Коэффициент теплопроводности пеноплекса: коэффициент теплопроводности, описание, технические характеристики, паропроницаемость материала

Содержание

коэффициент теплопроводности, описание, технические характеристики, паропроницаемость материала

Инновационный утеплитель, обладающий высокими техническими характеристиками, позволяющий максимально сохранить тепло в доме, создать комфортную атмосферу – экструдированный пенополистирол. Способствует этому низкий коэффициент теплопроводности, высокая влагостойкость, достаточная плотность теплоизолятора. Известная марка материала – пеноплэкс. С таким материалом фундамент, кровля, стены будут надежно защищены от теплопотерь.

Описание материала – пеноплэкс

Инновационный утеплитель для создания комфортной атмосферы в доме.

Утеплитель представляет собой плиты, состоящие герметичных мелких ячеек, благодаря чему показатель водопоглощения практически равен нулю. Плотность и теплопроводность материал получает благодаря особому методу производства. Для изготовления плит используют пенополистирол. Гранулы помещаются в экструдер, где под воздействием температуры и давления материал вспенивается.

Затем он пропускается через фильеры, которые придают теплоизолятору форму плит. В результате получается утеплитель с высокими техническими показателями.

Достоинства и недостатки пеноплекса

Материал имеет плюсы и минусы, которые зависят от свойств утеплителя. Популярность утеплитель получил благодаря следующим качествам:

  1. Низкая теплопроводность. Коэффициент теплопроводности самый низкий среди всех утеплителей, благодаря чему теплоизоляционный материал используется в регионах с экстремально низкой температурой.
  2. Малая паропроницаемость делает утеплитель эффективным в плане теплоизоляции, в то же время заниженный показатель приводит к образованию конденсата, что негативно влияет на атмосферу внутри помещения и качественные свойства материала.
  3. Длительный срок эксплуатации. Пеноплекс прослужит более 40 лет.
  4. Высокая прочность, что делает плиты устойчивыми к механическому, химическому, атмосферному воздействию.
  5. Простота монтажа. Крепление плит происходит с минимальными трудовыми затратами.
    Справится с процедурой утепления даже неопытный человек.
  6. Отличное соотношение цена-качество.

В одном материале удалось соединить массу достоинств. При этом пеноплекс имеет и недостатки, ограничивающие сферу применения материала. Пользователи выделяют следующие минусы:

  1. Высокая степень пожароопасности. Категория зависит от марки утеплителя и варьируется от Г1 до Г4. Утеплитель легко воспламеняется, при этом способен самостоятельно затухать.
    Токсичность выделяемого при горении дыма опасна для здоровья человека.
  2. Плохие адгезивные свойства. Теплоизолятор плохо сцепляется с основанием, поэтому важно применять дополнительные крепления при монтаже.
  3. Невысокая степень устойчивость к ультрафиолетовому излучению. Солнечные лучи негативно влияют на показатели утеплителя, поэтому важно быстро защитить поверхность отделочным слоем.
  4. Привлекательность для грызунов. Чаще всего вредители грызут материал, если он преграждает им путь к воде и еде. Для решения проблемы используют мелкоячеистую металлическую сетку.
  5. По стоимости материал не самый дешевый. Он находится в среднем ценовом сегменте. В целях экономии приобретают более дешевые варианты, к примеру, пенопласт.

Детальное описание пеноплекса позволяет оценить, насколько рационально применение утеплителя для каждой конкретной ситуации, поэтому перед теплоизоляцией следует внимательно изучить паспорт материала.

Виды и размеры теплоизоляционных плит

В зависимости от цели использования пеноплекса для дома и сада, подбирается наиболее подходящий вид материала. Виды утеплителя отличаются по характеристикам и размерам, поэтому важно правильно определить наиболее подходящую марку.

Основа

Пеноплекс Основа подойдет для утепления стен и кровель, в том случае, если на них не воздействуют большие нагрузки. Этому виду присущи важные качества: низкая теплопроводность и водопоглощение, высокая прочность, устойчивость к гниению. Плотность материала зависит от толщины плит. Данный вид представлен в 5 видах:
  • 2 см;
  • 3 см;
  • 4 см;
  • 5 см;
  • 10 см.

Габариты плиты имеют следующие: длина – 11,85 см.; ширина – 5, 85 см. Срок использования составляет до 50 лет.

Комфорт

С помощью данного вида утепляют цоколь, стены и кровлю. Плиты пеноплэкс Комфорт используют для теплоизоляции лоджий, балконов, теплиц и инженерных коммуникаций. Утеплитель переносит температурные перепады, устойчив к образованию плесени и грибка, прост в монтаже благодаря особой системе крепления. Температурный диапазон эксплуатации ТУ с -70 до +75°С.
Другие характеристики выглядят следующим образом: прочность на сжатие – 15 МПа, 25 кг/м³ – плотность материала.

Фасад

Пеноплекс Фасад предназначен для внутренних и наружных теплоизоляционных работ. Поверхность плит фрезерованная, что позволяет улучшить сцепление с поверхностью, облегчить процедуру финишной отделки. Материал представлен плитами различной толщины. Плотность материала 25-33 кг/м³. Фасадный утеплитель может использоваться для утепления внутренних стен и перегородок, благодаря своей экологичности.

Существуют и другие виды экструдированного пенополистирола. Пеноплекс, имеющий плотность 35, 45, чаще используется для изоляции ограждающих конструкций. Допустимо утепление конструкций, на которые воздействуют большие нагрузки. Также распространены Гео penoplex, фундамент penoplex, кровля penoplex. При выборе вида учитываются все особенности, а также обращается внимание на соответствие утеплителя требованиям ГОСТ.

Технические характеристики

Технические показатели материала обусловлены особой технологией изготовления утеплителя. Характеристики отличаются для разных марок. Ключевыми характеристиками считаются плотность, теплопроводность, горючесть, паропроницаемость.

Плотность

При покупке следует обращать внимание на плотность.

Пеноплекс плотность имеет высокую. Показатель варьируется в зависимости от марки и составляет 25-45 кг/м³. Данная характеристика важна, но более существенной считается прочность на сжатие. Именно эта характеристика влияет на сферу применения утеплителя. Для теплоизоляции стен достаточно прочности в 0,12 МПа, для фундамента потребуются плиты с показателем 0,3 МПа.

Теплопроводность

Коэффициент теплопроводности пеноплекса составляет 0,03 Втм•°С. При увлажнении показатель изменяется незначительно, благодаря чему качественные характеристики остаются на высоте. Низкий коэффициент теплопроводности гарантирует надежную защиту от утечек тепла.

Токсичность

Экструдированный пенополистирол способен выделять свободные стиролы, которые негативно влияют на организм человека: ухудшают работу сердца, отрицательно сказывается на состоянии печени. Этот токсин выделяется в небольших количествах, большая часть – сразу после изготовления, поэтому при утеплении таким материалом вред для организма минимизирован. Основную опасность составляет горение или тление утеплителя, поскольку при этом выделяется токсичный дым, способный нанести вред человеку. Для улучшения пожаростойкости в состав материалов добавляют антипрены, которые сами по себе считаются токсичными.

Следует обращать внимание на состав теплоизолятора при покупке.

Горючесть

В зависимости от марки отличается класс горючести. Теплоизолятор относится к сильно и нормально горючим материалам. При воздействии огня пеноплекс способен гореть или тлеть, выделяя вредный ля человека дым. Производители, совершенствуя технологию производства, смогли уменьшить горючесть утеплителя путем добавления антипренов. Это позволило создать слабогорючий материал. Он более дорогой, но результат оправдывает затраты.

Область применения

Сфера использования утеплителя обширна. В большинстве случаев область применения понятна из названия марки: пеноплекс комфорт, penoplex фундамент, penoplex стена. Клей следует подбирать в зависимости от цели, поскольку для внутренних, наружных работ, теплоизоляции фундамента потребуется разные виды клеевой основы, а также дополнительная фиксация дюбелями. Каждый клей наносится по-разному, поэтому следует обратить особое внимание на выбор сцепляющего материала.

С помощью пеноплекса утепляют как частные дома и квартиры, так и производственные предприятия. Это стало возможным благодаря отдельным маркам с повышенной плотностью. Утеплитель используют для внутренних (стены, перегородки), наружных (балконы, лоджии, стены, цоколь, кровля) работ.

Сведения об упаковке

Поставляется пеноплекс завернутым в термоусадочную УФ-стабилизированную пленку. Такая упаковка считается удобной и надежной, при этом не портит внешний вид товара. Пленка принимает форму материала, легко распаковывается.

Отечественные аналоги материала

Российские производители также наладили производство экструдированного пенополистирола.

На рынке представлены два аналога: Техноплекс и Полиспен. Каждая марка имеет особенности.

Техноплекс

Показатели прочности и теплопроводности – отличительные особенности плит Техноплекс. Добиться выдающихся технических показателей производителю удалось за счет использования нанотехнологий при изготовлении утеплителя. Метод заключается в добавлении частиц графита, помогающих повысить плотность материала. Теплоизолятор применяется в частном строительстве, а также при обустройстве системы теплый пол. В отличие от пеноплекса, техноплекс имеет не оранжевый, а светло-серебристый цвет. Изготавливаемый утеплитель отличается по толщине. Плиты оснащены специальной кромкой, упрощающей монтаж. После крепления следует максимально быстро произвести отделку, чтобы защитить теплоизолятор от атмосферного воздействия.

Полиспен

Экструдированный пенополистирол от ООО «Полиспен» изготавливается трех видов, которые отличаются техническими характеристиками и сферой применения:
  1. Полиспен Стандарт. Используются при утеплении фундамента, а также для теплоизоляции пола.
  2. Полиспен 35 незаменим при утеплении ограждающих конструкций.
  3. Полиспен 45 с наибольшей прочностью используется в дорожном строительстве, поскольку может выдержать даже вес самолета. Рекомендовано применять его при теплоизоляции конструкций, на которые воздействуют большие нагрузки.

На рынке представлены плиты Полиспена разных размеров и толщины, следовательно, плотность материала также отличается.

Таблица характеристик

МаркаКомфортОсноваФундаментГЕОКровляФасад45
Прочность на сжатие (МПа)0,150,170,30,30,250,20,5
Водопоглощение за 24 часа (% по объему)0,40,40,40,40,40,40,2
Плотность (кг/м³)От 20От 2027-3528-3626-3425-3338-47
Коэффициент теплопроводности Вт/м•°К)0,0320,0320,0320,0320,0320,0320,032
Паропроницаемость (мг/м.ч.Па)0,0050,0050,0050,0050,0050,0050,005
Модуль упругости (МПа)15151717171520
Теплоемкость (кДж/кг. °С)1,451,451,451,451,451,451,45
Группа горючестиГ4Г4Г4Г4Г4Г3Г3
Температурный диапазон эксплуатации (°С)-70 …+75-70..+75-70…+75-70  +75-70..+75-70-+75-70-+75

Полные характеристики указаны в сопроводительной документации Пеноплекса, где описаны технические характеристики теплоизолятора и указаны рекомендации по монтажу.

Экструдированный пенополистирол отличается высокими теплоизоляционными показателями, благодаря чему часто используется при утеплении. Способствует этому и приемлемая стоимость утеплителя. Простота монтажа, эффективность и долговечность материала сделали его популярным в разных сферах среди всех категорий населения.

Пеноплекс: технические характеристики – коэффициент теплопроводности и другие свойства, видео и фото

Пеноплекс — что это такое, какими свойствами и характеристиками обладает, и для каких целей применяется? Я часто работаю с этим материалом, и готов ответить на поставленные вопросы. А также рассказать, где лучше всего его использовать.

Пеноплекс — экструдированный пенополистирол от отечественного производителя

Особенности Пеноплекса

Общие сведения

Этот утеплитель — экструдированный пенопласт от одноименного российского производителя. Первая производственная линия для изготовления экструдированного пенополистирола Пеноплекс появилась в далеком 1998 году.

Благодаря строгому контролю качества и применению передовых технологий, эта компания занимает на сегодняшний день лидирующие позиции по производству теплоизоляционных материалов на отечественном рынке.

Производство Пеноплекса осуществляется на современном высокотехнологичном оборудовании

Напомню, что экструзионный пенополистирол — это, можно сказать, модифицированный вариант обычного пенополистирола (пенопласта). В результате особой технологии изготовления, характеристики и эксплуатационные качества у экструдированного пенополистирола значительно выше, чем у обычного пенопласта.

Свойства

Как и любой другой утеплитель, пеноплекс имеет свои достоинства и недостатки, с которыми ознакомимся ниже.

Так выглядит структура пеноплекса в увеличенном виде

Плюсы:

  • Прочность. Имеет однородную мелкоячеистую структуру. Благодаря этому он не крошится как пенопласт, а также имеет гораздо большую прочность на сжатие.
    Поэтому данный утеплитель может выдерживать большие нагрузки. К примеру, его можно укладывать под стяжку или использовать для утепления фундамента;

Благодаря высокой прочности Пеноплекс можно укладывать под стяжку

  • Эффективность. Теплопроводность так же выше, чем у пенопласта;
  • Долговечность. Материал даже в неблагоприятных условиях может прослужить более полувека;
  • Устойчивость к влаге. Утеплитель имеет практически нулевое влагопоглощение, поэтому не нуждается в гидроизоляции;
  • Пожаробезопасность. В составе материала имеются антипирены. Поэтому Пеноплекс — это негорючий пенополистирол.
    Надо сказать, что данное качество также выгодно отличает материал от обычного пенопласта. Дело в том, что негорючий пенопласт встречается очень редко;

Утеплитель не впитывает влагу

  • Экологичность. Материал не выделяет в атмосферу вредных веществ;
  • Устойчивость к химическим веществам. Экструдированный пенополистирол не вступает в реакцию с большинством видов химических веществ. Это позволяет использовать утеплитель в грунте для утепления фундаментов и отмосток.

Органические растворители растворяют экструзионный пенополистирол. Это необходимо учитывать при выборе клеящих составов или красок для данного материала.

Минусы:

  • Низкая паропроницаемость. Утепленное экструзионным пенополистиролом жилье перестает дышать;
  • Высокая стоимость. Плиты Пеноплекса стоят значительно дороже пенопласта.

Сравнение теплопроводности пеноплекса с другими материалами

Основные параметры

Технические характеристики материала:

ПараметрыЗначения
Коэффициент теплопроводности плит, Вт/м·ºК0,03
Плотность, кг/м³25-47
Прочность на сжатие при 10% деформации, МПа0,20-0,50
Водопоглощение в течение 28 суток, % от объема0,5
Огнестойкость плитГ3-Г4
Размеры, мм600х1200
Толщина плит, мм20-100

Как вы видите, характеристики пеноплекса достаточно высокие.

Стандартные размеры листа утеплителя

Виды и предназначение

Итак, со свойствами и цифрами Пеноплекса мы разобрались. Теперь давайте рассмотрим где он используется. Область применения у этого материала очень обширна.

Утеплитель можно использовать для утепления фундамента

В настоящее время компания предлагает следующие марки Пеноплекса:

  • Фундамент. Особенность этих плит заключается в высокой прочности на сжатие, что позволяет им выдерживать большие нагрузки. В частности, они отлично подходят для утепления фундамента или для укладки под стяжку.
    Имейте в виду, что утеплитель пеноплекс этой серии не содержит в составе антипирен. Поэтому его можно использовать лишь в конструкциях с защитным слоем;
  • Кровля. Эта серия обладает низкой теплопроводностью и высокой прочностью. Кроме того, кромки плит имеют г-образную форму, что позволяет легко укладывать плиты своими руками, и при этом создавать сплошной теплоизоляционный слой без мостиков холода.
    Надо сказать, что производитель позиционирует материал, как утеплитель для плоской кровли, однако, его можно применять и для утепления других конструкций;

Серия Кровля предназначена для утепления плоских крыш

  • Пеноплэкс 45. Эта серия предназначена для утепления дорожного полотна, чтобы предотвратить морозное пучение.
    Кроме того, плиты используют при строительстве дорог в условиях вечной мерзлоты. Утеплитель в этом случае предотвращает подтаивание почвы и просадку дорожного полотна.
    Главная характеристика материала этой серии — это высокая прочность. Данный показатель составляет 0,50 Мпа;
  • Комфорт. Этот материал предназначен для утепления частных домов и квартир, а также балконов и лоджий. Основной упор сделан на экологичность — в составе утеплителя нет вредных химических веществ.

Пеноплекс комфорт — универсальный утеплитель для внутреннего применения

Кроме того, пеноплекс комфорт имеет г-образные кромки, такие же, как у серии Кровля;

  • Скатная кровля. Название этой серии говорит само за себя — она предназначена для скатных крыш. Эти плиты отличаются невысокой плотностью, но при этом они сохраняют жесткость и влагостойкость. Благодаря наличию шипов и пазов на кромках, они надежно состыковываются друг с другом и образуют сплошной слой.
    Если монтировать плиты снаружи, как показано на фото, то они также обеспечивают дополнительную защиту от влаги.

Серия Скатная кровля обеспечивает надежное и эффективное утепление скатных крыш

  • Основа. Этот материал позиционируется как утеплитель для гражданско-промышленного строительства. В плане применения его можно назвать универсальным — этими плитами можно выполнять утепление стен, полов, перекрытий, крыш и т.д.
    Утеплитель способен выдерживать большие нагрузки, при этом он экологичный и легкий;
  • Фасад. Данная серия предназначена для утепления наружных стен. Однако, эти плиты так же могут применяться для утепления внутренних стен и перегородок.
    Благодаря фактурной поверхности, плиты можно использовать не только для навесных, но и мокрых фасадов, т.е. их поверхность можно покрывать штукатурно-клеевыми смесями. Кроме того, в составе материала имеются антипирены;

Серия Фасад подходит для утепления наружных стен как по технологии навесной фасад, так и по технологии мокрый фасад

  • Уклон. Эти плиты предназначены исключительно для создания уклона и контруклона на плоских крышах, так как одна их сторона толще другой;
  • Стена. Данная серия мало чем отличаются от серии Фасад, за исключением меньшей плотности. Соответственно, пеноплекс стена применяется в тех же случаях, что и фасадный материал. Кроме того, производитель рекомендует этот утеплитель для трехслойных стен из мелкоштучных материалов.

Пеноплекс Стена можно использовать для внутреннего утепления стен

Несмотря на то, что серия Фасад имеет фактуру, перед оштукатуриванием крайне желательно обработать поверхность плит адгезионной грунтовкой. Причем, инструкция по применению грунтовки требует ее нанесения в 2 слоя, что позволяет добиться наибольшего эффекта, т.е. хорошей адгезии штукатурки с утеплителем.

Стоимость

Цены таблице актуальны весной 2017 г.:

МаркаЦена в рублях за упаковку
Фундамент (толщина 50 мм, 8 шт.)1400
Кровля (80 мм, 5 шт.)1420
Комфорт, (40 мм 10 шт.)1200
Основа, (50 мм, 8 шт.)1665
Фасад, (50 мм, 8 шт.)1350
Стена, (50 мм, 8 шт.)1 350

Вот и вся информация о Пеноплексе, которой я хотел с вами поделиться.

 

Вывод

Мы выяснили, что представляет собой Пеноплекс, и для каких целей его можно использовать. Дополнительно рекомендую просмотреть видео в этой статье. Если какие-то моменты вам непонятны — пишите комментарии, и я с радостью вам отвечу.

Пеноплекс “Основа” характеристики и сравнение утеплителя

Пеноплекс Основа — это плиты пенополистирола, полученные с применением технологии экструзии. Она заключается в продавливании вспененной расплавленной массы через формовочные сопла. В результате под воздействием температуры и высокого давления материал обретает мелкопористую структуру с небольшими изолированными друг от друга воздушными ячейками.

Стандартная ширина листа пеноплекса Основа составляет 600 мм, а длина — 1200 мм. Толщина листа может быть 20, 30, 40, 50, 60, 80, 100, 120 или 150 мм.

Технические характеристики пеноплекса Основа

Основные технические характеристики пеноплекса Основа:

  • Коэффициент теплопроводности составляет 0,030 Вт/(м*С), согласно Госту 7076−99.
  • Коэффициент паропроницаемости варьируется от 0,007 до 0,008 мг/(м*час*Па).
  • Звукопоглощение Пеноплекса Основа составляет 41 дБ.
  • Коэффициент влагопоглощения — 0,5−0,6%.
  • Плотность пеноплекса составляет от 28 до 35 кг/ м³.
  • Предел прочности на сжатие — 0,20 Мпа.
  • Температурный диапазон эксплуатации от — 100 до +75 °С.
  • Категория огнестойкости — группа Г4.
Таблица 1. Сравнение характеристик различных материалов, используемых для утепления
ПараметрыПеноплекс ОсноваЭППСПенопластППС
Коэффициент теплопроводности, Вт/(м*С)0,0300,039−0,0340,033−0,0500,032−0,044
Коэффициент паропроницаемости, мг/(м*час*Па)0,007−0,0080,010,05−0,230
Плотность, кг/ м³28−3525−3815−3511−35
Влагопоглощение, %0,5−0,60,042−44
Звукопоглощениехорошеехорошеехорошеехорошее

Из таблицы видно, что пеноплекс Основа не только не уступает другим утеплителям пенополистирольной группы, но и по некоторым показателям даже превосходит их. Материал обладает одним из самых низких коэффициентов влагопоглощения и хорошо удерживает тепло.

Достоинства и недостатки

Преимущества утеплителя:

  • Хорошие теплоизоляционные свойства.
  • Низкая паропроницаемость.
  • Практически нулевое водопоглощение согласно Госту 15 588−86. Материал не впитывает влагу и испарения, поэтому может применяться для утепления бань и саун.
  • Высокая прочность. Пеноплекс выдерживает значительные нагрузки на разрыв и сжатие.
  • Хорошая звукоизоляция.
  • Срок службы материала — до 50 лет, в течение которых утеплитель сохраняет все свои свойства и начальную форму.
  • Даже при длительном сроке эксплуатации материал сохраняет свою химическую структуру и не разлагается на ядовитые компоненты, тем самым не нанося вреда человеку и окружающей среде.
  • Биологическая стойкость. Пеноплекс Основа не подвержен гниению и плесени.
  • Простота резки и монтажа. Материал неплохо режется малярным ножом и не потребует применения специальных инструментов для работы с листами.
  • Утеплять жилище пеноплексом Основа можно при любой температуре дома или на улице.
  • Небольшой вес материала.

Недостатки пеноплекса Основа:

  • Ненатуральное происхождение.
  • Высокая стоимость.
  • Сильная дымность.

Технология утепления

Пеноплекс Основа отлично подходит для утепления как полов так и стен.

Утепление деревянного пола с лагами

Во-первых, заменяются все поврежденные участки на досках и лагах. Далее все деревянные поверхности пропитываются антисептическими средствами для предотвращения гниения. Выемки и щели, обнаруженные на досках, нужно заполнить специальной шпаклевкой по дереву.

Далее все поверхности из дерева проходят грунтовкой. После просыхания грунтовки начинается укладка листов утеплителя. Их режут в соответствии с расстоянием между лагами и длиной помещения и кладут на доски.

Стыки между плитами пеноплекса должны оставаться максимально плотными, дополнительно их фиксируют строительным скотчем. Далее на плиты пеноплекса внахлест укладывают листы пароизоляционного материала. На слой пароизоляции крепятся доски, фанера или ДСП. Заключительным этапом является монтаж напольного покрытия (линолеум, ламинат, паркет).

Утепление пола при укладке на грунт

При утеплении полов в доме со свайным или ленточным фундаментом применяется метод укладки утеплительного материала на грунт. Во-первых, нужно выровнять слой земли, а затем утрамбовать его.

Далее на землю высыпают щебень и гравий. Следом насыпают песок и утрамбовывают его. На песчаную «подушку», начиная от угла, плотно прижимая, укладывают листы пеноплекса.

Для защиты от проникновения влаги на листы пеноплекса укладывают гидроизоляционную мембрану так, чтобы ее края выходили на 10−15 см вверх по стене.

Для усиления конструкции стяжку армируют металлической сеткой. Далее для стяжки применяется цементно-песочная смесь, которая заливается поверх сетки. В заключение после полного просыхания цементного слоя на него стелется линолеум или укладывается ламинат или паркет.

Утепление пола под стяжку

При применении этого способа утепления рекомендуется выбирать модификацию пеноплекса Фундамент.

Утепление стен изнутри

Пеноплекс Основа часто применяется и при утеплении внутренних стен дома. Во-первых, стены очищают от старого покрытия и наносят слой грунтовки. Далее начинают крепить листы пеноплекса к стенам.

Сначала изнаночную сторону листа пеноплекса Основа проходят игольчатым валиком, для обеспечения лучшего сцепления. Далее на лист наносят клеевой слой, лист прикладывают к поверхности стены и удерживают полминуты.

Клеить начинают с нижнего угла, затем продвигаясь вверх и в сторону. Приклеенные листы пеноплекса дополнительно фиксируются пластмассовыми дюбелями со шляпкой-зонтиком. После просыхания клея с помощью монтажной пены необходимо заполнить щели между листами.

Важно: выемки шириной более сантиметра необходимо заполнить обрезками листов пеноплекса.

На следующем этапе крепится штукатурная сетка из стеклоткани на клей или с помощью дюбелей. Далее наносится выравнивающий слой штукатурки, и далее финишный слой шпатлевки. В заключении поверхность окрашивается или на нее приклеивают обои.

Утепление наружных стен

При утеплении стен зданий и сооружений снаружи рекомендуется применять пеноплекс Фасад, в состав которого входят специальные вещества-антипирены для снижения риска возгораемости.

Разница между пеноплексом «Основа» и пеноплексом «Комфорт»?

В 2015 году завод «Пеноплэкс», более 18 лет выпускающий теплоизоляционные плиты ПЕНОПЛЭКС из экструзионного пенополистирола, начал производство новых марок Пеноплекса таких как Основа, Фасад и прочие.

Чем же отличаются модификации Основа и Комфорт?

Основные технические характеристики, такие как теплопроводность, паропроницаемость и водопоглощение у Пеноплекс Комфорт и Основы одинаковые.

Различные значения имеет только показатель прочность на сжатие. У пеноплекс Комфорт этот показатель составляет 0,18 МПа, а у Основы — 0,20 Мпа. Это означает, что пеноплекс Основа способен выдержать больше нагрузки, и соответственно является более жёстким.

Обусловлено это тем, что пеноплекс Комфорт изначально предполагался только для продаж в розницу, а модификация Основа предназначена для профессионального строительства.

В заключение можно сказать, что пеноплекс Основа — это уникальный и эффективный материал для утепления, подходящий для большинства поверхностей. Свою популярность он приобрел за счет высокого качества и отличных теплоизоляционных свойств.

Видео: просто рекламный ролик торговой марки Пеноплекс 🙂

Показатели теплопроводности экструдированного и обычного пенополистирола

Климат в России очень холодный, поэтому практически любой дом, построенный за городом, приходится утеплять. Для этого можно использовать самые разные материалы. Одним из наиболее популярных является пенополистирол. Монтируется этот утеплитель элементарно. Коэффициент же теплопроводности у него ниже, чем у любого другого современного изолятора.

Что представляет собой пенополистирол

Изготавливается этот материал примерно по тому же принципу, что и любые другие вспененные утеплители. Сначала в специальную установку наливается жидкий стирол. После добавления в него особого реагента происходит реакция с выделением большого количества пены. Готовая вспененная густая масса до застывания пропускается через формовочный аппарат. В результате получаются листы материала с огромным количеством мелких воздушных камер внутри.

Такая структура плит и объясняет высокие изоляционные качества пенополистирола. Ведь воздух, как известно, тепло сохраняет очень хорошо. Существуют виды пенополистирола, в ячейках которых содержатся и другие газы. Однако самыми эффективными изоляторами все же считаются плиты именно с воздушными камерами.

Входящие в структуру пенополистирола ячейки могут иметь размер от 2 до 8 мм. На их стенки при этом приходится примерно 2% массы материала. Таким образом, пенополистирол на 98% состоит из воздуха.

Что такое теплопроводность

Узнать, насколько хорошо тот или иной материал способен сохранять тепло, можно по коэффициенту его теплопроводности. Определяют этот показатель очень просто. Берут кусок материала площадью в 1 м2 и толщиной в метр. Одну из его сторон нагревают, а противоположную ей оставляют холодной. При этом разница температур должна быть десятикратной. Далее смотрят какое количество тепла достигнет холодной стороны за один час. Измеряют теплопроводность в ваттах, разделенных на произведения метра и градуса (Вт/мК). При покупке пенополистирола для обшивки дома, лоджии или балкона обязательно следует посмотреть на этот показатель.

От чего зависит теплопроводность

Способность пенополистирольных плит сохранять тепло зависит в основном от двух факторов: плотности и толщины. Первый показатель определяется по количеству и размеру воздушных камер, составляющих структуру материала. Чем плотнее плита, тем больший коэффициент теплопроводности у нее будет.

Зависимость от плотности

В таблице ниже можно посмотреть каким именно образом теплопроводность пенополистирола зависит от его плотности.

Плотность (кг/м3)Теплопроводность (Вт/мК)
100.044
150.038
200.035
250.034
300.033
350.032

Представленная выше справочная информация, однако, скорее всего, может пригодиться только владельцам домов, использовавшим пенополистирол для утепления стен, пола или потолка довольно-таки давно. Дело в том, что при изготовлении современных марок этого материала производители используют специальные графитовые добавки, в результате чего зависимость теплопроводности от плотности плит сводится практически на нет. В этом можно убедиться, взглянув на показатели в таблице:

МаркаТеплопроводность (Вт/мК)
EPS 500. 031-0.032
EPS 700.033-0.032
EPS 800.031
EPS 1000.03-0.033
EPS 1200.031
EPS 1500.03-0.031
EPS 2000.031

Зависимость от толщины

Разумеется, чем толще материал, тем лучше он сохраняет тепло. У современного пенополистирола толщина может колебаться в пределах 10-200 мм. По этому показателю его принято классифицировать на три больших группы:

  1. Плиты до 30 мм. Этот тонкий материал обычно используется при утеплении перегородок и внутренних стен зданий. Коэффициент его теплопроводности не превышает 0.035 Вт/мК.
  2. Материал толщиной до 100 мм. Пенополистирол этой группы может применяться для обшивки как внешних, так и для внутренних стен. Тепло такие плиты сохраняют очень хорошо и с успехом используются даже в регионах страны с суровым климатом. К примеру, материал толщиной 50 мм имеет теплопроводность в 0. 031-0.032 Вт/Мк.
  3. Пенополистирол толщиной более 100 мм. Такие габаритные плиты чаще всего используются для изготовления опалубок при заливке фундаментов на Крайнем Севере. Теплопроводность их не превышает 0.031 Вт/мК.

Расчет необходимой толщины материала

Точно вычислить толщину необходимого для утепления дома пенополистирола довольно-таки сложно. Дело в том, что при выполнении этой операции следует учитывать массу самых разных факторов. К примеру, таких, как теплопроводность материала, выбранного для сооружения утепляемых конструкций и его разновидность, климат местности, тип облицовки и пр. Однако примерно рассчитать необходимую толщину плит все-таки можно. Для этого понадобятся следующие справочные данные:

  • показатель требуемого теплосопротивления ограждающих конструкций для данного конкретного региона;
  • коэффициент теплопроводности выбранной марки утеплителя.

Собственно сам расчет производится по формуле R=p/k, где p — толщина пенопласта, R — показатель теплосопротивления, k — коэффициент теплопроводности. К примеру, для Урала показатель R равен 3,3 м2•°C/Вт. Допустим, для утепления стен выбран материал марки EPS 70 с коэффициентом теплопроводности 0.033 Вт/мК. В этом случае расчет будет выглядеть следующим образом:

  • 3.3=p/0.033;
  • p=3.3*0.033=100.

То есть толщина утеплителя для наружных ограждающих конструкций на Урале должна составлять минимум 100 мм. Обычно владельцы домов холодных регионов обшивают стены, потолки и полы двумя слоями пенополистирола на 50 мм. При этом плиты верхнего слоя располагают таким образом, чтобы они перекрывали швы нижнего. Таким образом можно получить максимально эффективное утепление.

Экструдированный пенополистирол

Обычный утеплитель этого типа маркируется буквами EPS. Вторая разновидность материала — экструдированный пенополистирол обозначается буквами XPS. Отличаются такие плиты от обычных, прежде всего, структурой ячейки. Он у них не открытая, а закрытая. Поэтому экструдированный пенополистирол гораздо меньше простого набирает влагу. То есть способен сохранять свои теплоизоляционные качества в полной мере даже под воздействием самых неблагоприятных факторов внешней среды. Коэффициент теплопроводности экструдированного пенополистирола в зависимости от марки может составлять 0.027-0.033 Вт/мК.

Сравнение утеплителей

Таким образом, экструдированный и обычный пенополистирол считаются у владельцев загородных участков едва ли не самыми лучшими видами утеплителя. Ниже представляем вашему вниманию таблицу с коэффициентами теплопроводности других видов изоляторов.

МатериалКоэффициент теплопроводности (Вт/мК)
Минеральная вата0.045-0.07
Стекловата0.033-0.05
Керамзит0.16
Керамзитобетон0.31
Пенополиуретан0.02-0.041

Как видите, лучше пенополистирола, коэффициент теплопроводности которого составляет 0. 031-0.033 Вт/мК, стены, потолки и полы можно утеплить только пенополиуретаном. Однако последний стоит очень дорого. К тому же при его нанесении используется специальное конструктивно сложное оборудование. А следовательно, наилучшим вариантом изолятора в плане способности сохранять тепло на данный момент является все же именно пенополистирол.

Оцените статью: Поделитесь с друзьями!

Воздух – теплопроводность

Теплопроводность – это свойство материала, которое описывает способность проводить тепло . Теплопроводность может быть определена как

количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади, из-за градиента единичной температуры в условиях устойчивого состояния”.

Наиболее распространенными единицами измерения теплопроводности являются Вт / (м · К) в системе СИ и британские тепловые единицы / (ч фут ° F) в британской системе мер.

Табличные значения и преобразование единиц теплопроводности приведены под рисунками.

Онлайн-калькулятор теплопроводности воздуха

Калькулятор, представленный ниже, можно использовать для расчета теплопроводности воздуха при заданных температуре и давлении.
Выходная проводимость выражается в мВт / (м · K), британских тепловых единицах (IT) / (ч фут · ° F) и ккал (IT) / (ч · м · K).

См. Также другие свойства Air при меняющейся температуре и давлении: Плотность и удельный вес при переменной температуре, Плотность при переменном давлении, Коэффициенты диффузии газов в воздухе, Число Прандтля, Удельная теплоемкость при различной температуре и Удельная теплоемкость при переменное давление, температуропроводность, свойства в условиях равновесия газ-жидкость и теплофизические свойства воздуха при стандартных условиях, а также состав и молекулярная масса,
, а также теплопроводность аммиака, бутана, диоксида углерода, этана, этилена, водорода, метана , азот, пропан и вода.

См. Также Калькулятор теплопроводности

Вернуться к началу

Вернуться к началу


Вернуться к началу

Теплопроводность воздуха при атмосферном давлении и температурах в ° C:

71,35
Температура Теплопроводность
[° C] [мВт / м K] [ккал (IT) / (hm K)] [BTU (IT) / (ч фут ° F)]
-190 7.82 0,00672 0,00452
-150 11,69 0,01005 0,00675
-100 16,20 0,01393 0,00936
-75 18,34 0,01060
-50 20,41 0,01755 0,01179
-25 22,41 0. 01927 0,01295
-15 23,20 0,01995 0,01340
-10 23,59 0,02028 0,01363
-5 23,97 0,0201361
0 24,36 0,02094 0,01407
5 24,74 0,02127 0,01429
10 25.12 0,02160 0,01451
15 25,50 0,02192 0,01473
20 25,87 0,02225 0,01495
25 26,24 9007 0,02
30 26,62 0,02289 0,01538
40 27,35 0,02352 0.01580
50 28,08 0,02415 0,01623
60 28,80 0,02477 0,01664
80 30,23 0,02599 0,01746 10052 0,02548 0,01746 31,62 0,02719 0,01827
125 33,33 0,02866 0,01926
150 35. 00 0,03010 0,02022
175 36,64 0,03151 0,02117
200 38,25 0,03289 0,02210
225 39,83 0,01
300 44,41 0,03819 0,02566
412 50,92 0,04378 0.02942
500 55,79 0,04797 0,03224
600 61,14 0,05257 0,03533
700 66,32 0,05702 0,03832 0,05702 0,03832
0,06135 0,04122
900 76,26 0,06557 0,04406
1000 81.08 0,06971 0,04685
1100 85,83 0,07380 0,04959

Наверх
Теплопроводность воздуха при атмосферном давлении и температурах в ° F:

40 0,01911
Температура Теплопроводность
[° F] [британских тепловых единиц (IT) / (час футов ° F)] [ккал (IT) / (hm K)] [мВт / м · К]
-300 0. 00484 0,00720 8,37
-200 0,00788 0,01172 13,63
-100 0,01068 0,01589 18,48
-50 0,0170086 20,77
-20 0,01277 0,01901 22,10
0 0,01328 0.01976 22,98
10 0,01353 0,02013 23,41
20 0,01378 0,02050 23,84
30 0,01402 0,0208749
0,01427 0,02123 24,70
50 0,01451 0,02160 25,12
60 0.01476 0,02196 25,54
70 0,01500 0,02232 25,95
80 0,01524 0,02267 26,37
100 0,01571
100 0,01571
120 0,01618 0,02408 28,00
140 0,01664 0,02477 28. 80
160 0,01710 0,02545 29,60
180 0,01755 0,02612 30,38
200 0,01800 0,02679 31,16
0,02679 31,16 0,02843 33,07
300 0,02018 0,03003 34,93
350 0.02123 0,03160 36,75
400 0,02226 0,03313 38,53
450 0,02327 0,03463 40,28
500 0,02426
500 0,02426
600 0,02620 0,03898 45,34
700 0,02807 0.04177 48,58
800 0,02990 0,04449 51,74
1000 0,03342 0,04973 57,84
1200 0,03680 0,054,69 1400 0,04007 0,05963 69,35
1600 0,04325 0,06436 74. 85
1800 0,04635 0,06898 80,23
2000 0,04941 0,07353 85,51

Преобразование единиц теплопроводности:

тепловая единица (международная) / (фут-час, градус Фаренгейта) [Btu (IT) / (ft h ° F], британская тепловая единица (международная) / (дюйм-час, градус Фаренгейта) [Btu (IT) / (в h ° F]) , британская тепловая единица (международная) * дюйм / (квадратный фут * час * градус Фаренгейта) [(британские тепловые единицы (IT) дюйм) / (фут² час ° F)], килокалория / (метр час градус Цельсия) [ккал / (mh ° C)], джоуль / (сантиметр второй градус кельвина) [Дж / (см · с · K)], ватт / (метр градус кельвина) [Вт / (м ° C)],

  • 1 британская тепловая единица (IT) / (фут ч ° F) = 1/12 Btu (IT) / (в ч ° F) = 0.08333 британских тепловых единиц (IT) / (в ч ° F) = 12 Btu (IT) в / (фут 2 ч ° F) = 1,488 ккал / (мч ° C) = 0,01731 Дж / (см · с · K) = 1,731 Вт / (м · К)
  • 1 британская тепловая единица (IT) / (в час · ° F) = 12 британских тепловых единиц (IT) / (фут · час · ° F) = 144 британских тепловых единицы (IT) · дюйм / (фут 2 час · ° F) = 17,858 ккал / (м · ч ° C) = 0,20769 Дж / (см · с · K) = 20,769 Вт / (м · K)
  • 1 (британских тепловых единиц (IT) дюйм) / (фут² час ° F) = 0,08333 британских тепловых единиц (IT) / ( фут ч ° F) = 0,00694 британских тепловых единиц (IT) / (в час ° F) = 0,12401 ккал / (мч ° C) = 0,001442 Дж / (см · с · K) = 0,1442 Вт / (м · K)
  • 1 Дж / ( см · с · K) = 100 Вт / (м · K) = 57,789 БТЕ (IT) / (фут · ч · ° F) = 4. 8149 БТЕ (IT) / (в час ° F) = 693,35 (БТЕ (IT) дюйм) / (фут² час ° F) = 85,984 ккал / (мч ° C)
  • 1 ккал / (мч ° C) = 0,6720 БТЕ (IT) / (фут · ч ° F) = 0,05600 Btu (IT) / (в час · ° F) = 8,0636 (Btu (IT) дюйм) / (фут 2 час · ° F) = 0,01163 Дж / (см · с · K ) = 1,163 Вт / (м · К)
  • 1 Вт / (м · К) = 0,01 Дж / (см · с · К) = 0,5779 БТЕ (IT) / (фут · ч · ° F) = 0,04815 БТЕ (IT) / (дюйм · ч ° F) = 6,9335 (британских тепловых единиц (IT) дюйм) / (фут² ч ° F) = 0,85984 ккал / (мч ° C)

В начало

Вода – теплопроводность

Теплопроводность – это свойство материала который описывает способность проводить тепло.Теплопроводность может быть определена как

“количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади, за счет градиента единичной температуры в условиях устойчивого состояния”

Теплопроводность конвертер величин

Теплопроводность воды зависит от температуры и давления, как показано на рисунках и таблицах ниже:

См. также другие свойства Вода при различных температуре и давлении : Точки кипения при высоком давлении, Точки кипения при вакуумном давлении, Плотность и удельный вес, Динамическая и кинематическая вязкость, Энтальпия и энтропия, Теплота испарения, Константа ионизации, pK w , нормальной и тяжелой воды, Точки плавления при высоком давлении, Число Прандтля, Свойства газа -Условия жидкого равновесия, давление насыщения, удельный вес, удельная теплоемкость (теплоемкость), удельный объем, тер коэффициент диффузии и давление пара при равновесии газ-жидкость и теплофизические свойства при стандартных условиях ,
, а также теплопроводность
воздуха, аммиака, бутана, диоксида углерода, этилена, водорода, метана, азота и пропана.Информацию о теплопроводности строительных материалов см. В соответствующих документах внизу страницы.


Вернуться к началу

Теплопроводность воды при заданных температурах (° C) и 1 бар абс . :

304

304

90 48,98
Состояние
воды
Температура Теплопроводность
[° C] [мВт / м K] [ккал (IT) / (hm K)] [BTU (IT) / (h ft ° F)]
Жидкость 0.01 555,75 0,4779 0,3211
10 578,64 0,4975 0,3343
20 598,03 0,5142 0,3455
0,3455
0,3551
40 628,56 0,5405 0,3632
50 640,60 0.5508 0,3701
60 650,91 0,5597 0,3761
70 659,69 0,5672 0,3812
80 667,02 0,57354
672,88 0,5786 0,3888
99,6 677,03 0,5821 0,3912
Газ 100 24. 57 0,0211 0,0142
125 26,66 0,0229 0,0154
150 28,83 0,0248 0,0167
175 31,09 0,02
200 33,43 0,0287 0,0193
225 35,85 0,0308 0.0207
250 38,34 0,0330 0,0222
275 40,91 0,0352 0,0236
300 43,53 0,0374 0,02549 0,0421 0,0283
400 54,65 0,0470 0,0316
450 60.52 0,0520 0,0350
500 66,58 0,0573 0,0385
550 72,81 0,0626 0,0421
600 79,17 0,09
700 92,28 0,0794 0,0533
800 105,81 0,0910 0. 0611
900 119,67 0,1029 0,0691

Вернуться к началу
Теплопроводность воды при заданных температурах (° F) и 14,5 psia:

Состояние воды Температура Теплопроводность
[° F] [BTU (IT) / (h ft ° F)] [BTu (IT) дюйм / (час фут) 2 ° F)] [мВт / м · K] [x 10 -3
кал (IT) / (с · см 2 K)]
Жидкость 32 0.3211 3,853 555,73 1,327
40 0,3273 3,927 566,39 1,353
60 0,3408 4,089 589. 80 1,409
0,3520 4,225 609,30 1,455
100 0,3615 4,338 625,62 1.494
120 0,3694 4,433 639,35 1,527
140 0,3761 4,513 650,91 1,555
160 1,578
180 0,3862 4,635 668,45 1,597
200 0.3897 4,677 674,49 1,611
211,3 0,3912 4,694 677,03 1,617
Газ 212 0,0142 0,059
250 0,0152 0,183 26,33 0,063
300 0. 0166 0,199 28,73 0,069
350 0,0181 0,217 31,25 0,075
400 0,0196 0,235 33,86 0,081 0,235 33,86 0,081
0,0211 0,254 36,56 0,087
550 0,0244 0,293 42,24 0.101
600 0,0261 0,313 45,20 0,108
650 0,0279 0,334 48,24 0,115
700 51 0,0297 0,356 0,123
750 0,0315 0,378 54,52 0,130
800 0.0334 0,400 57,76 0,138
900 0,0372 0,447 64,41 0,154
1000 0,0412 0,494 71,27 0,170 0,494
71,27 0,170
0,0453 0,543 78,32 0,187
1200 0,0494 0,593 85,53 0. 204
1400 0,0580 0,696 100,35 0,240
1600 0,0668 0,802 115,63 0,276

Конвертер единиц теплопроводности 9000 top7 9000 top7

Электропроводность, температурный градиент и теплопроводность | Примечания, видео, контроль качества и тесты | 11 класс> Физика> Теплообмен

Электропроводность, температурный градиент и теплопроводность
Введение

Теплопередача от одной точки к другой из-за разницы температур между ними.Три механизма передачи тепла – это кондуктивная конвекция и излучение.

Проводимость

Когда тепло передается через среду, но без фактического движения переноса частиц в среде, этот процесс называется теплопроводностью.

Когда мы нагреваем твердое тело, нагретые частицы колеблются в своем среднем положении, и их кинетическая энергия увеличивается. Таким образом, они передают свою кинетическую энергию соседним частицам, а тепловая энергия может передаваться из одной точки в другое через твердое тело.

Применение проводимости

  1. Зимой железные стулья кажутся холоднее деревянных из-за проводимости.
  2. Из-за теплопроводности лед упаковывается в опилки
  3. Шерстяная одежда теплая, потому что в ней есть мелкие поры, заполненные воздухом, который препятствует передаче тепла от тела к окружающей среде.
  4. Эскимосы делают дом с двойными стенками из глыб льда, чтобы предотвратить передачу тепла от дома в слишком холодную среду.
Конвекция

Когда тепло передается среде за счет фактического движения, если перенос частиц в среде, то этот процесс называется конвекцией. Возможна конвекция по жидкости и газу.

Применение конвекции

  1. Вентиляция
    Теплый воздух в помещениях движется вверх и выходит наружу от вентиляторов.
  2. Пассаты
    Конвекционный поток воздуха дует с северо-востока к экватору, который называется пассатом.

Излучение

Когда тепло передается без какой-либо материальной среды, этот процесс называется излучением. Этим процессом мы можем получать тепловую энергию от солнечной системы.

Разница между проводимостью, конвекцией и излучением
S.N Проводимость Конвекция Излучение
1. Материальная среда имеет важное значение. Материальная среда важна. Материальная среда не имеет значения.
2. Передача тепла может происходить в любом направлении. Передача тепла возможна только вертикально вверх. Передача тепла происходит во всех направлениях по прямой.
3. Передача тепла происходит с медленной скоростью. Передача тепла происходит с меньшей скоростью, чем излучение, и с большей скоростью теплопроводности. Передача тепла происходит с максимальной скоростью.(со скоростью света.)
4. Молекулы не покидают своих средних положений. Молекулы перемещаются из одного места в другое. Электромагнитные волны перемещаются из одного места в другое.
Температурный градиент

Предположим, что металлический стержень AB длиной L, концы которого находятся в тепловом контакте с горячим резервуаром при температуре \ (\ theta _1 \) и холодным резервуаром при температуре \ (\ theta _2 \). Стороны стержня изолированы, чтобы предотвратить передачу тепла за пределы AB.Когда достигается установившееся состояние, температура измеряется по длине и строится график.

(a) Состояние тепла через металлический стержень между резервуаром тепла и холода. (b) Температура изменяется в зависимости от расстояния вдоль изолированного стержня. (c) Температура не изменяется линейно на 0 бар.

Скорость падения температуры с расстоянием в направлении теплового потока называется градиентом температуры. Температурный градиент стержня равномерный.

$$ \ поэтому \ text {Температурный градиент} = \ frac {\ theta _1 – \ theta _2} {L} $$

Между любыми двумя точками Cand D, на расстоянии x,

$$ \ text { Температурный градиент} = \ frac {\ theta _C – \ theta _D} {L} $$

Если стороны стержня не изолированы, тепло течет с этих сторон также в окружающую среду, и тепло, передаваемое за секунду от C и D, равно меньше, чем на конце A. В этом случае график между температурой и длиной представляет собой кривую, как на рисунке, и градиент температуры вдоль полосы не является постоянным.

Отвод тепла через участок металла бар.
Теплопроводность

Рассмотрим передачу тепла через тело, имеющее две параллельные грани, разделенные определенным расстоянием «d» и имеющее площадь, если поперечное сечение пространства «A». Если \ (\ theta _1 ‘\ text {и} \ theta_2’ \) – это температура двух лиц, такая что \ (\ theta _1 ‘> \ theta_2’ \). Тогда количество тепла Q, передаваемого от одной поверхности к другой, зависит от следующих факторов:

  1. Теплопередача прямо пропорциональна разнице температур двух поверхностей.т.е.
    $$ Q \ propto (\ theta_1 – \ theta_2) \ dots (i) $$
  2. Теплопередача прямо пропорциональна площади, если поперечное сечение каждой грани, т.е.
    $$ Q \ propto A \ dots (ii ) $$
  3. Теплопередача прямо пропорциональна времени, необходимому для передачи тепла от одной поверхности к другой. т.е.
    $$ Q \ propto t \ dots (iii) $$
  4. Теплопередача прямо пропорциональна расстоянию между двумя гранями. т.е.
    $$ Q \ propto \ frac {1} {d} \ dots (iv) $$

Путем объединения уравнений (i), (ii), (iii) и (iv)

$$ Q \ propto A (\ theta_1 – \ theta_2) \ frac {t} {d} $$

$$ \ поэтому Q = \ frac {KA (\ theta_1 – \ theta_2) t} {d} $$

где K – постоянная и известен как теплопроводность вещества.2, d = 2 м, \ theta_1 – \ theta_2 = 1 K \ text {и} t = 1 сек $$

Тогда \ (\ theta = K \)

Следовательно, теплопроводность вещества может быть определяется как количество тепла, передаваемого через поверхность, имеющую площадь поперечного сечения 1 м 2 для каждой, разделенных расстоянием 1 м и разницей в температуре 1 К между ними за 1 секунду.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *