 1,8 квадратных метра. В результате получилось девять разделов. Однако этот метод довольно примитивен и для более точного определения необходимо учитывать все вышеперечисленные данные.
Есть еще один простой метод расчета самостоятельно. Например, если взять небольшую комнату в 12 м², то очень сильные батареи тут ни к чему. Вы можете взять, например, теплопередачу всего одной секции в двести ватт.Затем, используя формулу, вы легко сможете рассчитать их количество, необходимое для выбранного помещения. Чтобы получить желаемую цифру, нужно 12 – это количество квадратов, умноженное на 100, мощность на квадратный метр и разделенное на 200 Вт. Это, как вы понимаете, величина теплопередачи на секцию. В результате расчетов получится цифра шесть, то есть именно столько секций потребуется, чтобы обогреть комнату из двенадцати квадратов.
Можно рассмотреть еще один вариант квартиры площадью 20 м². Допустим, мощность купленной радиаторной секции составляет сто восемьдесят ватт. Тогда, подставив все доступные значения в формулу, вы получите следующий результат: 20 нужно умножить на 100 и разделить на 180 будет равно 11, а значит, это количество секций понадобится для обогрева этой комнаты. . Однако такие результаты действительно будут соответствовать тем комнатам, где потолки не выше трех метров, а климатические условия не очень суровые. А также не были учтены окна, то есть их количество, поэтому к окончательному результату нужно добавить еще несколько секций, их количество будет зависеть от количества окон.То есть в помещении можно установить два радиатора, по шесть секций в каждом. В этом расчете добавлено еще одно сечение с учетом окон и дверей.
По объему
Чтобы расчет был более точным, нужно произвести расчет по объему, то есть учесть три измерения в выбранном отапливаемом помещении. Все расчеты производятся практически одинаково, только за основу взяты данные мощности, рассчитанные на один кубический метр, что равняется сорока одному ватту.Можно попробовать посчитать количество секций биметаллической батареи для помещения такой же площади, как в рассмотренном выше варианте, и сравнить результаты. В этом случае высота потолка будет равна двум метрам семидесяти сантиметрам, а площадь помещения составит двенадцать квадратных метров. Затем нужно три умножить на четыре, а затем на два и семь.
Результат будет такой: тридцать два и четыре кубометра. Его нужно умножить на сорок один, и вы получите одну тысячу триста двадцать восемь четыре ватта.Такая мощность радиатора идеально подойдет для обогрева этого помещения. Затем этот результат нужно разделить на двести, то есть на количество ватт. Результат будет шесть целых шестьдесят четыре сотых, а это значит, что потребуется семисекционный радиатор. Как видите, результат расчета объема намного точнее. В результате вам даже не нужно будет учитывать количество окон и дверей.
А еще можно сравнить результаты расчета в комнате двадцатью кв. Для этого нужно двадцать умножить на два и семь, получится пятьдесят четыре кубических метра – это объем помещения. Далее нужно умножить на сорок один и получится две тысячи четыреста четырнадцать ватт. Если аккумулятор имеет мощность двести ватт, то эту цифру нужно разделить на полученный результат. В результате получится двенадцать и семь, а это значит, что в этой комнате нужно столько же секций, сколько в предыдущем расчете, но этот вариант намного точнее.
Существуют разные методы расчета количества радиаторов отопления. На это влияют и материал, из которого построено здание, и климатическая зона, в которой расположен дом, и температура носителя, и характеристики теплопередачи самого радиатора, а также многие другие факторы. Рассмотрим подробнее технологию правильного расчета количества радиаторов отопления для частных домов, ведь от этого зависит эффективность работы, а также эффективность системы отопления дома.
Самый демократичный способ – рассчитать радиатор из расчета мощности на квадратный метр. В средней полосе России зимой 50-100 Вт, в регионах Сибири и Урала 100-200 Вт. Стандартные 8-секционные чугунные батареи с межосевым расстоянием 50 см имеют теплоотдачу 120-150 Вт на секцию … Биметаллическое излучение имеет мощность около 200 Вт, что немного выше. Если мы имеем в виду стандартный водяной теплоноситель, то для комнаты 18-20 м 2 при стандартной высоте потолка 2.5-2,7 м потребуется два чугунных радиатора на 8 секций.
От чего зависит количество радиаторов
Есть ряд других факторов, которые следует учитывать при расчете количества радиаторов :
- паровой теплоноситель имеет большую теплоотдачу , чем водный;
- угловая комната холоднее , так как имеет две стены, выходящие на улицу;
- чем больше окон в помещении, тем холоднее;
- если высота потолков выше 3 метра , то мощность теплоносителя нужно рассчитывать исходя из объема помещения, а не его площади;
- материал, из которого изготовлен радиатор, имеет собственную теплопроводность ;
- утепленные стены повышают теплоизоляцию помещения;
- чем ниже зимние температуры на улице, тем больше батарей нужно установить;
- современные стеклопакеты повышают теплоизоляцию помещения;
- при одностороннем подключении патрубков к радиатору нет смысла устанавливать более 10 секций;
- если теплоноситель движется сверху вниз, его мощность увеличивается на на 20%;
- наличие вентиляции предполагает большую мощность.
Формула и пример расчета
С учетом вышеуказанных факторов можно произвести расчет. На 1 м 2 потребуется 100 Вт, соответственно на обогрев помещения 18 м 2 нужно потратить 1800 Вт. Одна батарея из 8 чугунных секций дает 120 Вт. Разделите 1800 на 120 и получите 15 разделов … Это очень средняя цифра.
В частном доме с собственным водонагревателем мощность теплоносителя рассчитана по максимальной. Затем делим 1800 на 150 и получаем 12 секций.Столько нужно, чтобы обогреть комнату площадью 18м2. Существует очень сложная формула, по которой можно рассчитать точное количество секций в радиаторе.
Формула выглядит так:
- q 1 – это тип остекления: стеклопакет тройной 0,85; двойное остекление 1; обычное стекло 1,27;
- q 2 – теплоизоляция стен: современная теплоизоляция 0,85; стена в 2 кирпича 1; плохая шумоизоляция 1,27;
- q 3 – отношение площади окон к площади пола: 10% 0.8; 20% 0,9; 30% 1,1; 40% 1,2;
- q 4 – минимальная наружная температура: -10 0 С 0,7; -15 0 C 0,9; -20 0 С 1,1; -25 0 С 1,3; -35 0 С 1,5;
- q 5 – количество внешних стен: одна 1,1; два (угловые) 1,2; три 1,3; четыре 1,4;
- q 6 – тип помещения над расчетным: отапливаемое 0,8; отапливаемый чердак 0,9; холодный чердак 1;
- q 7 – высота потолков: 2,5 м – 1; 3 м – 1.05; 3,5 м – 1,1; 4 м – 1,15; 4,5 м – 1,2;
Проведем расчет углового помещения 20 м 2 с высотой потолка 3 м, двух двухстворчатых окон с тройным стеклопакетом, стен в 2 кирпича, расположенного под холодным чердаком в доме в г. подмосковный поселок, где зимой температура опускается до 20 0 С.
Это 1844,9 Вт. Делим на 150 ватт и получаем 12,3 или 12 секций.
Расчет мощности чугунных аккумуляторов подробно рассмотрен в этой статье:
Радиаторы изготавливаются из трех видов металла: чугун , алюминий и биметаллический. Чугунные и алюминиевые радиаторы имеют одинаковую теплоотдачу, но нагретый чугун охлаждается медленнее, чем алюминий. Биметаллические батареи имеют более высокую теплоотдачу, чем чугунные, но при этом быстрее остывают. Стальные радиаторы обладают высокой теплоотдачей, но они подвержены коррозии.
в помещении считается 21 0 С. Однако для хорошего крепкого сна больше подходит температура не выше 18 0 С, поэтому назначение отапливаемого помещения также играет немаловажную роль.А если в зале площадью 20 м 2 необходимо установить 12 аккумуляторных отсеков , тогда в аналогичном общежитии предпочтительнее установить 10 аккумуляторов, и человек в таком помещении будет комфортно спать. В угловой комнате той же площади смело ставьте батареек 16 и вам не будет жарко. То есть расчет радиаторов в комнате очень индивидуален, и можно дать лишь приблизительные рекомендации, сколько секций нужно установить в том или ином помещении.Главное, правильно провести монтаж, и в вашем доме всегда будет тепло.
Расчет радиаторов в двухтрубной системе (видео)
Несмотря на широкий ассортимент современных теплообменных отопительных приборов, знакомые каждому чугунные радиаторы «гармошка» не собираются кануть в Лету. К тому же у производителей таких аккумуляторов нет проблем с продажами. Это связано с отличной надежностью изделий, которые могут служить полвека и более, и высокими показателями теплоотдачи.
Как правильно определить количество секций таких радиаторов, чтобы обеспечить комфортные условия проживания в помещении? Все зависит от характеристик помещения, в котором их планируется установить, и от параметров самих батарей – они могут существенно отличаться. Наш калькулятор для расчета количества секций чугунного радиатора MC поможет вам принять правильное решение.
Цены на радиаторы чугунные
чугунный радиатор
Расчет требует пояснений – они будут приведены под калькулятором.
Расчет ведется по каждой комнате отдельно.
Последовательно введите запрашиваемые значения или отметьте нужные опции в предложенных списках.
Нажать кнопку «Рассчитать количество секций»
Площадь номера, м2
100 Вт на кв.м
Кол-во внешних стен
Нет два три
Наружные стены фасада:
Север, Северо-Восток, Восток Юг, Юго-Запад, Запад
Положение внешней стены относительно зимней «розы ветров»
Наветренная сторона Подветренная сторона параллельно направлению ветра
Уровень отрицательных температур воздуха в регионе в самую холодную неделю года
35 ° С и ниже от – 30 ° С до – 34 ° С от – 25 ° С до – 29 ° С от – 20 ° С до – 24 ° С от – 15 ° С до – 19 ° С от – 10 ° С до – 14 ° С не ниже – 10 ° С
Какая степень утепления внешних стен?
Наружные стены не изолированы Средняя изоляция Наружные стены хорошо изолированы
Высота потолка в помещении
До 2.7 м 2,8 ÷ 3,0 м 3,1 ÷ 3,5 м 3,6 ÷ 4,0 м более 4,1 м
Что внизу?
Холодный пол на земле или над неотапливаемым помещением Изолированный пол на земле или над неотапливаемым помещением Имеется отапливаемое помещение ниже
Что наверху?
Холодный чердак или неотапливаемое и неизолированное помещение Изолированный чердак или другое помещение Отапливаемое помещение
Установлены окна типа
Обычные деревянные рамы с двойным остеклением Окна с однокамерным (2 стекла) стеклопакетом Окна с двойным стеклопакетом (3 стекла) или аргоновым заполнением
Количество окон в комнате
Высота окна, м
Ширина окна, м
Двери на улицу или на холодный балкон:
Предлагаемая схема подключения радиаторов отопления
Предполагаемые особенности расположения радиаторов
Радиатор на стене установлен открыто Радиатор прикрывается сверху подоконником или полкой Радиатор сверху прикрывается нишей в стене Радиатор прикрывается спереди декоративной перегородкой Радиатор полностью закрывается декоративная обшивка
Радиатор МС модель
Пояснения к расчетамАлгоритм расчета основан на том, что для обогрева 10 м² требуется 1 кВт тепловой энергии.Понятно, что это соотношение достаточно условно, поэтому будет корректироваться рядом коэффициентов, учитывающих специфику помещения.
- Площадь помещения рассчитать несложно, особенно если помещение имеет традиционную прямоугольную конфигурацию.
Помощь в расчете площадей помещений комплекса
Если комната имеет более сложную форму, можно применить несколько разных подходов. Подробнее об этом, с рассмотрением возможных примеров и с калькуляторами расчетов – в статье о.
- Количество внешних стен. Чем их больше, тем значительнее тепловые потери, и это учитывается программой расчета.
- Большое значение имеет расположение внешних стен комнаты относительно сторон света. Причину, наверное, объяснять не нужно.
- Если стена расположена с наветренной стороны относительно традиционных зимних ветров, то она будет быстрее остывать – следовательно, для компенсации этого явления нужен запас тепловой мощности.
- «Уровень заморозков» характеризует климатические особенности региона. В этом столбце не указаны аномальные температуры, но вполне обычные для самой холодной декады зимы.
- Если стена полностью утеплена, исходя из проведенных теплотехнических расчетов, то уровень теплоизоляции можно считать качественным. Вообще неизолированные стены в принципе даже рассматривать не стоит, так как отопление станет переводом денег на энергоресурсы, и все равно комфортного микроклимата в доме добиться не удастся.
- Чем выше потолки, тем больше объем помещения и тем больше тепловой энергии требуется для его обогрева.
- Следующие две колонки учитывают вертикальную близость комнаты – вверху и внизу, то есть собственно теплопотери через потолок и пол.
- Далее – несколько полей, связанных с наличием и особенностями окон. Естественно, что от этих параметров напрямую зависит общая потребность помещения в тепловой энергии на компенсацию возможных потерь тепла.
- Если в комнате есть постоянно используемая дверь, выходящая на улицу, на холодную лестницу или на неотапливаемый балкон, то любое ее открытие сопровождается притоком холодного воздуха. Это необходимо компенсировать определенным добавлением мощности.
- Особенности той или иной системы отопления могут повлиять на схему вставки радиаторов в схему. А это, в свою очередь, отражается на характеристиках теплообмена аккумуляторов. Из представленных примеров необходимо выбрать предложенную схему врезки.
- Радиатор, расположенный открыто на стене, спрятанный в нише или прикрытый кожухом – все они будут существенно различаться по теплоотдаче. Это учитывается в специальном поле ввода – необходимо выбрать особенности установки из списка.
- Наконец, сами модели чугунных радиаторов МС различаются линейными параметрами и, соответственно, удельной тепловой мощностью на секцию. В предложенном списке представлены наиболее распространенные типы чугунных батарей МС, а их характеристики уже включены в программу расчета.
- Результат покажет рекомендуемое количество секций для установки в конкретном помещении.
Подробнее о чугунных радиаторах типа MC
Каждый хозяин дома сталкивается с важными вопросами при установке отопления. Какой радиатор выбрать? Как рассчитать количество секций радиатора? Если дом строят для вас профессиональные работники, они помогут сделать правильные расчеты, чтобы распределение отопительных батарей в здании было рациональным.Однако эту процедуру можно проделать и самостоятельно. Формулы, необходимые для этого, можно найти ниже в статье.
Типы радиаторов отопления
На сегодняшний день существуют такие типы батарей для отопления: биметаллические, стальные, алюминиевые и чугунные. Также радиаторы делятся на панельные, секционные, конвекторные, трубчатые, а также дизайнерские радиаторы. Их выбор зависит от теплоносителя, технических возможностей системы отопления и финансовых возможностей хозяина дома.Как рассчитать количество секций радиатора на комнату? Не зависит от типа. При этом учитывается только один показатель – мощность радиатора.
Методы расчета
Для того, чтобы система отопления в помещении работала эффективно и зимой было тепло и комфортно, нужно тщательно Для этого используются следующие методы расчета:
- Стандарт – проводится по Основываясь на положениях СНиП, согласно которым для обогрева 1м 2 потребуется мощность 100 Вт.Расчет ведется по формуле: S / P, где P – вместимость отделения, S – площадь выбранного помещения.
- Примерно – для обогрева квартиры площадью 1,8 м 2 с высотой потолков 2,5 м потребуется одна радиаторная секция.
- Объемный метод – мощность нагрева принята на 1м 3 Вт. Учитываются ширина, высота и длина помещения.
Сколько радиаторов нужно на весь дом
Как рассчитать количество радиаторных секций для квартиры или дома? Расчет ведется для каждой комнаты отдельно.По стандарту тепловая мощность на 1 м 3 объема помещения с одной дверью, окном и внешней стеной считается равной 41 Вт.
Если дом или квартира «холодные», с тонкими стенами. , имеет много окон, а квартира находится на первом или последнем этаже дома, то на их обогрев нужно 47 Вт на 1 м 3, а не 41 Вт. Для дома, построенного из современных материалов с использованием различных изоляционных материалов для стен. , полы, потолки, металлопластиковые окна. можно взять 30 ватт.
Для замены чугунных радиаторов существует простейший метод расчета: нужно умножить их количество на полученное число – мощность новых устройств. При покупке алюминиевых или биметаллических батарей для замены расчет ведется в соотношении: одна чугунная кромка к одной алюминиевой.
Правила расчета количества ответвлений
- Увеличение мощности радиатора происходит: если помещение фасадное и имеет одно окно – на 20%; с двумя окнами – на 30%; окна, выходящие на север, тоже требуют прибавки еще на 10%; установка аккумулятора под окном – 5%; покрытие каменки декоративной ширмой – на 15%.
- Мощность, необходимую для обогрева, можно рассчитать, умножив площадь помещения (в м 2) на 100 Вт.
В паспорте на продукцию производитель указывает удельную мощность, что дает возможность рассчитать нужное количество секций. Не забывайте, что на теплоотдачу влияет мощность отдельной секции, а не размер радиатора. Поэтому разместить и установить в комнате несколько небольших приборов эффективнее, чем установить одну большую.Поступающее с разных сторон тепло равномерно его согреет.
Расчет количества биметаллических аккумуляторных отсеков
- Размеры помещения и количество окон в нем.
- Расположение конкретной комнаты.
- Наличие проемов, арок и дверей.
- Мощность теплоотдачи каждой секции, указанная производителем в паспорте.
Расчет ступеней
Как рассчитать количество секций радиатора, если все необходимые данные записаны? Для этого определите площадь, рассчитав в метрах производные от ширины и высоты комнаты.Используя формулу S = L x W, рассчитайте площадь стыка, если в них есть открытые проемы или арки.
Затем рассчитывается общее количество аккумуляторов (P = S x 100) с использованием мощности 100 Вт для нагрева одного м 2. Затем вычисляется правильное количество секций (n = P / Pc) путем деления суммарная тепловая мощность по теплоотдаче одной секции указана в паспорте.
В зависимости от расположения помещения расчет необходимого количества отсеков биметаллического устройства производится с учетом поправочных коэффициентов: 1.3 – для угловой; коэффициент 1,1 – для первого и последнего этажей; 1,2 – используется для двух окон; 1,5 – три и более окон.
Расчет аккумуляторных секций в конечной комнате, расположенной на первом этаже дома и имеющей 2 окна. Размеры помещения 5 х 5 м. Теплоотдача одной секции составляет 190 Вт.
- Рассчитываем площадь помещения: S = 5 x 5 = 25 м 2.
- Рассчитываем тепловую мощность в целом: P = 25 x 100 = 2500 W.
- Рассчитываем необходимые сечения: n = 2500/190 = 13.6. Округляя в большую сторону, получаем 14. Учитываем поправочные коэффициенты n = 14 x 1,3 x 1,2 x 1,1 = 24,024.
- Делим секции на две батареи и устанавливаем их под окнами.
Надеемся, что информация в статье подскажет, как рассчитать количество секций радиатора для дома. Для этого воспользуйтесь формулами и произведите относительно точный расчет. Важно правильно подобрать мощность секции, подходящую для вашей системы отопления.
Если вы не можете самостоятельно рассчитать необходимое количество аккумуляторов для своего дома, лучше всего обратиться за помощью к специалистам. Сделают грамотный расчет с учетом всех факторов, влияющих на эффективность установленных отопительных приборов, которые обеспечат тепло в доме в холодный период.
Батарейные шкафыи батарейные стойки
Это седьмое устройство в серии, которое расскажет вам о роли батареи в системе бесперебойного питания (ИБП).
На ранних этапах проектирования ИБП необходимо принять решение о том, следует ли устанавливать батареи в стойках или в шкафах. У обоих есть свои плюсы и минусы. Ниже приведены типичные конструктивные особенности.
Аккумуляторная техника
Свинцово-кислотные (VLA) вентилируемые батареи (часто называемые «затопленными» или «мокрыми ячейками»), которые иногда используются в очень больших системах ИБП, ВСЕГДА монтируются в стойку.
Свинцово-кислотные батареи с клапанным регулированием (VRLA) можно устанавливать на стойках или в шкафах.В оставшейся части этого документа будут рассмотрены соображения по размещению VRLA.
Размер
Вообще говоря, чем больше батарея (как физически, так и в ампер-часах), тем более вероятно, что будет рассмотрена конфигурация стойки. Нет никаких жестких правил, но обычно, когда аккумуляторная батарея (одноячеечная или многоячеечная) достигает более 100 Ач, предпочтение отдается установке в стойку. Ниже следует рассмотреть возможность монтажа в шкафу.
Номер
«Число» относится как к количеству ячеек в строке, так и к количеству строк.Системы ИБП часто работают при высоком постоянном напряжении (например, от 250 до 800 Вольт). Необходимо проанализировать, нужно ли иметь минимальное количество комплектов батарей, использующих физически большие блоки, или иметь несколько рядов физически меньших блоков. Такое решение выходит за рамки данной статьи, но оно будет включать анализ надежности (например, где и сколько может быть единичных отказов?) И ремонтопригодности (например, когда блок слишком велик для того, чтобы человек мог его обработать, что требует специального погрузочно-разгрузочного оборудования?).Каждое соединение между ячейками – это потенциальная единственная точка отказа. Избыточность может увеличивать или уменьшать надежность в зависимости от количества точек отказа. Все, что превышает 23 кг (50 фунтов), вероятно, слишком тяжело для безопасного подъема. Для точного определения порогового значения следует обращаться к местным и региональным нормам безопасности на рабочем месте.
Расположение
Батареи ИБПдолжны быть как можно ближе к ИБП. Они могут находиться по адресу:
- комната электрооборудования; или
- аккумуляторная; или
- компьютерный зал
Батареи, устанавливаемые на открытые стойки, почти всегда требуют установки в аккумуляторной комнате.Иногда их устанавливают в том же помещении, что и ИБП (например, в помещении с электрооборудованием). Местные или региональные нормы могут диктовать, разрешено ли использование батарей в электрическом помещении.
Системы ИБПменьшего размера (например, до 250 кВА) обычно устанавливаются непосредственно в компьютерном зале вместе с соответствующими аккумуляторными шкафами. ИБП и / или аккумуляторные шкафы могут быть сконфигурированы так, чтобы выглядеть как стандартные стойки для компьютерного оборудования.
Опасности
Есть две основные опасности, вызывающие озабоченность: электрическая опасность и пожар.
Батареи открытой стойки подвергают воздействию потенциально смертельного напряжения любое лицо, соприкасающееся с ними. Поэтому они должны устанавливаться в аккумуляторных, доступ к которым разрешен только уполномоченному персоналу. Уполномоченный персонал должен быть обучен технике безопасности при работе с аккумулятором.
Батарейные шкафы должны закрывать батареи за закрытыми дверцами, доступными только уполномоченному персоналу. Пока шкафы заперты, они могут находиться в компьютерном зале или других помещениях, доступных для специалистов, не занимающихся аккумуляторными батареями.
Поскольку даже батареи VRLA могут выделять водород (который является легковоспламеняющимся и, возможно, взрывоопасным), вентиляции (т. Е. Воздухообмена в час) должно быть достаточно, чтобы гарантировать, что никакие карманы газа не могут скапливаться при нижнем пределе воспламеняемости (LFL). Местные нормы и правила диктуют запас прочности, который обычно как минимум на 50% ниже LFL. Батарейные помещения должны быть оборудованы вытяжными устройствами, которые обычно представляют собой вентилятор, выводящий воздух за пределы здания. Местные и региональные правила пожарной безопасности устанавливают требования.
Поскольку воздухообмен в большинстве компьютерных залов намного превышает вентиляцию нормальной рабочей среды, размещение батарейных шкафов в компьютерном зале редко является проблемой.
Электрооборудование
Как упоминалось ранее, батареи должны располагаться как можно ближе к ИБП. Причины двоякие: (1) чем длиннее кабель, тем больше падение напряжения; и (2) чем длиннее кабель, тем выше вероятность повреждения и / или короткого замыкания.Батарейные помещения открытой стойки должны примыкать к помещению ИБП. Батарейные шкафы должны располагаться рядом с оборудованием ИБП. Длины кабелей от нескольких шкафов должны быть как можно более идентичными, чтобы предотвратить колебания падения напряжения.
Один шкаф должен вмещать как минимум одну полную цепочку ячеек. Лучшая практика – не разделять струны между двумя шкафами, чтобы обеспечить надежность всей струны.
Рисунок 1 – Батарейный шкаф с верхними клеммными элементами
Выключатель аккумуляторной батареи должен располагаться как можно ближе к концу гирлянды.На открытых батарейных стойках выключатель можно установить непосредственно на стойку. В аккумуляторных шкафах выключатель должен быть установлен в дверце, чтобы можно было отсоединить батарею от ИБП до того, как дверца будет открыта. Эта передовая практика предназначена для защиты рабочего от воздействия смертельного напряжения или дугового разряда в случае неисправности внутри шкафа.
Удобства
Простота использования – один из главных достоинств аккумуляторных шкафов.Удобно обслуживать оборудование, когда ИБП и аккумулятор (-ы) расположены рядом друг с другом. И наоборот, при установке батарей типа open-rack неудобно уходить в отдельную комнату.
Доступность
Доступность должна учитывать две потенциальные опасности: электрическую и механическую. Лучшая электрическая конструкция сведет к минимуму риск случайного контакта работником ячеек противоположной полярности своим телом или инструментом. Лучшая механическая конструкция минимизирует риск падения устройства во время установки, технического обслуживания или демонтажа.Это также минимизирует риск получения травм из-за подъема тяжелых предметов выше плеч. Рекомендуется подъемное оборудование, специально разработанное для установки и снятия аккумуляторной батареи. Обратитесь к местным правилам техники безопасности, чтобы узнать о конкретных ограничениях.
С точки зрения обслуживания, открытые батареи обычно проще и безопаснее работать. Стойки могут быть спроектированы с «ярусами» (т. Е. Один ряд ячеек непосредственно над другим), или они могут быть «ступенчатыми» (т. Е. Каждый ряд отстоит от ряда под ним, чтобы терминалы были доступны с минимальным риском случайно замыкание на строку выше.) Многоуровневые стойки должны обеспечивать достаточный зазор между верхней частью ячеек на одном уровне и уровнем выше, чтобы технический специалист мог безопасно работать с устройством, не создавая токопроводящего пути между ячейкой и стойкой. Многоуровневые стойки позволяют минимизировать занимаемую площадь, но увеличивают нагрузку на пол. Ступенчатые стойки распределяют вес, но занимают больше места.
Рисунок 2 – 2-ступенчатая открытая стойка с верхними клеммными ячейками
Батарейные шкафы часто критикуют за отсутствие верхнего зазора.Например, в шкафу, содержащем несколько комплектов батарей с низким током в ампер-часах, может быть несколько полок, каждая с одной цепочкой ячеек. Ячейки на каждой полке могут располагаться на глубину в две, три или более ячеек. Это затрудняет доступ к терминалам сзади для техника. Достаточное свободное пространство для рук и инструментов становится критически важным.
Одна альтернатива (обычно используется в телекоммуникационных приложениях, но иногда встречается и в ИБП) – доступ через передний терминал.Вместо того, чтобы клеммы располагались на верхней части ячеек, клеммы обращены наружу. Это обеспечивает самый простой доступ для обслуживания, но для этого требуется крышка (обычно прозрачная) или дверцы для предотвращения случайного контакта с шиной постоянного тока под напряжением. Системы передних клемм обычно предварительно настраиваются производителем батареи.
Сейсмические исследования
В районах, географически обозначенных как сейсмические зоны, потребуются дополнительные конструктивные особенности. Во время землетрясения аккумуляторная батарея может получить серьезные механические повреждения, в том числе:
– перекос или разрыв межэлементных и межъярусных соединителей
– повреждение единичных контейнеров, приводящее к утечке или разливу электролита
– короткое замыкание, приводящее к возникновению дуги и / или возгоранию
– аккумуляторные блоки соскальзывают с полок
– стойки или шкафы опрокидываются свыше
Батарейные стеллажи должны иметь утвержденные производителем сейсмостойкости.Обычно к ним относятся усиленные рамы и рельсы, предотвращающие соскальзывание батарей с полок. Направляющие добавляют еще одну процедуру для установки и снятия аккумуляторных блоков (см. Рисунок 3). Из-за своей длины аккумуляторная стойка может одновременно испытывать разный крутящий момент в разных частях аккумуляторной батареи. Хорошая конструкция учитывает эти горизонтальные и вертикальные крутящие моменты и обеспечивает некоторую гибкость, включая гибкие межэлементные соединители. Жесткость может привести к повреждению. Стеллажи обычно сейсмически прикрепляются к бетонному полу.Проконсультируйтесь с местными нормативами о том, какие полы и распорки приемлемы.
Рисунок 3 – Трехуровневая открытая стойка с верхними клеммными ячейками
Закрытый шкаф снижает вероятность соскальзывания батарей с полок, но весь шкаф может быть подвержен движению, особенно если он установлен на приподнятом полу (что типично для центров обработки данных). Двери шкафа должны быть всегда заперты, когда шкаф не обслуживается. Различные подходы к закреплению аккумуляторного шкафа включают в себя рамы или ремни под фальшполом.На каркасы под полом распространяются те же строительные нормы и правила для крепления к бетонному полу, что и для стоек. Они фактически поднимают центр тяжести, тем самым увеличивая вероятность раскачивания. Обвязка также должна быть сейсмически прикреплена к бетонному полу, но она способна выдерживать некоторую степень одновременного вертикального и горизонтального движения.
Привлечь инженера-сейсмолога к проектированию любой аккумуляторной системы в сейсмической зоне.
Температура
Как упоминалось в предыдущих блогах (см. № 4 и № 5 для режимов отказа и окружающей среды, соответственно), температура также должна быть принята во внимание.Для смонтированных в стойке батарей обычно достаточно охлаждения и вентиляции. Конструкция шкафа, напротив, должна решать проблему отвода тепла, а также отвода газов от батареи. Можно ожидать, что смонтированные в шкафу батареи VRLA будут работать в более теплой среде, чем в стойке, что потенциально сокращает срок службы батареи. Дополнительное охлаждение редко требуется для батарейного шкафа, но шкаф должен иметь (1) свободные пути внутри шкафа для подъема горячего воздуха и (2) соответствующие отверстия для выхода горячего воздуха и газообразного водорода в комнату.Объем воздухообмена и температура воздуха, поступающего в правильно кондиционированный компьютерный зал, обычно превышают требования, предъявляемые к аккумуляторным шкафам.
10.2: Электродвижущая сила – Physics LibreTexts
Цели обучения
К концу раздела вы сможете:
- Опишите электродвижущую силу (ЭДС) и внутреннее сопротивление батареи
- Объясните основные операции с аккумулятором
Если вы забудете выключить автомобильные фары, они будут постепенно тускнеть по мере разрядки аккумулятора.Почему они не мигают внезапно, когда батарея разряжена? Их постепенное затемнение означает, что выходное напряжение батареи уменьшается по мере разряда батареи. Причина снижения выходного напряжения для разряженных батарей заключается в том, что все источники напряжения состоят из двух основных частей – источника электрической энергии и внутреннего сопротивления. В этом разделе мы исследуем источник энергии и внутреннее сопротивление.
Введение в электродвижущую силу
Voltage имеет множество источников, некоторые из которых показаны на рисунке \ (\ PageIndex {2} \).Все такие устройства создают разность потенциалов и могут подавать ток, если подключены к цепи. Особый тип разности потенциалов известен как электродвижущая сила (ЭДС) . ЭДС – это вовсе не сила, но термин «электродвижущая сила» используется по историческим причинам. Он был придуман Алессандро Вольта в 1800-х годах, когда он изобрел первую батарею, также известную как вольтовую батарею . Поскольку электродвижущая сила не является силой, принято называть эти источники просто источниками ЭДС (произносимыми буквами «ee-em-eff»), а не источниками электродвижущей силы.
Рисунок \ (\ PageIndex {1} \): различные источники напряжения. а) ветряная электростанция Бразос в Флуванна, штат Техас; (б) Красноярская плотина в России; (c) солнечная ферма; (d) группа никель-металлогидридных батарей. Выходное напряжение каждого устройства зависит от его конструкции и нагрузки. Выходное напряжение равно ЭДС только при отсутствии нагрузки. (кредит a: модификация работы «Leaflet» / Wikimedia Commons; кредит b: модификация работы Алекса Полежаева; кредит c: модификация работы Министерства энергетики США; кредит d: модификация работы Тиаа Монто)Если Электродвижущая сила – это вообще не сила, тогда что такое ЭДС и что является источником ЭДС? Чтобы ответить на эти вопросы, рассмотрим простую схему лампы 12 В, подключенной к батарее 12 В, как показано на рисунке \ (\ PageIndex {2} \).Батарея может быть смоделирована как устройство с двумя выводами, которое поддерживает один вывод с более высоким электрическим потенциалом, чем второй вывод. Более высокий электрический потенциал иногда называют положительной клеммой и обозначают знаком плюс. Клемму с более низким потенциалом иногда называют отрицательной клеммой и обозначают знаком минус. Это источник ЭДС.
Рисунок \ (\ PageIndex {2} \): Источник ЭДС поддерживает на одном выводе более высокий электрический потенциал, чем на другом выводе, действуя как источник тока в цепи.Когда источник ЭДС не подключен к лампе, нет чистого потока заряда внутри источника ЭДС. Как только батарея подключена к лампе, заряды текут от одной клеммы батареи через лампу (в результате чего лампа загорается) и обратно к другой клемме батареи. Если мы рассмотрим протекание положительного (обычного) тока, положительные заряды покидают положительный вывод, проходят через лампу и попадают в отрицательный вывод.
Положительный ток используется для большей части анализа схем в этой главе, но в металлических проводах и резисторах наибольший вклад в ток вносят электроны, протекающие в направлении, противоположном положительному потоку тока.Поэтому более реалистично рассматривать движение электронов для анализа схемы на рисунке \ (\ PageIndex {2} \). Электроны покидают отрицательную клемму, проходят через лампу и возвращаются к положительной клемме. Чтобы источник ЭДС поддерживал разность потенциалов между двумя выводами, отрицательные заряды (электроны) должны быть перемещены с положительного вывода на отрицательный. Источник ЭДС действует как накачка заряда, перемещая отрицательные заряды от положительного вывода к отрицательному для поддержания разности потенциалов.Это увеличивает потенциальную энергию зарядов и, следовательно, электрический потенциал зарядов.
Сила, действующая на отрицательный заряд электрического поля, действует в направлении, противоположном электрическому полю, как показано на рисунке \ (\ PageIndex {2} \). Чтобы отрицательные заряды переместились на отрицательный вывод, необходимо провести работу с отрицательными зарядами. Для этого требуется энергия, которая возникает в результате химических реакций в батарее. Потенциал поддерживается высоким на положительной клемме и низким на отрицательной клемме, чтобы поддерживать разность потенциалов между двумя клеммами.ЭДС равна работе, выполняемой над зарядом на единицу заряда \ (\ left (\ epsilon = \ frac {dW} {dq} \ right) \) при отсутствии тока. Поскольку единицей работы является джоуль, а единицей заряда – кулон, единицей измерения ЭДС является вольт \ ((1 \, V = 1 \, J / C) \).
Напряжение на клеммах \ (V_ {terminal} \) батареи – это напряжение, измеренное на клеммах батареи, когда к клемме не подключена нагрузка. Идеальная батарея – это источник ЭДС, который поддерживает постоянное напряжение на клеммах, независимо от тока между двумя клеммами.Идеальная батарея не имеет внутреннего сопротивления, а напряжение на клеммах равно ЭДС батареи. В следующем разделе мы покажем, что у реальной батареи есть внутреннее сопротивление, а напряжение на клеммах всегда меньше, чем ЭДС батареи.
Происхождение потенциала батареи
ЭДС батареи определяется сочетанием химических веществ и составом выводов батареи. Свинцово-кислотный аккумулятор , используемый в автомобилях и других транспортных средствах, является одним из наиболее распространенных сочетаний химических веществ.На рисунке \ (\ PageIndex {3} \) показана одна ячейка (одна из шести) этой батареи. Катодная (положительная) клемма ячейки соединена с пластиной из оксида свинца, а анодная (отрицательная) клемма подключена к свинцовой пластине. Обе пластины погружены в серную кислоту, электролит для системы.
Рисунок \ (\ PageIndex {3} \): Химические реакции в свинцово-кислотном элементе разделяют заряд, отправляя отрицательный заряд на анод, который соединен со свинцовыми пластинами. Пластины из оксида свинца подключаются к положительному или катодному выводу ячейки.Серная кислота проводит заряд, а также участвует в химической реакции.Небольшое знание того, как взаимодействуют химические вещества в свинцово-кислотной батарее, помогает понять потенциал, создаваемый батареей. На рисунке \ (\ PageIndex {4} \) показан результат одной химической реакции. Два электрона помещаются на анод , что делает его отрицательным, при условии, что катод подает два электрона. Это оставляет катод положительно заряженным, потому что он потерял два электрона.Короче говоря, разделение заряда было вызвано химической реакцией.
Обратите внимание, что реакция не происходит, если нет полной цепи, позволяющей подавать два электрона на катод. Во многих случаях эти электроны выходят из анода, проходят через сопротивление и возвращаются на катод. Отметим также, что, поскольку в химических реакциях участвуют вещества, обладающие сопротивлением, невозможно создать ЭДС без внутреннего сопротивления.
Рисунок \ (\ PageIndex {4} \): В свинцово-кислотной батарее два электрона прижимаются к аноду элемента, а два электрона удаляются с катода элемента.В результате химической реакции в свинцово-кислотной батарее два электрона помещаются на анод и два электрона удаляются с катода. Для работы требуется замкнутая цепь, так как два электрона должны быть доставлены на катод.Внутреннее сопротивление и напряжение на клеммах
Величина сопротивления прохождению тока внутри источника напряжения называется внутренним сопротивлением . Внутреннее сопротивление r батареи может вести себя сложным образом. Обычно она увеличивается по мере разряда батареи из-за окисления пластин или снижения кислотности электролита.Однако внутреннее сопротивление также может зависеть от величины и направления тока через источник напряжения, его температуры и даже его предыстории. Например, внутреннее сопротивление перезаряжаемых никель-кадмиевых элементов зависит от того, сколько раз и насколько глубоко они были разряжены. Простая модель батареи состоит из идеализированного источника ЭДС \ (\ epsilon \) и внутреннего сопротивления r (рисунок \ (\ PageIndex {5} \)).
Рисунок \ (\ PageIndex {5} \): Батарею можно смоделировать как идеализированную ЭДС \ ((\ epsilon) \) с внутренним сопротивлением ( r ).Напряжение на клеммах аккумулятора равно \ (V_ {terminal} = \ epsilon – Ir \).Предположим, что внешний резистор, известный как сопротивление нагрузки R , подключен к источнику напряжения, например батарее, как показано на рисунке \ (\ PageIndex {6} \). На рисунке показана модель аккумулятора с ЭДС ε, внутренним сопротивлением r и нагрузочным резистором R , подключенным к его клеммам. При обычном протекании тока положительные заряды покидают положительную клемму батареи, проходят через резистор и возвращаются к отрицательной клемме батареи.Напряжение на клеммах аккумулятора зависит от ЭДС, внутреннего сопротивления и силы тока и равно
.Примечание
\ [V_ {терминал} = \ epsilon – Ir \]
При заданной ЭДС и внутреннем сопротивлении напряжение на клеммах уменьшается по мере увеличения тока из-за падения потенциала Ir внутреннего сопротивления.
Рисунок \ (\ PageIndex {6} \): Схема источника напряжения и его нагрузочного резистора R . Поскольку внутреннее сопротивление r включено последовательно с нагрузкой, оно может существенно повлиять на напряжение на клеммах и ток, подаваемый на нагрузку.График разности потенциалов на каждом элементе цепи показан на рисунке \ (\ PageIndex {7} \). По цепи проходит ток I , а падение потенциала на внутреннем резисторе равно Ir . Напряжение на клеммах равно \ (\ epsilon – Ir \), что равно падению потенциала на нагрузочном резисторе \ (IR = \ epsilon – Ir \). Как и в случае с потенциальной энергией, важно изменение напряжения. Когда используется термин «напряжение», мы предполагаем, что это на самом деле изменение потенциала, или \ (\ Delta V \).Однако \ (\ Delta \) часто для удобства опускается.
Рисунок \ (\ PageIndex {7} \): график напряжения в цепи батареи и сопротивления нагрузки. Электрический потенциал увеличивает ЭДС батареи из-за химических реакций, выполняющих работу с зарядами. В аккумуляторе происходит снижение электрического потенциала из-за внутреннего сопротивления. Потенциал уменьшается из-за внутреннего сопротивления \ (- Ir \), в результате чего напряжение на клеммах батареи равно \ ((\ epsilon – Ir) \).Затем напряжение уменьшается на ( IR ). Ток равен \ (I = \ frac {\ epsilon} {r + R} \).Ток через нагрузочный резистор равен \ (I = \ frac {\ epsilon} {r + R} \). Из этого выражения видно, что чем меньше внутреннее сопротивление r , тем больший ток подает источник напряжения на свою нагрузку R . По мере разряда батарей r увеличивается. Если r становится значительной частью сопротивления нагрузки, то ток значительно снижается, как показано в следующем примере.
Пример \ (\ PageIndex {1} \): анализ цепи с батареей и нагрузкой
Данная батарея имеет ЭДС 12,00 В и внутреннее сопротивление \ (0,100 \, \ Omega \). (a) Рассчитайте напряжение на его клеммах при подключении к нагрузке с \ (10.00 \, \ Omega \). (b) Какое напряжение на клеммах при подключении к нагрузке \ (0.500 \, \ Omega \)? (c) Какая мощность рассеивается при нагрузке \ (0.500 \, \ Omega \)? (d) Если внутреннее сопротивление увеличивается до \ (0.500 \, \ Omega \), найдите ток, напряжение на клеммах и мощность, рассеиваемую \ (0.500 \, \ Omega \) загрузка.
Стратегия
Приведенный выше анализ дал выражение для тока с учетом внутреннего сопротивления. Как только ток будет найден, напряжение на клеммах можно рассчитать с помощью уравнения \ (V_ {terminal} = \ epsilon – Ir \). Как только ток будет найден, мы также сможем найти мощность, рассеиваемую резистором.
Решение
- Ввод заданных значений ЭДС, сопротивления нагрузки и внутреннего сопротивления в выражение выше дает \ [I = \ frac {\ epsilon} {R + r} = \ frac {12.00 \, V} {10.10 \, \ Omega} = 1.188 \, A. \] Введите известные значения в уравнение \ (V_ {terminal} = \ epsilon – Ir \), чтобы получить напряжение на клеммах: \ [V_ { клемма} = \ epsilon – Ir = 12.00 \, V – (1.188 \, A) (0.100 \, \ Omega) = 11.90 \, V. \] Напряжение на клеммах здесь лишь немного ниже, чем ЭДС, что означает, что ток втягивается этой легкой нагрузкой незначительно.
- Аналогично, с \ (R_ {load} = 0.500 \, \ Omega \), ток равен \ [I = \ frac {\ epsilon} {R + r} = \ frac {12.00 \, V} {0.2} {R} \) или \ (IV \), где В – напряжение на клеммах (в данном случае 10,0 В).
- Здесь внутреннее сопротивление увеличилось, возможно, из-за разряда батареи, до точки, в которой оно равно сопротивлению нагрузки. Как и раньше, мы сначала находим ток, вводя известные значения в выражение, получая \ [I = \ frac {\ epsilon} {R + r} = \ frac {12.00 \, V} {1.00 \, \ Omega} = 12.00 \, A. \] Теперь напряжение на клеммах равно \ [V_ {terminal} = \ epsilon – Ir = 12.00 \, V – (12.2 (0.500 \, \ Omega) = 72.00 \, W. \] Мы видим, что увеличенное внутреннее сопротивление значительно снизило напряжение на клеммах, ток и мощность, подаваемую на нагрузку.
Значение
Внутреннее сопротивление батареи может увеличиваться по многим причинам. Например, внутреннее сопротивление перезаряжаемой батареи увеличивается с увеличением количества раз, когда батарея перезаряжается. Повышенное внутреннее сопротивление может иметь двоякое влияние на аккумулятор.Сначала снизится напряжение на клеммах. Во-вторых, аккумулятор может перегреться из-за повышенной мощности, рассеиваемой внутренним сопротивлением.
Упражнение \ (\ PageIndex {1} \)
Если вы поместите провод непосредственно между двумя выводами батареи, эффективно закоротив клеммы, батарея начнет нагреваться. Как вы думаете, почему это происходит?
- Решение
Если к клеммам подсоединен провод, сопротивление нагрузки близко к нулю или, по крайней мере, значительно меньше внутреннего сопротивления батареи.2р) \). Мощность рассеивается в виде тепла.
Тестеры батарей
Тестеры батарей, такие как те, что показаны на рисунке \ (\ PageIndex {8} \), используют малые нагрузочные резисторы, чтобы намеренно потреблять ток, чтобы определить, падает ли потенциал клемм ниже допустимого уровня. Хотя измерить внутреннее сопротивление батареи сложно, тестеры батареи могут обеспечить измерение внутреннего сопротивления батареи. Если внутреннее сопротивление высокое, батарея разряжена, о чем свидетельствует низкое напряжение на клеммах.
Рисунок \ (\ PageIndex {8} \): Тестеры батарей измеряют напряжение на клеммах под нагрузкой, чтобы определить состояние батареи. (a) Техник-электронщик ВМС США использует тестер аккумуляторов для проверки больших аккумуляторов на борту авианосца USS Nimitz . Тестер батарей, который она использует, имеет небольшое сопротивление, которое может рассеивать большое количество энергии. (b) Показанное небольшое устройство используется на небольших батареях и имеет цифровой дисплей для индикации допустимого напряжения на клеммах. (кредит А: модификация работы Джейсона А.Джонстон; кредит b: модификация работы Кейта Уильямсона)Некоторые батареи можно заряжать, пропуская через них ток в направлении, противоположном току, который они подают в прибор. Это обычно делается в автомобилях и батареях для небольших электроприборов и электронных устройств (Рисунок \ (\ PageIndex {9} \)). Выходное напряжение зарядного устройства должно быть больше, чем ЭДС аккумулятора, чтобы ток через него реверсировал. Это приводит к тому, что напряжение на клеммах батареи превышает ЭДС, поскольку \ (V = \ epsilon – Ir \) и I теперь отрицательны.
Рисунок \ (\ PageIndex {9} \): автомобильное зарядное устройство меняет нормальное направление тока через аккумулятор, обращая вспять его химическую реакцию и пополняя ее химический потенциал.Важно понимать последствия внутреннего сопротивления источников ЭДС, таких как батареи и солнечные элементы, но часто анализ цепей выполняется с помощью напряжения на клеммах батареи, как мы делали в предыдущих разделах. Напряжение на клеммах обозначается просто как В , без индекса «клемма».Это связано с тем, что внутреннее сопротивление батареи трудно измерить напрямую, и оно может со временем измениться.
Авторы и авторство
Сэмюэл Дж. Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами. Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).
Информация об аккумуляторах: все, что вам нужно знать об аккумуляторах
Дата Кодирование аккумуляторов для целей оборота запасов
A-Хранение
- Всегда меняйте запас.Практика FIFO (первый пришел, первый ушел). Батареи медленно разряжаются, а хорошая ротация запасов предотвращает разрядку батарей при хранении и гарантирует, что покупатель купит хорошую батарею. На задней стороне батареи есть этикетка, показывающая ожидаемый период до того, как батарея потребует подзарядки. Это позволяет легко определить самые старые и новейшие батареи на складе. Используйте дату перезарядки, чтобы в первую очередь уйти со склада самые старые батареи. Дата перезарядки указывает только на период подзарядки, поскольку саморазряд зависит от условий хранения.
- Храните батареи в прохладном, сухом, хорошо вентилируемом месте.
- Берегите аккумуляторы от чрезмерного нагрева. (Нагрев приводит к более быстрой разрядке аккумуляторов, а чрезмерное нагревание может повредить аккумуляторы).
- Храните батареи в вертикальном положении. (Чтобы они не падали или не протекали).
- Не складывайте батарейки поверх других батарей. (Чтобы не поцарапать и не порвать этикетки. Чтобы не повредить клеммы, выступающие за крышку).
- Храните батареи в термоусадочной упаковке до 3-х штук.(Чем выше, тем выше риск их падения и травм).
- Не снимайте уплотнения с сухозаряженных аккумуляторов, пока не будете готовы ввести аккумулятор в эксплуатацию, заправив его кислотой. (Пломба сохраняет заряд в аккумуляторе. Если он сломан, воздух попадет в аккумулятор и приведет к потере заряда аккумулятора).
- Храните аккумуляторы на стеллажах или поддонах, а не на полу. (Маленькие камни или острые предметы на бетонном полу могут повредить основание аккумулятора и вызвать утечку).
- Убедитесь, что ручки оставлены в горизонтальном (нижнем) положении. Вероятность повреждения вертикальных ручек выше.
B – Техническое обслуживание складских запасов и перезарядка аккумуляторов
Аккумуляторы с влажным зарядом
1. Батареи в идеале должны быть установлены в течение 15 месяцев после изготовления. Напряжение должно быть (в худшем случае выше 12,25 В) в идеале выше 12,4 В во время установки.
2. Батареи требуют подзарядки, когда напряжение падает ниже 12.4В за счет расширенного складского хранения. Перед перезарядкой батарей необходимо принять все меры безопасности. Если аккумулятор был перезаряжен, дату зарядки на задней этикетке следует обновить через 6 месяцев после второй даты зарядки, сделав надрез на этикетке. (Обратите внимание, что до продажи разрешено не более двух подзарядок, и продукт не следует продавать максимум через 9 месяцев после истечения первой рекомендованной даты подзарядки).
2.1 Проверка напряжения должна выполняться как само собой разумеющееся, как для выявления старых запасов, так и для выявления аккумуляторов, требующих подзарядки.
2.2 Используйте цифровой вольтметр / мультиметр с разрешением минимум 2 цифры (например, 12,76 В).
2.3 Утилизируйте любые батареи с напряжением ниже 11,0 В, поскольку в этих батареях образуется сульфатация, которую невозможно полностью восстановить путем зарядки, и поэтому они не обеспечат потребителю ожидаемые характеристики и срок службы.
2.4 Примечание Цифровые тестеры проводимости (такие как Midtronics и / или Bosch BAT121): –
- НЕ предназначен для тестирования новых аккумуляторов.
- Цифровые тестеры аккумуляторных батарей не предназначены для проверки полностью развернутых характеристик холодного пуска новой аккумуляторной батареи.
- Они предназначены исключительно для тестирования и оценки неисправных или использованных аккумуляторов.
- Любые показания CCA / состояния здоровья по результатам теста на новой батарее НЕ МОГУТ быть надежным ориентиром для спецификации батареи.
См. Комментарии к цифровым тестерам проводимости ниже.
СУХИЕ заряженные батареи: поддержание запасов
Продажи сухозаряженных аккумуляторов в нашем ассортименте очень ограничены, как правило, для специализированных рынков.
- Если вы держите батареи в прохладном и сухом месте и не снимаете уплотнение, сухозаряженные батареи не нуждаются ни в каком другом внимании.
- Максимальный срок хранения сухозаряженных аккумуляторов до ввода их в эксплуатацию путем заливки кислотой составляет 24 месяца.
- Если уплотнение повреждено, батареи следует немедленно намочить, а затем обращаться с продуктом как с батареями, ЗАРЯЖЕННЫМИ ВЛАЖНОМУ ЗАРЯДКЕ.
- Ввод в эксплуатацию сухозаряженного аккумулятора только тогда, когда он нужен клиенту.
- Если есть, удалите и выбросьте все заглушки, ленту или фольгу.
- Если есть, снимите и сохраните обычные вентиляционные заглушки и крышки клемм (обычно красные и черные).
- Для заполнения используйте разбавленную серную кислоту аккумуляторного класса с удельным весом 1,270 – 1,280 при 25 ° C в соответствии со стандартом BS3031 или выше. (Примечание: загрязненная кислота с примесями может серьезно повредить срок службы аккумулятора, в некоторых случаях сокращая его до нескольких дней. Не используйте кислоту из старых аккумуляторов).
- Температура кислоты и аккумулятора должна быть при комнатной температуре в диапазоне 15–30 ° C.
- Заполните каждую ячейку кислотой до уровня на 3–6 мм выше верхних частей разделителей.Заполните каждую ячейку одну за другой и завершите заполнение за одну операцию.
- Оставьте аккумулятор на 20–30 минут, а затем измерьте напряжение холостого хода. Если оно ниже 12,50 В, зарядите аккумулятор. Если оно выше 12,50 В, отрегулируйте уровни кислоты до правильных рабочих уровней с помощью разбавленной серной кислоты с удельным весом 1,270 – 1,280. (См. Раздел D ниже).
- Установите обычные вентиляционные заглушки и крышки клеммников.
- Вымойте аккумулятор горячей водой и просушите.
- Обратите внимание, что проверка характеристик вновь введенных в эксплуатацию сухозаряженных батарей с помощью современных электронных цифровых тестеров с использованием технологии проводимости не рекомендуется.Примерами являются тестеры, поставляемые Midtronics или Bosch. Результаты могут вводить в заблуждение до тех пор, пока аккумулятор не использовался для обслуживания.
Уровни D-электролита (уровни кислоты) в рабочем состоянии
Примечания: Прочтите перед регулировкой уровня кислоты.
- Не заряжайте аккумулятор, требующий зарядки, до максимального уровня. (Уровни повышаются при зарядке). Однако, если уровни ниже верхних частей сепараторов, долейте дистиллированную или деионизированную воду до тех пор, пока сепараторы не закроются.
- Регулируйте уровни до максимальных только после того, как батарея простаивает не менее часа после зарядки.
- Никогда не переполняйте аккумулятор. (Кислота может вытекать из вентиляционных пробок во время зарядки аккумулятора).
- Для доливки используйте только дистиллированную или деионизированную воду, поскольку серную кислоту использовать нельзя, за исключением первоначальной заправки батареи. Не используйте минеральную воду в бутылках (примеси в воде увеличивают потерю воды и саморазряд аккумулятора).
- Когда аккумулятор находится в эксплуатации, уровни электролита должны быть проверены и доведены до уровней, указанных ниже.
- Если аккумулятор имеет линию максимального уровня на стороне контейнера, залейте до этого максимального уровня.
- Если линии максимума нет, но есть заливные трубки, выступающие из нижней части крышки, наполните их до низа.
- Если в полипропиленовых батареях нет ни максимальной линии, ни заливных трубок, заполните их до 7 мм (0.25 дюймов) ниже нижнего края юбки-крышки.
- Если в батареях из твердой резины нет заливных трубок, заполните их на 15 мм (0,5 дюйма) выше верхних частей сепараторов.
E – Выбор подходящей батареи для приложения
Аккумуляторы для легковых и коммерческих автомобилей (CV)
- Выберите указанный аккумулятор в онлайн-инструменте поиска аккумуляторов для транспортных средств Yuasa trade.
- В системах с напряжением 24 В или при последовательном подключении 2 батарей по 12 В следует заменять обе батареи одновременно.Несоблюдение этого правила приведет к значительному сокращению срока службы новой установленной батареи. Когда батареи соединяются последовательно, отрицательная клемма одной батареи подключается к положительной клемме другой, что дает общее напряжение 24 Вольт. Емкость системы в ампер-часах такая же, как и у отдельных батарей. При параллельном соединении аккумуляторов положительные клеммы 2 аккумуляторов соединяются вместе, а отрицательные клеммы 2 аккумуляторов также соединяются вместе.Напряжение системы остается неизменным и составляет 12 вольт, но емкость системы в ампер-часах вдвое больше, чем у отдельных батарей.
Аккумуляторы для отдыха
- Используйте аккумулятор с характеристиками и размером, рекомендованными поставщиком оборудования.
- Мы рекомендуем, чтобы аккумулятор для отдыха в среднецикличном режиме работы был такого размера, чтобы он не разряжался более чем на 50%. Это обеспечит длительный срок службы батареи.Срок службы батареи, регулярно разряженной на 50 процентов, примерно в 5 раз больше, чем у батареи, регулярно разряженной на 100 процентов. Например, нагрузка 4 А в течение 10 часов разрядит аккумулятор на 40 Ач. Если это соответствует 50-процентному уровню заряда, мы рекомендуем батарею на 80 Ач.
Морские аккумуляторы
- Аккумуляторы серии Marine были разработаны с большей устойчивостью к циклическим нагрузкам, чем аккумуляторы серии Leisure, и в основном предназначены для использования в отелях на лодках.
- Серия судовых аккумуляторных батарей была разработана с герметичной крышкой, чтобы превышать требования к продолжительности выдержки 55 ° в соответствии с пунктом 5.10 стандарта EN50342.1 A1 2011.
F -Снятие аккумуляторов и установка аккумуляторов на транспортных средствах
- Рекомендуется сообщить покупателю, что, хотя вы сделаете все возможное, чтобы сохранить настройки памяти, они могут быть потеряны.
- Убедитесь, что ручной тормоз включен, и что автомобиль стоит на нейтральной передаче или припаркован. Отключите все электрические нагрузки и выньте ключ зажигания из автомобиля.Примечание: на некоторых автомобилях двери блокируются при отключении аккумулятора, поэтому ключ следует вынуть из автомобиля. Также отключите все аварийные сигналы, не установленные на заводе.
- Убедитесь, что прикуриватель все еще работает. Если нет, поверните ключ зажигания во вспомогательное положение. Установите программу экономии памяти компьютера (CMS).
- Сначала отсоедините заземляющий разъем. (Обычно это минус современных автомобилей). Это может привести к потере настроек памяти; обратитесь к руководству по эксплуатации автомобиля.
- Отсоедините токоведущий разъем второй. Если используется CMS, разъем останется под напряжением после его отсоединения. Чтобы предотвратить замыкание разъема на автомобиль, наденьте на разъем изолятор, например резиновую перчатку.
- Снимите прижимные зажимы.
Подготовка аккумулятора к установке
- Убедитесь, что аккумуляторная батарея имеет правильную полярность для автомобиля.
- Убедитесь, что высота аккумулятора соответствует транспортному средству.(Если аккумулятор находится слишком высоко, он может закоротить капот или низ сиденья или повредить капот).
- Рекомендуется размещать старую и новую батарею рядом, чтобы сравнить полярность, время удержания и уровни производительности. Некоторые батареи имеют фиксаторы с обеих сторон и на концах. Проверять необходимо только те, которые используются для крепления аккумулятора на автомобиле.
- Убедитесь, что аккумулятор чистый и сухой.
- Убедитесь, что вентиляционные заглушки или коллекторы плотно установлены.
- Убедитесь, что аккумулятор имеет напряжение выше 12,40 В. В противном случае зарядите аккумулятор или используйте другой аккумулятор с напряжением выше 12,40 В.
- Убедитесь, что на этом этапе все еще установлены 2 клеммные крышки.
Подготовка автомобиля
- Уберите с батарейного отсека все предметы, которые могут повредить батарею. (Если положить тяжелую батарею на острый предмет, можно проткнуть ее нижнюю часть).
- Убедитесь, что разъемы, прижимные зажимы и лоток чистые и не подвержены коррозии.(Если есть коррозия, горячая вода мгновенно ее уберет). Если имеется сильная коррозия, которая может повлиять на стабильность батареи или повлиять на другие части моторного отсека, обратитесь к авторизованному дистрибьютору для проверки автомобиля.
- Проверьте правильность натяжения приводного ремня генератора. См. Руководство по эксплуатации автомобиля или руководство по обслуживанию.
- Рекомендуется проверить электрическую систему, и особенно систему зарядки автомобиля, чтобы убедиться, что она работает правильно.См. Руководство по эксплуатации автомобиля или руководство по обслуживанию.
Установка аккумулятора
- Установите и затяните прижимные зажимы. Они должны быть достаточно тугими, чтобы удерживать аккумулятор и не позволять ему двигаться. НЕ ПЕРЕГРУЖАЙТЕ.
- Сначала подсоедините токоведущий разъем к правильной клемме аккумулятора (обычно положительной) после снятия крышки клеммы. НЕ ПЕРЕГРУЖАЙТЕ.
- Подключите заземляющий разъем к другой клемме после снятия крышки клеммы.НЕ ПЕРЕГРУЖАЙТЕ.
- Наденьте 2 клеммных заглушки на старую аккумуляторную батарею, снятую с автомобиля, во избежание короткого замыкания.
- Замените на новую батарею все компоненты, снятые со старой батареи, такие как выхлопные трубы, вентиляционные колена, крышки клемм, съемные прижимные планки (виджеты) и т. Д.
- В современных полипропиленовых батареях нет необходимости использовать вазелин (вазелин), но в его использовании нет недостатков.Слегка смажьте клеммы. Он по-прежнему рекомендуется для батарей из твердой резины. Не используйте смазку.
- Удалите CMS.
- Пуск двигателя
- Для неавтомобильных приложений установите аккумулятор в соответствии с рекомендациями поставщика оборудования.
G-зарядка для внедорожника
Примечание: прочтите перед зарядкой аккумуляторов
- НЕ заряжайте аккумулятор, если его температура ниже 3 ° C, так как электролит может замерзнуть.
- Зарядка аккумулятора в автомобиле не рекомендуется.
- См. Раздел F для получения информации о снятии аккумулятора с автомобиля.
- «Герметичные и AGM» автомобильные аккумуляторы следует заряжать только с помощью зарядных устройств постоянного напряжения или «умных» зарядных устройств. Не заряжайте зарядные устройства постоянного тока или повышающие зарядные устройства.
- «Герметичные» автомобильные аккумуляторы не допускают доступа к электролиту, поэтому их нельзя доливать. Съемных вентиляционных пробок или коллекторов нет. Батарея может выпускать газы через дыхательные отверстия, поэтому она не имеет строгой герметичности.
- Новый неиспользованный аккумулятор с напряжением ниже 11,00 В следует утилизировать и не заряжать. См. Раздел B.
Общая процедура для всех типов зарядных устройств
В этом разделе представлена общая информация для всех типов зарядных устройств. В разделах ниже приведены подробные сведения о различных типах зарядных устройств.
- 1. Проверьте уровни электролита во всех ячейках. Если они находятся ниже верхних частей сепараторов, долейте дистиллированную или деионизированную воду до верхних частей сепараторов.Не доливайте до более высокого уровня перед зарядкой, а регулируйте уровни после зарядки. См. Раздел D.
- Если вы используете зарядное устройство постоянного тока или ускоренное зарядное устройство, снимите вентиляционные заглушки или коллекторы перед зарядкой. (См. ниже). Нет необходимости снимать вентиляционные заглушки или коллекторы, если вы используете зарядное устройство с постоянным потенциалом или «умное» зарядное устройство.
- Убедитесь, что зарядное устройство выключено.
- При установке зарядного устройства на аккумулятор подключите положительный провод к положительной клемме, а отрицательный провод к отрицательной клемме.
- Включите зарядное устройство. См. Ниже правильные условия зарядки в зависимости от типа зарядного устройства.
- Прекратите зарядку, если аккумулятор начинает свободно газировать (некоторое выделение газа является нормальным на последних этапах зарядки) или если температура аккумулятора поднимается выше 50 ° C.
- Выключить зарядное устройство.
- Рекомендуется подождать около 20 минут, пока газы уйдут, прежде чем отсоединять провода от аккумулятора, поскольку некоторые зарядные устройства остаются под напряжением и могут вызвать искру.
- Проверьте уровни электролита во всех ячейках и при необходимости долейте. См. Раздел D.
- Установите вентиляционные пробки или коллекторы, если они были сняты.
- Вымойте аккумулятор горячей водой и просушите.
- Примечание. Многие клиенты сильно недооценивают время, необходимое для зарядки разряженной батареи. Это приводит к тому, что клиенты возвращают батареи, говоря, что они заряжали батарею, но она все еще не держит заряд.
Типы зарядных устройств и способы их использования
Доступно множество типов зарядных устройств; их принципы работы и порядок их использования приведены ниже.
Индекс
Раздел | Тип зарядного устройства |
1. | Зарядные устройства постоянного тока |
2. | Зарядные устройства постоянного напряжения |
3. | Зарядные устройства с модифицированным постоянным напряжением |
4. | «Умные» зарядные устройства |
5. | Зарядные устройства |
1. ЗАРЯДНОЕ УСТРОЙСТВО ПОСТОЯННОГО ТОКА
Они поддерживают фиксированный, постоянный, предварительно установленный ток в течение всего периода зарядки, независимо от напряжения заряда аккумулятора.Не заряжайте аккумуляторы AGM с помощью зарядного устройства постоянного тока.
Процедура зарядки с помощью зарядных устройств постоянного тока
A. В идеале заряжайте каждую батарею на отдельном зарядном устройстве. Если это невозможно, зарядите батареи последовательно. Мы не рекомендуем заряжать батареи параллельно, потому что невозможно контролировать количество тока, проходящего через каждую батарею.
Если батареи с разным уровнем заряда заряжаются последовательно, каждую батарею следует извлекать сразу после зарядки.(Если подождать, пока зарядится последний аккумулятор, некоторые из аккумуляторов будут перезаряжены).
B. Измерьте напряжение холостого хода аккумуляторной батареи. Для получения стабильного напряжения аккумулятор не должен использоваться или заряжаться в течение как минимум 3 часов до проверки напряжения.
C. Заряжайте аккумулятор с рекомендованной скоростью (см. Раздел «Технические характеристики аккумулятора» в каталоге). Если вы не можете установить рекомендуемую скорость, увеличьте или уменьшите время зарядки пропорционально.
Например, если рекомендуется заряжать аккумулятор на 4,0 А в течение 6 часов (24 Ач = 4,0 x 6), заряжайте аккумулятор в течение 12 часов, если вы можете установить зарядное устройство только на 2,0 А (24 Ач = 2,0 x 12).
D. Заряжайте аккумулятор в течение количества часов, указанного в таблице ниже, в зависимости от напряжения холостого хода.
Например, если аккумулятор имеет напряжение 12,16 В, заряжайте его в течение 10 часов с рекомендованной скоростью зарядки.
НАПРЯЖЕНИЕ ОТКРЫТОГО ЦЕПИ (В) | ВРЕМЯ ЗАРЯДКИ (ЧАСЫ) |
Выше 12.40 | 4 |
12,31 – 12,40 | 6 |
12.21 – 12.30 | 8 |
12,11 – 12,20 | 10 |
12.01 – 12.10 | 12 |
11,91 – 12,00 | 14 |
11,81 – 11,90 | 16 |
11,71–11,80 | 18 |
11,00 – 11,70 | 20 |
Ниже 11.00 | См. Параграф E ниже |
E. Если вы заряжаете аккумулятор ниже 11,00 В (чрезмерно разряженный), который находился в эксплуатации, может потребоваться специальное зарядное устройство, способное обеспечить очень высокое напряжение зарядки, а рекомендованный ток может быть недоступен вначале. В этом случае следите за силой тока и при необходимости отрегулируйте ее во время зарядки.
Если аккумулятор сильно разряжен, он потеряет как срок службы, так и характеристики из-за необратимого сульфирования.Зарядка может еще больше сократить его потенциальный срок службы.
2. ПОСТОЯННЫЕ ПОТЕНЦИАЛЬНЫЕ ЗАРЯДНЫЕ УСТРОЙСТВА
Они поддерживают фиксированное, постоянное, предварительно установленное напряжение в течение всего периода зарядки. Сила тока не может быть установлена и будет падать по мере увеличения уровня заряда батареи.
Процедура зарядки с помощью зарядных устройств с постоянным потенциалом и с модифицированными зарядными устройствами с постоянным потенциалом.
A. Эти зарядные устройства обычно предназначены для зарядки одной батареи за раз.
B. Прекратите зарядку, когда батарея свободно выделяет газ и напряжение батареи не увеличивается в течение как минимум 2 часов.
C.Примечание. Большинство зарядных устройств с постоянным потенциалом не способны заряжать сильно разряженную (ниже 11,00 В) батарею за реалистичный период времени. Минимум
24 часа это нормально.
Зарядка слишком разряженной батареи может оказаться невозможной.
3. ИЗМЕНЕНИЕ ПОСТОЯННЫХ ПОТЕНЦИАЛЬНЫХ ЗАРЯДНЫХ УСТРОЙСТВ
Большинство коммерческих зарядных устройств, особенно домашних зарядных устройств, относятся к этому типу и не позволяют предварительно устанавливать ни напряжение, ни ток.
Процедура зарядки с модифицированными зарядными устройствами постоянного напряжения.
A. Используйте ту же процедуру, что и для зарядных устройств с постоянным напряжением в предыдущем параграфе.
4. УМНЫЕ ЗАРЯДНЫЕ УСТРОЙСТВА
Зарядные устройства последнего поколения способны проверять состояние батареи и автоматически подавать контролируемый заряд, который заряжает батарею в кратчайшие сроки, не повреждая ее и не перезаряжая в конце зарядки. Некоторые «умные» зарядные устройства имеют специальную настройку для полностью кальциевых аккумуляторов и могут заряжать их от батареи, чего не могут сделать большинство других зарядных устройств.
Процедура зарядки с помощью «умных» зарядных устройств
A. Следуйте инструкциям производителя.
B. Эти зарядные устройства должны обеспечивать зарядку переразряженных (ниже 11,00 В) аккумуляторов. Обратите внимание, что у некоторых есть специальные настройки для полностью кальциевых батарей.
5. ЗАРЯДНОЕ УСТРОЙСТВО
Они обеспечивают очень высокий начальный ток и используются в основном для подзарядки разряженной батареи, когда это срочно требуется заказчику. Ток падает по мере увеличения уровня заряда батареи, а температура батареи контролируется, чтобы убедиться, что она не перегревается.
Процедура зарядки с помощью бустерных зарядных устройств
A. Ускоренная зарядка не рекомендуется, за исключением исключительных случаев, например, для оказавшегося в затруднительном положении покупателя, так как это сократит срок службы батареи, особенно если батарея заряжается более
раз больше одного раза.
B. Никогда не заряжайте аккумулятор с напряжением ниже 11,00 В, поскольку он слишком сульфатирован, чтобы принимать заряд; утилизируйте аккумулятор или зарядите его в обычном режиме.
C. Используйте только зарядное устройство, ограничивающее максимальное напряжение зарядки до 14.2 Вольта и есть датчик температуры.
D. Внимательно следуйте инструкциям производителя зарядного устройства.
H – Проверка работоспособности аккумулятора
Электронные тестеры с использованием ConductanceTechnology
- Тестеры последнего поколения – цифровые. Примерами являются тестеры Midtronics и Bosch. Это позволит незамедлительно принять решение о том, что около 80% аккумуляторов находятся в эксплуатации, в том числе разряженные. В оставшихся 20% случаев перед тестированием батареи нуждаются в подзарядке.
- Эти тестеры показывают, в хорошем ли заряженном состоянии батарея, разряжена или нуждается в замене.
- Примечание. Это предпочтительный метод проверки аккумуляторов, поскольку он не требует полного заряда аккумулятора. Это также проще, быстрее и безопаснее.
Описание цифровых тестеров проводимости
Как сообщает большинство производителей аккумуляторов, в производстве аккумуляторов возникла некоторая путаница в отношении кажущейся производительности аккумуляторов после испытаний, проведенных с помощью цифровых тестеров проводимости (например,грамм. Midtronics, Bosch BAT121 являются наиболее распространенными типами в настоящее время на рынке).
Важно четко понимать назначение этих тестеров.
Цифровые тестеры проводимости аккумуляторных батарей не предназначены для проверки характеристик холодного пуска новой аккумуляторной батареи.
Они предназначены исключительно для тестирования и оценки подозрительных или использованных аккумуляторов. Любые значения CCA или состояния здоровья, полученные в результате теста, НЕ МОГУТ служить надежным ориентиром для спецификации батареи.
BCI и европейский стандарт EN в качестве эталона тестирования производственного процесса.
Yuasa Batteries (часть GS Yuasa Corporation) является одним из крупнейших мировых производителей свинцово-кислотных автомобильных аккумуляторов, и его батареи разработаны в соответствии с международно признанными стандартами.
Например, процедура первоначального тестирования производительности в соответствии с EN50342.1 A1, ноябрь 2011 г. требует минимум 12 рабочих дней тестирования и значительных ресурсов оборудования для проверки батарей.Все батареи под брендом Yuasa, продаваемые на рынке, проходят регулярные аудиторские проверки на соответствие действующему стандарту.
Стандарт EN 50342 вызвал еще большую путаницу на рынке, указав два стандарта уровня соответствия для высокой производительности холодного запуска, которые не понятны конечному пользователю без полного доступа к списку номеров деталей ETN.
EN1 Тест при -18 ° C от 10 с до 7,5 В, 10 секунд перерыва, чем 60% тока до 6 В, где время должно быть больше 73 с.
Тест EN2 при -18 ° C от 10 с до 7.5 В, 10 секунд отдыха, чем 60% тока до 6 В, где время должно быть больше 133 секунд.
Очевидно, что номинал батареи зависит от конструкции батареи, но, например, батарея, рассчитанная на 1000 А в соответствии с EN1, может быть рассчитана только на 920 А в соответствии с EN2. Информация о том, по какому стандарту рассчитана батарея, в настоящее время содержится в номере ETN, например. 550 034 050 <
550 => 12 В 50 Ач аккумулятор
034 => Это конкретный номер для этой батареи, который дает подробную информацию о типе крышки, сроке службы, устойчивости к вибрации, а также соответствует ли батарея EN1 или EN2 high rate
.050 => Максимальный ток в этом случае 500A
В настоящее время в базе данных ETN указано около 2000 отдельных номеров аккумуляторов разными производителями и пользователями.В настоящее время это делает неясным для покупателя, к какому классу батарея способна соответствовать EN1 или EN2 без доступа к списку.
Чтобы свести к минимуму путаницу, Yuasa в настоящее время использует давно установленный американский рейтинг BCI SAE для усилителей холодного пуска, который представляет собой ток, обеспечивающий 30 секунд до 7,2 В при температуре -18 ° C. Это рассматривается как более справедливое сравнение, дающее сбалансированное представление о долговечности батарей и пусковых характеристиках.
Появление на рынке тестера проводимости
За последние десять лет на рынок вышли сравнительно недорогие измерители проводимости, которые могут определять удельное внутреннее сопротивление автомобильной батареи, используя принципы моста Уитстона переменного тока (который вы, возможно, помните со школьных времен).Несомненным преимуществом этих устройств является то, что они портативны, просты в эксплуатации, не создают искрообразования при проведении традиционных высокоскоростных испытаний на падение нагрузки и дают результаты всего за несколько секунд.
Недостатки
Недостатком тестера проводимости является то, что все они используют стандартный алгоритм (программу) для оценки показания CCA по измеренному показанию внутреннего сопротивления. Значения, полученные этими измерителями, не сопоставимы со значениями, определенными с помощью лабораторного испытательного оборудования, где батареи физически разряжаются при реальной высокой разрядной нагрузке при температуре -18 ° C.Из-за различий в конструкциях батарей невозможно обеспечить идеальное соотношение между внутренним сопротивлением и фактическими характеристиками в лаборатории.
Лабораторные испытания показывают, что алгоритм, используемый в тестерах проводимости, наказывает батареи, у которых конструкция батареи была оптимизирована (с более тяжелыми пластинами с высокой плотностью и мелкой пористостью) для долговечности / циклической долговечности, чем конструкции, оптимизированные для высокой производительности.
Для оценки новых заводских аккумуляторных батарей можно увидеть разные показания в зависимости от конструкции пластины производителя и плотности кислоты.Могут быть получены даже существенно разные показания тестеров разных марок. Расширенные пластины дают более высокие показания, чем литые пластины, поскольку литая пластина имеет полнокадровую конструкцию для улучшения проводимости. Размер сетки можно уменьшить и сделать толще для доступа к активным материалам в нижней части пластины. Эта разница в конструкции, например, имеет различие в показаниях проводимости, когда тестер соотносится с показаниями CCA на основе стандартной формулы. Тестирование новых батарей является более сложным, поскольку тестирование в соответствии со стандартом EN50342 требует кондиционирования батареи после ряда циклов, которые изменяют проводимость пасты и, следовательно, вызывают большее отклонение в получаемых данных тестера.
По этой причине Yuasa и другие крупные производители аккумуляторов рекомендуют, чтобы подтверждение соответствия неиспользованных аккумуляторов нормам EN или BCI можно было определять только с помощью лабораторных испытаний, и что цифровой тестер проводимости не подходит для оценки производительности новых неиспользованных аккумуляторов.
Тестер проводимостипредназначен для измерения внутреннего сопротивления аккумулятора. Эффективность тестеров на глубоко разряженной батарее менее эффективна, поскольку, хотя можно указать хорошее значение пускового тока и автомобиль заведется, это не означает, что 20-часовая емкость батареи может быть всего 10-30%.из-за повторяющейся работы при низком заряде. При подозрении на это рекомендуется проверить аккумулятор после того, как свет будет включен в течение 15 минут при выключенном двигателе.
Тестеры напряжения холостого хода и высокоскоростного разряда.
- Измерьте напряжение холостого хода аккумулятора с помощью цифрового вольтметра или мультиметра. Для получения стабильного напряжения аккумулятор не должен использоваться или заряжаться в течение как минимум 3 часов до проверки напряжения.
- Если напряжение ниже 12,40 В, зарядите аккумулятор в соответствии с разделом G. Примечание. Этот тип тестера даст точный результат только при полностью заряженной батарее. Распространенной ошибкой является использование этого типа тестера на разряженной батарее и определение того, что батарея неисправна, если видно, что элемент «закипает». «Кипящий» элемент на разряженной батарее не означает, что батарея неисправна.
- Подайте ток нагрузки, равный половине тока холодного пуска SAE CCA, в течение 15 секунд. Например, разрядите батарею на 600 А при 300 А.Наблюдайте за напряжением в течение этого времени и запишите напряжение через 15 секунд. Вы найдете CCA в разделе «Технические характеристики аккумуляторов» каталога или на этикетке. Используйте одобренный откалиброванный тестер.
- Если через 15 секунд напряжение стабилизируется и превышает 9,60 В, аккумулятор находится в удовлетворительном состоянии, неисправностей нет.
- Если через 15 секунд напряжение ниже 9,60 В и оно нестабильно, обычно быстро падает, батарею следует заменить.
«Тестеры падения»
- «Тестеры падения» имеют 2 шипа, которые вдавлены в верхнюю часть клемм аккумулятора, и простой вольтметр для проверки напряжения разряда.
- Мы не рекомендуем использовать эти тестеры, так как:
- Они потенциально небезопасны в использовании, так как большинство типов вырабатывают искру, когда иглы впервые вдавливаются в клеммы.
- Скорость разряда одинакова для всех размеров аккумуляторов, поэтому они не дают точного определения состояния аккумулятора.
- Они дают неверные результаты для разряженных аккумуляторов.
I – Техническое обслуживание
Общие
1. Всегда обращайтесь к информации, содержащейся в руководстве или брошюре, прилагаемых к транспортному средству или оборудованию.
Определение необслуживаемого
- 1. Наши стартерные аккумуляторные батареи для легковых и грузовых автомобилей соответствуют требованиям соответствующих разделов стандарта EN50342.1 A1, ноябрь 2011 г., в отношении характеристик необслуживаемости. Это означает, что в обычных транспортных средствах в условиях умеренного климата добавлять воду не требуется.
- Наши аккумуляторы предназначены для доливки воды в случае потери воды, например, из-за неисправности системы зарядки, продолжительной работы в жарком климате, чрезмерной зарядки вне автомобиля и т. Д.
- Примечание. Термин «необслуживаемый» применяется только в том случае, если аккумулятор используется в утвержденном автомобильном или коммерческом транспортном средстве.
Определение минимальных затрат на обслуживание
- Аккумуляторы, не требующие особого обслуживания, в обычных транспортных средствах в условиях умеренного климата нуждаются в добавлении воды только раз в год.
- Наши аккумуляторы предназначены для доливки воды в случае потери воды, например, из-за неисправности системы зарядки, продолжительной работы в жарком климате, чрезмерной зарядки вне автомобиля и т. Д.
- Примечание. Термин «низкие эксплуатационные расходы» применяется только в том случае, если аккумулятор используется в одобренном коммерческом транспортном средстве.
Обслуживание аккумуляторных батарей в автомобильной промышленности
- Выполняйте указанные ниже проверки через рекомендованные интервалы обслуживания автомобиля.
- Проверьте уровень электролита и при необходимости долейте воды. См. Раздел D для получения подробной информации о том, как это сделать. (Как объяснялось выше, нет необходимости добавлять воду, если аккумулятор не находится в исключительных условиях).
- Убедитесь, что батарея чистая и сухая, а вентиляционные отверстия не закрыты.
- Убедитесь, что клеммы-соединители и прижимные зажимы надежно соединены и не подвержены коррозии.
- Если аккумулятор находится в автомобиле, который не будет использоваться в течение длительного периода (более 1 месяца), отсоедините его от автомобиля. См. Раздел F для получения информации о снятии аккумулятора с автомобиля. В современных автомобилях есть электрические аксессуары, которые медленно разряжают аккумулятор, даже если ключ зажигания вынут.Некоторые аксессуары, такие как будильники, трекеры и телефоны, могут привести к разрядке аккумулятора через несколько недель.
- Полностью заряжайте аккумулятор перед хранением и заряжайте его каждые 3 месяца. См. Раздел G.
Обслуживание аккумуляторных батарей в неавтомобильных системах тяги и глубокой разрядки
- Типичные области применения – газонокосилки, электрические инвалидные коляски, дома на колесах и т. Д. Для этих применений рекомендуется серия Leisure Battery; стандартные автомобильные аккумуляторы не подходят.
- Следите за тем, чтобы аккумулятор всегда оставался максимально заряженным. Всегда заряжайте аккумулятор сразу после использования.
- Регулярно проверяйте уровни электролита в зависимости от использования. Регулярная зарядка аккумуляторов в системе зарядки, отличной от автомобильной, может привести к более высокой потере воды.
- Убедитесь, что батарея чистая и сухая, а вентиляционные отверстия не закрыты.
- Если аккумулятор не будет использоваться в течение длительного периода (более 1 месяца), полностью зарядите его перед хранением и заряжайте каждые 3 месяца.См. Раздел G.
Техническое обслуживание аккумуляторов в неавтомобильных приложениях с плавающей запятой
- Типичные области применения: двигатели-генераторы, резервные приложения и т. Д. Для этих приложений рекомендуется серия Leisure Battery; стандартные автомобильные аккумуляторы не подходят.
- Батареи, используемые в этих приложениях, следует менять каждые 2 года или чаще. (Непрерывная зарядка даже от хорошо контролируемой системы зарядки приведет к внутренней деградации аккумулятора.Это может привести к тому, что батарея не выдаст прогнозируемую мощность при необходимости, даже если батарея кажется полностью заряженной).
- Следите за тем, чтобы аккумулятор всегда оставался максимально заряженным, не вызывая чрезмерного перезаряда. Всегда заряжайте аккумулятор сразу после использования.
- Проверяйте уровень электролита регулярно в зависимости от использования, но не реже одного раза в месяц. Непрерывная зарядка аккумуляторов в системе зарядки, отличной от автомобильной, может привести к более высокой потере воды.
- Убедитесь, что батарея чистая и сухая, а вентиляционные отверстия не закрыты.
- Если аккумулятор не будет использоваться в течение длительного периода (более 1 месяца), полностью зарядите его перед хранением и заряжайте каждые 3 месяца. См. Раздел G.
- Лучшая практика – определить регулярное техническое обслуживание и записать результаты.
- Это должно включать такие переменные, как количество воды, добавленной в каждую ячейку, удельный вес в каждой ячейке, напряжение батареи и т. Д.
Использование аккумуляторных добавок
- Мы не рекомендуем использовать аккумуляторные добавки.
- Использование этих материалов аннулирует гарантию.
17,5 Батареи и топливные элементы – химия
Цели обучения
К концу этого раздела вы сможете:
- Батареи классифицируются как первичные или вторичные
- Перечислите некоторые характеристики и ограничения аккумуляторов
- Дайте общее описание топливного элемента
Батарея представляет собой электрохимический элемент или серию элементов, вырабатывающих электрический ток.В принципе, в качестве аккумулятора можно использовать любой гальванический элемент. Идеальная батарея никогда не разряжалась бы, не вырабатывала постоянного напряжения и была способна выдерживать экстремальные температуры и влажность окружающей среды. Настоящие аккумуляторы обеспечивают баланс между идеальными характеристиками и практическими ограничениями. Например, масса автомобильного аккумулятора составляет около 18 кг или около 1% от массы среднего автомобиля или малотоннажного грузовика. Этот тип батареи будет обеспечивать почти неограниченное количество энергии, если используется в смартфоне, но будет отклонен для этого приложения из-за своей массы.Таким образом, ни одна батарея не является «лучшей», и батареи выбираются для конкретного применения с учетом таких вещей, как масса батареи, ее стоимость, надежность и текущая емкость. Батареи бывают двух основных типов: первичные и вторичные. Далее описаны несколько батарей каждого типа.
Посетите этот сайт, чтобы узнать больше об аккумуляторах.
Первичные батареи – это одноразовые батареи, потому что они не подлежат перезарядке. Обычной первичной батареей является сухой элемент (Рисунок 1).{-} [/ latex] с общим потенциалом элемента, который изначально составляет около 1,5 В, но уменьшается по мере использования батареи. Важно помнить, что напряжение, подаваемое батареей, одинаково независимо от ее размера. По этой причине все батареи D, C, A, AA и AAA имеют одинаковое номинальное напряжение. Однако более крупные батареи могут доставить больше молей электронов. Поскольку цинковый контейнер окисляется, его содержимое в конечном итоге вытекает, поэтому этот тип батареи не следует оставлять в любом электрическом устройстве на длительное время.
Рис. 1. На схеме показано поперечное сечение батареи фонарика, углеродно-цинкового сухого элемента.Посетите этот сайт, чтобы узнать больше о угольно-цинковых батареях.
Щелочные батареи (рис. 2) были разработаны в 1950-х годах отчасти для решения некоторых проблем с производительностью сухих цинк-угольных элементов. Они производятся, чтобы быть точной заменой сухих угольно-цинковых элементов. Как следует из названия, в этих типах батарей используются щелочные электролиты, часто гидроксид калия.{\ circ} = +1.43 \; \ text {V} \ end {array} [/ latex]
Щелочная батарея может обеспечивать в три-пять раз больше энергии, чем угольно-цинковые сухие элементы аналогичного размера. Щелочные батареи склонны к утечке гидроксида калия, поэтому их также следует снимать с устройств для длительного хранения. Некоторые щелочные батареи можно перезаряжать, но большинство – нет. Попытки перезарядить щелочную батарею, которая не является перезаряжаемой, часто приводят к разрыву батареи и утечке электролита гидроксида калия.
Рис. 2. Щелочные батареи были разработаны как прямая замена угольно-цинковым (сухим) батареям.Посетите этот сайт, чтобы узнать больше о щелочных батареях.
Вторичные батареи перезаряжаемые. Это типы батарей, которые используются в таких устройствах, как смартфоны, электронные планшеты и автомобили.
Никель-кадмиевые батареи или NiCd (рис. 3) состоят из никелированного катода, кадмиевого анода и электрода из гидроксида калия.{-} (aq) \\ [0.5em] \ hline \\ [- 0.25em] \ text {total:} & \ text {Cd} (s) \; + \; \ text {NiO} _2 (s) \; + \; 2 \ text {H} _2 \ text {O} (l) & \ text {Cd (OH)} _ 2 (s) \; + \; \ text {Ni (OH)} _ 2 (s) \ end {array} [/ latex]
Напряжение составляет от 1,2 В до 1,25 В по мере разряда батареи. При правильном обращении никель-кадмиевый аккумулятор можно заряжать около 1000 раз. Кадмий – это токсичный тяжелый металл, поэтому никель-кадмиевые батареи нельзя открывать или выбрасывать в обычный мусор.
Рис. 3. В никель-кадмиевых батареях используется «желеобразная» конструкция, которая значительно увеличивает ток, который может выдавать батарея, по сравнению с щелочной батареей аналогичного размера.{-} \; + \; x \; \ text {C} _6 & x \; \ text {LiC} _6 \\ [0.5em] \ hline \\ [- 0.25em] \ text {total:} & \ текст {LiCoO} _2 \; + \; x \; \ text {C} _6 & \ text {Li} _ {x \; – \; 1} \ text {CoO} _2 \; + \; x \; \ текст {LiC} _6 \ end {array} [/ latex]С коэффициентами, представляющими моль, x составляет не более примерно 0,5 моля. Напряжение батареи составляет около 3,7 В. Литиевые батареи популярны, потому что они могут обеспечивать большой ток, легче, чем сопоставимые батареи других типов, вырабатывают почти постоянное напряжение при разряде и только медленно теряют заряд при хранении.
Рис. 4. В литий-ионной батарее заряд проходит между электродами, когда ионы лития перемещаются между анодом и катодом.Посетите этот сайт для получения дополнительной информации о литий-ионных батареях.
Свинцово-кислотная батарея (рис. 5) – это тип аккумуляторной батареи, используемой в вашем автомобиле. Он недорогой и способен производить большой ток, необходимый для автомобильных стартеров. {- } \\ [0.{-} & \ text {PbSO} _4 (s) \; + \; 2 \ text {H} _2 \ text {O} (l) \\ [0.5em] \ hline \\ [- 0.25em] \ text {общее:} & \ text {Pb} (s) \; + \; \ text {PbO} _2 (s) \; + \; 2 \ text {H} _2 \ text {SO} _4 (aq) & 2 \ text {PbSO} _4 (s) \; + \; 2 \ text {H} _2 \ text {O} (l) \ end {array} [/ latex]
Каждая ячейка вырабатывает 2 В, поэтому шесть ячеек соединены последовательно, чтобы получить 12-вольтовый автомобильный аккумулятор. Свинцово-кислотные батареи тяжелые и содержат едкий жидкий электролит, но часто по-прежнему являются предпочтительными батареями из-за их высокой плотности тока. Поскольку эти батареи содержат значительное количество свинца, их всегда следует утилизировать надлежащим образом.
Рис. 5. Свинцово-кислотный аккумулятор в вашем автомобиле состоит из шести ячеек, соединенных последовательно, чтобы обеспечить напряжение 12 В. Их низкая стоимость и высокий выходной ток делают их отличными кандидатами для питания автомобильных стартеров. {-} \\ [0.{2-} \\ [0.5em] \ hline \\ [- 0.25em] \ text {total:} & 2 \ text {H} _2 \; + \; \ text {O} _2 & 2 \ text {H } _2 \ text {O} \ end {array} [/ latex]Напряжение составляет около 0,9 В. КПД топливных элементов обычно составляет от 40% до 60%, что выше, чем у обычного двигателя внутреннего сгорания (от 25% до 35%), и в случае водородного топливного элемента дает только вода в качестве выхлопа. В настоящее время топливные элементы довольно дороги и содержат функции, которые приводят к их выходу из строя через относительно короткое время.
Перейдите по этой ссылке, чтобы узнать больше о топливных элементах.
Батареи – это гальванические элементы или серия элементов, вырабатывающих электрический ток. Когда элементы объединяются в батареи, потенциал батареи является целым числом, кратным потенциалу отдельной ячейки. Батареи бывают двух основных типов: первичные и вторичные. Первичные батареи предназначены для одноразового использования и не подлежат перезарядке. Сухие элементы и (большинство) щелочные батареи являются примерами первичных батарей. Второй тип перезаряжаемый и называется вторичным аккумулятором. Примеры вторичных батарей включают никель-кадмиевые (NiCd), свинцово-кислотные и литий-ионные батареи.Топливные элементы похожи на батареи в том, что они генерируют электрический ток, но требуют постоянного добавления топлива и окислителя. Водородный топливный элемент использует водород и кислород из воздуха для производства воды и обычно более эффективен, чем двигатели внутреннего сгорания.
Химия: упражнения в конце главы
- Каковы желательные качества электрической батареи?
- Перечислите некоторые вещи, которые обычно учитываются при выборе батареи для нового приложения.
- Рассмотрим батарею, состоящую из одного полуэлемента, состоящего из медного электрода в растворе 1 M CuSO 4 и другого полуэлемента, состоящего из свинцового электрода в 1 M Pb (NO 3 ) 2 раствор. {\ circ} = -0.{\ circ} = +0,53 \; \ text {V} \ end {array} [/ latex]
Подойдет ли этот аккумулятор для смартфонов? Почему или почему нет?
- Почему батареи выходят из строя, а топливные элементы – нет?
- Объясните, что происходит с напряжением батареи при использовании батареи, используя уравнение Нернста.
- Используя информацию, полученную до сих пор в этой главе, объясните, почему электроника с батарейным питанием плохо работает при низких температурах.
Глоссарий
- щелочная батарея
- первичная батарея, в которой используется щелочной (часто гидроксид калия) электролит; спроектирован так, чтобы быть точной заменой сухого элемента, но с большим накоплением энергии и меньшей утечкой электролита, чем типичный сухой элемент
- аккумулятор
- гальванический элемент или серия ячеек, вырабатывающих ток; по идее любой гальванический элемент
- сухая камера
- первичная батарея, также называемая угольно-цинковой батареей; может использоваться в любой ориентации, поскольку в качестве электролита используется паста; имеет тенденцию к утечке электролита при хранении
- топливный элемент
- устройств, вырабатывающих электрический ток при непрерывной добавке топлива и окислителя; эффективнее двигателей внутреннего сгорания
- свинцово-кислотный аккумулятор
- аккумуляторная батарея, состоящая из нескольких ячеек; свинцово-кислотная батарея, используемая в автомобилях, имеет шесть ячеек и напряжение 12 В
- литий-ионный аккумулятор
- очень популярная аккумуляторная батарея; использует ионы лития для проведения тока, легкий, перезаряжаемый и создает почти постоянный потенциал при разряде
- никель-кадмиевый аккумулятор Аккумулятор
- (никель-кадмиевый аккумулятор), в котором используется кадмий, который является токсичным тяжелым металлом; тяжелее литий-ионных батарей, но с аналогичными характеристиками
- первичная батарея
- одноразовый неперезаряжаемый аккумулятор
- аккумулятор
- аккумулятор с возможностью подзарядки
Решения
Ответы на упражнения в конце главы по химии
2. {\ circ} = 0.{\ circ} = 0,7996 \; \ text {V} \ end {array} [/ latex]; (б) 3,5 × 10 15 ; (в) 5.6 × 10 −9 M
6. Батареи автономны и имеют ограниченный запас реагентов, которые нужно расходовать до того, как они сойдут с мертвой точки. В качестве альтернативы, побочные продукты реакции аккумулятора накапливаются и мешают реакции. Поскольку топливный элемент постоянно пополняется реагентами, а продукты удаляются, он может продолжать работать до тех пор, пока поступают реагенты.
8. E ячейка , как описано в уравнении Нернста, имеет член, прямо пропорциональный температуре.При низких температурах этот член уменьшается, что приводит к более низкому напряжению элемента, подаваемому батареей на устройство – тот же эффект, что и разряженная батарея.
Влияние температуры на скорость старения литий-ионной батареи, работающей при температуре выше комнатной
Влияние температуры на скорость старения максимальной емкости накопителя заряда
Путем исследования максимальной емкости накопителя заряда ( Q м ) и влияние изменения температуры от 25 до 55 ° C и циклического старения на деградацию Q m , ценные результаты могут быть получены, чтобы помочь в определении подходящих условий использования.На рисунке 5 показано, что Q м постепенно уменьшается с увеличением количества циклов, как и ожидалось. Установлено, что механизмы деградации этой необратимой потери емкости при циклическом старении связаны с одним или несколькими из следующих факторов, а именно структурными изменениями вставного электрода, разложением электролита, растворением активных материалов, фазовыми изменениями во вставляющем электроде и образованием пассивной пленки на электроды и поверхность токосъемника 15,16 .
Рисунок 5Максимальная емкость заряда как функция температуры.
Максимальная емкость накопителя заряда соответствует разному количеству циклов.
Чтобы уточнить, деградация электрода LCO включает его структурные изменения во время циклирования и образования поверхностной пленки и ее последующую модификацию на электроде 17 . Для графитового электрода основными механизмами разрушения являются образование и рост пленки на границе раздела твердого электролита (SEI) из-за разложения электролита и процесса совместной интеркаляции растворителя на графитовом электроде 15,17 .Более пристальный взгляд на рис. 4 показывает, что чем выше температура, тем больше Q м , за исключением падения при 55 ° C. По сути, температура увеличивает производительность LiB в краткосрочной перспективе за счет увеличения его емкости. Но это также увеличивает скорость разложения Q м , как показано на рис. 5.
Увеличивающаяся скорость разложения Q м во время цикла с повышением температуры объясняется механизмами разрушения необратимыми потеря емкости ускоряется повышенной температурой, как сообщается во многих исследованиях 15,17 .Хотя механизмы деградации различных компонентов LiB, а именно электродов, электролита, их границ раздела фаз и сепаратора, которые приводят к необратимой потере емкости, известны, порядок важности деградации этих компонентов неизвестен. Исследование этого порядка важности является целью данной работы, а проявление этих ухудшений в электрических характеристиках LiB является еще одной целью этой работы, которая не была исследована.
Влияние температуры на скорость старения электрода LCO
Электрод LCO, который является катодом во время разряда, изготовлен из LiCoO 2 (LCO), наиболее часто используемого материала для композитных электродов 18 .На рис. 6 показано разрушение m 1 электрода LCO при циклическом изменении температуры в диапазоне от 25 ° C до 55 ° C. Определение m 1 – это эффективность LCO-электрода в накоплении ионов Li 19 .
Рис. 6Старение m 1 электрода из оксида кобальта в зависимости от температуры.
Процентное ухудшение в зависимости от количества циклов при различных температурах показано во вставленной таблице.
Деградация m 1 может происходить по двум причинам.Один из них – это образование поверхностной пленки и ее последующая модификация на электроде, а другой – структурные / фазовые изменения электрода. Zhang et al. 20 и Ramadass et al. 8 наблюдали образование поверхностной пленки в результате окисления на границе раздела электрод / электролит. Maher et al. 21 идентифицировали структурные и фазовые изменения электрода LCO. Наличие поверхностной пленки (также называемой SEI) снижает скорость реакции введения и деинтеркаляции Li + 20 , а также структурное / фазовое изменение электрода из гексагональной фазы (менее стабильной, но активной) в кубическая фаза или структура шпинели (менее активная) также снижает скорость переноса заряда.Следовательно, оба механизма приводят к снижению скорости переноса заряда (K) при циклировании. Эта скорость переноса заряда показывает скорость переноса Li +, когда он идет от электрода к электролиту и от электролита к электроду 22 . Вышеупомянутые два механизма уменьшают скорость переноса, и это действительно наблюдается на рис. 7. Оба также увеличивают импеданс электрода, и это снова наблюдается на рис. 8.
Рис. 7Старение константы скорости vs .. температура.
Процентное ухудшение в зависимости от количества циклов при различных температурах показано во вставленной таблице.
Рисунок 8Суммарное сопротивление электродов и сопротивление электродов / электролита старению в зависимости от температуры.
Процентное ухудшение в зависимости от количества циклов при различных температурах показано во вставленной таблице.
Фактически, на рис. 7 наблюдаются два различных механизма деградации, а именно большое начальное падение значения K, за которым следует более медленное уменьшение значения K после 100 циклов.Для двух механизмов, упомянутых выше, наш текущий анализ не может определить, какой из двух произойдет первым. С другой стороны, более внимательное рассмотрение рис. 7 показывает, что скорость уменьшения значения K после 100 циклов не зависит существенно от температуры, когда диапазон температур составляет 35–55 ° C. Эта информация может пролить свет на идентификацию доминирующего механизма в более поздней стадии циклического старения.
Поскольку уменьшение значения K и увеличение импеданса электрода обусловлены одними и теми же механизмами, ожидается, что их зависимость от температуры будет одинаковой, что можно увидеть на рис.7 и 8.
Влияние температуры на скорость старения графитового электрода
Графит является наиболее важным материалом анодного электрода в LiB, поскольку он имеет высокую емкость, плоский профиль потенциала и обладает рядом преимуществ, таких как низкая стоимость, длительный срок службы. цикл, малое расширение объема и безопасность 23,24 . На рис. 9 показано разрушение m 2 графитового электрода при циклическом воздействии при различных температурах. M 2 в модели ECBE представляет эффективность графитового электрода в обеспечении запасенных ионов Li 19 .
Рис. 9Старение m 2 графитового электрода в зависимости от температуры.
Процентное ухудшение в зависимости от количества циклов при различных температурах показано во вставленной таблице.
Деградация m 2 обнаруживается, в основном, из-за образования SEI и его роста на поверхности графитового электрода с циклированием 7 . Этот SEI развивается за счет восстановительного разложения электролита, сопровождаемого необратимым расходом ионов лития, что приводит к необратимой потере емкости с возможным выделением газообразных продуктов.Поскольку этот слой SEI не полностью проницаем для ионов лития, количество ионов Li, которые могут быть получены от этого электрода, уменьшается с непрерывным ростом SEI на графитовом электроде 25 . Этот SEI также приведет к снижению скорости переноса заряда (K) и увеличению импеданса ячейки, как в случае электрода LCO. Другой возможный механизм старения графитового электрода заключается в том, что растворитель может совместно внедряться в углерод, вызывая расслоение углерода и последующее расширение углеродных частиц, которые образуют соединения тройного интеркалирования графита (GIC).Развитие (GIC) приводит к потере активного материала, а также будет способствовать необратимой потере емкости 15 . Однако разработка GIC не повлияет на скорость передачи заряда 15,20 .
Если LiB работает при более высокой температуре, скорость роста SEI будет увеличиваться, и это будет препятствовать доставке ионов Li с графитового электрода. Более высокая температура также усилит образование GIC. Следовательно, оба механизма вызовут большее разрушение m 2 при более высоких рабочих температурах, как показано на рис.9, и этот вывод согласуется с Thomas et al. 10 .
Тщательное изучение вставленных таблиц на Рис. 6 и Рис. 9 показывает, что скорость разрушения обоих электродов во время циклирования довольно схожа при 25 ° C. Но на скорость разрушения электрода LCO влияет больше, когда температура выше 25 ° C. Это означает, что скорость деградации электрода LCO в большей степени зависит от температуры, чем скорость деградации графитового электрода, и это также можно увидеть по большему увеличению крутизны деградации электрода LCO.
Скорость разрушения электродов увеличивается с температурой, как обсуждалось ранее. Более значительный скачок сопротивления ячейки на ранних стадиях цикла наблюдается при высоких рабочих температурах, как это видно на рис. 8 от 0 до 50 циклов. Считается, что это связано с увеличением скорости образования SEI на электродах. при более высокой температуре, где Schalkwijk et al. 7 подробно рассказали о механизме образования SEI при различных температурах. После 50 циклов разложение связки, окисление проводящего агента и коррозия токоприемника также будут способствовать увеличению импеданса, вызывая еще одно большое увеличение сопротивления при высокой рабочей температуре, как видно из 100-150 циклов на рис.8 17 .
Влияние температуры на скорость старения электролита
Старение электролита можно проанализировать по изменению элемента Варбурга. Этот элемент Варбурга моделирует электролит как диэлектрик конденсатора с параллельными пластинами с двумя электродами как две пластины конденсатора. Он моделирует систему электролита как последовательность R w и C w , где R w относится к сопротивлению электролита, а C w относится к емкости эквивалентного конденсатора с параллельными пластинами.
При повышении температуры с 25 ° C до 55 ° C коэффициент диффузии активных ионов Li в электролите увеличивается 26 , а концентрация ионов лития, протекающих через электролит, также увеличивается 19 из-за увеличения Q m в результате усиленного электрохимического восстановления-окисления (окислительно-восстановительного потенциала) на аноде и катоде при повышенной температуре 27,28 , таким образом, ожидается снижение сопротивления электролита, когда элемент сначала циклируется, как показано на Инжир.10.
Рисунок 10Старение сопротивления элемента Варбурга в зависимости от температуры.
Процентное ухудшение в зависимости от количества циклов при различных температурах показано во вставленной таблице.
С другой стороны, емкость элемента Варбурга увеличивается с температурой, как показано на рис. 11. Это можно объяснить увеличением количества накопленного ионного заряда (из-за увеличения Q м ) в двух электродах, т. Е. и для данного V, который представляет собой напряжение на двух выводах LiB, увеличение Q m приведет к увеличению C.
Рисунок 11Старение емкости элемента Варбурга в зависимости от температуры.
Процентное ухудшение в зависимости от количества циклов при различных температурах показано во вставленной таблице.
Скорость разложения R n (т. Е. Увеличение значения R n ) из-за циклирования больше при более высоких температурах. Это может быть связано с увеличением скорости деградации максимальной емкости накопителя заряда при циклической работе при более высоких температурах. Увеличивающаяся скорость разрушения сепараторов при более высоких температурах также является возможной причиной увеличения R n 10 .
Уменьшение емкости элемента Варбурга при циклировании можно увидеть на рис. 11. Одной из возможных причин является образование SEI на электродах и сепараторе, которые уменьшают доступную поверхность активных материалов во время циклирования, то есть эффективную площадь эквивалентный параллельный конденсатор уменьшается. Другая возможная причина связана с образованием слоя SEI, который изменяет модель конденсатора электролита на два последовательно соединенных конденсатора, где один из них имеет электролит в качестве диэлектрика, а другой – SEI в качестве диэлектрика.Если относительная диэлектрическая проницаемость электролита составляет ε 1 , а диэлектрическая проницаемость пленки SEI равна ε 2 , эффективная емкость будет всегда меньше 1. При повышении температуры пленка SEI также будет расти быстрее и толще, которые прямо соответствуют уменьшению емкости при циклировании и повышении температуры.
Умножение R n C w приведет к графику, показанному на рис. замедлится при высокой температуре.
Рисунок 12Старение постоянной времени Warburg RC в зависимости от температуры.
Процентное ухудшение в зависимости от количества циклов при различных температурах показано во вставленной таблице.
Обзор влияния температуры на скорость старения
Из приведенного выше анализа было обнаружено, что более высокая температура увеличивает скорость разложения всех компонентов LiB, и это согласуется с работой Thomas et al. 10 . Тщательное изучение таблиц, представленных на рисунках, которые показывают деградацию в процентах каждого компонента в LiB, показывает, что температура оказывает наибольшее влияние на скорость деградации элемента Варбурга при циклическом изменении и последующем импедансе ячейки. .На скорость ухудшения скорости переноса заряда меньше влияет рабочая температура для рассматриваемого здесь диапазона температур.
При изменении рабочей температуры LiB от 25 до 55 ° C скорость деградации максимального накопления заряда после 260 циклов увеличивается с 4,22% до 13,24%. На уровне компонентов при таком же изменении рабочей температуры скорость деградации сопротивления элемента Варбурга после 260 циклов увеличивается с 49,40% до 584.07% (рис. 10), что является максимальным изменением; а импеданс ячейки занимает второе место, увеличившись с 33,64% до 93,29% (рис. 8). Что касается скорости переноса заряда, то изменение скорости его деградации уменьшается с 68,64% до 56,19% (рис. 7).
Из изменения деградации различных компонентов и сравнения с изменением деградации Q m , которые также представляют скорость деградации состояния здоровья (SoH) LiB, мы можем сделать вывод, что деградация SoH является не сильно затронуты деградацией элемента Варбурга и импеданса ячейки, так как большие изменения их значений могут привести только к небольшому изменению Q m .Это, кажется, противоречит некоторым исследованиям 8,20 , в которых утверждается, что более высокий импеданс ячейки является причиной потери зарядной емкости. Расхождение можно объяснить следующим образом.
В большинстве случаев Q m определяется методом кулоновского счета, где Q m представлено интегрированием тока разряда по времени до полного разряда LiB, что соответствует напряжению на клеммах около 3–2,5 В. , в зависимости от типа батареи. Замечено, что при более высоком импедансе ячейки Q м , определенное таким образом, будет меньше, и это было связано с потерей энергии на импеданс ячейки, в результате чего меньшее значение Q м вытекает из LiB для интеграции 15, 28 .Потеря энергии имеет вид i 2 R . Однако это означало бы, что температура ячейки увеличивается незначительно, и поскольку Q m увеличивается с температурой ячейки, как мы наблюдали ранее 19 , такое объяснение сомнительно. Кроме того, очевидно, что определенная Q m (обычно называемая Q d , разрядная емкость) с использованием метода кулоновского счета выше, когда разрядный ток меньше 28 , и поскольку более низкий разрядный ток будет означать более низкую энергию потери, увеличение температуры элемента будет меньше, следовательно, Q m должно быть уменьшено с меньшим током разряда по сравнению с большим током разряда, и это противоречит экспериментальному наблюдению.
Мы предположили, что наблюдение более низкого Q m для элемента с более высоким импедансом может быть связано с большим внутренним падением напряжения в LiB. Таким образом, когда внешнее напряжение LiB падает до 2,7 В, где оно устанавливается как напряжение, при котором все накопленные заряды разряжаются, фактическое напряжение внутри LiB фактически выше 2,7 В и, следовательно, не все накопленные заряды в ячейке. выводятся во внешнюю цепь. Следовательно, определенная Q м меньше, чем фактическая Q м в ячейке.При таком объяснении, когда ток разряда меньше, внутреннее падение напряжения в LiB также будет меньше для данного импеданса ячейки, и, таким образом, внешнее 2,7 В будет ближе к фактическому напряжению внутри LiB, подразумевая, что оставшиеся сохраненные заряды в LiB будет меньше при прекращении разряда 2,7 В, таким образом, определенное значение Q м больше. Другими словами, наблюдение более высокого импеданса ячейки вызывает более низкую Q м. является артефактом измерения, а не причинно-следственной связью.
С другой стороны, определение Q m в этой работе рассчитывается на основе модели ECBE, и, следовательно, эффект внутреннего падения напряжения из-за импеданса ячейки не повлияет на наш расчет. На рисунке 13 показано сравнение Q m , определенного с использованием метода кулоновского счета при различных токах разряда, с Q m , определенным с использованием модели ECBE. Можно сделать вывод, что тенденция Q d с использованием метода кулоновского счета очень похожа на значение, определенное с помощью модели ECBE, когда ток разряда небольшой, что указывает на то, что Q m из модели ECBE близок к фактическому значению. зарядная емкость LiB.Небольшое уменьшение Q м , определенное на основе модели ECBE, как показано на рис. 13, связано с чрезмерными зарядами, достигающими отрицательного электрода в единицу времени, что приводит к неэффективному накоплению зарядов в электроде, как сообщается 11 .
Рис. 13Емкость разряда (Q d ), измеренная с помощью ETMS, в сравнении с максимальной емкостью накопления заряда (Q м ), оцененной ECBE.
Из приведенного выше анализа мы видим, что когда SoH значительно ухудшается, где SoH = Q м ( текущий ) / Q м ( свежий ), импеданс ячейки был бы увеличен очень значительно, и это привело бы к увеличению джоулева нагрева ячейки и привело бы к тепловому разгоне и, таким образом, возможно, к возникновению опасности возгорания.Следовательно, из соображений безопасности следует ввести ограниченное допустимое значение деградации SoH.
Кроме того, поскольку наш метод способен обнаруживать деградацию SoH в реальном времени и проводить простые измерения, он будет полезен для прогнозирования и диагностики LiB, как показано на рис. 14. Эта информация также позволит определить оставшийся срок полезного использования LiB, о котором будет сообщено в нашей будущей работе.
Рисунок 14Усовершенствованная технология управления батареями с возможностью прогнозирования и диагностики.
Руководство по аккумуляторным батареям и техническим условиям
КИСЛОТА
Серная кислота. Это электролит или жидкость, содержащаяся в элементах батареи
АКТИВНЫЙ МАТЕРИАЛ
Активным материалом в положительных пластинах батареи является диоксид свинца, а в отрицательных пластинах – металлический губчатый свинец. Когда создается электрическая цепь, эти материалы реагируют с серной кислотой во время зарядки и разрядки в соответствии со следующей химической реакцией
PbO2 + Pb + 2h3SO4 = 2PbSO4 + 2h3O
АКТИВАЦИЯ
Добавление электролита в сухую батарею.
AGM
Абсорбирующий стеклянный мат
AGM BATTERY
Аккумулятор, не содержащий свободного жидкого электролита. Электролит абсорбируется стекломатом, расположенным в каждой из ячеек батареи. Аккумуляторы AGM и VRLA имеют одинаковую конструкцию
АМПЕР (Ампер., А.)
Единица измерения скорости электронного потока или тока через цепь
АМПЕР-ЧАС (Ампер-час, Ач)
Единица измерения электрической емкости аккумулятора, полученная путем умножения силы тока в амперах на время разряда в часах.(Например, аккумулятор, который выдает 5 ампер в течение 20 часов, дает 5 А x 20 часов = 100 Ач емкости)
СУРЬЕР
Твердый хрупкий серебристо-белый металл с высоким блеском из семейства мышьяка. Химическая формула Sb, атомный номер 51.
CADMIUM
Металлический элемент, обладающий высокой устойчивостью к коррозии, используемый в качестве защитного покрытия компонентов батареи. Химическая формула Cd, атомный номер 48.
ЕМКОСТЬ
Способность полностью заряженной батареи выдавать определенное количество электроэнергии (Ач) с заданной скоростью (A) в течение определенного периода времени (часов).Емкость батареи зависит от ряда факторов, таких как: вес активного материала, плотность активного материала, адгезия активного материала к сетке, количество, конструкция и размеры пластин, расстояние между пластинами, конструкция разделителей, конкретные плотность и количество доступного электролита, сплавы сетки, конечное предельное напряжение, скорость разряда, температура, внутреннее и внешнее сопротивление, возраст и срок службы батареи.
ТЕСТ ЕМКОСТИ
Тест, при котором батарея разряжается постоянным током при комнатной температуре до тех пор, пока напряжение не упадет до 1.75 вольт на ячейку.
ЯЧЕЙКА
Базовый электрохимический токоподводящий блок в батарее, состоящий из набора положительных пластин, отрицательных пластин, электролита, сепараторов и корпуса. Свинцово-кислотная батарея на 12 вольт состоит из шести ячеек.
ЗАРЯЖЕННЫЙ
Максимальная способность аккумуляторного элемента передавать ток (в амперах). Положительные пластины содержат максимальное количество оксида свинца и минимум сульфата свинца, а отрицательные пластины содержат максимум губчатого свинца и минимум сульфата.Электролит имеет максимальный удельный вес.
ЗАРЯЖЕННЫЙ И СУХИЙ (СУХИЙ ЗАРЯД)
Аккумулятор в сборе с сухими заряженными пластинами и без электролита.
ЗАРЯЖЕННЫЙ И ВЛАЖНЫЙ (ВЛАЖНЫЙ ЗАРЯД)
Полностью заряженный аккумулятор с электролитом (готовый к установке)
ЗАРЯДКА
Процесс преобразования электрической энергии в накопленную химическую энергию
СКОРОСТЬ ЗАРЯДКИ
Ток (в амперах), при котором заряжается аккумулятор.
ЦЕПЬ
Электрическая цепь – это путь, по которому проходит поток электронов. Замкнутая цепь – это полный путь. В разомкнутой цепи есть разорванный или отключенный путь.
ЦЕПЬ (СЕРИЯ)
Цепь, которая имеет только один путь для прохождения тока. Батареи, расположенные последовательно, соединяются с отрицательным полюсом первого к плюсу второго, отрицательным полюсом второго к плюсу третьего и так далее. Если две 12-вольтовые батареи емкостью 50 Ач каждая подключены последовательно, напряжение в цепи равно сумме двух напряжений батареи, или 24 вольта, а емкость комбинации в ампер-часах составляет 50 Ач.
ЦЕПЬ (ПАРАЛЛЕЛЬНАЯ)
Цепь обеспечивает более одного пути для прохождения тока. При параллельном расположении батарей (одинакового напряжения и емкости) все положительные клеммы подключены к одному проводнику, а все отрицательные клеммы – к другому проводнику. Если две 12-вольтовые батареи емкостью 50 Ач каждая подключены параллельно, напряжение в цепи составляет 12 В, а емкость комбинации в ампер-часах составляет 100 Ач.
РЕЙТИНГ ХОЛОДНОЙ РУКОЯТКИ
Число ампер свинцово-кислотной батареи при нуле градусов по Фаренгейту (-17.8 градусов по Цельсию) может подавать в течение 30 секунд и поддерживать не менее 1,2 В на элемент.
CONSTANT CURRENT CHARGE
Зарядное устройство, вырабатывающее постоянный ток (в амперах) во время процесса зарядки
КОРРОЗИЯ
Деструктивная химическая реакция жидкого электролита с химически активным материалом. (например, разбавление серной кислоты на железе, вызывающее образование продуктов коррозии, таких как ржавчина). Клеммы аккумуляторных батарей подвержены коррозии, если они не обслуживаются должным образом.
ТОК
Скорость потока электричества или движение электронов по проводнику. Это сравнимо с потоком струи воды. Единицей измерения силы тока в системе СИ является ампер (А)
ТОК (ПЕРЕМЕННЫЙ) (AC)
Ток, периодически меняющийся по величине и направлению. Батарея не подает переменный ток.
ТОК (ПРЯМОЙ) (постоянный ток)
Электрический ток, протекающий в электрической цепи только в одном направлении.Батарея выдает постоянный ток (DC) и должна заряжаться постоянным током в направлении, противоположном разряду.
ЦИКЛ
В аккумуляторе одна разрядка плюс одна подзарядка равны одному циклу.
СКОРОСТЬ РАЗРЯДА
Любая указанная сила тока, при которой батарея разряжается
РАЗРЯДКА
Когда батарея выдает ток, говорят, что она разряжается.
ЭЛЕКТРОЛИТ
В свинцово-кислотных аккумуляторах электролитом является серная кислота, разбавленная водой.Это проводник, который поставляет воду и сульфат для электрохимической реакции.
PbO2 + Pb + 2h3SO4 = 2PbSO4 + 2h3O
ЭЛЕМЕНТ
В аккумуляторе набор положительных и отрицательных пластин в сборе с разделителями.
FLOAT CHARGE
Уровень напряжения перезарядки, который немного выше, чем напряжение холостого хода (OCV) батареи
ФОРМИРОВАНИЕ
При производстве аккумуляторов формирование – это процесс зарядки аккумулятора в первый раз.Электрохимически образование превращает пасту оксида свинца на положительных решетках в диоксид свинца, а пасту из оксида свинца на отрицательных решетках – на металлический губчатый свинец.
GLASS MAT
Ткань из стекловолокна с полимерным связующим, например стиролом или акрилом, который используется для удержания активного материала положительных материалов. Стеклянные коврики также поглощают электролит в батарее AGM.
GRID
Каркас из свинцового сплава, который поддерживает активный материал пластины батареи и проводит ток.
ЗАЗЕМЛЕНИЕ
Опорный потенциал цепи. В автомобильной промышленности – результат прикрепления одного кабеля аккумулятора к кузову или раме транспортного средства, который используется в качестве пути для замыкания цепи вместо прямого провода от компонента. Сегодня более 99% автомобильных и LTV-приложений используют отрицательную клемму аккумулятора в качестве заземления.
ГИДРОМЕТР
Устройство поплавкового типа, используемое для определения степени заряда аккумулятора путем измерения удельного веса электролита.(т.е. концентрация серной кислоты в электролите).
СВИНЦ
Химический элемент, основной состав свинцово-кислотной батареи. Химическая формула Pb, атомный номер 82.
СУРЬЕР-СВИНЦ
Металлический сплав, обычно используемый в отливках или пластинах аккумуляторных батарей.
СВИНЦЕВЫЙ КАЛЬЦИЙ
Сплав на основе свинца, который иногда используется для компонентов батарей вместо сплавов с сурьмой и свинцом.
ПЕРОКСИД СВИНЦА
Коричневый оксид свинца, который является положительным материалом в полностью сформированной положительной пластине аккумуляторной батареи.
СВИНЦОВАЯ ГУБКА
Главный компонент активного материала полностью сформированной отрицательной пластины аккумуляторной батареи.
СУЛЬФАТ СВИНЦА
Соединение, которое образуется в результате химической реакции серной кислоты с оксидами свинца в элементе батареи.
СЕРНАЯ КИСЛОТА
Основное кислотное соединение серы. Серная кислота в разбавленном виде является электролитом свинцово-кислотной батареи. Химическая формула h3SO4.
TRICKLE CHARGE
Непрерывный низкоскоростной заряд, примерно равный внутренним потерям аккумулятора и способный поддерживать аккумулятор в полностью заряженном состоянии.
ТЕСТЕР НАГРУЗКИ
Прибор, который потребляет ток (разряжается) от батареи, используя электрическую нагрузку, при измерении напряжения. Он определяет способность батареи работать в реальных условиях разряда.
АККУМУЛЯТОР С НИЗКИМ ПОТЕРЬЮ ВОДЫ
Аккумулятор, не требующий периодического добавления воды при нормальных условиях. Также известен как необслуживаемый аккумулятор .
MILLIAMPERE
Одна тысячная ампер (ампер)
МОДИФИЦИРОВАННАЯ ЗАРЯДКА ПОСТОЯННОГО НАПРЯЖЕНИЯ
Заряд, при котором напряжение зарядки поддерживается постоянным, в то время как фиксированное сопротивление вставлено в цепь зарядки аккумулятора, вызывая повышение напряжения по мере зарядки.
ОТРИЦАТЕЛЬНЫЙ
Обозначение или отношение к электрическому потенциалу. Отрицательный полюс батареи – это точка, из которой при разряде текут электроны.
ОТРИЦАТЕЛЬНАЯ ПЛАСТИНА
Сетка и активный материал, по которому ток течет от внешней цепи, когда батарея разряжается.
ОТРИЦАТЕЛЬНЫЙ КЛЕММ
Клемма батареи, от которой ток течет через внешнюю цепь к положительной клемме, когда батарея разряжается.
ОМ
Единица измерения электрического сопротивления в системе СИ. Также единица электрического сопротивления в электрической цепи.
ЗАКОН ОМА
Выражает соотношение между вольтами (v) и амперами (A) в электрической цепи с сопротивлением (R). Его можно выразить следующим образом
В = ИК
Вольт (v) = амперы (I) x Ом (R). Если известны любые два из трех значений, третье можно рассчитать, используя приведенный выше расчет.
OPEN CIRCUIT VOLTAGE
Напряжение затопленной свинцово-кислотной батареи, когда она не подает или не получает питание. Это 2,11 вольта для полностью заряженной аккумуляторной батареи или 12,66 вольта для полностью заряженной 12-вольтовой батареи (6,33 для 6-вольтовой батареи).
ПОЛОЖИТЕЛЬНЫЙ
Обозначение или относящийся к виду электрического потенциала; противоположность отрицательному. Точка или клемма батареи, имеющая более низкий относительный электрический потенциал.
ПОЛОЖИТЕЛЬНЫЙ ТЕРМИНАЛ
Клемма батареи, на которую ток течет во внешней цепи, когда батарея разряжается.
ОСНОВНАЯ БАТАРЕЯ
Батарея этого типа может накапливать и отдавать электроэнергию, но не может быть перезаряжена.
НОМИНАЛЬНАЯ ЕМКОСТЬ
Ампер Время разряда, которое можно снять с полностью заряженной батареи с определенной постоянной скоростью.
РЕЗЕРВНАЯ МОЩНОСТЬ
Время в минутах, в течение которого новая, полностью заряженная батарея выдает 25 ампер при 80 градусах по Фаренгейту и поддерживает напряжение на клеммах равное или выше 1.75 вольт на ячейку. Этот рейтинг представляет собой время, в течение которого аккумулятор будет продолжать работать с основными принадлежностями в случае выхода из строя генератора переменного тока или генератора автомобиля.
СОПРОТИВЛЕНИЕ (ЭЛЕКТРИЧЕСКОЕ)
Противодействие свободному течению тока в цепи. Обычно он измеряется в Ом.
ВТОРИЧНАЯ БАТАРЕЯ
Батарея, которая может накапливать и отдавать электрическую энергию и может заряжаться, пропуская через нее постоянный ток в направлении, противоположном направлению разряда.
САМОРАЗРЯДКА
Постепенная потеря электроэнергии при хранении батареи.
СЕПАРАТОР
Делитель между положительной и отрицательной пластинами элемента, который позволяет току проходить через него. Сепараторы изготавливаются из различных материалов, таких как полиэтилен, поливинилхлорид, резина, стекловолокно, целлюлоза и т. Д.
КОРОТКОЕ ЗАМЫКАНИЕ
Непреднамеренный обход тока в электрическом устройстве или проводке, как правило, с очень низким сопротивлением и, таким образом, вызывает протекание большого тока.В аккумуляторе короткое замыкание элемента может быть достаточно постоянным, чтобы разрядить элемент и сделать аккумулятор бесполезным.
УДЕЛЬНЫЙ ВЕС (SG)
Плотность жидкости по сравнению с плотностью воды. Удельный вес электролита – это вес электролита по сравнению с весом равного объема чистой воды.
СОСТОЯНИЕ ЗАРЯДА
Количество электроэнергии, хранящейся в батарее в любой момент времени, выраженное в процентах от энергии при полной зарядке.
VOLT
Единица измерения электрического потенциала в системе СИ.
НАПРЯЖЕНИЕ
Разница в электрическом потенциале, которая существует между клеммами аккумулятора или любыми двумя точками в электрической цепи.
ПАДЕНИЕ НАПРЯЖЕНИЯ
Чистая разница в электрическом потенциале (напряжении) при измерении сопротивления или импеданса (Ом). Его отношение к току описано в законе Ома .
VRLA
Свинцово-кислотный клапан с регулируемым клапаном.Герметичная батарея с предохранительным клапаном, предназначенным для сброса избыточного внутреннего давления при поддержании давления, достаточного для рекомбинации кислорода и водорода в воду. VRLA и AGM относятся к батарее одного типа.
WATT
Единица СИ для измерения электрической мощности. (то есть скорость выполнения работы по перемещению электронов за счет электрического потенциала или против него.
Формула: Ватты = Амперы x Вольт
ВАТТ-ЧАС (Ватт-час.