Компрессор роторный воздушный – устройство, характеристики, принцип работы, типы

Содержание

устройство, характеристики, принцип работы, типы

Для нагнетания воздуха в различных системах проводится установка роторных компрессоров. Существует довольно большое количество разновидностей подобного оборудования, распространены роторные модели, к которым также относятся винтовые конструкции. Принцип работы подобного устройства был разработан более 120 лет назад. Изначально они не применялись активно, так как были дорогими в производстве и не могли прослужить в течение длительного периода. Усовершенствование технологии производства определило распространение подобных конструкций. Роторные модели устанавливаются в случае, когда нужно обеспечить высокую производительность системы. Отличительными особенностями можно назвать отсутствие гула и вибрации на момент эксплуатации. Рассмотрим особенности подобного оборудования подробнее.

Принцип работы шестеренчатого компрессора

Винтовой блок является важным элементом конструкции роторного компрессора. Срок службы подобного элемента составляет примерно 15-20 лет. Стоит учитывать, что ротор компрессора имеет особую форму, за счет которой и обеспечиваются определенные эксплуатационные характеристики.

Принцип работы устройства определяет то, что на момент подачи воздуха не возникает вибрации или сильного шума. Основная часть компрессора роторного типа не имеет элементов, которые работают путем возвратно-поступательного движения. Поэтому конструкция может устанавливаться в непосредственном месте эксплуатации.

Принцип действия характеризуется следующими особенностями:

  1. В качестве основы конструкции применяется корпус.
  2. Внутри механизма расположены две шестерни, которые находятся в зацеплении.
  3. У механизма есть подводящий и выводящий патрубок.

Относится к ротационным компрессорам устройства, которые имеют шестерни, находящиеся в зацеплении. Стоит учитывать, что для существенного износа основных частей проводится добавление смазывающего вещества. Кроме этого, есть модели, которые также работают без смазки.

Общее описание роторных компрессоров

Основное предназначение заключается в создании давления, которое будет выше атмосферного. Рассматриваемый тип механизма относится к оборудованию объемного типа.

Название роторный компрессор получил из-за особенности формы основных вращающихся элементов. Высокая потребность в них определяет то, что появилось просто огромное количество компактных моделей, которые характеризуются высокой эффективностью в применении. Также встречается компрессор роторно-поршневой, который существенно отличается от обычного варианта исполнения.

В рассматриваемую группу устройств входят следующие механизмы:

  1. Кулачковые.
  2. Винтовые.
  3. Спиральные.
  4. Жидкостно-кольцевые.
  5. Пластинчатые.

Все разновидности подобных устройств характеризуются большим количеством особенностей, к примеру, пластинчатый компрессор роторного не имеет много различных клапанов, которые существенно снижают показатель КПД. Кроме этого, роторные варианты исполнения имеют меньший вес в сравнении с поршневыми.

В большинстве случаев компрессор роторно-лопастной представлен одинарным аппаратом с приводом. Некоторые варианты исполнения имеют промежуточный редуктор, который способен изменять передаваемое усилие.

Сегодня компрессорные установки оснащаются электрическим двигателем. В некоторых случаях проводится установка двигателей внутреннего сгорания, которые характеризуются большей производительностью.

Данный тип компрессоров встречается в самых различных случаях. Очень часто оно применяется для создания краскопульта, который требуется для равномерного нанесения специального красящего вещества на поверхность.

Роторный винтовой компрессор

Ротационный компрессор считается довольно распространенным устройством, которое применяется для сжатия воздуха и различных технологических газов. Во многом эффективность зависит от дизайна подвижных частей. Высокая надежность и другие свойства определяют то, что роторные компрессоры устанавливаются в промышленности. Давление на выходе может достигать высоких показателей, как и при всасывании.

Конструкционными особенностями рассматриваемого механизма можно назвать следующие моменты:

  1. Основные элементы представлены двумя винтовыми роторами: один вращается по часовой стрелке, второй против.
  2. Между подвижным элементом и корпусом есть небольшой зазор.
  3. Оба ротора крепятся к валу, который предназначен для непосредственной передачи вращения.
  4. Роторный компрессор оснащается впускным и выпускным клапаном.

При изготовлении основных частей могут применяться самые различные материалы, в большинстве случаев нержавеющая сталь и чугун.

Принцип работы подобного механизма достаточно прост. Он следующий:

  1. От двигателя вращение передается ведущему элементу, который за счет зацепления передает вращение ведомому.
  2. Оба элемента расположены в герметичном корпусе со впускным и отводящим отверстием.

Важным моментом назовем то, что роторные компрессоры подобного типа могут быть масляными и безмасляными. Среди их отличительных свойств следует отметить следующее:

  1. Масло существенно снижает степень износа конструкции, а также выступает в качестве охлаждения.
  2. Устройства, куда не подается масло, служат несколько меньше, однако они подают более качественную среду.

В случае, если в системе есть масло требуется специальный фильтр, который проводит отделение смазывающего вещества от основной среды. Если она будет попадать в магистраль, то существенно снижается качество лакокрасочного покрытия.

Кроме этого, выделяют довольно большое количество преимуществ у рассматриваемого механизма:

  1. Подвижные части могут работать при большой скорости.
  2. Контакта между двумя подвижными элементами практически нет. Именно поэтому износ относительно низкий даже при длительной эксплуатации устройства.
  3. Провести обслуживание можно своими руками.
  4. Относительно небольшие размеры и вес.
  5. Эксплуатационный заявленный срок составляет несколько десятков лет.
  6. Не требуется много средств для поддержания работоспособности.

Вышеприведенные достоинства определяют широкое распространение подобных видов роторного компрессора.

Они могут устанавливаться в быту или промышленности, обладать различными размерами и весом.

Роторный компрессор с кулачковыми роторами

Подобный вариант исполнения применяется в том случае, когда нужно передавать большой объем вещества за минимальный период. Среди особенностей отметим:

  1. Подвижные части не соприкасаются. Именно поэтому снижается вероятность сильного износа.
  2. Нет необходимости в добавлении масла, за счет чего существенно упрощается процесс обслуживания.
  3. Устройства с большим размером имеют электрический двигатель, который подключен напрямую к основному элементу. Меньшие варианты исполнения снабжаются клиноременной передачей.

Встречается довольно большое количество разновидностей подобного устройства. Основными элементами можно назвать:

  1. Корпус.
  2. Ротор.
  3. Распределительные шестерни.
  4. Уплотнительные прокладки.
  5. Подшипники.

Принцип действия устройства можно охарактеризовать следующим образом:

  1. Роторы не находятся в зацеплении на момент работы.
  2. Газ внутри не сжимается.
  3. Есть возможность проводить монтаж подвижных элементов на параллельных винтах.
  4. Кулачки не соприкасаются.
  5. Подшипники и распределительные части смазываются на момент работы.

Область применения подобных устройств весьма обширна. Примером можно назвать различные промышленные установки, а также оборудование для нанесения лакокрасочных материалов.

Ротационно-пластинчатый компрессор

В этом случае ротор снабжается несколькими скользящими пластинами, которые монтируются эксцентрическим методом в литом корпусе. Кроме этого, выделяют следующие особенности подобных устройств:

  1. Маслозаполненные.
  2. Эффективность механизма достигает 90%.
  3. Могут применяться для генерирования повышенного давления в магистрали.
  4. Выделяют стационарные и переносные варианты исполнения.
  5. На одной ступени может создаваться давление более 13 бар.
  6. Вращение создается при помощи двигателя.
  7. Для подключения магистрали есть фланцы.
  8. Изготовление цилиндра проводится при применении чугуна.

Высокая эффективность устройства можно связать с широким его распространением. Примером можно назвать системы охлаждения или центральной подачи вакуума.

Жидкостно-кольцевые компрессоры

Такие модели считаются универсальным устройством, у которого давление создается при помощи жидкостного кольца. Он действует по принципу поршня. В рассматриваемом случае есть только один ротор, размещенный в центральной части. В большинстве случаев при изготовлении применяется чугун, вал из углеродистой стали рассчитан на воздействие большой осевой нагрузки. Стоит учитывать, что выделяют два типа подобных приборов – одноступенчатые и многоступенчатые.

Принцип действия этого механизма характеризуется следующими особенностями:

  1. Ротор и цилиндр частично заполняются при сжимании жидкостной среды, за счет чего образуется кольцо.
  2. При непосредственном движении поршня образуется газовый карман.
  3. Сервисная жидкость в большинстве случаев представлена обычной водой бытового предназначения.

Встречаются подобные варианты исполнения не так часто, как другие. Но им свойственны следующие преимущества:

  1. Возможность эксплуатации при минусовой температуре.
  2. Надежность. Как показывает практика, механизм может прослужить в течение нескольких лет без возникновения неполадок и дефектов.
  3. Эффективный теплоотвод.
  4. Простое техническое обслуживание.
  5. Устройство может применяться для работы практически в любой среде.
  6. Между вращающимися элементами нет непосредственного контакта, за счет чего существенно снижается степень износа.

При изготовлении основных элементов применяется сталь ил чугун. Оба материала характеризуются повышенной устойчивостью к воздействию влажности или других химических веществ.

Спиральные компрессоры

Меньше всего распространены спиральные конструкции, так как они представлены объемными машинами. Внутри находятся спирали, которые вложены друг в друга, за счет которых обеспечивается создание требуемого давления.

Несмотря на то, что подобная технология получила широкое распространение, она применяется относительно недавно. Спиральные роторные компрессоры получили широкое распространение в промышленности и быту.

Среди конструктивных особенностей отметим:

  1. Корпус герметичный, часто производится путем литья или сварки. За счет этого обеспечивается высокая степень эффективности спирального нагнетателя воздуха.
  2. Есть муфта и блок спиралей.
  3. В качестве источника вращения применяется двигатель.

В большинстве случаев конструкция имеет вертикальную компоновку. Для хранения смазывающей жидкости создается специальный картер.

Основные части винтового компрессора

Роторный компрессор состоит из нескольких основных элементов, которые и обеспечивают подачу среды под большим давлением. Рассматривая конструктивные особенности отметим:

  1. Пара червячных зацепленных роторов, один из которых ведущий, второй ведомый.
  2. Корпус может изготавливаться самым различным образом, характеризуется высокой герметичностью.
  3. Объем конструкции зависит от формы ротора, а также их размеров.

В производстве встречаются самые различные профили роторов. В целом можно сказать, что от этого во многом зависят основные эксплуатационные характеристики.

В заключение отметим, что роторные компрессоры на сегодняшний день один из самых распространенных. При выборе уделяется внимание техническому состоянию, типу применяемых материалов при изготовлении, рабочему объему и многим другим моментам.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

stankiexpert.ru

Роторные компрессоры

Компрессоры используются для того, чтобы для различных газов (в том числе воздух, хладагенты, природный газ и специальные газы: аммиак, кислород, азот и др.) получить давление выше, чем нормальное атмосферное давление.

Роторные компрессоры являются компрессорам объемного типа. Объемный компрессор создает уменьшение объема газа для увеличения его давления.

Роторные компрессоры получили свое название от вращающегося рабочего элемента. Они сжимают газы при помощи кулачковых роторов, жидкости, винтов или пластин. В ответ на запросы рынка усилиями многих компаний-производителей появились на свет компактные и эффективные компрессорные машины.

К роторным компрессорам относятся компрессоров следующих типов: винтовой, кулачковый (Рутс компрессор), пластинчатый, спиральный и жидкостно-кольцевой.

За исключением различий в конструктивном исполнении, компрессоры этого типа имеют несколько общих особенностей. Наиболее важная особенность, которая отличает их от поршневых компрессоров, – отсутствие большого количества клапанов. Роторные компрессоры имеют меньший вес, чем поршневые, имеют простое конструктивное решение, могут быть с одним или несколькими роторами. Дизайн ротора отличает типы друг от друга, и также режим работы и размер являются уникальными для каждого типа компрессоров.

Роторные компрессоры часто представляют собой одинарный агрегат с приводом. Кроме того встречаются установки с последовательным расположением, в комплекте или без промежуточного редуктора.

Большинство компрессоров роторного типа комплектуют электродвигателем, однако переносные компрессоры могут комплектоваться также двигателем внутреннего сгорания.

Роторный винтовой компрессор

рис 1. Винтовой компрессор

Винтовой компрессор – это широко используемое средство для сжатия воздуха, технологических газов и хладагента. Эффективная работа винтовых компрессоров зависит в основном от правильного дизайна ротора. Данный тип компрессоров часто используется в промышленности. В последние десятилетия данный тип компрессоров стал широко популярен в газовой промышленности при работе с низким давлением и высокой производительностью. Давление на всасывании может быть очень низким, а на нагнетании достигать 400psig.

Винтовой компрессор имеет показатели, близкие к поршневым и центробежным компрессорам. Так, например, большая винтовая установка, рассчитанная на 40000 cfm – это типичная зона применения центробежных компрессоров, а небольшие установки для автомобильного кондиционирования воздуха – это типичная область применения поршневых компрессоров.

Конструктивное устройство:

Рабочий элемент компрессора – два винтовых ротора, которые вращаются по направлению друг к другу: когда левый ротор поворачивается по часовой стрелке, правый ротор вращается против часовой стрелки. Роторы и корпус разделены небольшим зазором. Оба ротора могут крепиться к валу привода, который приводит компрессор в рабочее состояние. В компрессоре есть впускное и выпускное отверстие для рабочей среды. Винтовые компрессоры могут иметь различные материальные исполнения. Термическая обработка роторов обычно не требуется.

Принцип работы

Роторный винтовой компрессор, показанный на рисунке 1, состоит из двух винтов или роторов в зацеплении, которые удерживают газ между собой и корпусом компрессора. Двигатель приводит в движение ведущий ротор, который, в свою очередь, приводит в движение ведомый ротор. Оба ротора расположены в корпусе, в котором также имеются входное и выходное отверстие. Газ поступает в компрессор через входное отверстие и заполняет пустоты между роторами. Когда роторы находятся в движении, газ сжимается роторами, тем самым уменьшая его объем. В процессе работы компрессора между роторами нет прямого контакта, что, в свою очередь означает отсутствие износа поверхности роторов, увеличение надежности всего оборудования и равномерную подачу газа.

Описание типа

Компрессоры данного типа могут быть безмасляными или маслозаполненными. В маслозаполненном компрессоре винтового типа смазка впрыскивается в газ, который задерживается внутри корпуса. В этом случае смазка также используется для охлаждения компрессора. Газ удаляется из сжимаемой газосмазывающей смеси в сепараторе. Роторные винтовые компрессоры рециркулируют смесь газа с маслом от 1 до 8 раз в минуту для охлаждения газа и последующего их разделения. Так как винтовые компрессоры используют закрытую смазочную систему, требуется небольшое количество масла. Вязкость масла подбирается в зависимости от удельной теплоемкости газа.

В компрессорах сухого типа роторы движутся без смазки (или хладагента). Тепло от сжатия удаляется из компрессора, ограничивая возможность его работы до одной ступени.

Безмаслянные винтовые компрессоры обычно используются для специальных условий. Из-за отсутствия масла не требуется много ступеней как в компрессорах маслозаполненного типа чтобы достичь такого же высокого давления. Некоторые безмаслянные компрессоры используют воду в качестве охладителя. Для масла и воздуха используются отдельные отверстия.

Большинство промышленных воздушных компрессоров винтового типа имеют двигатели мощностью от 30 до 200 лс. Эти компрессоры используют от одного до трех винтовых роторов, которые удерживают среду внутри камеры, которая уменьшается в размере для увеличения давления. Клапаны открываются при остановке для сброса внутреннего давления и делают пуск более плавным.

Промышленный роторный винтовой компрессор может работать круглосуточно 7 дней в неделю и обычно работает дольше и эффективнее, если используется именно таким образом. Если винтовой компрессор подобран правильно, он может быть одним из энергоэффективных типов компрессоров.

Обычно маслозаполненный компрессор укомплектован клапаном минимального давления, который не позволяет воздуху попасть в пневмосистему, пока не будет достигнуто минимальное давление для смазки компрессора. Масляный фильтр удаляет загрязняющие вещества в масле, и также есть второй масляный фильтр, который очищает от крупных загрязнений. На компрессор монтируют перепускной клапан для поддержания давления, когда компрессор на холостом ходу.

У безмасляного компрессора несколько другие компоненты. Обычно это две винтовые пары, воздух охлаждается в промежуточном радиаторе между ними и шестерни для обоих винтовых пар расположены в корпусе редуктора и редуктор смазывается. Масляное уплотнение и повышенное давление удерживают масло от попадания из редуктора на винты.

В роторном винтовом компрессоре смазывающее вещество впрыскивается в корпус компрессора. Вращающиеся роторы соприкасаются со смесью газов и смазывающего вещества. В дополнение к тому, что тонкая пленка смазывающего вещества предотвращает контакт металл по металлу, смазывающее вещество также несет функцию уплотнителя, предотвращая рекомпрессию газа, которая возникает, когда горячий газ под высоким давлением попадает в уплотнение между роторами и сжимается снова. Рекомпрессия может привести к тому, что температура нагнетания газа превысит расчетную, что в конечном итоге приведет к потери надежности установки. Смазывающее вещество также выступает в качестве охладителя, удаляя тепло во время процесса сжатия газа.

Основные преимущества роторных компрессоров

  • все рабочие части движутся и могут работать при больших скоростях;
  • контакта между вращающимися частями практически нет, что делает их очень надежными;
  • несложное техническое обслуживание;
  • низкие затраты на техническое обслуживание и эксплуатацию;
  • работа при низком давлении всасывания;
  • компактность и небольшой вес;
  • долгий срок службы.

Области применения:

Винтовые компрессоры обычно используют для непрерывной работы в различных промышленностях и могут быть как стационарными, так и передвижными. Их мощность может быть от 3 лс (2,2кВт) до более 1200 лс (890кВт), а давление от низкого до более 1,200 psi (8.3 MPa).

Винтовые компрессоры работают с большим количеством сред, среди которых могут быть газы, пары или мультифазные смеси с учетом, что фазы внутри машины могут меняться. Обычно, компрессоры для хладагента и технологических газов, которые работают продолжительное время, имеют высокую эффективность, в то время как для воздушных компрессоров, особенно для мобильных, эффективность может быть менее важна, чем размер и стоимость.

Винтовые компрессоры идеально подходят для большинства применений, где требуется сжатие:

  • дожатие топливного газа;
  • дожатие газа из буровой скважины;
  • улавливание паров;
  • сжатие газа из органических отходов и газа вторичной переработки;
  • сжатие коррозионных и или грязных технологических газов;
  • воздух
  • холодильное оборудование
  • и др.

Роторный компрессор с кулачковыми роторами

рис 2. Компрессор с кулачковыми роторами

Описание типа и конструктивное устройство:

Схематическая диаграмма роторного компрессора с кулачковыми роторами, представлена на рис. 2. Обычно данный тип компрессоров используется там, где требуется большой объем. Эти машины очень надежны, так как вращающиеся части не соприкасаются друг с другом, необходимость подачи масла для их смазки исключается и потребность в техническом обслуживании невелика. Подаваемый воздух 100% безмасляный. Расход компрессора в большей степени зависит от рабочей скорости.

Установки большого размера (свыше 5000cfm) имеют прямое подсоединение к своим двигателям, установки меньшего размера имеют клиноременную передачу. В качестве приводов обычно выступают электродвигатели. Также компрессоры могут поставляться с голым валом, для подсоединения к приводу Заказчика. В комплект поставки могут входить звукопоглотитель, клапаны, фильтры, перепускной клапан и компенсаторы.

Основные части компрессора: роторы, корпус, распределительные шестерни, подшипники, уплотнения. Профиль кулачков роторов обычно эвольвентный, хотя может быть и циклоидальный. Зазор между роторами и корпусом делают обычно минимальный для предотвращения протечек. У ротора может быть два или три кулачка. Корпус обычно изготавливают из чугуна, конструкцию из алюминия поставляют для специальных условий. Обычно используется смазывание разбрызгиванием, однако на некоторых установках делают внешнюю систему смазки.

Принцип работы

Принцип работы компрессор аналогичен принципу роторного винтового компрессора, кроме того, что соприкасающиеся кулачковые роторы обычно не смазываются. Особенность данного типа компрессоров в том, что газ внутри не сжимается. Роторы могут монтироваться на параллельных валах внутри цилиндра. Комплект шестерен синхронизирует вращение роторов. Кулачки не соприкасаются друг с другом. Когда кулачковые рабочие колеса вращаются, газ поступает между ними и корпусом компрессора, где он сжимается из-за их вращения, а затем поступает в нагнетательную линию. При этом подшипники и распределительные шестерни смазываются.

Области применения:

Данный тип компрессоров предназначены для сжатия воздуха и нейтральных газовых смесей.

Сфера применения:

  • сельское хозяйство;
  • строительство;
  • химическое производство;
  • электроника;
  • металлургия;
  • системы водоснабжения
  • пищевая промышленность.
  • промышленные печи
  • фармацевтическая промышленность
  • центральная подача вакуума
  • дегазация
  • пневмотранспорт
  • фильтрация
  • места хранения органических отходов

Роторные компрессоры с кулачковыми роторами находят свое применение там, где требуется относительно постоянный расход при меняющемся давлении на нагнетании при транспортировке материалов, насыщении жидкости воздухом, добыче газа и улавливании паров, снабжении газом и воздухом низкого давления, обработке отработанной воды, рекультивации почв, на цементных заводах и пр.

Ротационно-пластинчатый компрессор

рис 3. Пластинчатый компрессор

Описание типа и конструктивное устройство:

Ротационно-пластинчатый компрессор схематически представлен на рисунке 3. Ротационно-пластинчатые компрессоры имеют в своем составе ротор с несколькими скользящими пластинами, которые эксцентрически монтируются в корпусе.

Компрессоры этого типа бывают сухого типа и маслонаполненные. Компрессоры с маслом наиболее эффективны и могут достигать 90%-й эффективности. Также они создают большее давление, чем сухой тип компрессора.

Компрессоры данного типа могут быть стационарными или переносными, иметь одну или несколько ступеней, могут иметь привод от электродвигателя или двигателя внутреннего сгорания. Ротационно-пластинчатый компрессор сухого типа используют при относительно низком давлении (2бар), в то время как маслонаполненные компрессоры имеют достаточный коэффициент полезного действия для достижения давления в 13 бар на одной ступени.

Наиболее часто используемый тип привода – электрический двигатель. На небольших установках (менее 100 лс) применяют клиноременную передачу.

Цилиндр изготавливают обычно из чугуна. Входные и выходные отверстия имеют фланцевое подсоединение. Для установок со смазкой пластины изготавливают из слоистого асбеста с вкраплениями фенолоальдегидных полимеров. Графит используется в установках без смазки. Ротор изготавливают из углеродистой стали. На больших установках ротор может быть изготовлен из чугуна, а вал из углеродистой стали.

Принцип работы

Лопасти ротора выдвигаются и скользят по внутренней поверхности цилиндра под действием центробежной силы. В результате из-за вращения объем камеры между двумя лопастями постоянно меняется. По мере вращения ротора, рабочая среда попадает в область большего объема, а затем подается на нагнетание уже в качестве сжатого газа из области меньшего объема.

Процесс смазки ротационно-пластинчатого компрессора происходит один раз за режим работы. Смазка впрыскивается в компрессор и выходит вместе со сжимаемым газом и обычно не рециркулирует. Смазывающее вещество создает тонкую пленку между корпусом компрессора и скользящими пластинами. Скольжение пластин по поверхности корпуса требует от смазывающего вещества, чтобы оно выдерживало высокое давление в компрессорной системе.

Области применения:

Ротационно-пластинчатые компрессоры используются при улавливании газов и для повышения давления газа, конкурируя с поршневыми компрессорами. Они уступают в эффективности, но они достаточно компактны, имеют меньший вес и не требуют подготовки для них специального фундамента. Данный тип компрессоров используется также для удаления паров. Ротационно-пластинчатые компрессоры доказали свою надежность в качестве сжимающего оборудования для природного газа и метана.

Ротационно-пластинчатые компрессоры применяют для:

  • центральной подачи вакуума
  • охлаждения
  • извлечения растворителей
  • пропитки (поверхности материала под воздействием вакуума пропитывающим веществом)
  • сушки (напр. медицинской продукции)
  • дегазации
  • герметизации солнечных модулей
  • упаковки продуктов питания
  • вакуумной формовки
  • герметизация лотков в пищевой промышленности
  • упаковки непищевой продукции
  • обработки заготовок
  • пневмотранспорта
  • полиграфической и целлюлозно-бумажной промышленности

Особое внимание необходимо уделять контролю за износом пластин, так как их износ может послужить причиной повреждения цилиндра.

Жидкостно-кольцевые компрессоры

Конструктивное устройство и описание типа

Жидкостно-кольцевой компрессор является уникальным видом компрессоров, так как в нем используется сжатие при помощи жидкостного кольца, которое действует как поршень. Одиночный ротор располагается эксцентрически внутри корпуса. Входное и выходное отверстие для газа располагается на роторе. Стандартное материальное исполнение – чугун для цилиндра и углеродистая сталь для вала, сталь для частей ротора. Конструктивно жидкостно-кольцевые компрессоры могут быть как одноступенчатыми, так и многоступенчатыми.

Принцип работы

Сжимающая жидкостная среда заполняет частично ротор и цилиндр, и образует кольцо при движении поршня. При движении поршня в корпусе образуется газовый карман. Газ сжимается в полостях, которые образуют поверхности жидкостного кольца и ротора. На стороне всасывания объем полостей увеличивается и происходит её заполнение газом, на нагнетании объем уменьшается, происходит сжатие газа и подача его в нагнетательную линию. В качестве сервисной жидкости обычно используют воду.

Основные преимущества

  • надежность;
  • возможность эксплуатации при минусовых температурах;
  • эффективная теплоотдача;
  • простое техническое обслуживание;
  • низкий уровень шума и почти полное отсутствие вибраций;
  • компрессоры могут работать почти со всеми газами и парами;
  • нет металлического контакта между вращающимися частями.

    Области применения:

    Данный тип компрессоров применяют для сжатия паров, опасных и токсических газов, а также горячих газов, в том числе с содержанием пыли или жидкости. После взаимодействия газа и рабочей жидкости, температура газа повышается незначительно, что дает почти изометрическое уплотнение. Жидкостно-кольцевые компрессоры используются там, где требуются надежная, безопасная работа и требуются специальные технологические условия.

    Сферы применения

    • производство пластмасс – регенерация технологических газов,
    • нефтехимическая промышленность – уплотнение горючих газов (паров бензина, водорода)
    • общий газовый перенос
    • удаление воздуха из глины
    • удаление нефтяных остатков
    • защита от коррозии водопроводных труб
    • удаление пыли в горнодобывающей промышленности
    • производство биогаза
    • сжатие анаэробных газов
    • очистка и утилизация сточных вод
    • разлив продукта на пивоваренных заводах
    • погрузочно-разгрузочные операции
    • системы очистки и удаления жира из частиц углеводородов
    • прочее

    Спиральные компрессоры

    Конструктивное устройство и описание типа

    Спиральный компрессор – это объемная машина с движением по орбите, в которой сжатие происходит при помощи двух спиральных элементов вложенных друг в друга.

    Хотя идея спирального компрессора известна уже давно спиральные компрессоры это достаточно новая технология. Первый патент на спиральный компрессор был выдан в 1905 году французскому инженеру Леону Круа, но только в 1970 году с развитием высокоточной механической обработки удалось сделать рабочий прототип. На сегодняшний день спиральные компрессоры находят свое применение, как в коммерческих, так и бытовых областях.

    Спиральные компрессоры полностью герметичны. Блок спиралей, муфта, противовесы, двигатель и подшипники смонтированы в сварном стальном корпусе. Большинство спиральных компрессоров для кондиционирования имеют вертикальную конструкцию. Кожух представляет собой цилиндрическую емкость, расположенную вертикально и разделенную на часть низкого давления и часть высокого давления. Нижняя часть кожуха служит в качестве резервуара для масла и жидкости. Спирали обычно изготавливают из заготовок из углеродистой стали. Особое внимание уделяется изготовлению спиралей, так как требуется их точная подгонка.

    Принцип работы

    Спиральный компрессор использует две спирали, одну зафиксированную, а другую движущуюся, соединенную с двигателем. Спирали вложены одна в другую, так что во время движения при их взаимодействии образуются полости для рабочей среды. Среда подвергается сжатию при движении по орбите подвижной спирали вокруг неподвижной спирали и постепенно нагнетается к центру. Когда полости перемещаются, они уменьшаются в объеме и сжимают газ.

    Основные преимущества

    Спиральная технология предлагает преимущества по ряду причин. Большие отверстия на всасе и нагнетании сокращают потери давления, возникающие в процессе всасывания и нагнетания. Также физическое разделение этих процессов сокращает передачу тепла к всасываемому газу. Преимущества спиральных компрессоров заключается в их небольших размерах и меньшем весе, чем у поршневых компрессоров среднего класса. Это эффективные устройства, работающие при различных коэффициентах сжатия. Также к преимуществам можно отнести относительно низкий уровень шума и вибраций, высокий уровень надежности и долгий срок эксплуатации, благодаря тому, что в сжатии участвует небольшое количество деталей и отсутствуют клапаны.

    Области применения

    Спиральные компрессоры изготавливают в разных размерах до 25т. Они нашли широкое применение в бытовых и коммерческих системах обогрева, вентиляции и кондиционирования воздуха. Они успешно используются для охлаждения молока в оптовой таре, в контейнерных перевозках, в морских контейнерах и продовольственных прилавках-витринах, в водяных охладителях. Спиральные компрессоры используются для производства сжатого воздуха и безмасляного сжатого воздуха.

    Горизонтальные герметичные спиральные компрессоры могут работать с природным газом, воздухом и гелием и имеют масляное охлаждение. Другая область применения для такого компрессора – это улавливание газовых паров на нефтяных месторождениях.

  • intech-gmbh.ru

    Ротационный компрессор: устройство и принцип работы

    Содержание

    Ротационные компрессоры работают по тому же принципу, что и поршневые машины, т.е. по принципу вытеснения. Основная часть энергии, передаваемой газу, сообщается при непосредственном сжатии.

    Сущность действия ротационного компрессора заключается в том, что независимо от его конструктивных особенностей, всасывание газа или воздуха производится той полостью компрессора, объем которой увеличивается при вращении ротора. Засасываемый газ попадает в замкнутую камеру, объем которой, перемещаясь при вращении ротора, уменьшается. Сжатие за чет уменьшения объема приводит к увеличению давления и выталкиванию газа в нагнетательный патрубок.

    Типы компрессоров

    Ротационные нагнетатели, развивающие избыточное давление до 0,28 – 0,3 МПа (при атмосферном давлении на входе), называют воздуходувками, а создающие более высокое давление – компрессорами.

    Ротационный компрессор и воздуходувки имеют ряд преимуществ перед поршневыми:
      уравновешенный ход из-за отсутствия возвратно-поступательного движения;
      возможность непосредственного соединения с электродвигателем;
      равномерная подача газа;
      меньший вес конструкции;
      отсутствие клапанов.

    Вместе с тем, по сравнению с поршневыми, ротационные компрессоры имеют более низкий механический КПД, развивают более низкое давление, требуют более высокой точности изготовления.

    Наибольшее распространение в различных отраслях пищевой промышленности получили два типа ротационных машин:

    Ротационно пластинчатые компрессоры – применяются для создания относительно высокого давления (0,3 – 0,4 МПа). Если установить последовательно два ротационных пластинчатых компрессора с промежуточным охлаждением воздуха, то можно обеспечить давление до 0,7 МПа и более. Одноступенчатый пластинчатый компрессор работая как вакуум-насос, может создавать вакуум до 90%, а при особой тщательности изготовления и монтажа – до 95%.

    Ротационный винтовой компрессор в настоящее время в основном используется в холодильной технике. Принцип его работы схож с работой винтового насоса и состоит в следующем. Когда вращаются винты, то на стороне выхода зубьев из зацепления освобождаются так называемые впадины – полости между зубьями. Из-за создаваемого компрессором разрежения эти полости заполняются паром, поступающим из всасывающего патрубка В момент, когда на противоположном торце роторов полости полностью освобождаются от заполняющих их зубьев, объем полости всасывания достигает максимальной величины. Пройдя всасывающее окно, полости разъединяются с камерой всасывания.

    По мере входа зуба ведомого ротора во впадину ведущего занимаемый газом объем уменьшается и газ сжимается. Процесс сжатия паров в парной полости продолжается до тех пор, пока уменьшающийся объем со сжатым паром не подойдет к кромке окна нагнетания.

    Ротационный компрессор с двумя вращающимися поршнями используется как низконапорные воздуходувки с избыточным давлением 0,06 – 0,08 МПа. Такой компрессор, работая как вакуум насос, создает вакуум до 70%.

    Устройство ротационного компрессора

    Ротор компрессора 2 расположен эксцентрично в цилиндре. В роторе сделаны радиальные прорези, в которых свободно перемещаются пластины 5. Вокруг цилиндра расположена водяная рубашка 4 для охлаждения компрессора. При вращении ротора по часовой стрелке через патрубок 1 происходит всасывание, а через патрубок 6 – нагнетание газа.

    Благодаря эксцентричному расположению ротора при его вращении образуется серповидное пространство, разделенное пластинами на отдельные камеры. Пластины выходят из пазов ротора вследствие действия центробежной силы и прижимаются к стенкам цилиндра.

    Ротационный компрессор принцип работы

    Так как крышки компрессора примыкают к торцевым поверхностям ротора с малым зазором, отдельные камеры, на которые делится серповидное пространство, оказываются изолированными, увеличивающимися до некоторого объема 3, а затем уменьшающимися.

    Вследствие того, что объем газа в камерах левой части серповидного пространства увеличивается, всасывание происходит через патрубок 1, а нагнетание через патрубок 6, так как при дальнейшем перемещении ротора происходит уменьшение объема газа в камерах и его выталкивание.

    Для уменьшения трения центробежная сила пластин воспринимается двумя разгрузочными кольцами 2, которые охватывают пластины и свободно вращаются в цилиндре. В зазор между внешней поверхностью разгрузочных колец и внутренней поверхностью выточек в цилиндре через отверстия подается масло. Число пластин в таких компрессорах обычно бывает не менее двадцати, чтобы уменьшить перепад давления между камерами и этим ослабить перетекание газа и увеличить объемный КПД.

    Для предотвращения чрезмерного износа цилиндра и пластин, окружная скорость на внешней кромке пластин должна быть не больше 10 – 12 м/с. Для обеспечения плотного прилегания пластин к внутренней поверхности цилиндра необходимо, чтобы минимальная окружная скорость была в пределах 7-7,5 м/с. Поэтому изменение частоты вращения ротационных компрессоров допустимо только в определенных пределах.

    Воздуходувки

    В качестве воздуходувок чаще всего применяется ротационный компрессор с двумя вращающимися поршнями.

    Такие компрессоры могут применяться и как вакуум насосы, например во всасывающих системах пневмотранспорта зерна и солода на пивоваренных и спиртовых заводах.

    Конструкция такого компрессора состоит из корпуса 3, в котором вращаются в противоположных направлениях два поршня 4, профилированных в виде восьмерок с циклоидальным зацеплением. Привод осуществляется с помощью зубчатой передачи.

    В процессе вращения поршни непрерывно соприкасаются, разделяя объем корпуса на отдельные камеры. Воздух всасывается через патрубок 5, а затем при повороте роторов он попадает в замкнутую камеру 1 (заштрихованную на рисунке) и, не меняя объема, перемещается к нагнетательному патрубку 2, через который выталкивается в нагнетательный трубопровод или наружу.

    Следовательно, сжатие происходит только в самом конце цикла в момент сообщения замкнутой камеры с воздухом в нагнетательном патрубке воздуходувки.

    Недостатками ротационных компрессоров с двумя вращающимися поршнями считают существенное уменьшение объемного КПД при малейшем увеличении зазоров, а так же сильный шум, который создают воздуходувки во время работы.

    Видеоматериалы

    Ротационный компрессоры бывают нескольких типов – это ротационной винтовой тип компрессора, ротационный пластинчатый тип компрессора и воздуходувки.

    Оборудования этого вида относится к объемному типу компрессоров и осуществляет работу по нагнетанию воздуха за счет сжатия вещества с помощью вращающегося ротора.

    www.nektonnasos.ru

    устройство, типы и принцип работы.

    Содержание

    Роторный компрессор относится к классу объемных машин – по способу действия он похож на роторный насос. В настоящее время этот тип оборудования приобрел большую популярность. Воздушный роторный компрессор незаменим при решении не только производственных, но даже бытовых задач.

    Наибольшее распространение получили роторные пластинчатые компрессоры, также большую популярность находят винтовые компрессоры.

    Принцип работы роторного компрессора

    Принцип работы роторного компрессора похож на действия насоса. Исходя из этого рассмотрим работу оборудования основанного на всасывании и вытеснении газа твердым телом – поршнем.

    Роторно поршневой компрессор

    Принцип работы роторно поршневого компрессора основан на вытеснении газа поршнем.

    Цилиндр 1 соединен с клапанной коробкой 2, в гнездах которой расположены всасывающий и нагнетательный клапаны 3 и 4. Поршень 5 движущийсяв цилиндре возвратно-поступательно, производит попеременно всасывание из трубы 6 и нагнетание в трубу 7.

    Такое оборудование широко применяется в промышленности. Преимуществами являются:
       простота конструкции;
       высокой надежности;
       высокая производительность;
       долговечность.

    Среди недостатков стоит упомянуть о неравномерности подачи, обусловленной периодичностью движения поршней.

    Недостатки в работе роторно поршевого компрессора привели к появлению нового типа оборудования пластинчатого компрессора. Принцип его работы состоит в следующем

    Роторно пластинчатый компрессор

    При вращении ротора 1, расположенного эксцентрично в корпусе 2, пластины 3 образуют замкнутые пространства 4, переносящие газ из полости всасывания в полость нагнетания. При этом происходит сжатие газа.

    Такая схема компрессора, обладая хорошей уравновешенностью движущихся масс, позволяет сообщить ротору высокую частоту вращения и соединить машину непосредственно с электрическим двигателем.

    При работе пластинчатого компрессора выделяется большое количество тепла вследствие механического трения. Поэтому при степенях повышения давления выше 1,5 корпус компрессора выполняют с водяным охлаждением.

    Пластинчатые компрессоры могут исполняться для отсасывания газов и паров из пространств с давлением, меньшим атмосферного. В таких случаях компрессор является вакуум насосом. Вакуум, создаваемый пластинчатыми вакуум-насосами, достигает 95%.

    Винтовой компрессор роторный

    Способ действия компрессора с двумя винтами описан ниже.

    Основными рабочими деталями компрессора являются червяки (винты) специального профиля. Взаимное расположение червяков строго фиксировано сцепляющимися зубчатыми колесами, посаженными на концы валов. Зазор в зацеплении у этих синхронизирующих зубчаток меньше, чем у винтов, и поэтому механическое трение у последних исключено.

    Винт с впадинами является замыкающим распределительным органом, поэтому мощность, передаваемая синхронизирующим зубчаткам невелика, а следовательно, незначителен и их износ. Это очень важно ввиду необходимости сохранения достаточных зазоров у червячной пары.

    При вращении червяков (винтов) вследствие периодического попадания головок зубьев червяков во впадины последовательно осуществляются процессы всасывания, сжатия и нагнетания.

    Винтовые компрессоры выполняются с водяным охлаждением корпуса и внутренним охлаждением червяков.

    Устройство роторного компрессора.

    Пластинчатые компрессоры выполняются для подач до 500 м3/мин и при двух ступенях сжатия с промежуточным охлаждением создают давление до 1,5 МПа.

    Основные элементы конструкции: ротор 1, корпус 2, крышки 3, охладитель О и валы 4. Корпус и крышки компрессора охлаждаются водой. У конструктивных элементов имеются некоторые особенности. Для уменьшения потерь энергии механического трения концов пластин о корпус в нем располагают два свободно вращающихся в корпусе разгрузочных кольца.

    К их наружной поверхности подводится смазка. При вращении ротора концы пластин упираются в разгрузочные кольца и частично скользят по их внутренней поверхности – разгрузочные кольца вместе с тем вращаются в корпусе.

    С целью уменьшения сил трения в пазах, пластины располагают не радиально, а отклоняя их вперед по направлению вращения. Угол наклона составляет 7-100. При этом направление силы, действующей на пластины со стороны корпуса и разгрузочных колец, приближается к направлению перемещения пластины в пазах и сила трения уменьшается.

    Для уменьшения утечек газа через осевые зазоры в ступице ротора располагаются уплотнительные кольца, прижимаемые пружинами к поверхностям крышек.

    Со стороны выхода вала через крышку установлено сальниковое уплотнение с пружинной натяжкой.

    В конструкции применены роликовые подшипники. Смазка осуществляется машинными маслами средней вязкости через контрольные капельные указатели. Места смазки – разгрузочные кольца, торцовые уплотнительные кольца и сальниковое уплотнение.

    Винтовые компрессоры стоят на подаче до 20 000 м3/ч.

    Видео про роторный компрессор

    Роторно лопастной компрессор чаще всего соединяют с электродвигателем напрямую, и частота его вращения составляет 1450, 960, 750 об/мин. Для регулирования подачи в этом случае требуется добавить между валами двигателя и компрессора вариатор скорости.

    Частота вращения винтовых компрессоров очень высокая, достигающая в случае привода от газовых турбин 15 000 об/мин. Такой воздушный роторный компрессор обычного исполнения способен работать с частотой вращения 3000 оборотов в минуту.

    Для обоих типов оборудования в составе компрессорной установки применяются способы регулирования подачи дросселированием на всасывании, перепуском сжатого газа во всасывающий трубопровод и периодическими остановками.

    www.nektonnasos.ru

    Принцип работы роторно-пластинчатого компрессора | НПП Ковинт

    В данной статье мы рассказываем о принципе работы роторно-пластинчатого компрессора на основе компрессоров Hydrovane HV PEAS горизонтального типа.

    Общее описание

    Роторно-пластинчатые компрессоры относятся к компрессорам объемного действия, т.е. сжатие газа происходит за счет изменения объема полости сжатия. 

    Схема основных элементов

    Основные элементы роторно-пластинчатого компрессора изображены на рисунке ниже.

     

    Роторно-пластинчатый компрессор

    где:

    «A» — точка входа воздуха в компрессор

    «H» — впускной клапан

    «B» — блок сжатия роторно-пластинчатого компрессора

    «С» — масляный перепускной клапан

    «D» — узел выхода воздушно-масляной смеси из блока сжатия

    «G» — масло компрессора в статоре

    «Е» — сепаратор тонкой очистки сжатого воздуха от масла

    «F» — воздушно-масляный радиатор для охлаждения сжатого воздуха и масла

    Контуры движения воздуха и масла

    В компрессоре существует два контура движения. Это масляный контур (движение масла внутри компрессора) и воздушный контур (движение воздуха в компрессоре).

    Синими стрелками изображено направление движения воздуха.

    Красными стрелками изображено направление движения масла.

    Контур красного цвета в нижней части рисунка — это масляный контур компрессора. В него входят термостатический клапан и масляный фильтр.

    Принцип работы

    При включении компрессора сжатый воздух поступает через воздушный фильтр, входное отверстие в торцевой крышке блока сжатия и всасывающий клапан (А).

    Далее воздух поступает в блок сжатия (В).

    В блоке сжатия (B) воздух сжимается за счет изменения объема камеры сжатия. Камера образуется с помощью статора, ротора и пластин, которые установлены в пазах ротора.

    Масляный перепускной клапан (С) предназначен для предотвращения гидравлического удара и выброса излишков масла из камеры сжатия, которые могут остаться после остановки компрессора и, соответственно, перед его запуском.

    Воздушно-масляная смесь выходит из блока сжатия (D) и двигается в его нижнюю часть. При выходе из блока сжатия масло отделяется от сжатого воздуха с помощью первичного маслоотделителя.

    Масло по стенкам стекает в нижнюю часть блока сжатия (масло показано красным цветом).

    Сжатый и предварительно очищенный воздух двигается в сепаратор тонкой очистки (Е), где происходит финальное отделение масла из сжатого воздуха до 3 мг/м3.

    Очищенный воздух проходит через клапан поддержания давления (на рисунке цифрой не обозначен) и поступает в воздушно-масляный радиатор (F), где происходит охлаждение.

    Далее сжатый воздух поступает в трубопровод к потребителю.

    Циркуляция масла

    Циркуляция масла происходит за счет разности давлений в разных точках внутри блока сжатия. Имеется два круга циркуляции масла — большой и малый.

    Малый круг: масло двигается минуя воздушно-масляный радиатор (F) в случае первичного запуска компрессора, когда масло еще холодное.

    Большой круг: масло двигается через воздушно-масляный радиатор (F) в том случае, когда температура масла достигает рабочих режимов (примерно 60-65 С). 

    Видеобзор

    Для наглядности мы записали небольшое видео с нашими комментариями по принципу работы роторно-пластинчатых компрессоров.

    Все важные элементы разобраны в этом видео более подробно. Так же есть более подробное описание принципа работы роторно-пластинчатого компрессора.

     

     

    Также мы публикуем симулятор Hydrovane, с помощью которого можно самостоятельно изучить потоки сжатого воздуха и циркуляции масла внутри компрессора в зависимости от потребления сжатого воздуха.

    Для удобства просмотра рекомендую использовать браузеры Opera или Google Chrome (также потребуется последняя версия Addobe Flash Player). И не забудьте включить звук…

     

     

    Все вопросы, связанные с принципом работы роторно-пластинчатых компрессоров, вы можете задать по электронной почте:

    [email protected]

    или оставив комментарий через форму ниже. Мы ответим в течение одного рабочего дня.

     

    С уважением,

    Константин Широких

     

    covint.ru

    Воздушный компрессор: назначение, принцип работы, виды

    Редко какое предприятие обходится без использования сжатого воздуха. На одних предприятиях его применяют для нанесения покрытий на различные поверхности, на других для обеспечения работы штамповочного оборудования. Для получения сжатого воздуха используют компрессор.

    Назначение и принцип действия

    Что такое компрессор? Официальное определение звучит следующим образом — устройство, предназначенное для сжатия газов и перекачивания их к потребителям, называют воздушным компрессором. Как он работает? Принцип действия устройства довольно прост, атмосферный воздух поступает в механизм, который выполняет его сжатие. Для этого могут быть использованы разные методы, о них речь пойдёт ниже. Механизм, сжимающий воздух, определяет устройство и принципы работы компрессора. Для эффективной работы оборудования его необходимо подключить к электрической сети и воздушной сети, по которой будет передаваться сжатый воздух. Схема подключения электродвигателя, как правило, указывается в инструкции по эксплуатации.

    Виды компрессоров

    На рынке промышленного оборудования существует множество предложений по поставкам этих устройств. Его можно разделить на те, которые применяют в промышленности, и которые используют в быту, например, для накачивания автомобильных колес. Все эти устройства могут работать от разных типов привода. Компрессор воздушный электрический 220 В, как понятно из названия работает от электрического силового агрегата с напряжением 220 В. Но, существуют и устройства, работающие от напряжения 380 В.

    Дизельный компрессор, работает от двигателя внутреннего сгорания, работающего на дизельном топливе. Использование такого оборудования довольно популярно среди строителей, оно используется тогда, когда отсутствует возможность подключения установок на электроприводе. Установки, работающие на дизельном топливе, обеспечивают эксплуатацию на удаленных строительных площадках.

    Атмосферный воздух подается в головку блока цилиндров, в котором установлены поршни. Силовая установка, в свою очередь передаёт крутящий момента на вал, обеспечивающий движение поршней в цилиндре. Именно там и происходит сжатие воздуха до необходимых параметров. После сжатия он направляется в воздушную систему предприятия. Поршневые компрессоры различают на масляные и безмасляные. Масляный отличается тем, что для его эффективной работы в него заливают специальное масло, снижающее силу трения между трущимися деталями и узлами устройства. Это повышает его эксплуатационный ресурс.

    Существует множество способов передачи крутящего момента от двигателя на исполнительный механизм. При изготовлении компрессоров чаще все применяют муфты или ременные передачи. Устройство, на котором установлен последний тип, называют ременный компрессор.

    Перечисленные виды оборудования, применяют практически во всех отраслях промышленности, они отличаются друг от друга производительностью, размерами и рядом других параметров. Но, конечно, главная характеристика — это размер давления, которое может создать компрессор.

    Компрессоры воздушные различают по принципу работы, об этом ниже.

    Поршневые агрегаты

    Поршневые компрессоры — это один из самых распространённых типов этого оборудования. Как уже отмечалось выше сжатие воздуха, происходит под действием поршней, перемещающихся внутри гильз. Для обеспечения нужд промышленности применяют поршневые компрессоры высокого давления. Они могут работать как от двигателя внутреннего сгорания, так и от электрического двигателя. Промышленный компрессор высокого давления создаёт от 40 до 500 бар. Компрессоры этого типа отличаются высоким КПД и моторесурсом до 2000 часов. Поршневые компрессоры производят как в стационарном, так и в мобильном исполнениях. Для их перемещения используют шасси на колесном или гусеничном ходу.

    Это довольно сложное устройство, в его конструкции предусмотрены маслосъемные кольца, фильтры для очистки масла и воздуха, управляющая автоматика и это обуславливает то, что для поддержания этого устройства в работоспособном состоянии требуется квалифицированный персонал и специальный инструмент и приспособления.

    Мембранный компрессор

    Газ сжимается в таком устройстве под действием мембраны, которая выполняет возвратно — поступательное движение. Мембрану приводит в движение шток, который закреплён на коленвале.

    Мембранная пластина фиксируется к рабочей камере и таким образом отпадает необходимость использования дополнительных деталей, например, поршневых колец, уплотнительных устройств и пр.

    Воздушный компрессор мембранного типа отличается следующими параметрами:

    • герметичностью;
    • стойкостью к действию коррозии;
    • высоким уровнем компрессии;
    • надежностью конструкция;
    • безопасностью в эксплуатации и простотой обслуживания.

    Компрессор с ременным приводом мембранного типа отличается тем, что рабочая среда вступает в контакт только с мембраной и внутренними полостями камеры. При этом она не вступает в контакт с атмосферой. Такое устройство применяют для перекачки вредных и токсичных веществ.

    Еще одно достоинство мембранного изделия заключается в том, его нет необходимости смазывать, это снижает риск загрязнения транспортируемой рабочей среды.

    Объемные компрессоры

    Устройство, в котором процесс получения сжатого воздуха происходит путем уменьшения его объема, называют объемным компрессором. К ним относят следующие типы оборудования:

    • безмасляные винтовые компрессоры;
    • дизельные поршневые компрессоры;
    • воздушные компрессоры бытовые.

    Винтовые компрессоры

    История этого оборудования началась в 1934 году. Винтовые компрессоры отличает высокая надежность, небольшие габариты, низкая металлоемкость обусловили высокий потребительский спрос на оборудование этого класса. Применение этого оборудования позволяет снизить расходы на электрическую энергию до 30%. Установки этого типа устанавливают на мобильных компрессорных станциях, судовых и других холодильных установках.

    В качестве рабочего органа использованы винтовые роторы, на которых нанесены впадины. Их устанавливают в корпус, который может быть разобран по нескольким плоскостям. В нем проделаны отверстия и выточки для установки и подшипников. Кроме того, в корпусе сформированы камеры всасывания и нагнетания воздуха. Насосы этого типа отличаются производительностью.

    Эти изделия могут развивать давление от 8 и до 13 атм., при этом расход воздуха может быть от 220 до 12400 литров в минуту.

    Довольно часто одна единица такого оборудования, может заменить собой несколько единиц компрессоров, устанавливаемых в производственных цехах.

    При установке и запуске в промышленную эксплуатацию подобных компрессоров целесообразно на входе установить устройство для очистки воздуха от излишней влаги. Некоторые производители комплектуют свои изделия такими фильтрами.

    Пластинчато-роторные компрессоры

    Компрессоры этого класса работают на том же, что и поршневые, то есть, на вытеснении. Передача энергии осуществляется во время сжатия. Рабочая среда во время засасывания попадает в рабочую камеру, ею объем уменьшается при перемещении ротора. Это сжатие и приводит к увеличению давления и уходу сжатого воздуха через патрубок.

    Компрессоры этого типа могут создавать давление до 0,3 МПа, носят название воздуходувками, и те, которые нагнетают более высокое давление, называют компрессорами.

    Устройства этого типа отличают следующие достоинства:

    Более стабильный, уравновешенный ход, обеспечивает отсутствие возвратно — поступательного движения. Конструкция этого оборудование предусматривает возможность прямого соединения в электрическим силовым агрегатом. Вес ротационного компрессора будет ниже, чем поршневого с аналогичными характеристиками. В конструкции не предусмотрено использование клапанов. То есть уменьшается количество деталей трущихся друг о друга.

    Динамические компрессоры

    Компрессоры этой группы подразделяют на два типа — центробежные и осевые. У первых, воздух под воздействие центробежной силы отбрасывается к внешней части рабочего колеса. Таким образом, с всасывающей стороны образуется разреженное пространство. Газ постоянно попадает в рабочую камеру, после прохождения колеса, воздух направляется в диффузор (устройство гашения скорости потока), где, собственно, и повышается его давление.

    У оборудования осевого типа воздух продвигается вдоль ротора, а сжатие осуществляется в результате изменения скорости его продвижения между лопатками ротора и направляющего устройства.

    Эти компрессоры можно классифицировать по следующим свойствам:

    1. Давлению на выходе, те, которые обеспечивают давление в пределах 0,015 МПа, называют вентиляторами или воздуходувками.
    2. По количеству ступеней сжатия.
    3. По ходу движения воздуха. Если он двигается вдоль оси ротора, то это центробежные, если поперёк, то осевые. Существуют устройства, где воздух движется по диагонали.
    4. По типу привода — он может быть электрическим, паровым или газотурбинным.

    Роторные компрессоры применяют в авиационных  двигателях. С его помощью нагнетают воздух для подачи в камеру сгорания.

    Производительность компрессоров

    Под этим термином подразумевается тот объем газа, который нагнетается за определенную единицу времени. Единица измерения производительности — мв минуту. Этот параметр может быть указан или на входе, или на выходе, разумеется, это будут разные числа. Все дело в том, что при изменении давления, происходит изменение объема. Эта характеристика говорит о производительности при температуре рабочей среды равной 20 градусам Цельсия.

    В зависимости от величины этой характеристики различают следующие группы — большой производительности (свыше 100 кубометров воздуха в минуту), средней (до 100 кубометров воздуха в минуту) и малой до (10 кубометров).

    Динамические устройства обладают некоторыми преимуществами в сравнении с поршневыми. Они отличаются простотой конструкции и эксплуатации. Они обладают малыми габаритно-весовыми параметрами. Плавностью подачи воздуха и они не требуют дополнительной смазки. Для их установки не требуется изготовление массивных фундаментов. Но, вместе с этим, у них КПД, несколько ниже, чем у поршневых.

    Эти компрессоры нашли свое применение во многих отраслях. Например, химической и нефтегазовой промышленности, в металлургии, горнодобывающей и многих других отраслях. Одна из разновидностей динамических компрессоров — турбокомпрессорные, устанавливают в газоперекачивающие трубопроводы.

    За многие годы эксплуатации подобного оборудования спроектировано и введено в эксплуатацию множество устройств с различными характеристиками, в частности современные машины способны обеспечить производительность до 200 мв минуту, при скорости вращения колеса 250 оборотов в секунду. И все это при малых габаритно-весовых параметрах.

    Агрегатирование компрессоров

    Процесс монтажа компрессора и силовой установки на раму, называют агрегатирование. В связи с тем, что устройства поршневого типа обладают вибрацией, необходимо проектировать и изготавливать фундамент с учетом этих характеристик.

    Особенность безмасляных приборов

    Эти устройства нашли свое применения там, где необходимо обеспечить высокие требования к чистоте воздуха. Их устанавливают в медицинских учреждениях, предприятиях фармацевтической и химической промышленности. Справедливости ради надо сказать, что эти устройства относят к наиболее доступным устройствам в части их стоимости. Эти компрессоры отличаются простотой в эксплуатации и обслуживании. Это говорит о том, что нет необходимости в подготовленном персонале, и при установке их на рабочее место не предъявляются какие-то особые требования.

    Но безмасляные компрессоры обладают некоторыми недостатками, например, излишним шумом, который возникает во время работы. Но, производители смогли решить эту проблему, устанавливая на эти изделия звукозащитные кожухи.

    Выбирая безмаслянный компрессор необходимо обратить внимание на мощность устройства, их производительность и параметры рабочего давления, которые показывают приборы, устанавливаемые на компрессор. Нельзя забывать и об объеме ресивера. Как правило, в устройство компрессора устанавливают емкости объемом 50 литров.

    Преимущества масляных агрегатов

    Самый распространенный метод снижения трения, возникающего при работе различных деталей и узлов, является их смазывание. Это позволяет снизить нагрузку на изделие в целом, в частности, на его ключевую деталь — двигатель.

    Для решения, этой задачи применяют специальные, компрессорные масла, которые можно использовать в различных условиях эксплуатации.

    Компрессоры такого типа в производстве обходятся дешевле. Поэтому, стоимость такого оборудования существенно дешевле, чем безмасляные аналоги. Но в эксплуатации, они обходятся дороже. Это вызвано тем, что в процессе эксплуатации вместе удалением воздуха из рабочей зоны, происходит выброс масла. Кстати, его необходимо заменять через каждые 2 000–3 000 часов эксплуатации.

    Так как в сжатом воздухе присутствуют микрочастицы масла, в систему приходится устанавливать маслоулавливающие элементы, например, фильтры. Через определенное количество времени их так же необходимо заменять, а это усложняет обслуживание, и требует дополнительных расходов на приобретение заменяемых фильтров.

    Тем не менее, несмотря на принимаемые меры, воздух, прошедший через масляный компрессор полностью очистить не представляется возможным. Например, после обработки воздуха на винтовом устройстве его загрязнение равно 3 мг на один кубометр. Чистота воздуха после его обработки на поршневом компрессоре, напрямую зависит от уровня износа его деталей и узлов.

    Это привело к тому, что в отдельных технологических процессах использование масляных компрессоров запрещено.

    Особенности эксплуатации

    Штатная работа компрессора прежде зависит от работы всех его узлов и деталей. В частности, впускных и выпускных клапанов. Внутри компрессора, где происходит распределение воздуха, устанавливается определенное количество золотников, распределителей и клапанов. В компрессорах устанавливают клапана следующих типов — тарельчатые, пластинчатые, шпиндельные и пр.

    Для того чтобы оборудование не снижало показатели мощности и не расходовал лишнюю мощность, клапаны, которые установлены в компрессоре, должны быть притерты и не должны пропускать воздух. При их выработке клапанов их необходимо срочно заменить. Повышенный расход воздуха может рано или поздно привести к сокращению срока эксплуатации оборудования.

    Запаздывание срабатывания клапана приводит к появлению стуков, стук говорит о том, что происходит износ посадочного места. Ко всему прочему, стук может говорить о том, что произошло защемление верхней его части в корпусе.

    Бесшумность работы компрессора — это, своего рода показатель качества настройки и соответственно работы устройства в целом.

    Правила безопасности

    На строительных площадках и производстве широко применяют компрессорные установки различного принципа действия и назначения. Компрессоры могут быть стационарно установлены на бетонные фундаменты или мобильными, то есть, установленными на шасси.

    Штатное использование компрессорного оборудование допустимо при соблюдении ряда условий:

    1. На компрессоре должны быть установлены устройства, работающие в автоматическом режиме, которые предотвращают превышение допустимого рабочего предела.
    2. Предусмотрено наличие разгрузочного клапана, предназначенного для быстрого стравливания излишнего давления.
    3. На этом оборудовании должны быть установлены на вход и выход, фильтрационные устройства, которые обеспечивают чистоту воздуха, направляемый на обработку в компрессор и создающих препятствие его поступление в помещение.
    4. Наличие установленных манометров обеспечивают контроль над параметрами давления, создаваемые компрессором.
    5. Между компрессорной установкой и ресивером должен быть установлен маслоотделительный фильтр.
    6. Кроме этого, в компрессорную остановку нельзя подавать воздух, который содержит в себе токсичные или вредные вещества.

    За установленным оборудованием, должен быть установлен соответствующий надзор и техническое обслуживание. При этом надо помнить, что обслуживание и регламентные работы должен проводить подготовленный персонал. То оборудование, которое стоит на гарантии поставщика, должны обслуживать специалисты из соответствующих сервисных центров.

     

    В частности, при промывке узлов и деталей компрессора, должны быть использованы только те жидкости и составы, которые рекомендованы производителем этого оборудования. Емкости для хранения, сжатого воздуха должны быть установлены предохранительные клапаны, сливной кран, манометр. В соответствии с требованиями эксплуатационной документацией, эти емкости (ресиверы) должны проходить регламентное обслуживание и испытания. Об их результатах должны быть сделаны записи в журнале обслуживания.

    При организации эксплуатации компрессорного и сопутствующего оборудования необходимо пользоваться руководящими и другими нормативными документами, обнародованными контрольными органами, например, Ростехнадзора.

    Критерии выбора компрессорного оборудования

    Чем должен руководствоваться потребитель, выбирая воздушный компрессор. Самое главное он должен понимать, для каких целей будет использовано приобретаемое оборудование. Сразу надо оговориться, что существуют отдельные отрасли, и технологические операции могут быть использованы только компрессоры, работающие без масла.

    Ключевыми параметрами компрессорного оборудования являются:

    1. Расход воздуха (производительность).
    2. Рабочее давление.
    3. Требования к чистоте воздуха.

    Как правило, эти параметры должны быть определены инженерами — технологами, которые разрабатывают технологические процессы с участием компрессорного оборудования.

    Например, расход воздуха, может быть рассчитан по следующей схеме:

    1. Расчёт количества воздуха при непрерывной эксплуатации.
    2. Внесение коррективов в полученное значение с учетом времени работы оборудования в смену или сутки.

    При подборе оборудования необходимо учитывать рост числа потребителей сжатого воздуха.

    Системы управления компрессорного оборудования

    Для обеспечения того, чтобы воздух находился под постоянным давлением в компрессорных системах, устанавливают регулирующее оборудование. Самая простая система состоит из датчика давления и простейшей системы настройки.  Она позволяет поддерживать в ресивере постоянное давление. При превышении заданных параметров происходит отключение компрессора, а после того, как давление упало до определенного минимума, срабатывает автоматика и включает компрессор. Такие, или почти такие системы, устанавливают практически на всех компрессорных установках. Их наличие обеспечивает безопасную эксплуатацию оборудования.

    Бытовые устройства

    Для выполнения определенных работ, которые выполняют дома или в гараже применяют бытовые компрессоры. Как правило, это небольшие по размеру поршневые компрессоры с электроприводом. Мощность такого изделия составляет 2,2 кВт. Такие компрессоры в состоянии нагнетать воздух до 8 атм.

    По большей части они могут спокойно обеспечивать давление 10 атм. Для хранения сжатого воздуха используют ресиверы емкостью до 100 литров.

    Как правило, их используют при выполнении окрасочных работ, внутренних и наружных.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

    stankiexpert.ru

    Полезная информация о воздушных компрессорах: типы, принцип действия

    На этой странице представлена полезная информация о воздушных компрессорах. Вы узнаете о типах, принципе действия, областях применения.

    Выбрать компрессор вы можете на странице нашего каталога >>>

    Типы устройств:

    1б. Компрессор газовый

    Любой газ, кроме азота, имеет отличные от воздуха физические и химические свойства, поэтому компрессоры, предназначенные для сжатия газов, проектируют с учетом этих свойств, и называют газовыми компрессорами.

    Типичные газы, для которых конструируются газовые компрессоры: азот (чистый), аргон, гелий, водород, углекислый газ, аммиак, метан (и его природные смеси), кислород, ацетилен, пропан-бутановые смеси, элегаз и др.

    Например, пищевая промышленность активно использует азот и углекислый газ для создания инертной среды хранения продуктов, а так же углекислый газ для сатурации напитков. Горная промышленность требует азот для систем подземного пожаротушения. Специальные газовые компрессоры сжимают метан или пропан-бутановую смесь в качестве топлива. Кислород требуется в металлургии при конверторной плавке стали и в медицине. Аргон используется в технологических процессах в качестве инертной среды и при аргоновой сварке, гелий – в тестах на герметичность. А химическая промышленность использует газовые компрессоры для совершенно различных газов.

    Выбрать газовый компрессор сложнее чем воздушный. Поэтому подбор газового компрессора лучше осуществлять после консультации с нашими специалистами.

     

    2. По конечному давлению

    По конечному давлению компрессоры условно делят на:
    – газодувки или воздуходувки — до 1 атм
    – низкого давления — от 2 до 12 атм
    – среднего давления — от 12 до 100 атм
    – высокого давления — от 100 до 1000 атм
    – сверхвысокого давления, предназначенные для сжатия газа выше 1000 атм.

    Как правило, для обеспечения заводской сети сжатым воздухом применяются устройства с конечным давлением 7,5-10 атм. Поэтому иногда термин «Компрессоры высокого давления» применяется для компрессоров свыше 10 атм.

     

    3. По принципу действия

    По принципу сжатия воздуха компрессорные установки делятся на:
    – динамические
    – объемные.

    В машинах динамического действия вращающееся рабочее колесо с лопатками разгоняет поток газа, который после тормозится в диффузоре, что приводит к увеличению давления. К динамическому типу относятся в первую очередь центробежные турбокомпрессоры. Центробежные компрессоры достаточно компактны, малошумны, имеют хороший кпд (только в узком диапазоне производительности), но имеют плохие регулировочные свойства. Мощность центробежных агрегатов начинается от сотен киловатт.

    В устройствах объёмного действия давление нагнетается в результате изменения объёма рабочей камеры. Объемные компрессоры по конструктивной схеме в свою очередь делятся на:

    • винтовые
    • поршневые
    • спиральные
    • роторно-пластинчатые
    • мембранные.

    Также к этому типу относятся роторные воздуходувки типа Рутс.

    Наибольшее применение в машинах объемного принципа действия нашли поршневые и винтовые компрессоры.

    Поршневые компрессоры

    Поршневой воздушный компрессор изобретен в середине XVII века, и с тех пор активно эксплуатируется в различных отраслях промышленности. Принцип действия поршневых компрессоров основан на всасывании и нагнетании воздуха посредством поступательного движения поршня. Всасывание и нагнетание контролируется обратными клапанами. Использование нескольких ступеней сжатия с промежуточным охлаждением позволяет достигать высокого давления воздуха (газа),что является одним из преимуществ. Также данные устройства позволяют осуществлять сжатие технических газов. Диапазон поршневых компрессоров начинается с дешевых бытовых воздушных компрессоров и заканчивается огромными промышленными агрегатами мощностью в несколько мегаватт.

    Винтовые компрессоры

    Винтовой воздушный компрессор изобретен сравнительно недавно (запатентован в XX веке). Процесс сжатия происходит внутри камеры, образующейся между поверхностями вращающихся в противоположную сторону винтов (роторов) и стенками корпуса винтового блока. Камеры сжатия по мере вращения винтов постепенно уменьшается.  Внутри винтового блока ведущий винт передает вращение ведомому. Масло, поступающее в винтовой блок, позволяет винтам избежать прямого контакта и, соответственно, страхует от повреждения. Помимо смазки, масло также уплотняет зазоры в винтовом блоке и осуществляет функцию теплоотвода, что является существенным, так как большая часть энергии сжатия превращается в тепло. Данная технология сжатия получила широкое распространение в промышленных агрегатах от нескольких киловатт до нескольких сотен киловатт.

    Преимущества:

    • низкий уровень вибрации и шума
    • большой срок эксплуатации
    • хорошие возможности регулирования производительности при относительно низких затратах энергии
    • относительно невысокая стоимость владения
    • возможность эксплуатации при непрерывной долговременной нагрузке
    • простота технического обслуживания
    • относительно небольшие  габариты и масса и др.

    Элемент сжатия в роторно-пластинчатых компрессорах состоит из ротора с пазами, в которых свободно перемещаются пластины, статора и боковых крышек. Благодаря несоосности осей ротора и статора, объем камер сжатия, образуемых соседними пластинами, уменьшается.

    В спиральных компрессорах камеры сжатия образуются между неподвижным и подвижным спиральными элементами.

    Мембранные компрессоры не имеют подвижных частей в камере сжатия, объем меняется благодаря прогибу мембраны. Мембранные компрессоры способны сжимать очень агрессивные газы, а также достигать сверхвысоких давлений.

    Как видно, в диапазоне, где обычно работает промышленный компрессор, у заказчика есть выбор купить компрессор поршневой, винтовой, роторно-пластинчатый и др. Каждая конструктивная схема обладает своими особенностями, которые надо учесть.

    Компрессионные элементы различных типов компрессоров

    Поршневая 
    голова
     

    Винтовой 
    блок

    Блок подвижных и неподвижных спиралей

    Ротор c пластинами 
    и статор

       

     

    Мембранный 
    блок

    Турбина

    Блок с трехкулачковыми роторами

     

     

    4. Маслосмазываемые и безмасляные 

    Компрессор воздушный (реже газовый), в котором  сжимаемый воздух (газ) не контактирует со смазочным маслом, тем самым им не загрязняясь, называют безмасляным. В противоположность, остальные компрессоры называются маслосмазываемые или маслозаполненные.

    В пищевой и фармацевтической промышленности кроме пневмоавтоматики специальные безмасляные воздушные компрессоры используются в ситуациях, где присутствует (штатно или аварийно) контакт воздуха с продуктом: барботаж жидких компонентов, транспорт порошкообразных компонентов или продукта. Современный стандарт GMP (Good Manufacturing Practice) требует использования на фармацевтических предприятиях только безмасляного воздуха.

    Еще более критично использование безмасляных воздушных компрессоров в медицине, где сжатый воздух приводит в действии стоматологическое и хирургическое оборудование.

    На поршневые безмасляные агрегаты устанавливаются цилиндры, способные работать на сухом ходу (без подачи смазочного масла). Так же необходимым элементом поршневого безмасляного компрессора является фонарь – открытая камера, исключающая заброс масла по штоку из камеры кривошипно-шатунного механизма в камеру сжатия. Безмасляные поршневые промышленные компрессоры дороже маслосмаазываемых поршневых промышленных компрессоров. Но если сравнивать в категории мелких бытовых поршневых компрессоров, то часто здесь безмасляные поршневые компрессоры дешевле маслосмазываемых, т.к. «безмасляность» вызвана удешевлением конструкции в ущерб ресурсу.

    Конструкции безмасляных винтовых промышленных компрессоров заметно отличаются от маслосмазываемых. Безмасляные бывают двух типов:  сухого сжатия и с водяным впрыском.

    В безмасляных винтовых компрессорах сухого сжатия масло в винтовой блок не поступает, поэтому передача вращения осуществляется через шестеренчатый привод, осуществляющий одновременное вращение роторов. Вследствие того, что тепло не отводится, степень сжатия не может быть высокой (3,5 бар). Для увеличения давления используют промежуточный охладитель и вторую ступень сжатия, что позволяет достичь 10 бар. Специальный шестеренчатый привод и двухступенчатое сжатие существенно влияют на цену, которая значительно превышает стоимость маслозаполненных устройств. В безмасляных винтовых компрессорах с водяным впрыском камеры сжатия образуются между единственным ротором, двумя уплотняющими колесами блока и корпусом блока. Благодаря отличному теплоотводу у этих компрессоров одна степень сжатия и даже отсутствует концевой охладитель.

    Турбокомпрессоры, мембранные и спиральные промышленные компрессоры всегда являются безмасляными.

    Выбор между масляным и безмасляным компрессором неоднозначен. Иногда, вполне достаточно  купить компрессор маслосмазываемый вместо изначально запрашиваемого безмасляного, но обязательно снабдив его комплектом дополнительных фильтров для очистки от масла.

    Получение безмаслянного воздуха в устройствах различных типов

     

    5. По компоновке

    Часто именно соответствие компоновки является решающим аргументом для того, чтобы заказать компрессор того или иного типа. Газовые или воздушные компрессоры по компоновке можно условно разделить на:

    5.1. По степени автономности
    – стационарные – обычно это промышленные агрегаты с электроприводом
    – передвижные на шасси, буксируемые и возимые – обычно дизельные установки
    – автономные компрессорные станции – обычно это промышленные компрессоры с системой подготовки воздуха, смонтированные в контейнере.

    5.2. По типу привода
    – от электродвигателя (электрические воздушные компрессоры 380в или 220в)
    – от двигателя внутреннего сгорания
    – от гидравлических систем
    – от вала отбора мощности и др.

    5.3. По числу ступеней сжатия:
    – одноступенчатые
    – двухступенчатые
    – многоступенчатые.

    5.4. По применяемой системе охлаждения:
    – воздушного охлаждения
    – жидкостного охлаждения.

    5.5. По комплектации: с ресивером, с осушителем, со с встроенными фильтрами, с электронным контроллером, с частотным приводом и пр.

    Различные варианты исполнения

     

     Чтобы увидеть товары – перейдите на страницу нашего каталога >>>


    rutector.ru

    Вам может понравится

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *