Принцип работы гидравлического разделителя: Гидравлическая стрелка – для чего нужна и как работает

Содержание

Разделитель гидравлический: описание, назначение | Отопление дома и квартиры

 

Вступление

Если вас интересует, и вы ищете информацию про разделитель гидравлический, назначение, принцип работы разделителя, то эта статья для вас.

Разделитель гидравлический – назначение

Разделитель гидравлический он же анулоид, он же гидрострелка, он же термостатический разделитель предназначен для гидравлического разделения двух контуров движения теплоносителя в системах отопления.   

Сразу пример. В доме установлен котел отопления с расходом 30 л/мин. Расход же системы отопления рассчитан, как 100 л/мин. Чтобы  не «напрягать» котел до 100 литров, создают две петли для котла и для отопления, которые разделяют анулоидом (разделителем).

Устройство классического разделителя отопительных контуров

В устройстве гидравлического разделителя нет ничего сложного. По сути, это цилиндрическая или прямоугольная камера с подходящими к ней четырьмя трубами.

Горячий теплоноситель двигается по верхним трубам, остывший теплоноситель по нижним трубам.

Принцип работы гидравлического разделителя

В гидравлическом разделителе происходят два физических процесса из двух разделов физики. Гидравлика помогает понять, как движется вода в разделителе, а теплотехника, позволяет понять, как в разделителе смешиваются холодный и горячий потоки.

Начнем с гидравлики. Имеем два контура движения теплоносителя. Контур К1 (контур котла отопления) и контур К2 (контур системы отопления) для обеспечения движения теплоносителя в каждый контур ставится циркуляционный насос. Принято ставить насосы на холодные ветки контуров. Хотя установка насосов на горячие ветки увеличивает скорость движения теплоносителя из-за малой вязкости горячей жидкости.

Итак, в гидрострелке двигаются два динамически независимых потока контуров К1 и К2. Скорость движения этих потоков не должна превышать 0,1 м/сек. Поясню почему.

Маленькая скорость движения теплоносителя в гидравлическом разделителе нужна по четырем причинам:

  1. При малой скорости движения жидкости в разделителе осаждаются песок, шлам и другой водяной мусор.
  2.  При малой скорости холодный теплоноситель движется вниз, а горячий поднимается вверх. Такая естественная циркуляция позволяет создавать температурные градиенты в петлях отопления. Можно получить контур отопления с повышенной или пониженной температурой. Обычно пониженную температуру создают  разделителем в системе теплый пол, а повышенную в контуре косвенного нагрева с бойлером.
  3. Из гидрострелки можно сделать смесительный узел. Это полезно если в доме один отопительный контур. Уменьшив диаметр разделителя, вы увеличите скорость движения воды и температуры обоих петель (котла и отопления) выровняются. Это значительно экономит материал и снижает расходы.
  4.  Маленькая скорость воды в разделителе, выводит из воды воздух, который не нужен в системе отопления. Воздух выводится через автоматический воздушник.

Промежуточный итог

Разделитель гидравлический позволяет разделить два контура теплоносителя различного расхода. Циркуляционные насосы в обоих контурах и диаметр разделителя,  выбираются такой мощности, чтобы скорость движения теплоносителя в разделителе не превышала 0, 1 м/сек.     

Гидравлический разделитель – как работает

Разделитель разделяет систему отопления как минимум на две части. Одна петля относится к котлу отопления, вторая петля объединяет разводку отопления дома. В каждой петле установлен циркуляционный насос. 

Как работает разделитель

Имеем две петли (контура) отопления. Петля К1 с насосом N1 и петля К2 с насосом N2. Расход в петле К1 равен W1, а расход в петле К2 равен W2.

  1. Если W1=W2, то в разделителе контура смешиваются, образуя единую систему отопления, без разделения по контурам;
  2. Если W1<W2, то теплоноситель в разделителе движется снизу на вверх;
  3. Если W1>W2, то теплоноситель двигается сверху вниз.   

Насос N1 создает расход в первом петле равный W1. Насос N2 создает расход во второй петле равный W2.

Где используется гидравлический разделитель

Разделитель гидравлический не является обязательным устройством для любой системы отопления. Его применение нужно в больших домах (от 200 метров) и с несколькими контурами отопления и ГВС. Из-за больших колебаний температуры в системе,  разделитель необходим во всех системах с отопительным котлом, работающим на древесине или пеллетах.

Размеры гидравлического разделителя

Высота гидравлического разделителя может быть любой. Зависит от места под монтаж. Минимальный диаметр гидравлического разделителя определяется по формуле:

Согласно формуле все очень просто:

  • Скорость движения жидкости в разделителе: 0,1м/с;
  • Расход W это разница между контуром отопительного котла и контуром системы отопления. Считаем расходы по максимальным расходам насосов согласно паспарту.

Пример.

  • Расход контура котла 30 л/мин;
  • Расход контура отопления 80 л/мин.
  • Разница расходов W: 80-30=50 л/мин.
  • Пи = 3,14;
  • Скорость V=0,1 метр\секунду.

Считаем:

50 литров÷60 секунд=0,833 л/ сек;

  • 1 литр=0,001 м3;
  • 0,833 литра/сек=0,000833 м. куб/сек;
  • D=0,102 мерта=102 мм.

Итак, получили, что диаметр разделителя не должен быть менее 102 мм.

Расчет гидравлического разделителя

Есть два типа разделителей, на фото они хорошо видны. Но расчет для них один.

Как видите, все расчеты привязаны к строгому соответствию конструкции разделителя к значению диаметра d.

Другие формы гидравлических разделителей

Рассмотренные разделители отопительной системы являются классическими, и они наиболее часто монтируются в системах. Но гидравлики утверждают, что и ниже приведенные разделители имеют право на существования.

Повороты в монтаже

При монтаже разделителей, да и все отопительной системы в целом, есть золотое правило: чем меньше поворотов, тем лучше. В завершении приведу пример, как избавится от лишних «коленцах» в монтаже гидравлического разделителя.

©Obotoplenii. ru

Другие статьи раздела Монтаж отопления

 

 

Гидравлический разделитель – Энциклопедия отопления

Гидравлический разделитель это гидроколлектор, гидрострелка, термогидравлический разделитель, анулоид. Наименований у данного типа изделий много. Причина в широте профессионального жаргона и маркетинге. Производители придумывают десятки названий, но суть, то есть принцип работы и конструкция схожи, за исключением некоторых деталей. Чтобы не путаться, возьмём классическую трактовку. И поговорим сегодня о гидравлическом разделителе. Для чего нужен, как работает, из каких материалов изготавливается и других важных характеристиках.

 

 

Гидравлический разделитель и его функции

 

Гидравлический разделитель используют в котельных частных домов. Именно автономное отопление нуждается в постоянном контроле. Конечно, за центральными системами следят не менее пристально. Однако оценить, а главное увидеть изменения жители многоквартирных домов едва ли могут. В собственном доме доступ в котельную открыт постоянно, и только от нас зависит, какими устройствами её наполнить.

 

Гидравлический разделитель приобретают после того, как выбрали котел и рассчитали мощность. Так вы сможете быстрее подыскать подходящую модель, если покупаете, или произвести расчёты, если делаете гидрострелку своими руками. От мощности теплогенератора зависят габаритные и соединительные размеры, а также пропускная способность. С учётом перечисленного найти подходящее изделие не сложно. 

 

Товары этой категории

 

Гидрострелка (Гидравлический разделитель) Gidruss GRSS-100-32 (до 100 кВт, G 1 1/4”) нерж. сталь AISI 304

12900 р.

Подробнее

Гидрострелка (Гидравлический разделитель) Gidruss GRSS-40-20 (40 кВт, G 1”) нерж.

сталь AISI 304

7900 р.

Подробнее

Гидрострелка (Гидравлический разделитель) Gidruss GRSS-60-25 (60 кВт, G 1”) нерж. сталь AISI 304

9500 р.

Подробнее

Гидрострелка (Термо-гидравлический разделитель) Gidruss TGR-40-20х2 (до 40 кВт, 2 контура G 3/4″)

5400 р.

Подробнее

 

Главной задачей гидравлического разделителя является выравнивание температуры и давления в многоконтурной системе отопления. Для наглядности, рекомендуем просмотреть следующее видео. 

 

Без звука, зато понятно, что куда течёт и вытекает

 

Или вот 

 

Со словами и звуком

 

Принцип работы гидрострелки основан на законах термодинамики и гидравлики. В системе постоянно циркулирует теплоноситель. Путь начинается от котла и дальше по трубам, они в свою очередь образуют замкнутую цепь, и таких цепочек может быть две, три, четыре. Внутри каждой жидкость транспортируется с определённой скоростью и объёме. Если в одном месте прибыло, то в другом убыло. Во избежание переизбытка или недостатка теплоносителя, потоки нужно разделять. Для этого котел соединяют с гидрострелкой. Она связывает контура и делает их независимыми. При этом передача тепла осуществляется непрерывно. 

 

Три важных задачи гидравлических разделителей

 

1. Корректируют расход теплоносителя. Например, ваш котёл берёт 40 литров в минуту, а система съедает все 120. С гидрострелкой вам не придётся ставить дополнительный насос и разгонять котловой контур до “аппетитов” остальных устройств обвязки. Вы уложитесь в бюджет, счет за электроэнергию не испугает размером сумм.

2. Близко и далеко. Гидравлический разделитель исключает сообщение контуров. Тёплые полы, радиатор, бойлер косвенного нагрева можно включать и выключать, не теряя баланса. 

3. Без примесей. При наличии отводных патрубков из системы можно удалять шлам и примеси, что существенно увеличивает срок службы котельного оборудования.

 

Устройство гидравлических разделителей

 

Стандартный гидравлический разделитель имеет полую конструкцию, прямоугольную или круглую. К ней приварены патрубки подачи и обратки. 

 

Гидрострелка Гидрусс из нержавеющей стали на 2 контура

 

Гидрострелка в разрезе

 

Внутри гидравлические разделители обычно пустые. Поверхность ровная и гладкая гарантирует высокую пропускную способность. Данная характеристика определяется мощностью. Чем выше кВт, тем больше теплоносителя прогонит. В номенклатуре обозначается V или Q.

 

Гидравлические разделители Gidruss GR-40-20 (Q 1,7 м3/с) GR-100-32 (Q 4,3 м3/с) GR-250-50 (Q 10,8 м3/с)

 

 

Материалы для изготовления гидрострелки

 

Гидравлические разделители делают из металлических сплавов и полипропилена. Последний вариант дешевый, но небезопасный. По качеству проигрывает стали, да и брак в этом сегменте сырья встречается значительно чаще. Если вы выбрали полипропиленовую стрелку, советуем приготовиться к неожиданностям. Лучше один раз взять брендовую вещь, чем совершенствовать самодел. Это справедливо и для стальных гидрострелок. Самыми долговечными считаются конструкции из нержавеющей стали.

 

 Профильная труба AISI 304, толщина 4 мм

 

Нержавейка прекрасно переносит повышенные температуры, не боится влаги и окисления. Специальная термообработка делает её невосприимчивой к ржавчине. По словам проектировщиков, гидрострелка из нержавейки не имеет срока годности. Вечный металл для вечного пользования.

 

Обычная сталь также востребована. Цена ниже, сопротивляемость коррозии тоже. Хотя отметим, что своё такая стрелка отрабатывает.

 

 

 

Гидрострелка из конструкционной стали 09Г2С

 

Полимерное окрашивание предупреждает окисление и разрушение структуры. Металл сохранит цельность несколько лет. При правильной эксплуатации и того дольше.

 

 

Гидравлические разделители в системе отопления

 

Работу гидравлических разделителей демонстрируют сотни схем и чертежей. Мы рассмотрим такую

 

 

 

Насосы функционируют на двух контурах, обычно на обратке. Некоторые ставят и на подачу, объясняя это низкой вязкостью теплоносителя. Так жидкость циркулирует быстрее.

 

Первый насос отвечает за подающий контур, второй за обратный. Гидрострелка смешивает воду. При равном расходе в системе поддерживается баланс. Когда объём первого контура больше, теплоноситель идёт сверху вниз и наоборот. Направление строго вертикально. Шлам, песок осядет в одном месте, удалить можно через сливной кран. Скопления воздуха через специальный отводчик. 

 

 

Когда необходим гидравлический разделитель 

 

Гидрострелку монтируют в частном доме с многоконтурным отоплением. Это разветвлённая система с обвязкой на два и более устройств. Благодаря патрубкам формируются подводки с фиксированной температурой и давлением.

 

Что в итоге

 

Покупка гидравлического разделителя решит следующие задачи 

  • Предупредит дисбаланс температур и давления в контурах.
  • Защитит котёл от гидравлического удара.
  • Разделит и обеспечит подмес теплоносителя.
  • Не даст скопиться шламу и воздуху в трубопроводах системы

Гидравлическая стрелка: устройство и принцип работы

Гидравлические разделители
Функция гидравлических сепараторов, заключается в том, чтобы разделить (т. е. сделать независимыми) различные контуры системы, что позволяет предотвратить возникновение интерференций и взаимных помех.
Чтобы определить преимущества использования и рабочие характеристики гидравлических разделителей, мы :
1. Проанализируем, как взаимодействуют между собой контуры в традиционных системах.
2. Определим критерии для появления интерференций
3. Проанализируем нарушения работы, вызванные интерференциями.
4. И рассмотрим, как гидравлические сепараторы предотвращают возникновение интерференции между контурами.

 

Интерференции между контурами

Для определения природы интерференций проанализируем нижеприведенную систему и рассмотрим, что происходит при поочередном включении насосов системы. Обратим внимание на изменение перепада давления между коллектором подачи и коллектором обратки (ΔP) без учета абсолютного давления в системе.
Когда все насосы выключены
Если не учитывать явление естественной циркуляции, то в этом положении жидкость в системе остается неподвижной, а ΔP равна нулю.

 

С целью разделения и оптимизации потоков теплоносителя в системах с несколькими отопительными контурами или котлами используется гидравлическая стрелка. Она позволяет избежать их противодействия друг другу, а также регулировать работу конкретного элемента без необходимости отключения или перенастройки всей системы. Рассмотрим, как устроен гидравлический разделитель, а также каким образом осуществляется его работа.

 

Включение насоса №1

Приводит в движение жидкость своего контура и заставляет увеличиваться ΔP между коллекторами.
Данное увеличение равно напору Δp1, которое насос №1 создает для прохода жидкости от коллектора обратки к коллектору подачи: иными словами, через контур котла. Тот же ΔP сохраняется, по логике, также на соединениях контуров 2 и 3 при выключенных на них циркуляционных насосах. Причем в коллекторе обратки давление выше, чем в коллекторе подачи, что может привести к появлению паразитной циркуляции в контурах 2 и 3, причем в направлении, противоположном предусмотренному.

Включение насоса №2

Чтобы привести в движение жидкость своего контура, насос №2 должен сначала преодолеть противоположное Δp1, нагнетаемое насосом №1. Более того включение насоса №2 приведет к последующему увеличению ΔP между коллекторами подачи и обратки, поскольку увеличится расход теплоносителя через контур котла, и поэтому потребуется приложить больший напор для продвижения жидкости через контур.

Включение насоса №3

Чтобы запустить циркуляцию в своем контуре насос №3 должен преодолеть сопротивление противоположного Δp2, нагнетаемого насосами №1 и №2. Требуемое усилие может быть настолько большим, что насос будет не в состоянии обеспечить необходимый расход теплоносителя через свой контур. Кроме того включение насоса 3 приводит, к последующему увеличению Δp3 по причинам, указанным
выше.

Появление интерференций и пороговые значения ΔР

На рассмотренном примере видно, что поэтапное включение насосов увеличивает ΔP между коллек-
торами подачи и обратки, что приводит к появлению взаимных помех (т. е. интерференции) между на-
сосами разных контуров. Невозможно точно установить значения, ниже которых можно считать ΔP приемлемым: то есть значения ΔP, ниже которых интерференция между контурами не вызывает очевидных сбоев в работе системы. Эти значения зависят от большого количества переменных величин. Однако, в большинстве случаев допустимым ΔP принимают значения 0,4÷0,5 м вод.ст. Более высокие значения (а не редко можно
обнаружить системы с ΔP 1,5÷2,0 м вод.ст.) могут приводить к серьезным проблемам в работе системы.

Проблемы, связанные со слишком высокими значениями ΔP

Основные проблемы можно классифицировать следующим образом:
1. Насосам не удается обеспечить требуемый расход
Это серьезная дисфункция, которая чаще всего возникает в системах, в которых установлены как большие, так и слабые насосы. В таких системах, небольшим насосам не удается «справиться» потому, что им необходимо затрачивать слишком много энергии для того, чтобы преодолеть противодавление более мощных насосов. Увеличенное сопротивление системы приводит к падению расхода, и как следствие, недостаточному снабжению контура теплоносителем.
2. Насосы часто ломаются
Это проблема обусловлена тем, что интерференция между контурами вынуждает насосы работать вне их рабочего поля, что является причиной их частого выхода из строя.
3. Горячие отопительные приборы даже при выключенном насосе
Как рассматривалось выше, данная проблема вызвана паразитной циркуляцией в контуре с выключенным насосом, создаванной включенными насосами других контуров. Необходимо заметить, что подобные явления могут возникать также при естественной циркуляции или при циркуляции в перепусках при закрытых регулирующих клапанах. Это явление легко определить по характерным признакам: у радиаторов появляются неодинаково
горячие участки поверхности, а их патрубки на обратке горячее, чем патрубки на подаче.
Вышеперечисленные отклонения и проблемы позволяют нам утверждать, что системы с высоким ΔP
между коллекторами подачи и обратки (что почти всегда наблюдается в средних и больших системах)
не могут работать с соблюдением расчетных (проектных) характеристик.

Гидравлические сепараторы

Гидравлический сепаратор создает зону с низким гидравлическим сопротивлением, которая позволяет сделать гидравлически независимыми первичный и вторичный контуры; поток в одном контуре не образует поток в другом, если гидравлическое сопротивление сепаратора является незначительным. В этом случае, расход, который проходит через соответствующие контуры, зависит исключительно от характеристик насосов и их контуров, предотвращая взаимное влияние насосов разных контуров. Поэтому, при использовании гидравлического разделителя, насосы выдают необходимые характеристики, теплоноситель будет циркулировать, только когда включен соответствующий насос, производительность насоса будет удовлетворять требования контура по расходу теплоносителя на данный момент времени. Когда насосы вторичного контура выключаются, нет циркуляции в соответствующих контурах, то весь расход, нагнетаемый насосом первичного контура, перепускается через сепаратор. Используя гидравлический разделитель, можно иметь первичный котловой контур с постоянным расходом и вторичный контур потребителей с изменяющимися расходами.

Определение типоразмера: Метод максимального расхода

Гидравлический разделитель рассчитывается исходя из значения максимального рекомендованного расхода в точке установки разделителя. Иными словами значение расхода для разделителя должно быть больше или равно большему из суммы расходов первичного контура (Gперв.) и суммы расходов вторичного контура (Gвторичн.)


В гидравлических сепараторах могут возникать значительное смешение.
В некоторых системах «горячий» теплоноситель, исходящий от котла, остывает от обратки контура потребителей и контуры потребителей получают «охлажденную» подачу. В этом случае, отопительные приборы подбираются с учетом такого охлаждения, а не на основе рабочей температуры подачи котла.В других случаях «холодная» обратка потребителей подогревается «горячей» подачей котла, и в котел поступает «подогретая» обратка. Такие ситемы используются для предотвращения явлений конденсации в самих котлах и в патрубках отводных газов, что особенно
полезно для котлов на биомассе.
Далее проанализируем изменения температуры на патрубках гидравлического разделителя в зависи-
мости от изменения расходов между первичным и вторичным контурами :

1.Расход первичного контура равен расходу вторичного контура
Это типичная ситуация в небольших системах, учитывая, что в них насосы (или насос) первичного контура обычно подбираются с расходами равными расходам вторичного контура. В этом случае можно считать, что температуры первичного и вторичного контуров оказываются в таком соотношении:

T1 = T3
T2 = T4
Поэтому, это тот случай, при котором сепаратор не изменяет температуры ни подачи ни обратки. Как следствие, можно подобрать отопительные приборы на основе максимальной рабочей температуры, поступающей из теплогенератора.

2.Расход первичного контура меньше расхода вторичного контура
Эта ситуация встречается в системах с одним или несколькими настенными котлами,когда их внутренние насосы слишком слабы, чтобы доставлять отопительных приборам требуемую тепловую мощность. Такую же ситуацию, можно обнаружить в системах с удаленными котельными, когда нужно поддерживать низким расход первичного контура для того, чтобы сэкономить на эксплуатации системы в целом и насосов в частности.
В рассматриваемом случае температуры первичного и вторично-
го контуров соотносятся следующим образом:

T1 > T3
T2 = T4

Поэтому температура на подаче вторичного контура (к потребителям) оказывается ниже температу-
ры на подаче первичного контура (от котла). Для расчета максимальной температуры теплоносителя,
направляемой к потребителям (T3), необходимо чтобы были известны значения следующих величин:
• T1 – температура подачи первичного контура [°C]
• Q – тепловая мощность системы [Ккал/ч]
• Gперв. – расход первичного контура [м3/ч]
• Gвтор. – расход вторичного контура [м3/ч]
Далее можно продолжать следующим образом:
1. Сначала рассчитываются перепады температуры первичного и вторичного контуров:
ΔTперв. = Q / Gперв. (1a),
ΔTвтор. = Q / Gвтор. (1b)
2. На основании перепада температуры первичного контура определяется температура обратки первичного контура:
T2 = T1 – ΔTперв. (2)
3. Учитывая, что в рассматриваемом случае, температура обратки первичного контура равна температуре обратки вторичного контура, можно рассчитать требуемую температуру, по выражению:
T3 = T4 + ΔTвтор. = T2 +ΔTвтор. (3)
Это и есть максимальная рабочая температура, на основе которой подбираются отопительные приборы системы.

3. Расход первичного контура больше расхода вторичного контура

Ситуации, когда расход первичного контура превышает расход вторичного контура, чаще всего встречаются в системах на
низкой температуре. Повышая температуру обратки в котел, мы избегаем проблем, связанных с выпадением конденсата из дымо-
вых газов. В рассматриваемом случае температуры первичного и вторичного контуров соотносятся следующим образом:
T1 = T3
T2 > T4
Поэтому температура обратки первичного контура (температура обратки в котел) оказывается выше температуры обратки вторичного контура.
Для расчета максимальной температуры теплоносителя на обратке в котел (T2), необходимо знать
значения следующих величин:
• T1 – температура подачи первичного контура [°C]
• Gперв. – расход первичного контура м3/ч]
• Q – тепловая мощность системы [Ккал/ч]
Далее рассчитаем:
1. Сначала перепад температуры первичного контура: ΔTперв. = Q / Gперв. (4)
2. На основании данного значения определяется температура обратки самого первичного контура:
T2 = T1 – ΔTперв. (5)
Если нужно определить расход первичного контура, (иными словами расход котлового насоса) необ-
ходимый для обеспечения температуры обратки не ниже порогового значения (T2 ), предотвращающего выпадение конденсата, нужно определить следующие величины:
• T1 – температуру подачи первичного контура [°C]
• T2 – температуру обратки первичного контура [°C]
• Q – тепловую мощность системы [Ккал/ч]
Далее определяем:
1. Перепад температур первичного контура: ΔTперв. = T1 – T2 (6)
2. На основании этого значения, определяется требуемый расход котлового насоса:
Gперв. = Q / ΔTперв


Дано:
B. Характеристики контура радиаторов:
T1 = 80°C (температура подачи котлов). QB = 6.000 Ккал/ч (тепловая мощность)
Характеристики единичного настенного котла: GB = 600 л/ч (расход насоса)
Qк = 27.000 Ккал/ч C. Характеристики контура приточной вентиляции:
Gк = 1.600 л/ч (максимальный расход насоса) QC = 22.000 Ккал/ч (тепловая мощность)
A. Характеристики контура водоподогревателя: GC = 4.400 л/ч (расход насоса)
QA = 22.000 Ккал/ч (тепловая мощность) D. Характеристики контура фенкойлов:
GA = 2.200 л/ч (расход насоса ) QD = 27.000 Ккал/ч (тепловая мощность)
GD = 5.400 л/ч (расход насоса)

Решение:
Для начала рассчитывается общая тепловая мощность потребителей, расход первичного контура и расход
вторичного контура. Далее ведет расчеты согласно раздела ‘‘расход первичного контура ниже расхода во вторич-
ном контуре’’.
1. Общая тепловая мощность потребителей:
Q = QA + QB + Qк+ QD = 77.000 Ккал/ч
2. Расход первичного контура.
Предположим, что соединительный контур между настенными котлами и сепаратором выполнен с низким
гидравлическим сопротивлением. Следовательно, расход первичного контура можно принять за максимальный,
обеспечиваемый внутренними насосами настенных котлов:
Gперв. = 3 x 1.600 = 4.800 л/ч
3. Расход вторичного контура.
Он определяется как сумма расходов насосов потребителей
Gвтор.= GA + GB + Gк + GD = 12.600 л/ч
Важно: на основании этого расхода (поскольку он выше расхода первичного контура) подбирается
гидравлический сепаратор с необходимой пропускной способностью.
4. Перепады температуры первичного и вторичного контуров рассчитываются по формулам (1a) и (1b):
ΔTперв. = Q/Gперв. = 77.000/4.800 = 16°C
ΔTвтор. = Q/Gвтор. = 77.000/12.600 = 6°C
5. Температура обратки первичного контура определяется по формуле (2):
T2 = T1 – ΔTперв. = 80 – 16 = 64°C
6. Температура подачи вторичного контура пределяется по формуле (3):
T3 = T4 + ΔTвтор. = T2 + ΔTвтор.
T3 = 64 + 6 = 70°C

Это и есть та максимальная рабочая температура, на основании которой необходимо подбирать змеевик водоподогревателя, радиаторы, фэнкойлы и теплообменник приточной установки.

Многофункцианальный гидравлический сепаратор серии 549…
Многофункциональный гидравлический сепаратор, помимо того, что разделяет гидравлические контуры, включает в себя и другие функциональные компоненты, каждый из которых помогает решать проблемы типичные для контуров систем отопления и кондиционирования.
Устройство разработано для выполнения функций:
• Гидравлического разделения
Для того,чтобы сделать независимыми первичные и вторичные гидравлические контуры.
• Деаэрации
Использует комбинированное действие нескольких физических процессов: расширение сечения снижает скорость потока, сетка из технополимера создает вихревые потоки, которые благоприятствуют высвобождению микропузырьков. Пузырьки, сливаясь между собой, увеличиваются в объёме, поднимается в верхнюю часть и удаляются поплавковым автоматическим воздухоотводчиком.
• Дешламации
Дешламатор отсорбирует и собирает частицы шлама, присутствующие в контурах, благодаря их столкновению с поверхностью внутреннего элемента.
• Удалению магнитных частиц
Специальная запатентованная магнитная система притягивает железомагнитный шлам содержащийся в воде: железомагнитные частицы удерживаются в зоне сбора, во избежание их возможного возвращения в циркуляцию.

Устройство гидравлической стрелки

Гидравлическая стрелка для систем отопления представляет собой полую трубу, с двух сторон которой имеются патрубки для подключения контуров. Она может изготавливаться из следующих материалов:

  • металл – стальной или медный гидравлический разделитель котла используется в промышленных и домашних системах отопления, характеризующихся высокими (свыше 70°С) температурами и давлением теплоносителя;
  • пластик – вы можете купить в Москве гидравлическую стрелку для применения в системах мощностью 13-35 кВт, температура теплоносителей в которых не превышает 70°С.

Гидравлический разделитель для отопления устроен достаточно просто. Ее основу составляет металлическая или пластиковая труба, имеющая по обеим сторонам выходы для подключения подающего трубопровода и контура отопления. Внутри гидрострелки могут быть установлены разграничивающие пластины, шлакосборник, выпрямитель потока, воздухоотводчик и другие элементы, обеспечивающие нормальную циркуляцию рабочей среды. В зависимости от сложности устройства и функциональности данной арматуры варьируется цена на гидравлическую стрелку.

Принцип работы

Прежде, чем купить гидравлический разделитель, следует иметь представление о принципах его работы. В основе нее лежит выравнивание параметров расхода теплоносителя в первичном контуре котла и трубопроводе системы отопления. При этом различаются три режима работы теплоносителя:

  • расход теплоносителя в контурах системы превышает аналогичный показатель у котла, поэтому в гидрострелке образуется восходящий поток;
  • в котле и отопительном контуре теплоноситель расходуются одинаково, поэтому в гидрострелке устанавливается равновесие;
  • в котле теплоноситель расходуется в большей степени, чем в отопительном контуре, что вызывает нисходящую циркуляцию рабочей среды в гидрострелке.

Данная трубопроводная арматура может быть спроектирована с учетом подключения к нескольким отопительным контурам и котлам. В зависимости от их количества цена на гидравлический разделитель может существенно изменяться.

Гидравлический разделитель стрелка, принцип работы

“Гидрострелка” – служит для гидравлического разделения потоков. То есть гидравлический разделитель является неким каналом между контурами и делает контура динамически независимыми при передачи движения теплоностителя. Но при этом хорошо передает тепло от одного контура другому. Поэтому официальное название “гидрострелки” – гидравлический разделитель.

Назначение гидрострелки для систем отопления :

Первое назначение. Получить при малом расходе теплоносителя – большой расход во втором искусственно-созданном контуре. То есть, например, у Вас имеется котёл с расходом – 40,0 литров в минуту /2,4 м3/час/, а система отопления получилась в два-три раза больше по расходу – это к примеру, расход = 120,0 литров в минуту /7,2 м3/час/. Первым контуром будет являться контур котла, а вторым контуром будет – система развязки отопления. Экономически не целесообразно разгонять контур котла – до расхода больше чем это было предусмотрено производителем котла. Иначе увеличится гидравлическое сопротивление, которое либо не даст необходимый расход, либо увеличит нагрузку на движение жидкости, что приведет – к дополнительным расходом насоса на электроэнергию.

Второе назначение. Исключить гидродинамическое влияние, на включение и отключение определенных контуров систем отопления на общий гидродинамический баланс всей системы отопления. Например, если у Вас имеются – Тёплые полы, радиаторное отопление и контур горячего водоснабжения /бойлер – водонагреватель косвенного нагрева/, то имеет смысл разделить эти потоки на отдельные контура. Чтобы они друг на друга не влияли. Схемы рассмотрим ниже.

“Гидрострелка”– является связующим звеном двух отдельных контуров по передаче тепла и полностью исключает динамическое влияние двух контуров между собой.

Система отопления современного жилого дома многофункциональна. В функции системы могут входить: приготовление горячей воды, подогрев бассейна, тёплые полы, радиаторное отопление, подогрев воздуха в системах вентиляции и т.д. И все эти функции должны осуществляться независимо друг от друга по времени, расходу теплоносителя и разнице давления производимому насосами каждой отдельной подсистемы.

Проектирование инженерных систем
Тюмень +7-932-2000-535
Исправляем ситуацию

Например, для быстрого приготовления горячей воды требуется подать на теплообменник максимальную мощность /максимальные параметры температуры и расхода теплоносителя/ в тоже время теплые полы наоборот требуют пониженной мощности и всё это может произойти в один интервал времени.

Так как подсистемы выполняющие разные функции работают из одного источника /теплоноситель поступает из одного источника/ то по правилам гидравлики они становятся зависимыми по показателям разницы давления, расхода и температуры теплоносителя. В результате в общей системе и подсистемах появляются нежелательные эффекты. Паразитирующие неконтролируемые потоки теплоносителя. Возрастает нагрузка на насосы подсистем в следствии одновременной работы насосов разных подсистем в один и тот же интервал времени вплоть до полного падения мощности насосов. Появляются нежелательные шумы. Происходит полная либо частичная разбалансировка системы. Для того чтобы это предотвратить существует понятие гидравлической развязки системы. И функцию гидравлической развязки выполняет гидравлический разделитель.

Гидравлический разделитель образует два основных контура. Контур теплогенератора /котловой контур/ и общий контур подсистем системы отопления. Котловой контур позволяет исключить влияние работы общего контура подсистем на теплогенераторы и исключает влияние самого котлового контура на общий контур подсистем. Подсистемы в общем контуре подсистем в свою очередь также гидравлически развязаны. Влияние подсистем друг на друга сводится к минимуму.

Что представляет из себя гидравлический разделитель

Традиционный гидравлический разделитель представляет собой трубу с вваренными в него четырьмя патрубками. В зависимости от изготовителя разделитель может дополнительно комплектоваться сепаратором воздуха, который совместно с автоматическим воздухотводчиком позволяет выделять и удалять воздух из теплоносителя. Также комплект может содержать кран для слива теплоносителя из гидравлического разделителя и съёмную теплоизоляцию корпуса. Есть ещё одно немаловажное для нормальной работы системы преимущество  это шламоулавливатель который позволяет отделять и выводить из системы шлам образующийся в системы отопления в процессе эксплуатации. То есть гидравлический разделитель может также выполнять функции грязевика. Конкретную комплектацию и конструкцию изделия можно уточнить у производителя.

Монтаж гидравлического разделителя в основном производят на линиях подачи и обратки перед распределительными гребёнками системы отопления непосредственно после котла /-ов/. Гидравлическую развязку можно осуществить и без применения гидравлического разделителя. Например, применить вариант указанный на рисунке. В таком варианте трубопроводы распределительных гребёнок подачи и обратки образуют котловой контур. Окончательная конфигурация гидравлической развязки зависит от особенностей и конфигурации системы отопления в каждом конкретном случае.

Расчёт гидравлического разделителя

Гидравлический разделитель можно изготовить самостоятельно. Для этого потребуется расчёт.

Основным расчётным размером гидравлического разделителя является внутренний диаметр корпуса. Внутренний диаметр должен пропускать максимально возможный в системе расход теплоносителя с минимальной скоростью. Рекомендуемая максимальная скорость теплоносителя должна быть не более – 0,2 м/сек.

Внутренний диаметр рассчитывается по формуле:

Dразд = 1 000 х , из выражения (4 х Gмакс) / (3,14 х 3 600 х W)

где :

– корень квадратный ;

Dразд – внутренний диаметр гидравлического разделителя, мм;

Gмакс – максимальный расход теплоносителя, через поперечное сечение разделителя, м3/час. При определении требуется сравнить расход в котловом контуре и расход в отопительном контуре. Для расчёта использовать большее значение ;

W – максимальная скорость движения теплоносителя, через поперечное сечение гидравлического разделителя, м/сек.

Гидравлические разделители заводского исполнения, подбираются согласно – техническим характеристиками, которые можно взять у каждого производителя / Майбес; Ловато; Gidruss; Comparato и т.д. /.

Отопление и водоснабжение – многогранный инженерный процесс,

требующий знаний и умений ПРОФЕССИОНАЛА.

Проясним Вашу ситуацию и ответим на вопросы бесплатно +7-932-2000-535

Сантехнические работы Тюмень

Гидравлический разделитель / гидравлическая стрелка. Задачи, принцип работы, особенности расчета.

Одно из устройств, которое может значительно улучшить работу системы отопления, а при мощности котлов более 35 кВт является обязательным к установке, — гидравлическая стрелка. Другие названия этого оборудования «гидравлический разделитель». Многие монтажные и проектные фирмы часто забывают о его применении. И напрасно. Ведь только с установкой гидравлической стрелки можно добиться стабильной работы отопительной системы с несколькими насосами.

  1. Суть проблемы

    В современных системах отопления теплоноситель циркулирует принудительно. Насос прокачивает его через теплообменник котла откуда по подающим трубопроводам он перемещается к отопительным приборам, отдает тепло и по обратке возвращается назад. Если отапливаемая площадь небольшая, циркуляционный насос один и его производительности достаточно для стабильной подачи теплоносителя, никаких проблем не возникает. Другое дело, если система состоит из нескольких отопительных контуров (зон) на каждом из которых установлен отдельный циркуляционный насос. В этом случае возникает ряд проблем

    • не достигается нужная, проектная производительность насосов ввиду их взаимного влияния друг на друга

    • повышенный износ насосного оборудования из-за постоянной работы в неоптимальном режиме

    • возникновение паразитных течений и, как следствие, ненужный прогрев радиаторов отопления сложности в подборе оборудования и гидравлической балансировке системы

  2. Конструкция и принцип работы гидравлической стрелки

    Гидравлический разделитель устроен достаточно просто и представляет собой трубу с четырьмя патрубками и дополнительными присоединениями для воздухоотводчика, слива грязи, контрольных приборов и т. п. Два патрубка предназначены для входа/выхода теплоносителя котлового контура, вторые два для отопительного. Гидравлические стрелки известных производителей, типа AFRISO, DANFOSS, GIACOMINI, TIEMME, MEIBES и других комплектуются теплоизоляцией, хотя это и не обязательно. Диаметр гидравлической стрелки и размещение патрубков специально рассчитывается и зависит от мощности котла и требуемого протока.

    Главная задача гидравлической стрелки — разделение котлового и отопительного контуров. Как видно на рисунке ниже, в системе отопления без гидравлической стрелки давление междуподающим и возвратным коллекторами меняется в зависимости от количества работающих насосов. В то время, как с гидравлическим разделителем давление практически постоянно равно нулю независимо от работы насосного оборудования. Его значение определяется гидравлическим сопротивлением стрелки и является очень малой (до 0,5 м.вод.ст.), постоянной величиной. В такой схеме, котловой и отопительный контуры работают независимо, а циркуляционные насосы отдельных отопительных зон, независимо от того какие из них в работе, не оказывают негативного влияния на общую функциональность системы. Проще говоря, каждый насос обслуживает только свой контур и не «продавливает» теплоноситель на другие.

  3. Подбор и расчет гидравлической стрелки

    Гидравлический разделитель может работать в нескольких режимах. Наиболее распространенный, соответствующий традиционной отопительной системе, когда выходная температура первичного (котлового) контура равна входной температуре вторичного (отопительного) контура. При этом суммарная производительность циркуляционных насосов отопительных контуров должна быть не выше производительности котлового насоса. Использование гидравлической стрелки в таком варианте не оказывает влияния на расчет системы отопления. Радиаторы, конвекторы, теплый пол рассчитываются традиционным способом по температуре теплоносителя от котла, без учета корректировок на работу гидравлического разделителя.
    Для самостоятельного изготовления или заказа гидравлической стрелки потребуется определить единственный размер — диаметр входного/выходного патрубка (d). Конструкцию гидравлических разделителей по методу трех диаметров и чередующихся патрубков можно посмотреть на рисунке ниже.

    Основные параметры, которые влияют на расчет гидравлической стрелки это максимальная скорость движения теплоносителя через поперечное сечение и максимального протока в системе отопления. Максимальную скорость движения через сечение гидравлической стрелки рекомендуется принимать 0,2 м/сек.

    Расчет диаметра гидравлического разделителя, опустив предварительные математические выкладки, можно выполнить двумя способами:

    1. По максимальному протоку теплоносителя в отопительной системе
      D — диаметр гидравлической стрелки, мм
      G — максимальный проток через разделитель, куб. м./час
      w — максимальная скорость движения теплоносителя через сечение гидравлической стрелки, рекомендуется 0,2 м/сек
    2. По максимальной мощности котельного оборудования при разнице температур подачи и обратки 10 град. С
      D — диаметр гидравлической стрелки, мм
      P — максимальная мощность отопительного котла/котлов, кВт
      ∆T — разница температур подающего и возвратного теплоносителя, град. С

      Например, если мощность котла 50 кВт и система рассчитана под радиаторный обогрев с режимом 75/65 (∆T=10град. С.), то диаметр гидравлической стрелки будет равен
      D = 87 мм

  4. Готовые гидравлические стрелки

    Готовый гидравлический разделитель сегодня присутствует в ассортименте практически каждого производителя котельного оборудования и комплектующих для устройства систем отопления. Готовые гидравлические разделители поставляются в теплоизоляции. Часто с уже вмонтированным воздухоотводчиком и сепаратором шлама. К наиболее известным производителям гидравлических стрелок можно отнести: MEIBES, GIACOMINI, BAXI, VAILLANT и много других. Подбираются они по мощности котла.

Принцип работы гидрострелки в системе отопления

Гидрострелка ( гидравлический разделитель ) – устройство, предназначенное для разделения потоков теплоносителей контура котла (котлов) и контуров потребления теплоты в системе отопления. Принцип его работы основан на обеспечении независимости работы отопительного оборудования. Материал публикации рассмотрит вопросы необходимости применения, общее устройство и методики расчета гидрострелки.

Для чего применяется гидрострелка

Гидравлический разделитель — гидрострелка

Необходимость применения гидравлического разделителя обусловлена различием гидродинамических режимов работы отопительного оборудования. Используют гидрострелку в системах отопления, имеющих различные комплексы потребления тепла. Чаще всего выделяют три направления распределения теплоты:

  1. Радиаторное отопление;
  2. Система водяных теплых полов;
  3. Бойлер косвенного нагрева.

Все указанные системы имеют различный режим работы. Радиаторное отопление работает в основном в стабильном режиме. При наличии автоматических терморегулирующих устройств на приборах отопления расход теплоносителя может меняться.

Система «теплый пол» работает по обособленной схеме в низкотемпературном режиме. Регулирование происходит на первом этапе с помощью термостатического смесителя, далее возможно регулирование контуров балансировочными вентилями. Кроме этого, теплые полы имеют собственный насос и значительное гидравлическое сопротивление.

Бойлер ГВС работает в циклическом режиме, имеет наименьшее сопротивление. Как правило, оснащается циркуляционным насосом.

Разнообразие гидравлических и температурных режимов работы не позволяет обеспечить стабильную работу всего комплекса в целом. Насос, встроенный в котел или смонтированный отдельно, не может обеспечить равноценные условия работы для всех ветвей системы. Чаще всего просто не хватает мощности для преодоления гидравлических сопротивлений трубопроводов и приборов системы.

Насос естественным образом будет осуществлять циркуляцию по пути наименьшего сопротивления – через бойлер. Следующей ветвью (при отключении бойлера) будут радиаторы. Обеспечить необходимым количеством теплоносителя теплые полы становится труднее всего.

Режим работы котла в такой системе приобретает скачкообразный характер, что негативно сказывается на всем оборудовании.

Решить проблему установкой более мощного насоса удается с трудом. При мощном насосе теплоноситель преодолевает теплообменник котла, не успевая качественно получать теплоту. При этом увеличивается расход электроэнергии (на работу насоса), повышается потребление топлива из-за некачественного отбора теплоты сгорания.

При работе нескольких котлов в каскаде также возникает рассогласование режимов работы автоматики и циркуляции теплоносителя.

 Котлы, оснащенные чугунными теплообменниками топок, крайне негативно реагируют на резкие температурные перепады. Это обусловлено физическими свойствами чугуна. Многие производители ставят обязательным условием применение гидрострелки, в ином случае они снимают гарантийные обязательства на свои изделия.

Решением всех этих технических трудностей является установка в систему гидравлического разделителя (гидрострелки).

Устройство и принцип действия гидрострелки

Классическое устройство гидрострелки – полый сосуд, имеющий две пары патрубков. Первая пара служит для подключения котла (или каскада котлов), вторая – для присоединения системы потребления. Внутренний объем сосуда круглого или прямоугольного сечения служит зоной гидравлического разделения, разряжения и смешивания потоков разнотемпературных теплоносителей.

В верхней части устройства устанавливают воздухоотводчик, нижняя служит грязеуловителем. В гидрострелке циркулирует два потока теплоносителя – поток котлового (первичного) контура и поток системы потребления (вторичного контура). При различных режимах работы оборудования величина потоков меняется. Происходит либо прямая подача от котла, либо смешивание потоков с разной температурой.

Гидрострелка подбирается из расчета снижения скорости теплоносителя до диапазона 0,1 – 0,2 м/с. Прим этой скорости практически отсутствует гидравлическое сопротивление, гидродинамический режим принимает ламинарный характер, происходит наиболее качественный тепломассообмен между контурами.

Контур циркуляции котла практически не зависит от вторичного контура, режим работы котла приобретает стабильный, ровный характер. Вторичный контур получает теплоноситель с равной температурой для всех ветвей, необходимое его количество отбирается собственными насосами.

Отключение, изменение режима работы любой зоны отопительного оборудование приобретает лишь косвенное влияние на работу котла и системы в целом. Обеспечивается гидравлическое разделение, снижающее нагрузку на теплогенератор, отопительные приборы, насосное оборудование, коммуникации.

Гидравлический разделитель имеет три режима работы:

 Режим 1.  Прямой тепломассообмен потоков теплоносителя первичного и вторичного контура. Стабильная тепловая нагрузка потребления равна постоянному значению тепловой мощности котлоагрегата. Смешивания теплоносителей практически не происходит, движение приобретает ламинарный режим, происходит отделение воздуха, примесей и так далее. Режим работы котла – постоянный, на средней нагрузке.

 Режим 2.  Котел работает с максимальной нагрузкой, при этом не может обеспечить все потребности системы. Происходит полная передача потока из первичного контура котла с подмешиванием воды из обратки вторичного контура. При этом общая температура снижается для всех потребителей.

 Режим 3.  Оптимальный режим работы характеризуется наличием необходимой тепловой мощности котла, обеспечением экономного, «щадящего» режима работы. В этом режиме происходит смешивание прямого и обратного потоков первичного контура, температура поднимается. Котел останавливается при достижении заданной температуры, режим его работы приобретает циклический характер.

Гидравлический разделитель имеет и более сложные конструктивные конфигурации. Устройство оснащается сетчатыми элементами в верхней зоне для качественного отделения воздуха. Внутри изделия выполняются перфорированные перегородки вертикального или горизонтального направления для более эффективного разделения потоков.

Гидрострелки часто комбинируются с распределительными коллекторами. При этом коллекторы иногда входят в конструкцию моноблока, могут подключаться независимые.

Производятся изделия в виде комбинации разделителя и коллектора. При этом реализуется зонный температурный отбор теплоносителя для различных отопительных блоков.

Расчет гидравлического разделителя

Существует большой ряд типоразмеров гидрострелок. Подбор устройств производится по расчетным показателям. При этом диаметр патрубков первичного контура должен соответствовать диаметру патрубков котла. При подключении каскада котлов сечение патрубков гидрострелки должно быть не менее суммы сечений патрубков котлов.

Основная формула, применяемая для расчета диаметра сосуда разделителя:

D = 47 √ (P/∆t), где

P – тепловая мощность котла, кВт;

∆t – разница температур между подачей и обраткой, для автономных систем принимается 100С.

Формула справедлива для движения теплоносителя со скоростью 0,15 м/с. Для режимов движения 0,1 и 0,2 м/с поправочные коэффициенты составляют соответственно 54 и 40.

Далее применяется правило 3d = D. Расчетный диаметр патрубков равен величине D/3. Расстояние между патрубками, от патрубков до верхней и нижней точек гидрострелки также должно составлять не менее 3d.

Также гидрострелку подбирают по гидродинамическим характеристикам (производительности) насосов обоих контуров. Формула расчета:

D = 60 √(∑ QСО – QК), где

∑ QСО – суммарная производительность циркуляционных насосов вторичного контура;

QК – производительность котлового насоса, м3/час.

Дальнейший расчет производится по правилу 3d = D.

Применение гидрострелки в многоконтурной системе отопления – качественное техническое решение. Принцип работы и устройство гидравлического разделителя позволяют обеспечить стабильный как в гидравлическом, так и в температурном плане режим работы оборудования. Отсутствие предельных нагрузок, скачкообразного режима позволят отопительному оборудованию работать без неполадок длительное время.

(Просмотров 935 , 4 сегодня)

Рекомендуем прочитать:

Особенности применения гидравлического разделителя для отопления


Назначение гидрострелки — для чего она нужна

Гидрострелка в отопительных системах выполняет следующие функции:

  1. Одной из главных функций гидроразделителя является гидродинамическая балансировка в отопительном контуре. Рассматриваемое устройство врезается в систему как дополнительный элемент и обеспечивает защиту чугунного теплообменника, расположенного в котле, от теплового удара. Именно поэтому гидроразделители обязательны к установке при использовании котлов с теплообменниками из чугуна. Кроме того, гидрострелка обеспечивает защиту отопления от повреждений при спонтанном отключении одного из ее элементов (например, ГВС или теплых полов).
  2. При обустройстве многоконтурного отопления гидроразделитель попросту необходим. Все дело в том, что контуры при работе могут конфликтовать и мешать друг другу – а установленный разделитель предотвратит их сопряжение, за счет чего система сможет нормально функционировать.
  3. Если отопительная система была спроектирована правильно, то гидрострелку можно использовать в качестве отстойника, удерживающего в себе различные твердые механические примеси, содержащиеся в теплоносителе.
  4. Находящийся в системе отопления гидроразделитель позволяет удалять из контура воздух, избавляя от необходимости использования других способов стравливания воздуха и предотвращая окисление внутренних поверхностей элементов отопительной системы.

Знание того, для чего нужна гидрострелка в системе отопления, позволит правильно подобрать и установить подобное устройство.

Принцип работы гидроразделителя

Первым делом нужно понять, что такое гидрострелка в системе отопления как отдельный элемент. Конструктивно гидрострелка представляет собой полое устройство в виде трубы с квадратным сечением профиля (прочитайте: «Принцип работы и устройство гидрострелки отопления, назначение»). Простота конструкции говорит о том, что и принцип работы такого устройства достаточно прост. Благодаря гидрострелке в первую очередь выделяется и выводится из системы воздух, для чего используется автоматический воздухоотвод.

Отопительная система делится на два контура – большой и малый. Малый круг включает в себя саму гидрострелку и котел, а в большом круге к этим элементам добавляется еще и потребитель. Когда котел выдает оптимальное количество тепла, полностью расходуемое на отопление, то теплоноситель в гидрострелке перемещается лишь в горизонтальной плоскости. При нарушении баланса тепла и его расхода теплоноситель остается в пределах малого контура, и температура перед котлом растет.

Все эти действия приводят к автоматическому отключению системы, но теплоноситель при этом продолжает спокойно двигаться в малом контуре – и так ровно до тех пор, пока его температура не снизится до необходимого значения. По достижении заданной отметки котел возобновляет работу в штатном режиме. Все это дает ответ на вопрос о том, зачем нужна гидрострелка для отопления – она обеспечивает независимую работу всех контуров.

Гидравлический разделитель может использоваться и в сочетании с твердотопливными котлами. Принцип работы отопления с гидрострелкой сохраняется, но само устройство подключается к входу и выходу из отопительного оборудования – такая конструкция дает возможность тонкой настройки температуры в системе.

Принцип работы

Схема функционирования гидрострелки
В разрезе структура гидрострелки представлена в виде части трубы полого типа, имеющей сечение в виде квадрата.

Механизм функционирования данного оборудования достаточно простой. Происходит отделение воздуха и его устранение при помощи воздухоотвода, оснащенного автоматическим механизмом.

Система отопления делится на 2 отдельных контура – большого и малого размеров. В состав второго из них входит котел/гидрострелка, а первого – котел/гидрострелка/потребитель.

Если котел отопления генерирует тепло в объеме, соответствующем его расходу, направление жидкости в гидрострелке при этом лишь горизонтальное. В случае нарушения такого равновесия, тепловой носитель поступает в область малого контура, что способствует повышению температуры перед котлом.

Реакция последнего на такого рода преобразования проявляется в виде автоматического отключения, а тепловой носитель при этом не прекращает свое продвижение до снижения температурных показателей до конкретной отметки. После этого снова происходит включение котла.

Благодаря такому механизму, гидроразделителем совершается балансировка между котловыми контурами и котельной, способствуя, таким образом, независимому функционированию каждого из контуров в отдельности.

Возможно, Вас заинтересует статья о гидравлических стрелках Meibes. Статью об изготовлении гидрострелки для отопления своими руками читайте здесь.

Выбор гидравлического распределителя для системы отопления

Зная, что такое гидравлический разделитель в системе отопления, можно приступать к выбору подходящего устройства. При выборе гидрострелки нужно учитывать всего один показатель – стрелочный диаметр, т.е. диаметры патрубков, которые можно подводить к устройству. Для максимальной эффективности выбирать устройство нужно таким образом, чтобы поток теплоносителя в отопительном контуре не ограничивался, а вот в самой гидрострелке и патрубках он должен двигаться с минимальной скоростью (рекомендуемое значение составляет около 0,2 м/сек.).

Перед тем, как рассчитать гидрострелку системы отопления, нужно узнать следующие показатели:

  • D – диаметр гидрострелки, мм;
  • d – диаметры подводящих патрубков, мм;
  • G – предельное значение скорости тока жидкости по гидрострелке;
  • w – предельная скорость тока воды по поперечному сечению гидрострелки;
  • c – теплоемкость теплоносителя;
  • P – максимальная мощность котла, кВт;
  • t2-t1 – разница температур теплоносителя на подаче и обратке (стандартное значение составляет около 10 градусов).

Для расчета зависимости диаметра гидроразделителя от предельного значения напора системы необходимо взять значение диаметра подводящего патрубка и умножить его на 3, или же используется формула, в которой число 18,8 умножается на квадратный корень максимальной скорости движения жидкости, деленной на предельную скорость тока жидкости по поперечному сечению устройства.

Перед тем, как рассчитать гидрострелку для отопления, стоит также узнать о зависимости ее диаметра от мощности котла. Формула имеет такой же вид, но квадратный корень в данном случае извлекается из мощности котла, деленной на произведение скорости движения жидкости вдоль поперечного сечения разделителя, умноженной на разницу температур.

Гидрострелка для отопления – устройство, чертежи, сжемы

Гидрострелка для отопления, дает возможность одновременного подключения низкотемпературных и высокотемпературных контуров. Задача гидроразделителя заключается не только в нивелировании разницы температур и давления. Дополнительные функции: защита системы отопления от коррозии, удаление частиц мысора и т. п.

Можно ли обойтись без гидрострелки

Конечно, простая система отопления, теоретически будет работать без гидрострелки. Проблемы начнутся, если к одному котлу, подключат несколько водяных контуров отопления, но и эта сложность решаема установкой коллектора. Также и другие функции: отвод воздуха из системы, фильтрацию твердых частиц, с легкостью выполняет группа безопасности, устанавливаемая для твердотопливных котлов.

Гидравлический разделитель в системе отопления дома, нужен для балансировки разницы температур и давления на подающем и обратном трубопроводе. Без модуля не обойтись, при подключении к котлу радиаторной системы отопления и теплых полов.

Разница между гидрострелкой и коллектором

Коллектор, несмотря на распространенное заблуждение, не заменяет гидравлическую стрелку и имеет отличительные функции. Основное предназначение коллектора – разделение и транспортировка теплоносителя к конечным (вторичным) контурам отопления.

В коллектор, из котла поступает поток нагретой жидкости. Внутри устройства осуществляется разделение теплоносителя по отводам, подключенным к каждой отдельной системе отопления. Дополнительно, коллектор позволяет отключать и ремонтировать отдельные контуры, не отключая обогрева дома.

Гидрострелку нужно использовать в случаях, когда предположительно температура теплоносителя на подающем и обратном трубопроводе, будет сильно отличаться. Если не поставить разделитель, происходит следующее:

  • При первом запуске котла, теплоноситель внутри теплообменника котла, разогревается до 70-80°С, постепенно прогревая систему отопления.
  • Давление, создаваемое при нагреве, образует циркуляцию жидкости в трубопроводе.
  • Холодный, не нагретый теплоноситель, средняя температура которого около 20°С, из обратного трубопровода попадет внутрь теплообменника.

Термический удар вследствие резкого охлаждения стального теплообменника, приводит к его деформации. Чугунный аналог, попросту треснет и выйдет из строя.

Достоинства гидрострелок

Гидравлические разделители, используемые в отопительных системах, имеют ряд достоинств, которые делают установку данных устройств оправданной:

  • Возможность избежать проблем при подборе размеров циркуляционного насоса, устанавливаемого во вторичном контуре и отопительном оборудовании;
  • Устранение конфликтов, возникающих между котловым контуром и отопительными;
  • Равномерное распределение потоков теплоносителя между отопительным оборудованием и потребителями;
  • Обеспечение наиболее благоприятной работы всех элементов отопления;
  • Возможность врезки в систему расширительного бака и автоматического воздухоотводчика;
  • Возможность беспрепятственного подключения к системе дополнительных элементов.

Кроме того, используемая при устройстве отопления стрелка позволяет существенно сэкономить на энергоресурсах: расход газа снижается примерно на четверть, а электричества – почти в два раза.

Заключение

Гидравлический распределитель для отопления – это очень полезное приспособление, позволяющее оптимизировать работу отопительной системы. Благодаря своим качествам рассматриваемые устройства позволяют добиться наиболее эффективного распределения тепла в отопительной системы при минимальных начальных затратах и существенной экономии в дальнейшем.

Как выбрать гидрострелку

Чтобы грамотно подобрать гидрострелку, следует разобраться в ее видах и основных функциональных параметрах отопительной системы, для которой она покупается.

Гидроразделители классифицируют по нескольким показателям:

  • по типу сечения – круглые и квадратные;
  • по количеству патрубков подачи и обратки – устройства с четырьмя, шестью или восемью входами/выходами;
  • по объему;
  • по способам подачи и отвода теплоносителя;
  • по расположению патрубков – с размещением по одной оси или с чередованием.

Совет. Специалисты рекомендуют покупать гидрострелки с манометрами – благодаря им вы сможете следить за давлением в отопительной системе.
Прежде чем отправляться в магазин, следует рассчитать два важнейших параметра работа вашей системы отопления:

  • мощность – сумма тепловой мощности абсолютно всех контуров;
  • объем теплоносителя, прокачиваемого через систему.

Имея на руках эти данные, сравнивайте их с рабочими параметрами оцениваемых гидрострелок – всю техническую информацию о разделительных устройствах можно найти в прилагающихся паспортах.


Гидрострелка своими руками

Жатки с малыми потерями, полное руководство!

Что такое гидравлический заголовок?

Большая труба пустой трубы. конец.

Нет, серьезно, это не сложное или загадочное искусство, это просто большая труба или ящик с водой с патрубками подачи и возврата, через которые проходит вода и тепло.

хорошо, но что делает заголовок с малыми потерями? зачем мне он нужен?

Гидравлический разделитель обычно используется как «гидравлическое разделение» между любыми двумя или более циркуляционными насосами в системе отопления.Такое гидравлическое разделение позволяет каждому насосу работать независимо со своими собственными расходами, не давя друг на друга. Без какой-либо формы гидравлической сепарации подключенные насосы не смогут работать с собственной удельной скоростью потока для этой зоны и могут вызвать такие проблемы, как обратная циркуляция, а также дисбаланс в системах. Дополнительная проблема с двумя насосами, тянущими друг к другу или давящими друг на друга, особенно с модулирующим насосом, заключается в том, что они будут мешать обратной связи друг друга и могут вызывать неустойчивую и колебательную / пульсирующую реакцию между собой.Два немодулирующих насоса с фиксированной производительностью будут меньшими проблемами.

Зачем вам нужны два или более насоса в системе отопления?

Обычно вы увидите коллекторы с низким уровнем потерь в коммерческих установках, где может быть много насосов, каждый из которых рассчитан на свою индивидуальную задачу или зону. Однако в бытовых или небольших коммерческих системах отопления они обычно устанавливаются там, где внутренний насос котла не имеет достаточной мощности или скорости для системы. Например, теплый пол требует расхода в 3 раза больше, чем у радиаторов, чтобы обеспечить равномерную температуру пола, насосы котла могут с трудом достичь этого большего объема.Или, если у вас есть хорошо изолированное большое здание или здание с особенно маленькими трубопроводами, сопротивление всех трубопроводов и изгибов может быть слишком большим для внутреннего насоса котла, чтобы преодолеть его с достаточным потоком.

В обеих этих ситуациях вы должны установить заголовок с малыми потерями.

Как работает гидравлический заголовок?

Как мы все знаем, вода всегда будет идти по пути наименьшего сопротивления. Большая камера внутри гидравлического коллектора с низкими потерями создает короткое замыкание на подающей и обратной трубопроводах.Если котел с внутренним насосом перекачивает в гидравлический разделитель, почти 100% воды возвращается обратно в котел. В систему будет поступать очень небольшой поток, если он вообще есть. Это позволяет установить системный насос с другой стороны коллектора и работать почти так же, с минимальным нарушением работы бойлера на стороне коллектора.

Однако

LLH предназначены не только для нескольких насосов, их можно использовать для подключения нескольких котлов и источников тепла к одной системе.Может возникнуть много гидравлических проблем с несколькими источниками тепла, которые обходят LLH или буфер (очень большой LLH). Существуют даже несколько более сложные ДУП, которые учитывают различную температуру подачи и возврата различных источников тепла. В них используются перегородки для отвода минимальной отдачи от лучших источников тепла для достижения максимальной эффективности и результативности. Некоторые буферы имеют несколько отводов и рубашек, которые используют стратификацию накопителя (более теплая вода вверху и более холодная внизу), чтобы создать своего рода тепловую батарею, которая снова позволяет системам использовать источники тепла с различной температурой потока.

Другие преимущества заголовков с малыми потерями

Когда поток воды достигает большого диаметра коллектора, вода немедленно замедляется, по крайней мере, до половины скорости / скорости, с которой она проходила по трубопроводу. Эта среда позволяет взвешенным частицам грязи опускаться на дно устройства, а мелкие пузырьки воздуха также отделяются и поднимаются вверх. Чем больше агрегат и, в свою очередь, чем медленнее поток через агрегат, тем эффективнее будет LLH при разделении грязи и воздуха. Еще одним преимуществом здесь является то, что, в отличие от магнитных фильтров, этот низкоскоростной фильтр также собирает немагнитные загрязнения, такие как медь, латунь, олово и свинец. Даже сталь и железо из-за традиционной системной коррозии со временем теряют свой магнетизм.

Стоит отметить, что это преимущество доступно только в том случае, если коллектор является вертикальным, а не горизонтальным, и дизайнеры также предусмотрели точки слива и вентиляции. Некоторые производители пошли еще дальше, установив турбулизатор сетчатого типа, чтобы помочь отделить грязь и воздух, хотя мы бы посоветовали с осторожностью использовать некоторые из них.

Есть ли недостатки использования заголовка с малыми потерями?

При условии, что он хорошо изолирован, поскольку он потенциально может стать довольно большим нежелательным радиатором, основным недостатком является дополнительная стоимость. Однако, если вам требуется несколько насосов или источников тепла, этого очень элегантно избежать.

Единственная проблема, с которой вы можете столкнуться при использовании любого гидравлического разделения, – это искажение, см. Видео выше еще в 2017 году.По сути, деформация относится к более высоким температурам, которые требуются в котле, чтобы довести излучатели (обычно радиаторы или полы с подогревом) до подходящей температуры, если скорости потока по обе стороны от гидравлического коллектора различаются, что они почти всегда будут. Эти более высокие температуры в источнике тепла могут вызвать небольшую потерю эффективности газовых котлов, и тем более тепловых насосов, а также все другие проблемы, связанные с системами с более высокими температурами, отмеченные здесь. Это вызвано смешиванием или смешиванием проточной и возвратной воды в коллекторе.Это не относится к нагреву обратной линии котла, а скорее к одинаково более высоким температурам подачи и возврата, требуемым у источника тепла по сравнению с эмиттером.

Это не достаточная причина для того, чтобы вообще не устанавливать заголовок с малыми потерями, а скорее причина для более тщательного рассмотрения того, действительно ли он нужен или его можно спроектировать. Если требуется, искажения можно свести к минимуму при вводе системы в эксплуатацию, если вы хотите максимизировать эффективность и производительность системы. Без ввода в эксплуатацию компетентного инженера это может привести к недостаточной температуре эмиттера, комнатной температуре и медленной загрузке баллона.

Как избежать использования заголовка с малыми потерями?

Есть много причин, по которым вы можете не захотеть устанавливать заголовок с низкими потерями, например, стоимость, место или простота системы. Чтобы избежать его использования, во многом будет зависеть от того, по какой причине он вам нужен.

Во-первых, сделайте свои расчеты правильно. В этой отрасли наблюдается пандемия чрезмерно завышенной оценки требований к теплу для объектов недвижимости. Завышенная тепловая нагрузка приведет к нереалистичным показателям расхода и экспоненциально приведет к более высоким расчетным потерям в системе.Эмпирические правила быстро устаревают, особенно когда негабаритные системы все еще «работают», и я бы не стал беспокоиться, если у вас нет динамической системы, которая учитывает изоляцию. У нас есть руководство по тепловым потерям, которое может помочь здесь с краткими руководствами, с которыми можно сверить свои практические правила. Чтобы узнать, как рассчитать требуемую скорость потока, см. Эту статью о массовом расходе.

Если вы уверены, что ваши расчеты верны, требования к заголовку с низкими потерями обычно сводятся к 3 основным причинам.

Требуется высокая скорость потока в системе, высокое сопротивление системы / насоса котла слишком мало или несколько источников тепла для объекта.

Высокое сопротивление системы или слишком маленький насос котла

Есть несколько способов избежать установки гидравлического разделителя, если вы просто устанавливаете его, потому что не уверены, что ваш котловой насос подходит для этой работы.

Во-первых, стоит отметить, что, поскольку директива ERP сделала все насосы регулируемыми, почти каждый внутренний насос котла теперь представляет собой 7-метровый тепловой насос.Гидравлическое давление на 20% выше, чем у предыдущих внутренних насосов с напором 5/6 м. Вы можете быть удивлены, где новые ограничения.

Во-вторых, установите насос большего размера. Если вы работаете в системе, в которой насос находится вне котла, то модернизация насоса даст больше энергии там, где это необходимо, за небольшую часть стоимости и сложности. Предположим, вы знаете, что ваш старый насос не был неисправен или слаб, и в этом случае помпу просто необходимо заменить.

Наконец, по возможности увеличьте размер. Если ваши расчеты близки, может оказаться более практичным обновить некоторые компоненты, особенно если вы уже выполняете такие работы, как замена котла.Модернизируйте первичный трубопровод, модернизируйте термостатические радиаторные клапаны до полнопроходных / больших диаметров и запорные клапаны до полнопроходных или клапанов с более низким значением KV на самых дальних радиаторах. Часто простое увеличение размера основного котла / источника тепла до ближайшего основного тройника оказывается более чем достаточным, поскольку после этого момента расход и сопротивление трубопровода резко упадут.

Слишком высокий расход системы

Если ваша основная причина избегать заголовка с низкими потерями – это пространство, то тройник с короткой муфтой (или тройник с близким расстоянием, если хотите) – ваш друг.Тройник, расположенный близко друг к другу, представляет собой ориентацию трубопровода, включая 2 тройника, которые, как ни странно, расположены близко друг к другу. Непосредственная близость тройников означает, что потеря давления между ними настолько мала, что вы можете создать два отдельных гидравлических контура, которые будут работать независимо и оказывать минимальный поток друг на друга. Это тот же принцип, что и заголовок с низким уровнем потерь, и заголовок с низким уровнем потерь получил свое название. Подробнее о парных тройниках.

Если у вас есть и радиаторы, и полы с подогревом, высокий расход, необходимый для теплого пола, часто превышает то, с чем может справиться котел, в этом случае мы предлагаем моноблочный тройник на коллекторе теплого пола вместе с зонным клапаном и балансировочный клапан, чтобы избежать выхода из байпаса системы.В этом случае насос котла может обслуживать радиаторы по мере необходимости.

Опять же, я бы проверил ваши расчеты. Чаще всего старые эмпирические правила перестают работать, в некоторых случаях можно запустить новый дом с 3 спальнями, полностью оборудованный полом с подогревом только от насоса котла. Не говоря уже о квартире. На самом деле, все свойства очень разные.

Если ваш насос находится вне котла или источника тепла, мы бы посоветовали проверить максимально допустимый расход котла, чтобы увидеть, можете ли вы просто модернизировать внешний насос на более мощный.Некоторые инженеры считают эти данные скептичными, поскольку вы обнаружите, что максимально допустимая скорость потока, по-видимому, зависит от мощности котла, несмотря на то, что большинство котлов имеют точно такие же внутренние устройства во всем диапазоне. Мы скептически относимся к максимально допустимому расходу котлов, но, конечно, всегда советуем следовать инструкциям производителя.

Несколько источников тепла

Технически правильного способа избежать этого невозможно. Заголовки с низкими потерями в любом случае являются идеальным инструментом, и их следует использовать.

Если вы используете несколько И разные типы источников тепла, все же лучше использовать буфер. Это гораздо лучший способ управления и использования различных температур потока из источников и максимизации эффективности. Хотя это увеличивает стоимость и может занимать ценное пространство.

Конструкция гидравлического разделителя

Есть 4 основных правила, которые мы можем предложить следующие, когда дело доходит до конструкции заголовка с низкими потерями, и это нормально для крупных домашних / небольших коммерческих приложений.Однако вы все равно увидите, что эти правила используются и для более крупных установок.

Калибровка, 1 выдержка менее 0,3 м

Основная цель коллектора «с малыми потерями» – минимизировать потерю давления между портами. Это то, что сводит к минимуму влияние насосов друг на друга. Несмотря на то, что гидравлический разделитель получил свое название от потери низкого давления, основное практическое правило – поддерживать скорость воды и ниже нуля, чтобы сэкономить объемные и ненужные вычисления.3 мпс. Это будет означать, что самый легкий путь для воды будет прямо туда, откуда она взялась.

Чтобы решить эту проблему, вам необходимо определить максимальную скорость потока вашей системы и преобразовать ее в скорость для выбранного вами диаметра коллектора. Вы также можете прочитать такие цифры, как скорость 0,2 м / с для заголовков с малыми потерями, но для базовых бытовых систем и небольших коммерческих систем мы считаем, что максимум 0,3 отлично. Отверстия большего диаметра обеспечивают меньшую скорость и способствуют отделению воздуха и грязи, однако, как всегда, существует баланс между стоимостью, размером и отдачей. Чтобы определить расход и скорость, следуйте нашему руководству по массовому расходу.

Не используйте несколько отводов

В полевых условиях вы регулярно будете видеть несколько нажатий на заголовки, что, на наш взгляд, является большой ошибкой. Множественные отводы – это когда вместо одного потока и возврата для стороны источника тепла коллектора и одного потока и возврата для стороны вашей системы (также известной как первичная и вторичная стороны) у вас есть разные ответвления для разных контуров или источников тепла.Это использовалось / используется, потому что вы можете перекачивать воду прямо из коллектора без необходимости устанавливать зонные клапаны или другую арматуру, такую ​​как обратные клапаны, чтобы остановить обратную циркуляцию, когда одна зона отключена.

Гидравлический заголовок с малыми потерями

Проблема с несколькими отводами, однако, заключается в том, что, когда включается более 1 контура, в некоторых контурах происходит короткое замыкание и в качестве подающей воды используется вода с обратной температурой. В результате одни цепи более горячие, чем другие.

Если у вас несколько контуров, мы советуем устанавливать их на одну общую трубу.С него можно снимать разные насосы, однако они потенциально могут мешать друг другу и потенциально вызывать обратную циркуляцию или влиять на производительность других насосов. Вы можете и должны установить зонные клапаны и / или обратные клапаны, чтобы предотвратить обратную циркуляцию в этой ситуации. Или вместо этого используйте заголовок распределения.

По возможности используйте заголовок распределения

Более простой способ подключения нескольких контуров к гидравлическому коллектору без необходимости использования зональных или обратных клапанов, которые потенциально могут выйти из строя, – это установить распределительный коллектор.Здесь просто размер общей трубы, соединяющей разные контуры, опять же, рассчитан на низкую скорость (менее 0,5 м / с). Это дает тот же эффект потери низкого давления, что и гидравлический разделитель, и означает, что ваши отдельные насосы будут работать одинаково во всех сценариях системы и не допускать обратную циркуляцию.

Ваш распределительный заголовок может быть того же размера, что и ваш заголовок с низким уровнем потерь, что, по сути, просто делает весь фитинг одним большим, расположенным сбоку, заголовком H-формы. Но позволит добиться максимальной производительности и минимизировать количество движущихся частей.Обратной стороной, конечно же, является пространство и расходы, которые вполне может быть трудно оправдать для небольших коммерческих предприятий, не говоря уже о домашних установках.

Избегайте горизонтальных коллекторов

Горизонтальные заголовки с малыми потерями такие же, как и звучат. Жатка с низкими потерями перевернулась на бок. Они отлично подходят для экономии места и часто идут в комплекте с коммерческими установочными пакетами котла. Однако ему не хватает способности эффективно отделять воздух и грязь, и без этого дополнительного преимущества мы не видим небольшого преимущества по сравнению с моноблочной тройниковой установкой в ​​домашних условиях. Возможно, если вы устанавливаете несколько котлов и в помещении мало. Однако, как всегда, универсального решения не существует, и необходимо принимать во внимание инженерные решения.

Дополнительная литература

Руководство Riello по коллекторам с малыми потерями – это руководство больше относится к аспекту потери давления, который на самом деле является сутью того, что такое коллекторы с низким уровнем потерь и гидравлическое разделение. Приведенное выше объяснение не слишком углубляется для упрощения. Они имеют в виду «переработку» (другие называют это смешиванием) на страницах 9, 10 и 11, что приводит к искажению.Но опять же, я не имею в виду негативное влияние на конденсационные котлы.

Idronics # 15 – Это отличное место, чтобы узнать о гидравлическом разделении. Хотя будьте осторожны, мы находим их информацию немного устаревшей, особенно когда они регулярно относятся к последовательному гидравлическому разделению, но не упоминают о негативном воздействии или потере эффективности конденсационных котлов. Похоже, что большая часть их информации (как и большая часть американской информации) относится к технологиям без конденсации. Они упоминают смешивание в заголовке, но снова не упоминают о провалах, которые мы снова находим датированными.

Не забудьте подписаться на нашу рассылку, чтобы получать наши последние статьи!

Low Loss Header (что он на самом деле делает) | Зачем мне…

Почему я должен использовать заголовок с низким уровнем потерь?

• 1. Ваш котел, особенно теплообменник в вашем котле, будет работать с максимальной эффективностью только тогда, когда скорость воды, проходящей через него, будет поддерживаться в пределах заданных параметров. Производители котлов должны сообщить вам, каковы спецификации для каждой марки и модели.

В некоторых случаях расход через системный контур будет превышать рекомендованный максимальный расход через котел, или может быть так, что расход системы просто неизвестен. В других случаях верно обратное, когда скорость потока котла превышает максимальную скорость потока системы (особенно верно в некоторых системах с несколькими котлами). Установка коллектора с малыми потерями позволяет создать первичный контур, в котором скорость воды может поддерживаться на требуемом постоянном уровне, независимо от изменений или требований во вторичных контурах.

• 2. Важна не только скорость воды, но и температура воды. Есть две потенциальные проблемы: первая – это «термический шок». Если разница температур между потоком и возвратом слишком велика, это создает огромную нагрузку; за счет теплового расширения и сжатия на теплообменнике. Также важна температура воды, проходящей через теплообменник, особенно для конденсационных котлов, у них есть свои особые требования для работы с максимальной эффективностью.Для перехода котла в «конденсационный режим» температура обратной воды не должна быть выше примерно 55 ° C. Поэтому в некоторых случаях на коллекторе устанавливаются датчики температуры, позволяющие контролировать температуру первичного контура.

• 3. Из-за пониженной скорости воды коллектор является идеальным местом для установки автоматического вентиляционного отверстия для удаления воздуха и точки слива для удаления отложений и мусора. Обычно они входят в стандартную комплектацию большинства жаток

• 4.Заголовок позволяет разделить первичный и вторичный контуры для облегчения диагностики при возникновении проблем.

Выполнено Разъяснение котельной системы

(LTHW) – Инженерное мышление

Описание котельной системы (LTHW). В этом уроке мы рассмотрим типичную современную систему отопления в коммерческом здании. Есть много вариантов того, как это можно настроить, но эта версия довольно типична для коммерческих зданий новой постройки.

Прокрутите вниз, чтобы просмотреть учебник YouTube по системам кипячения

В этой системе у нас есть два больших котла, которые подключены параллельно. Это означает, что оба котла могут работать одновременно или по отдельности. Один из котлов может быть отключен, отключен и открыт для обслуживания, в то время как другой котел продолжает работать и обеспечивать отопление здания. Это наиболее распространенный тип конфигурации для современных систем отопления. Другая версия будет подключена последовательно, но это устаревшая конструкция, которая не так практична, по крайней мере, для коммерческих офисов.

Пример разных котлов Котлы

бывают разных исполнений, несколько примеров я привел выше. Это может быть пара больших котлов или несколько более мелких. В лучших проектах будет использоваться сочетание размеров, чтобы эффективно удовлетворить спрос. Возможно большой зимой и меньший летом.

Эти котлы служат источником тепла для системы отопления. Это тепло передается циркулирующей воде системы отопления, которая затем выталкивается наружу и вокруг здания.

В системах такого типа вы встретите два термина: первичные и вторичные цепи.

В первичном контуре горячая вода будет циркулировать от котлов к гидравлическому разделителю. Гидравлический разделитель будет подавать горячую воду во вторичные контуры, а затем возвращать использованную горячую воду из охладителя обратно в другой конец гидравлического коллектора.

Вода первичного контура может течь прямо через гидравлический разделитель и обратно в котел для сбора большего количества тепла, или может течь вверх через вторичные контуры. Путь прохождения воды будет зависеть от потребности в горячей воде во вторичных контурах.Вода может протекать прямо, потому что бойлерам для работы требуется минимальный расход, в противном случае они могут повредить или разрушить свои внутренние части.

Каждый первичный и вторичный контуры имеют свои собственные насосные агрегаты.

Первичные насосы обычно представляют собой более крупные насосы, обычно центробежного типа с приводом от асинхронного двигателя. Это зависит от размера системы, хотя они также могут быть встроенными, особенно в небольших офисных помещениях.

Подробное описание первичной и вторичной сторон , описанных здесь

Первичные насосы будут проталкивать воду только по первичному контуру.Эта горячая вода выходит из котла, попадает в этот трубопровод, всасывается первичным насосом и затем выталкивается в гидравлический разделитель.

Эта вода может затем либо выйти через вторичные насосы, выходящие из коллектора с малыми потерями, и течь в стояки, либо некоторая ее часть будет проходить через другую сторону коллектора. В любом случае вода достигнет дальнего конца коллектора и продолжит течь обратно в котел, но при более низкой температуре, чтобы собрать больше тепла и повторить этот цикл.

Из коллектора с горячей стороны выходят несколько небольших насосов, которые подсоединены к трубам, известным как стояки. Стояки поднимаются вверх по зданию, чтобы подавать нагретую воду в разные контуры. Например, кондиционеры восточного или западного крыла.

В этом примере у нас четыре вторичных цепи. Вторичные контуры 1–3 имеют сдвоенный насос, а четвертый – только один, поскольку тепловая нагрузка небольшая и находится поблизости, возможно, возле стойки регистрации.

Вторичные насосы

Выше вы можете увидеть пример некоторых вторичных насосов меньшего размера.Это могут быть и большие центробежные насосы, это зависит от размера системы отопления. Эти насосы нагнетают горячую воду туда, где это необходимо, но только для выбранной области здания, к которой подключен трубопровод.

Установки с двумя насосами обычно работают в дежурном и резервном режимах. Это означает, что один насос работает в любой момент времени, а другой действует как резервный на случай выхода рабочего насоса из строя.

Вторичные контуры будут обеспечивать водой определенную площадь здания.Например, первый контур может обеспечивать горячей водой радиаторы на первом этаже. Второй, вторичный контур может обеспечивать горячей водой вентиляционные установки и фанкойлы только на восточной стороне здания и т. Д. И т. Д.

После того, как горячая вода проходит через теплообменник и теряет часть своей тепловой энергии, она возвращается через обратный стояк, откуда она течет обратно в разделитель с низкими потерями и обратно в котел для сбора большего количества тепла.

Горячее водоснабжение

В этом примере у нас также есть вторичный контур, который идет в водонагреватель. Водонагреватель – это место, где производится горячая вода, это горячая вода, которая выходит из кранов.

Почему мы отделяем бытовую воду от горячей воды, циркулирующей по всему зданию? Много химикатов попадает в первичную систему отопления системы LTHW, систему горячего водоснабжения с низкой температурой, и вы действительно не хотите пить это.

Горячая вода подается из котла во вторичный контур, где она затем нагнетается насосом в теплообменник в водонагревателе.Затем он будет передавать свое тепло пресной воде, которая находится внутри резервуара. Температура пресной воды неизбежно повысится из-за теплообменника. Эта подогретая пресная вода затем подается на кухни, чайные зоны и раковины в ванных комнатах, где она используется и стекает в канализацию. Он не вернется обратно в систему отопления. Между тем, подаваемая горячая вода из бойлера во вторичном контуре будет вытекать из теплообменника в водонагревателе с более низкой температурой, потому что она отдала часть своего тепла пресной воде, и она вернется обратно в водонагреватель. Гидравлический разделитель и обратно в котел.

Блок наддува

Выше вы можете увидеть пример расширительного бака и блока повышения давления. Давление в системе изменится, например, если включится вторичный насосный агрегат, тогда первичный насосный агрегат увидит снижение давления, потому что теперь больше воды течет из коллектора во вторичный контур.

То же самое, если температура воды повышается или понижается, ее плотность изменится, и это также повлияет на давление.Вода расширяется при нагревании и сжимается при охлаждении.

Расширительный бак и блок повышения давления подключаются к главному трубопроводу, обычно где-то около гидравлического коллектора. Если давление становится слишком высоким, то, очевидно, расширительный бак поглотит часть этого, а когда оно станет слишком низким, блок повышения давления заставит его вернуться в систему, чтобы выровнять его.

Система дозирования

Выше вы можете увидеть пример дозирующей емкости. Обычно это устанавливается с помощью тонких трубопроводов, соединенных через гидравлический разделитель.Затем он будет использовать перепад давления, чтобы пропустить через него горячую воду. Дозатор просто позволяет заливать химические ингибиторы в систему, что сохраняет ее чистоту и отсутствие бактерий.


Трубопроводы нового поколения: феномен современной гидроники

ХОТЯ Я НАСЛАЖДАЮСЬ работой с медными трубами и мне очень нравится хороший дизайн, но я пришел к выводу, что хорошо спроектированный гидравлический разделитель, готовый к работе, сразу же делает его идеальным решением. много смысла.Современные высоконапорные конденсационные котлы в значительной степени диктуют свою потребность и использование.

Незадолго до того, как первый холодный фронт этого отопительного сезона закрылся вокруг нашего дома на юго-западе штата Миссури, я был в процессе капитального ремонта системы водяного охлаждения; останутся только сияющие петли. Я вырвал из системы первичный контур, и клубок меди, брошенный на мое крыльцо – многие части которого остались нетронутыми – намекал на сложность схемы первичного / вторичного трубопроводов, которую я заменял.

Когда я вытащил эту трубопроводную сеть из стены моей механической комнаты, мне в голову пришла идея.Почему бы не провести инвентаризацию того, что здесь находится, и не оценить время, которое у меня уйдет на то, чтобы спроектировать и построить то, что обеспечивает предварительно собранный заголовок с низким уровнем потерь?

То, что лежало в руинах на полу моего крыльца, было следующим: 10 футов 11/4 дюйма. медь; восемь 11/4 дюйма тройники переходные; шесть 11/4 дюйма локти; продувка воздухом; канал unistrut; хомуты unistrut; петлевые вешалки; разный крепеж; припой и флюс; и время, чтобы спроектировать, разрезать и обжечь петлю и собрать все компоненты.

Примерная стоимость? Я считаю, что от 1000 до 1500 долларов.Вероятно, больше, особенно учитывая нестабильность цен на медь!

Моя новая усовершенствованная система водяного отопления включает в себя несколько трехскоростных циркуляционных насосов Grundfos SuperBrute, набор редукторов Watts Radiant, настенный конденсационный котел Lochinvar Knight и гидравлический разделитель Caleffi HydroLink.

Гидронные коллекторы

с малыми потерями доступны от Caleffi, Viessmann и Buderus в предварительно собранных пакетах, которые выполняют функцию параллельного первичного контура. Ключевой деталью является пара близко расположенных тройников или гидравлический разделитель между котлом или источником тепла и цепями нагрузки.Их цель – соединить вторичный контур с первичным контуром таким образом, чтобы нейтрализовать любую тенденцию влиять на поток во вторичном контуре.

Многие считают установку параллельного первичного контура или гидравлического коллектора с низкими потерями основополагающим фактором для оптимальной работы низкотемпературных многозонных гидравлических систем практически любого размера и конфигурации. Некоторые, однако, предостерегают от чрезмерного использования заголовков с малыми потерями.

A P / S primer
Эксперт по гидронике Джон Зигенталер говорит, что трубопроводы первичного / вторичного контура используются в отрасли водяного отопления на протяжении десятилетий.Он добавляет, что важной деталью конструкции всегда была пара близко расположенных тройников, соединяющих каждую вторичную цепь с общей первичной обмоткой. Эта деталь «разъединяет» первичный и вторичный контуры, позволяя нескольким циркуляционным насосам с разной насосной способностью «сосуществовать» в одной системе, не мешая друг другу.

Независимо от того, построен ли параллельный первичный контур на месте или функция выполняется с помощью приобретенного предварительно смонтированного заголовка с низкими потерями, близко расположенные тройники – или их эквивалентные, близко расположенные порты – позволяют каждой цепи функционировать как единая цепь. без реального подключения к другим цепям.

Благодаря трубопроводу P / S способность изолировать системные контуры позволяет относительно легко проектировать сложные системы с несколькими нагрузками, не беспокоясь о том, как будут изменяться скорости потока и перепады давления при включении и выключении различных циркуляционных насосов, говорит Зигенталер. Это огромное преимущество, потому что в противном случае контуры конкурируют друг с другом за давление воды и значительно усложняют задачу распределения тепла.

По словам Зигенталера, наиболее важным является постоянно расширяющееся понимание того, как применять эту технологию.Ясно, что это приведет к увеличению числа высокопроизводительных систем. Также интересно отметить, что эти системы не обязательно большие или сложные. Хотя трубопроводы P / S лучше всего подходят для более сложных систем с несколькими нагрузками и разными температурами, их применимость может распространяться и на более простые гидравлические системы. Трубопроводы P / S могут использоваться для небольших, трех- и четырехзонных систем лучистого отопления.

По словам Зигенталера, первичные контуры серии

лучше всего подходят для ситуаций, когда две или более вторичных нагрузки будут работать с разными температурами подачи.Он добавляет, что основной принцип заключается в подключении вторичных цепей с более высокой температурой в начале первичного контура и вторичных цепей с более низкой температурой в конце.

Такое расположение приводит к увеличению перепада температуры в первичном контуре, уменьшая расход. Дополнительным преимуществом является то, что это может позволить уменьшить размер трубопровода и циркулятора (ов) первичного контура.

Разумные модификации этой базовой конструкции позволят приспособить любое количество вторичных цепей, что позволит им работать при одинаковых температурах подачи.

Другой взгляд
Как я упоминал ранее, некоторые эксперты по гидронике предостерегают от идеи, что каждая работа может быть спроектирована таким образом. В эту группу входит собственный обозреватель ПОДРЯДЧИКА по гидронике Марк Этертон. Он предлагает более разумный подход к применению этих методов проектирования, поскольку считает, что можно злоупотреблять заголовками с низкими потерями.

«Я знаю, что Viessmann рекомендует использовать их с котлами Vitodens, чтобы обеспечить не более 30 ° дельты на стороне котла», – говорит Эзертон.«То же самое можно сделать с помощью первичного / вторичного трубопровода, но многие подрядчики, к сожалению, не понимают правильную конструкцию и использование первичной / вторичной конфигурации. Им не уделяется внимания деталям, касающимся расстояния между коленами и первыми тройниками, коленами и последними тройниками. , вызывая нежелательный поток через вторичный “.

Eatherton отмечает, что когда мы впервые начали прокладывать трубопроводы первичного / вторичного контура, все было по-другому. Он добавляет, что времена изменились, и многие подрядчики научились делать трубопроводы, которые позволяют всем ветвям системы видеть самые высокие доступные температуры, а котел имеет самые низкие возможные температуры. Следовательно, отмечает он, у нас есть лучшее из миров.

«Бывают случаи, когда сборный коллектор имеет смысл, но это не во всех случаях, и поскольку мы обычно делаем большие системы, четырехпортовый блок просто не имеет достаточного количества портов для удовлетворения наших потребностей», – говорит Эзертон.

Он добавляет, что согласен со мной в том, что заголовки с малыми потерями могут сэкономить много времени и денег, если они соответствуют потребностям.

По словам Эзертона, с появлением маломассивных модулирующих конденсационных котлов многие из них нашли способ устранить необходимость в круговом циркуляторе в системах снеготаяния.По его словам, циркуляционный насос по-прежнему необходим, если требуются многочисленные выходные температуры и если в одной системе имеется множество источников тепла.

«Я просто пока не вижу готовых блоков, удовлетворяющих эту потребность, но никогда не поздно научить старую собаку новым трюкам», – говорит Эзертон. «Я всегда открыт для лучших и быстрых способов добиться результата».

Боб «Хот Род» Рор владеет и управляет Show Me Radiant Heat, подразделением MAXROHR Inc., подрядной фирмы в Роджерсвилле, Миссури.В прошлом президент Ассоциации излучающих панелей, он имеет лицензии магистра в области сантехники, механики и газоснабжения. С ним можно связаться по электронной почте [email protected] или по телефону 417 / 753-3998.

Системные условия, влияющие на КПД котла –

Ничего страшного, не хочу. Это выражение восходит к 1772 году и в основном означает, что если вы не тратите что-то попусту, у вас никогда не будет в этом нужды. И те, кто тратят впустую, захотят. Тратить и хотеть или экономить и иметь. Когда дело доходит до систем отопления, вы не хотите создавать систему, которая неэффективно использует источник топлива. Не тратьте, не хотите!

За прошедшие годы я видел несколько систем, нарушающих этот принцип. С учетом затрат на электроэнергию на экране радаров каждого, в ваших интересах обеспечить или улучшить существующее горячее водоснабжение ваших клиентов, чтобы минимизировать их отходы. Есть несколько шагов, которые вы можете предпринять, чтобы исключить потери энергии в системе отопления. Сюда входят два очень очевидных, которые мало связаны с реальной системой отопления:

1. Увеличьте изоляцию в доме и
2. Обновите окна (какое бы тепло ни производила система – держите его внутри здания как можно дольше).

Что касается системы отопления, то короткое время цикла является основным убийцей эффективности. Он поражает сразу по нескольким направлениям, в том числе механически и экономически.

Механические проблемы возникают из-за частого включения и выключения котла. Все различные компоненты котла, работающего на жидком топливе, имеют ожидаемый жизненный цикл. Когда котел работает с короткими циклами, компоненты видят все эти циклы за очень короткий промежуток времени.
Это приводит к преждевременным сбоям управления, нежелательным блокировкам, вызовам в службу поддержки и разочарованию клиентов. Если вы хотите убить новый котел менее чем за пять лет и в процессе разочаровать себя и своих клиентов . .. сократите цикл!

Экономическая проблема часто неизвестна и, безусловно, недооценивается. Существует старое эмпирическое правило, которое гласит: Котел с коротким циклом будет работать, по крайней мере, на 15% ниже его номинальной эффективности, если он не работает с коротким циклом. Потеря топливной эффективности может быть ошеломляющей, что означает, что потраченный впустую расход топлива оплачивается ничего не подозревающим домовладельцем с помощью нового высокоэффективного котла.

Итак, если вы хотите предотвратить короткое замыкание, что вы можете сделать? Первым делом нужно убедиться, что котел не крупногабаритный . Когда котел слишком большой, он всегда будет производить больше энергии (БТЕ), чем система может получить / использовать (без перегрева помещения). Будучи слишком большим, он очень быстро достигает своего верхнего предела, не позволяя котлу / горелке работать в «устойчивом режиме».”

Лучший способ убедиться, что новый котел не слишком большой, – это провести точную оценку потерь тепла в доме. Доступно несколько программных программ по потере тепла, которые помогут вам определить потери тепла в любом здании. Используя эту информацию, вы можете затем выбрать котел правильного размера для дома, вместо того, чтобы полагаться на кого-то, кто пришел до вас и установил предыдущий, и, возможно, неправильного размера котел.

К сожалению, ни одно доброе дело не остается безнаказанным .Котел может работать с коротким циклом даже при правильном размере. Ты знаешь почему? Нагрузка и зонирование – причины. Котел правильного размера рассчитан на расчетные условия. Это означает, что когда на улице очень холодно (расчетная температура наружного воздуха), котел способен поддерживать людей при расчетной температуре в помещении, которая обычно составляет около 70 ° F. Однако эти наружные расчетные условия существуют менее 5% от общего отопительного сезона, что означает, что на оставшуюся часть отопительного сезона даже котел надлежащего размера будет слишком большим и может привести к коротким циклам.

Гидравлические системы и зоны

Преимуществом и / или отличительной чертой гидравлической системы является то, что ее можно очень легко зонировать. Большинству домовладельцев нравится идея иметь возможность управлять секциями своего дома, вплоть до управления каждой комнатой. К сожалению, это также может привести к короткому циклу.

Если вызывается одна или две маленькие зоны, и котел срабатывает в ответ, выходная мощность котла превышает потребности меньших зон.Очень быстро достигается верхний предел, и котел отключается. Зоны продолжают звонить, и температура воды падает. Срабатывает регулятор предельного значения, и котел снова зажигается. Конечно, быстро достигается верхний предел и котел отключается. Таким образом, даже несмотря на то, что отрасль гидроники продвигает свои возможности зонирования, а домовладельцы наслаждаются комфортом и контролем, обеспечиваемыми зонированием, это действительно может испортить потенциальный рейтинг эффективности котла.

В то время как новые окна и надлежащая изоляция помогают оплачивать отопление,
домовладелец может принять и другие меры.

Если бы вы спросили любого производителя котлов, какое время розжига было бы приемлемым, чтобы исключить короткое замыкание и все его недостатки, то минимум 10 минут розжига является отраслевым стандартом.Итак, что мы можем сделать, чтобы добиться этого минимального 10-минутного времени стрельбы? Я думаю, что ответ заключается в одном или двух вариантах, а может быть, даже в обоих.

Один из них – улучшить управление работой системы. И это система… долгое время мы позволяли отдельным зонам работать независимо и, следовательно, случайным образом. Конечным результатом является непостоянная и очень неравномерная загрузка котла, что часто приводит к резкому короткому циклу работы котла. Конечно, пассажирам наверху все еще относительно комфортно, но какой ценой?

Сегодня на рынке доступны регуляторы / термостаты, которые синхронизируются друг с другом (т.е.е., разговаривают друг с другом ). Благодаря синхронизации друг с другом, все они требуют тепла одновременно в начале каждого нового цикла нагрева. Естественно, продолжительность каждого из них определяется потребностями конкретной зоны. Преимущество этого заключается в том, что котел видит разумную нагрузку / расход, с которой он может работать, что сводит к минимуму короткие циклы.

Еще одним преимуществом этих «новых термостатов» является то, что они также могут запрашивать температуру воды обратно в систему управления котлом (, мозг, ).Система управления получает эти запросы от всех различных зон и принимает решение на основе зоны с наивысшими требованиями к температуре. Затем другие зоны с более низкой температурой рассчитывают свое собственное время включения с водой с более высокой температурой, чтобы поддерживать желаемое заданное значение.

Другой вариант – придать системе некоторую массу, чтобы каждый раз, когда котел запускался, ему приходилось повышать температуру этой массы на «X» градусов. Если добавленная масса рассчитана правильно, бойлер не будет работать в режиме короткого цикла! Эта добавленная масса известна как «буферный резервуар».”

Так какая масса нужна? Насколько большим должен быть этот буферный резервуар? На самом деле это число довольно легко установить. Он основан на нескольких условиях:

1. Минимальное время включения котла
(обычно 10 минут)
2. БТЕ / час на входе котла
3. Минимум БТЕ / час наименьшей зоны по телефону
4 Желаемое / допустимое превышение температуры
(Delta T) резервуара (обычно на 20–40 ° F).

Когда вы введете все необходимые числа, ответом будет предложенный размер буферного резервуара в галлонах.Формула выглядит так:

Например, если бы у нас был котел с входной мощностью 150 000 БТЕ / ч, а наименьшая нагрузка зоны составляла 5000 БТЕ / ч, и система могла бы выдерживать повышение температуры на 40 ° F, буферный резервуар какого размера был бы необходим?

В этой конкретной системе, если вы установили буферный бак на 72,5 галлона и вызывала только самая маленькая нагрузка, котел проработал бы минимум 10 минут и, таким образом, исключил бы возникновение коротких циклов.

Кто-то может сказать, что дополнительная стоимость резервуара будет непомерно высокой, но если ее сопоставить со сроком службы системы, стоимостью энергии и дополнительными баллами эффективности, полученными за счет более длительного времени работы котла, это перевесит затраты на дополнительное оборудование. Пара замечаний по буферным резервуарам.
• Они должны быть хорошо изолированы
• В идеале иметь как минимум четыре трубных соединения
• С вентиляционным отверстием, установленным в верхней части резервуара, теперь у вас есть системный воздухоотделитель
• Из-за размера резервуара относительно Размеры труб, резервуар становится гидравлическим разделителем (гидравлический разделитель), таким образом действуя как первичное / вторичное соединение между котлом (-ами) и трубопроводом системы.

Если у вас есть какие-либо вопросы или комментарии, напишите мне по телефону [адрес электронной почты защищен] или позвоните мне в FIA: 800-423-7187. ICM

404 Не найдено 2

Ihre Cookie Einstellungen

Wir nutzen Cookies, um eine Vielzahl von Services anzubieten, diese stetig zu verbessern sowie Werbung entsprechend Ihrer Interessen auf unserer Webseite, Social Media und Partnerwebseiten anzuzeigen. Sie können sich die Cookies durch Auswahl der Cookie-Gruppen anzeigen lassen und durch Setzen eines Häkchens entscheiden, welche Cookies ausgespielt werden.Mit “Speichern” bestätigen Sie diese Auswahl. Венн Си “Алл Эрлаубен и особый” Вален, Виллиген Си в die Verwendung Aller Cookies ein. Weitere Informationen erhalten Sie nach Ihrer Bestätigung in unserer Datenschutzerklärung.

Folgende Cookies sind notwendig, damit die Website einwandfrei funktioniert. Ohne diese sind Magento Grundfunktionalitäten nicht nutzbar.

  • Файлы cookie сеанса PHP
  • Frontend Cookies für den Warenkorb
  • GDPR Cookie zum Schutz der Privatsphäre
Имя файла cookie Cookie Laufzeit Cookie Beschreibung
gdpr_data 1 Jahr GDPR Конфиденциальность Cookie
внешний интерфейс Файлы cookie внешнего интерфейса Magento
frontend_cid Файлы cookie внешнего интерфейса Magento
external_no_cache Файлы cookie кэша внешнего интерфейса Magento
магазин Файлы cookie для внешнего интерфейса Magento
adminhtml
MESSAGE_NO_CACHE
внешний интерфейс 1 шт. Файлы cookie внешнего интерфейса Magento
frontend_cid 1 шт. Описание скоро будет.

Marketing-Cookies werden von Drittanbietern oder Publishern verwendet, um personalisierte Werbung anzuzeigen.Sie tun dies, indem sie Besucher über Websites hinweg verfolgen.

  • Службы отслеживания пользователей (например, Google Analytics, Etracker и т. Д.)
  • Отслеживание конверсий (например, отслеживание конверсий AdWords, пиксель Facebook)
  • Инструменты ремаркетинга (например, ремаркетинг Google Analytics)
Имя файла cookie Cookie Laufzeit Cookie Beschreibung
NID 183 Тейдж Das NID-Cookie Enthält eindeutige ID, über die Google Ihre bevorzugten Einstellungen und andere Informationen speichert.
__utma 2 Яре In diesem Cookie werden die Hauptinformationen abgespeichert um Besucher zu tracken. In diesem Cookie werden eine eindeutige Besucher-ID, das Datum und die Zeit des ersten Besuches, der Zeitpunkt zu wellchem ​​der aktive Besuch gestartet wird sowie die Anzahl Aller Besucher welche ein eindeutiger der Besucher aktive.
__utmb 30 минут In diesem Cookie merkt sich Google Analytics ob ein Besuch abgelaufen ist und wie tief sich ein Besucher auf der Seite bewegt. Es speichert die Anzahl von Pageviews innerhalb des aktuellen Besuches und die Startzeit des aktuellen Besuches eines Besuchers.
__utmt 12 минут Dieses Cookie wird von Google Analytics gesetzt.Gemäß ihrer Dokumentation wird dieses Cookie verwendet, um die Anforderungsrate für den Dienst zu drosseln und die Datenerfassung auf Websites mit hohem Datenaufkommen zu beginzen.
__utmz 182 Tage, 12 Stunden Dieses Cookie ist das Besucherquellen Cookie. Es beinhaltet all Besucherquellen Informationen des aktuellen Besuches, auch Informationen welche über Kampagnen Tracking-Parameter übergeben wurden.Ebenfalls speichert dieses Cookie ab, ob die Besucherquelle des letztes Besuches anderst war als die aktuelle. Венн кейн Informationen zur Besucherquelle ermittelt werden können so wird das Cookie nicht abgeändert. Auf diesem Wege kann Google Analytics Besucherinformationen wie Conversions and E-Commerce Transaktionen einer Besucherquelle zuordnen. Das Cookie enthält keine Historischen Informationen über vergangene Besucherquellen.

Версия: 1. 0.0 с: 20.12.2019

Sie können Ihre Auswahl akzeptieren und speichern, indem Sie “Speichern” или “Alle erlauben & Speichern” klicken.

Speichern Alle erlauben & Speichern

(в) лапой.eu

Применение пластинчатых теплообменников для интеграции высокоэффективных котлов в устаревшие системы – CIBSE Journal

Спонсор CPD этого месяца

Традиционный метод распределения нагретой воды от котла до контуров системы отопления здания использует гидравлический разделитель для соединения первичного контура котла с вторичным распределением.

Однако существуют обстоятельства, при которых выгодно гидравлически отделить первичный контур котла от вторичных контуров систем отопления, и это может быть достигнуто путем замены гидравлического коллектора пластинчатым теплообменником.

В этой статье рассматриваются общие типы пластинчатых теплообменников, которые используются в системах обслуживания зданий, и обсуждается, как их можно с пользой применить вместо традиционного гидравлического коллектора в существующих системах при установке новых высокоэффективных котлов.

Основными типами пластинчатых теплообменников (ПТО), используемых в системах обслуживания зданий, являются либо разборные (разборные) блоки, либо полные сборки, спаянные. Паяные элементы изначально были разработаны для обеспечения экстремальных рабочих давлений и температур, но в настоящее время они широко применяются во многих областях.Доступны ПТО различных размеров, способные передавать от нескольких киловатт (кВт) тепла до нескольких мегаватт (МВт).

Рис. 1: Пример разборного пластинчатого теплообменника с разборкой (Источник: Vaillant / UK Exchangers)

Разборные ПТО, также известные как пластинчатые теплообменники, состоят из нескольких тисненых пластин из нержавеющей стали, скрепленных болтами, с чередующимися уплотнительными прокладками, расположенных между двумя торцевыми рамами (как показано на рисунке 1). Рамы и монтажный узел спроектированы таким образом, чтобы их можно было разбирать и восстанавливать для очистки и осмотра.Прокладки между пластинами разделяют два потока и создают внешнее уплотнение. Выход из строя прокладки не приводит к смешиванию двух потоков – прокладка устроена так, что такие утечки выходят в атмосферу. Пластины с двойными стенками доступны для применений, в которых критически важно, чтобы два потока не смешивались, что может быть целесообразным для использования в системах горячего водоснабжения. Пластины обычно изготавливаются из нержавеющей стали, а в паяном варианте они соединяются с медью. Более прочные и более дешевые паяные теплообменники (например, показанные на рисунке 2) представляют собой герметичные компоненты, поэтому их нельзя разбирать для обслуживания.

Горячая жидкость течет с одной стороны каждой пластины, а более холодная жидкость течет противотоком с другой стороны. Отверстия в каждом углу торцевых пластин действуют как коллекторы для жидкости. Одна жидкость перемещается в чередующихся зазорах (или каналах) к другой, и конкретное направление потока будет зависеть от конструкции отдельного производителя. Каналы в ПТО сформированы таким образом, что даже при низких значениях простого числа Рейнольдса возникает турбулентный поток, поэтому в сочетании с тонкими пластинами из нержавеющей стали с высокой проводимостью они обладают очень хорошими характеристиками теплопередачи.По сравнению с кожухотрубным теплообменником теплопередача на единицу площади в четыре или пять раз больше. 1

Тепло, передаваемое от одной текущей жидкости к другой через пластинчатый теплообменник, можно определить по UA ∆T LM , где U – средний коэффициент теплопередачи от одного потока к другому (Вт · м -2 · K -1 ), A – общая площадь теплопередачи (м 2 ), а ∆T LM – средняя логарифмическая разница температур двух потоков.

∆T LM определяется по температуре на входе и выходе из первичной и вторичной обмоток. Для противоточного пластинчатого теплообменника, показанного на рисунках 2 и 3,

Наряду с этим соотношением, применяемым для оценки проектной мощности ПТО, также полезно определить, насколько адекватно теплообменник работает во время работы – оценить, не слишком ли он заблокирован или загрязнен – ​​путем измерения температуры и сравнения ∆T LM с датой ввода в эксплуатацию.Конструкция пластинчатого теплообменника способна обеспечить большой перекрестный температурный диапазон и, потенциально, температурный подход 1K из-за противоточного тракта жидкости и высокого U. 1

При выборе ПТО важно получить совет от производителя не только для определения основных параметров калибровки, но и для надлежащего учета «загрязнения» – накопления отложений на пластинах, которое будет относиться как к конструкция гофров в пластинах и тип жидкости.Если ПТО выбран правильно, то засорение теплообменников отопительной воды, вероятно, будет очень небольшим из-за турбулентного потока, необходимого для правильной работы. Из-за ошибочной переоценки вероятного загрязнения (и, как следствие, уменьшения значения U) размер PHE будет увеличен, и результирующая скорость воды может быть ниже идеальной, что, по иронии судьбы, будет способствовать увеличению уровня загрязнения. В некоторых строительных приложениях, например, в тех, которые используют воду из градирни, потенциальное загрязнение может быть более сложным и может включать кристаллизацию, осаждение и рост органических материалов.

ПТО

требуют очень небольшого обслуживания, поскольку высокоскоростной турбулентный поток жидкости в каналах защищает поверхности от загрязнения. Сетчатые фильтры (фильтры) могут быть установлены в трубопроводе перед теплообменником для продления его работы, но их необходимо периодически промывать в рамках программы технического обслуживания. Если, однако, более крупные частицы застревают в небольших промежутках между пластинами и тем самым препятствуют потоку, можно использовать обратную промывку, чтобы попытаться удалить закупоривающий материал.

Рисунок 2: Пример пластинчатого теплообменника из нержавеющей стали, припаянного медью, высотой примерно 500 мм и шириной 270 мм, который может обеспечивать теплообмен от 240 кВт до 1 МВт (Источник фото: Vaillant)

Для поддержания эксплуатационной эффективности демонтаж и очистка разборных ПТО часто планируются как часть годового плана технического обслуживания. Замена прокладок на больших ПТО требует больших затрат, и при техническом обслуживании на месте необходимо обеспечить равномерную нагрузку на пластины, их квадратную и плоскую форму – методично затягивая болты с соответствующим крутящим моментом для фиксации прижимной пластины – для обеспечения долговечности успешной работы. .Для удаления грязи и мусора с паяных ПТО после периода эксплуатации может потребоваться химическая или ультразвуковая очистка. Это можно сделать на месте, если были установлены соответствующие клапаны.

Применение ПТО в системах отопления зданий

PHE уже широко используются в ряде приложений в строительных системах. Чаще всего они встречаются в комбинированных котлах, где паяные ПТО используются для отвода тепла от первичного контура отопления к мгновенному потоку горячей воды для бытового потребления.В коммерческих системах непрерывного проточного отопления и горячего водоснабжения первичные теплоносители могут питаться от источников тепла с низкой, средней или высокой температурой, включая пар. Они также образуют ядро ​​блока сопряжения с теплом (HIU), который используется в схемах централизованного теплоснабжения для подачи тепла конечным пользователям. 2

Они все чаще применяются в проектах реконструкции, где в течение всего срока службы системы будет происходить разрушение трубопроводов и фитингов, что приведет к накоплению твердых частиц и накипи (карбоната кальция) в системе.Доступны методы удаления твердых частиц, такие как фильтры, сепараторы циклонного типа и магнитные удалители шлама, но в более старых системах особенно сложно обеспечить отсутствие всех твердых частиц даже после проведения комплексной очистки и промывки. .

Это может повлиять на производительность котла. Например, частичная закупорка водных путей может привести к возникновению «горячих точек» внутри котла, что повлияет на производительность до такой степени, что потребуется серьезное техническое обслуживание.Старые чугунные котлы с большими водными путями менее восприимчивы и часто могут справляться с такими условиями, когда твердые частицы могут накапливаться на дне каналов, не вызывая серьезных препятствий. Более новые высокоэффективные котлы имеют меньшие водные пути, поэтому в системе меньше места для сбора грязи и мусора, не влияя отрицательно на производительность. Конденсационные котлы обычно устанавливаются как часть герметичной системы под давлением, но многие старые системы с открытой вентиляцией не подходят для перехода на герметичную работу.

Практическое решение – оставить существующую (вторичную) систему открытой с одновременным гидравлическим разъединением первичного контура с помощью ПТО, чтобы обеспечить защищенный первичный контур под давлением для нового котла. PHE обычно заменяет традиционный разделитель с низкими потерями, основная функция которого заключается в гидравлическом разделении первичного и вторичного контуров, как показано на Рисунке 4.

Важно правильно подобрать теплообменник не только для подачи необходимого тепла во вторичный контур, но и для обеспечения того, чтобы гидравлическое сопротивление могло компенсироваться первичным и вторичным насосами системы.Падение давления на вторичной стороне ПТО может составлять от 10 кПа до 30 кПа. Это сопоставимо с менее чем 10 Па в заголовке с низкими потерями. Чтобы поместить это в контекст, типичная система трубопроводов отопления обычно имеет размер при перепаде давления от 200 до 300 Па · м -1 , поэтому падение давления через ПТО эквивалентно примерно 40-120 м прямой системы трубопроводов отопления. Потери давления на первичной стороне ПТО должны быть достаточно низкими, чтобы первичный (или «шунтирующий») насос одного котла мог циркулировать воду.Более высокий перепад давления на ПТО или увеличение конструктивного значения ∆T LM обычно приводит к уменьшению размеров теплообменника.

Большинство современных высокоэффективных котлов спроектированы для работы с фиксированным перепадом рабочих температур 20K – например, 80 ° C / 60 ° C или, в режиме конденсации, 70 ° C / 50 ° C или 60 ° C / 40 ° C. . Однако старые системы отопления часто проектировались для работы с перепадом 11K – обычно 82 ° C / 71 ° C или 180 ° F / 160 ° F. Конечно, ПТО не может повышать температуру вторичного потока выше температуры первичного.Однако температура вторичного потока может достигать от 2 до 5 К температуры первичного потока. На практике полученная в результате пониженная средняя температура вторичной воды – по сравнению с исходной конструкцией системы – не вызывает проблем при нормальной работе, поскольку многие старые системы и их тепловые излучатели имеют слишком большие размеры или здания подверглись некоторому ремонту, что снижает тепловая нагрузка от той, когда здание было построено. Использование ПТО не исключает возможности работы вторичной системы с большим ∆T, чтобы обеспечить работу котла в режиме конденсации, но для этого потребуется, чтобы существующие тепловые излучатели могли выдерживать нагрузку здания при более низкой средней температуре воды. .

Разделение первичного и вторичного контуров будет означать, что во время технического обслуживания котла потребность в сливе будет снижена, а объемы замены очищенной подпиточной воды для системы под давлением будут меньше, что сделает обслуживание более простым, быстрым и меньшим. дорого. Повторный ввод в действие системы под давлением также будет завершен быстрее, так как будет меньше риск попадания воздуха в систему из-за меньшей системы трубопроводной сети.

При правильном применении и установке ПТО могут упростить интеграцию и обеспечить эффективную работу новых котлов с существующими системами.Использование ПТО для отделения новых высокоэффективных котлов под давлением от основной распределительной системы может защитить новые котлы от загрязнения, которое может существовать в устаревших системах. Это также позволяет существующей инфраструктуре трубопроводов оставаться на месте, создавая возможность для поэтапного ремонта, сохраняя при этом основной источник тепла в рабочем состоянии. Удаление котла из основной распределительной системы позволит лучше контролировать качество воды, циркулирующей в котлах, тем самым улучшая эксплуатационную эффективность котла в течение всего жизненного цикла, сокращая объем технического обслуживания и потенциальных поломок, а также увеличивая срок полезного использования.

Сообщается, что использование ПТО в коммерческих системах отопления растет. 3 , поскольку растет осведомленность о потенциальных применениях и преимуществах. Существует нехватка авторитетных руководств по этому конкретному применению ПТО в качестве замены традиционных заголовков с низкими потерями, поэтому предлагаемые преимущества, обсуждаемые здесь, основаны на опыте производителей. Всего несколько лет назад использование такой технологии в этом приложении было чрезвычайно редким, но теперь оно расширилось до стадии, когда крупный производитель 3 сообщает, что 50% его коммерческих приложений, где заменяющие котлы используют существующие трубопроводы, теперь включить в спецификацию PHE.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *