Расчет толщины пеноплекса: Калькулятор расчета утеплителя для стен, пола

Содержание

пеноплекс расчет количества по площади

Количество и общая площадь плит утеплителя в пачке Пеноплекса

Пеноплэкс – экструдированный пенополистирол, представляющий собой популярный плитный утеплитель, применяемый для утепления практически везде. С его помощью можно одинаково эффективно выполнить теплоизоляцию всего дома, чердака, кровли, перекрытия, стен, фундамента. Он востребован при утеплении особняков, квартир, коммерческих зданий, саун, бань и т.п.

Чтобы заказать данный материал и не промахнуться с требуемым количеством плит, необходимо знать, сколько пеноплекса в упаковке, и на покрытие какой площади одна пачка рассчитана. Подробная информация об этом приведена ниже.

Сколько плит Пеноплекса поставляется в одной упаковке?

Сколько плит экструдированного пенополистирола пеноплекс в упаковке, зависит от толщины выбранного вами материала. Данный утеплитель может иметь толщину от 20 до 150 мм, и именно от этого зависит количество листов в одной пачке. Чем больше высота листа, тем их меньше в пачке, что сделано для обеспечения удобства складирования, погрузки/разгрузки и транспортирования материалов.

Сколько штук в пачке пеноплекса в зависимости от толщины листа? Смотрите здесь:

  • 20 мм – 18 шт.;
  • 30 мм – 12 шт.;
  • 40 мм – 9 шт.;
  • 50 мм – 7 шт.;
  • 60 мм – 7 шт.;
  • 80 мм – 5 шт.;
  • 100 мм – 4 шт.;
  • 120 мм – 3 шт.;
  • 150 мм – 2 шт.

Необходимо отметить, что по стандартам ТМ «Пеноплекс» количество в пачке листов всегда является одинаковым.

Какова общая площадь плит Пеноплекса в одной упаковке?

Зная основные параметры материала и количество листов в пачке, вам не будет сложно рассчитать самостоятельно, на какую площадь ее хватит. Но мы упростили вам задачу и уже посчитали, сколько квадратов (м2) в упаковке пеноплекса различной толщины:

  • 20 мм – 12,5 кв.м.;
  • 30 мм – 8,3 кв.м.;
  • 40 мм – 6,2 кв. м.;
  • 50 мм – 4,9 кв.м.;
  • 60 мм – 4,9 кв.м.;
  • 80 мм – 3,5 кв.м.;
  • 100 мм – 2,8 кв.м.;
  • 120 мм – 2,1 кв.м.;
  • 150 мм – 1,4 кв.м.

То есть, если вам нужен пеноплекс 50 мм, сколько м2 в упаковке? 4,9 кв.м., которых хватит на утепление почти 5 кв.м. поверхности. Обратите внимание: утеплитель всегда необходимо покупать с запасом в 10-20% от фактической покрываемой площади, ведь практически всегда имеет место монтажный брак и перерасход материала по другим причинам.

Объем пачки Пеноплекса

Стандартные размеры пеноплекса в упаковке – 1185х585мм (ДхШ), тогда как высота пачки зависит от толщины листа. Она рассчитывается, как высота плиты, умноженная на их количество.

Исходя из этого можно самостоятельно рассчитать и объем пеноплекса требуемого вам типа в пачке, что может понадобиться при необходимости транспортирования материала для оценки требуемой вместимости транспортного средства. Однако, мы уже провели все необходимые расчеты и предоставляем вам результаты по упаковкам в зависимости от толщины листа:

  • 20 мм – 0,288 куб. м.;
  • 30 мм – 0,3024 куб. м.;
  • 40 мм – 0,288 куб. м.;
  • 50 мм – 0,288 куб. м.;
  • 60 мм – 0,3024 куб. м.;
  • 80 мм – 0,288 куб. м.;
  • 100 мм – 0,288 куб. м.

Для наглядности предлагаем вам изучить сводную таблицу, в которой отражены все перечисленные выше параметры.

Таблица с геометрическими данными и объёмами:

При выборе пеноплекса для теплоизоляции стен очень важно сделать всю работу в соответствии с технологией. Прежде всего необходимо провести расчет утепления стен. Пенопласт выпускается в нескольких стандартных размерах, поэтому, прежде чем утеплять стены, необходимо определить оптимальную ширину, высоту и толщину листов.

Утепление пенополистиролом фасада несущей стены.

Важные моменты и порядок проведения расчета

Прежде всего нужно знать, что пенопласт может использоваться для утепления стен снаружи и изнутри. Вариант наружного утепления стен пенопластом используется чаще всего, однако лучше проводить комплексную теплоизоляцию. Технология утепления стен снаружи и изнутри практически не имеет различий, однако для выполнения работы нужно будет использовать плиты пенопласта разной толщины.

Расчет толщины теплоизоляционного материала.

Очень важно правильно выполнить расчет. Нужно понимать, что в данном случае большая толщина утеплителя повлечет за собой дополнительные расходы. И при всех остальных равных условиях проведение утепления стен без выполнения предварительного расчета подходящей толщины плит пенопласта вынудит хозяина попросту зря потратить деньги. Помимо этого, если плиты пенопласта будут использоваться для утепления стен внутри помещения, расчет позволит сохранить максимум полезного пространства, обеспечив качественную теплоизоляцию.

Однако и попытки купить самые тонкие листы пенопласта тоже обернутся против вас. Чересчур тонкая плита не сможет обеспечить должную защиту от холода. Так что расчет является обязательной частью подготовительного этапа. Именно грамотно составленный расчет позволит организовать такую теплоизоляцию, которая будет иметь необходимую эффективность.

Крепление пенопласта к стене фасадным металлическим дюбелем.

Чтобы правильно выполнить расчет теплоизоляции, нужно прежде всего учитывать теплосопротивление. Это постоянный показатель для конкретного климатического региона.

Для российских условий он колеблется в среднем от 3,5 до 4,6 м*К/Вт. Если параллельно со стенами вы будете утеплять потолок и пол, расчет нужно будет сделать с использованием увеличенных значений.

Данный параметр позволяет подобрать наиболее оптимальную толщину слоя пенопласта для обеспечения требуемого теплосопротивления.

Расчет предельно прост: показатель теплосопротивления делится на коэффициент теплопроводности плит пенопласта (в зависимости от марки колеблется в среднем от 0,031 до 0,041 Вт/м*К).

Другие важные условия

Схема штукатурки пенопласта.

Выполняя расчет, нужно учитывать и ряд других условий. К примеру, для утепления стен в жилом доме и стен неотапливаемого гаража понадобится разный слой утеплителя. Как правило, производители пенопласта в инструкции к своему товару приводят специальные таблицы, в которых перечислены все важные факторы. Обязательно уточните этот момент у консультанта по месту покупки пенопласта.

Таким образом, если вы будете утеплять стены чердака или гаража и хотите максимально сэкономить на отоплении и электричестве, нужно будет использовать слой пенопласта толщиной порядка 6 см. Такой же слой используется и в жилых помещениях. Если же вы не будете использовать чердак или же утепление выполняется лишь для того, чтобы уменьшить теплопотери через помещение без отопления, будет достаточно листов пенопласта толщиной 20-40 мм. Это бюджетный, но весьма эффективный и широко использующийся материал. Однако именно толщина в 5-6 см является наиболее оптимальной в большинстве случаев.

Пошаговая инструкция по наружному утеплению

Схема внутреннего и наружного утепления пенопластом.

Наружные теплоизоляционные работы с использованием пенопласта выполняются в следующем порядке:

  1. Сначала подготавливается рабочая поверхность.
  2. После этого выполняется крепление плит утеплителя.
  3. Затем устанавливается специальная сетка.
  4. В завершение поверхность оштукатуривается.

На начальном этапе работы вам понадобятся следующие материалы и инструменты:

  1. Наружная шпатлевка. При желании вместо нее можно использовать бюджетный аналог — цементно-песчаный раствор.
  2. Грунтовка.
  3. Шпатель.
  4. Молоток, дюбели.
  5. Цокольная планка.
  6. Строительный уровень.

Схема нанесения клея на пенопласт.

Перед началом работы нужно просушить стены. Слишком высокая влажность рабочей поверхности негативно отразится на качестве отделки. Любые неровности и дефекты поверхности нужно исправить.

Сначала удаляется старая штукатурка, выступающие части, наплывы и пр. Затем тщательно заделываются все трещины и поверхность основательно выравнивается. Для этого можно использовать штукатурку. Она проста в работе и прекрасно устраняет дефекты стен.

Состав, предназначенный для приклеивания пенопласта к поверхности, содержит воду. Если вы нанесете его на необработанную поверхность, она впитает воду из клея, что резко снизит его адгезию. В результате пенопласт попросту отслоится. Именно поэтому предварительно поверхность необходимо прогрунтовать. Если стены построены из шлакоблока или другого пористого материала, грунтовка наносится двойным слоем. Ей дают высохнуть и закрепляют цокольную планку под пенопласт. Планка устанавливается на стыке стены и цоколя и закрепляется с помощью дюбелей.

Руководство по креплению пенопласта

Преимущество пенопласта в экономии расхода материала.

На этом этапе работы вам понадобится следующее:

  1. Пенопласт толщиной от 5 см.
  2. Емкость для приготовления клеящего раствора.
  3. Строительный миксер или дрель со специальной насадкой.
  4. Молоток, дюбели.
  5. Широкая малярная кисть.

Прежде всего необходимо приготовить клей. Существует достаточно большой выбор смесей, поэтому в процессе приготовления ориентируйтесь на инструкцию производителя. Клей нужно тщательно размешать. В готовой смеси не должно быть комочков и любых других сторонних включений. Не отклоняйтесь от инструкции производителя, т.к. это может негативно отразиться на качестве работы.

Схема расположения крепежа для пенопласта.

Нанесите готовый клей на лист пенопласта. Смазывать всю плиту не нужно. Сделайте несколько густых точек в центре или же нанесите полосы по периметру. Возьмите первый лист, опустите его нижнюю кромку в закрепленную ранее цокольную планку и плотно прижмите к поверхности. Посередине и в углах плиты сделайте отверстия под дюбели. Используйте для этого электродрель.

Глубина должна быть такой, чтобы сверло входило в стену не менее чем на 5 см. Забейте дюбели молотком. Заполните пенопластом весь нижний ряд. Следующий ряд немного сместите. Важно, чтобы вертикальные стыки плит не совпадали друг с другом. Заполните всю поверхность.

Пенопласт — это материал с хорошими эксплуатационными характеристиками. Однако он крайне неустойчив как перед механическими, так и перед атмосферными воздействиями.

Поэтому, после того как вся предполагаемая поверхность будет заполнена пенопластом, поверх него необходимо будет наложить специальную армирующую малярную сетку.

Схема основных потерь тепла в доме.

После крепления сетки поверхность будет оштукатурена. На данном этапе вам нужно подготовить:

  1. Клей.
  2. Сетку с мелкими ячейками.
  3. Валики, шпатели.

Приступать к устройству армирующей сетки можно сразу после того, как будет приклеен весь пенопласт. Сначала необходимо нанести от угла дома вертикальную полосу клея.

Делайте ее такой ширины, которая немного превышала бы ширину армирующей сетки. Приложите сетку поверх клея и плотно вдавите, прокатите валиком, нанесите новый слой клеевой смеси, чтобы полностью закрыть сетку. Наносите так полосу за полосой, пока не покроете всю стену. Дайте поверхности просохнуть в течение суток и приступайте к штукатурным работам.

Схема утепления стены пенопластом под сайдинг.

Для этого подготовьте:

  • штукатурку;
  • грунтовку;
  • кисть;
  • шпатель.

Тщательно прогрунтуйте поверхность. Это обеспечит максимально надежное сцепление слоя штукатурки с поверхностью. Замесите раствор в соответствии с инструкцией производителя и аккуратно распределите его по поверхности при помощи шпателя. Не спешите набирать сразу слишком много раствора, без соответствующего опыта вам будет сложно его разравнивать.

Распределите штукатурку равномерным слоем (обычно делается слой толщиной 3 мм) по внешней стене. Уберите все излишки с помощью шпателя. Нельзя, чтобы на данном слое оставались какие-либо дефекты. В противном случае существенно снизится качество всей отделки. При желании штукатурке можно придать фактурность. На этом работы по внешней облицовке стен пенопластом считаются завершенными.

Руководство по утеплению стен пенопластом изнутри

Схема утепления стены дома пенополистиролом.

Процесс внутренней теплоизоляции стен при помощи пенопласта не имеет особых отличий от наружного утепления. Рабочая поверхность подготавливается в том же порядке:

  1. Удаляется старая облицовка.
  2. Замазываются трещины.
  3. Выравниваются неровности.

Обшивать пенопластом можно только максимально ровную стену. Работа проводится с применением следующих инструментов:

  1. Гидроизоляции.
  2. Грунтовки.
  3. Специального клея для работы с пенопластом.
  4. Малярных кистей.
  5. Штукатурки или гипсокартона.

Сухую и ровню стену нужно обработать грунтовкой. В случае с внутренней отделкой обычно достаточно 1 раза. После того как поверхность высохнет, ее нужно закрыть слоем гидроизоляции. Можно использовать обыкновенную полиэтиленовую пленку. Данный материал будет защищать плиты пенопласта от влаги, проникающей через стены. В зимнее время образование конденсата будет происходить особенно эффективно, поэтому пленка должна быть устроена обязательно. Лишь в условиях полного отсутствия влаги теплоизоляция будет в течение долгого времени оставаться эффективной.

Далее выполняется облицовка плитами пенопласта. Их можно прикрепить к стене пластиковыми дюбелями, однако гораздо более удобно и быстро все можно сделать с помощью клея. Современные клеевые смеси позволяют надежно прикрепить пенопласт без особых усилий. Состав наносится только на обрабатываемую поверхность, на пенопласт наносить его не надо. Пенопласт прикладывается к стене с нанесенным клеем и плотно прижимается. Между плитами не должно быть зазоров, т. к. через них будет уходить тепло. Приклеивайте плиты максимально аккуратно и плотно.

После того как все стены будут оклеены плитами утеплителя, можно переходить к заключительному этапу работы. К примеру, можно закрыть стены гипсокартоном, а затем оклеить обоями или зашпаклевать. На это уйдет немного времени, и в результате будет получена абсолютно ровная красивая поверхность. Можно все сделать и без гипсокартона, покрыв пенопласт уже знакомой вам армирующей сеткой, зашпаклевав и покрасив.

Одновременное наружное и внутреннее утепление стен дает максимальный эффект. Если будет сделано только внутреннее утепление, под слоем гидроизоляции может начать собираться конденсат. Из-за этого начнет появляться плесень, будут запотевать окна. Во избежание этого необходимо выполнять утепление в строгом соответствии с технологией и регулярно проветривать комнату. Правильно устроенная теплоизоляция позволит вам сэкономить на счетах за электричество и отопление и сделать свой дом максимально уютным. Удачной работы!

Калькулятор расчета материалов для утепления стены пеноплэксом

Очень популярной становится система наружного утепления стен дома с их последующей отделкой штукатуркой – эта технология получила название «мокрый фасад». При точном соблюдении всех ее правил, стены можно отделать любой декоративной штукатуркой или окрасить фасадной краской.

Калькулятор расчета материалов для утепления стены пеноплэксом

Чтобы такой утеплительный слой хорошо держался на стенах и, в свою очередь, служил надежной основой для декоративно отделки, требуется применение исключительно качественных материалов с обязательным соблюдением пропорций и порядка их нанесения. Расположенный ниже калькулятор расчета материалов для утепления стены пеноплэксом покажет, какое ориентировочное количество их понадобится для конкретной площади утепляемой и отделываемой стены.

Пояснения по расчету – вынесены в текстовую часть, ниже калькулятора.

Калькулятор расчета материалов для утепления стены пеноплэксом

Пояснения по проведению расчетов

Прежде всего, калькулятор предложит сделать выбор, как произвести расчет: по известной, рассчитанной ранее площади стены, или же по ее линейным параметрам – длине и ширине, с возможностью исключить из расчета оконные и дверные проемы. Во втором варианте – необходимо будет указать количество и размеры проемов.

Результаты расчетов показывают:

  • Необходимое количество стандартных утеплительных панелей пеноплэкс 1200×600 мм. Толщина утеплительных панелей рассчитывается заранее по специальному алгоритму, который реализован в отдельном калькуляторе (по ссылке).
  • Любая стеновая поверхность для хорошей адгезии с монтажным клеем требует предварительной обработки грунтовкой. Чаще применяется грунтовка глубокого проникновения, но для бетонных стен лучше использовать состав типа «Бетоноконтакт». Калькулятор покажет результат для обоих вариантов.
  • Для наклеивания термоизоляционных панелей пеноплэкса и для дальнейшего нанесения с внешней их стороны армированного базового штукатурного слоя используются специальные строительные смеси, предназначенные именно для утеплительных работ. Калькулятор покажет необходимое их количество для двух вариантов:

— для последующей отделки декоративной штукатуркой (в этом случае базовый штукатурный слой делают толщиной 4 мм).

— для использования по базовому слою фасадной краски (при таком типе отделке его толщина должна быть увеличена до 5 мм).

  • Армирование базового слоя предполагает использование специальной стекловолоконной сетки. Как правило, она реализуется рулонами шириной в 1000 мм. Расчет нужного количества предусматривает создание между соседними полотнами сетки нахлеста шириной в 100 мм.
  • Помимо клеевого состава, панели пеноплэкса крепятся к стене еще и механически – с применением дюбелей-«грибков». Необходимое их количество также будет показано, в результатах расчета.
  • Наконец, после застывания базового армированного слоя, перед началом отделочных работ, его обязательно обрабатывают водно-дисперсионной грунтовкой. Ее тип зависит от вида планируемой отделки, а примерный расход – покажет калькулятор.

Для панелей пеноплэкса предусмотрен запас в 15% – на раскрой. Для всех остальных материалов заложен резерв в 10%.

Утепление и отделка фасада разом!

Такая технология позволяет одновременно решать две важные проблемы – утепления стен и придания им должной декоративности. Подробнее о технологии утепления «мокрый фасад» с пеноплэксом – в специальной публикации нашего портала.

Расчет толщины утеплителя для стен, пола, потолка и кровли, схема укладки

Прежде, чем построить дом, внимательно изучаются свойства материалов, решается вопрос планировки и то, как произвести расчет толщины утеплителя. Для ее определения учитываются три основных сопротивления:

  • принятию воздуха стеной – R1;
  • прохождению тепла через стены – R2;
  • его отдачи – R3.

При этом в расчет берется сумма всех наслоений, а также воздушная прослойка, при условии, что в ней будет создана постоянная циркуляция воздуха – замкнутое пространство. Для увеличения сопротивления допускается применение отражающей фольги. Сохранение температуры воздуха в помещении зависит не только от толщины наружного изолятора стен, но и от внутреннего покрытия.

При расчете плотность материала делят на его коэффициент термопроводимости и получают значение R2. Продукт толщиной R1+R2+R3 должен равняться норме термостойкости для данного региона по СНиП II-3-1979 «Строительная тепловая техника» = 2,659 м2С/Вт.

Требования и критерии выбора

Главным качеством считаются хорошие термоизолирующие показатели не только для зимы, но и для лета. Материал с высокой воздухопроницаемостью обеспечит стене сухое состояние в любой сезон.

1. Кровля.

Если холодный чердак дома можно изолировать засыпным слоем, то мансардное помещение для жилья отделывается плитами минеральной ваты, пенопласта или другого материала с термопроводностью до 0,04 Вт/м °С. Рассчитать толщину в скате мансардной крыши следует суммой всех накладываемых слоев с учетом коэффициента проводимости. Для каждого региона выбирается своя норма согласно СНиП II-3-1979, допускается взять в расчет кровельного утеплителя показатель, средний для всех – +19°С.

2. Пол в доме.

Для пола существует множество видов материалов, таких как:

  • стекловолокно;
  • ППУ;
  • насыпной керамзит;
  • в виде гранул;
  • разного рода фанера;
  • двойной деревянный пол;
  • ватные плиты.

На черновом основании распределяются лаги из бруса. Желательно создать воздушную прослойку с помощью обычного рубероида, пленки или мембранной ткани. Утеплитель для деревянного пола плотно укладывается или засыпается между брусом, сверху кладутся доски или фанерное покрытие. При работе с гипсовыми плитами в качестве пароизоляции следует использовать только сухую или намасленную бумагу. Слои можно подобрать по своему усмотрению, но обязательно выполнить расчет оптимальной толщины изоляции. Коэффициент термопроводности берется из вышеуказанного стандарта или из технических характеристик строительного компонента.


Работа с плитами Пеноплекса

Рассмотрим вариант отделки стен, пола и потолка легким пенопластом или более дорогим аналогом – Пеноплэксом. Коэффициент его теплопроводности составляет 0,032 Вт/м., у пенопласта этот показатель чуть выше, поэтому понадобится меньшая толщина Пеноплекса. Он производится по технологии литья через экструдер, что исключает пористость и дает такие преимущества как:

  • непромокаемость;
  • хорошая изоляция звуков;
  • легкость и малая рассыпаемость в монтаже;
  • долговечность.

Толщина пенопласта будет больше, но он дешевле Пеноплекса и имеет не менее высокие качества.

Теплотехнический расчет вычисляется следующим образом:

  • возьмем за норму термической защиты значение Rт = 2,659 м2 С/Вт.,
  • нормативное сопротивление обмену тепла внутри строения – 0,115 м,
  • снаружи – 0,043 м.
  • Пеноплекс с коэффициентом термопроводности 0,032 Вт/м °С, плотностью 0,02 метра;
  • газоблок основной стены с показателями: 0,14 Вт/м °С, 0,29 метра.

Расчет на примере Пеноплекса будет выглядеть так:

R = (0,115 + 0,29/0,14 + 0,02/0,032 + 0,043) = 2,854 м.

При сравнении расчетного значения теплостойкости с нормативной Rт = 2,659 м2 С/Вт, видим, что стена не будет пропускать холод. При необходимости экономии материала, его толщину можно немного убавить, произведя расчет термоизоляции стен на меньшую цифру.

Как рассчитать толщину утеплителя

Даже популярные ныне коттеджи из бревна или профилированного бруса необходимо утеплять дополнительно или возводить их из практически несуществующего на рынке деревянного массива толщиной в 35-40 см. Что уж говорить о каменных строениях (блочных, кирпичных, монолитных).

Что значит «утеплиться правильно»

Итак, без теплоизоляционных слоёв обойтись нельзя, с этим согласится подавляющее большинства домовладельцев. Некоторым из них приходится изучать вопрос во время строительства собственного гнёздышка, другие озадачиваются утеплением, чтобы фасадными работами улучшить уже эксплуатируемый коттедж. В любом случае подходить к вопросу необходимо очень скрупулёзно.

Одно дело соблюдение технологии утепления, но ведь часто застройщики допускают ошибки на стадии закупки материала, в частности неправильно выбирают толщину утепляющего слоя. Если жилище окажется слишком холодным, то находиться в нём будет, мягко говоря, некомфортно. При благоприятном стечении обстоятельств (наличие запаса производительности теплогенератора) проблему получится решить увеличением мощности отопительной системы, что, однозначно, влечёт за собой существенный рост расходов на покупку энергоносителей.

Но обычно всё заканчивается куда печальнее: при малой толщине утепляющего слоя ограждающие конструкции промерзают. А это становится причиной перемещения точки росы вовнутрь помещений, из-за чего на внутренних поверхностях стен и перекрытий выпадает конденсат. Потом появляется плесень, разрушаются строительные конструкции и отделочные материалы… Что самое неприятное, так это тот факт, что невозможно устранить неприятности малой кровью. Например, на фасаде придётся демонтировать (или «похоронить») финишный слой, затем создать ещё один барьер из утеплителя, а потом снова отделать стены. Очень недёшево выходит, лучше сразу всё сделать как положено.

Важно! Технологичные современные утеплители мало стоить не будут, причём с увеличением толщины пропорционально будет расти и цена. Поэтому создавать слишком большой запас по теплоизоляции обычно смысла нет, это – пустая трата средств, особенно если случайному сверхутеплению подвергается только часть конструкций дома.

Принципы расчёта утепляющего слоя

Теплопроводность и термическое сопротивление

Прежде всего, нужно определиться с главной причиной охлаждения здания. Зимой у нас работает система отопления, которая греет воздух, но сгенерированное тепло проходит через ограждающие конструкции и рассеивается в атмосфере. То есть происходят теплопотери – «теплопередача». Она есть всегда, вопрос лишь в том, получается ли их восполнить посредством отопления, чтобы в доме оставалась стабильная положительная температура, желательно на уровне + 20-22 градусов.

Важно! Заметим, что очень немаловажную роль в динамике теплового баланса (в общих теплопотерях) играют различные неплотности в элементах здания – инфильтрация. Поэтому на герметичность и сквозняки тоже следует обращать внимание.  

Кирпич, сталь, бетон, стекло, деревянный брус… – каждый материал, применяемый при строительстве зданий, в той или иной мере обладает способностью передавать тепловую энергию. И каждый из них обладает обратной способностью – сопротивляться теплопередаче. Теплопроводность является величиной неизменной, поэтому в системе СИ существует показатель «коэффициент теплопроводности» для каждого материала. Данные эти важны не только для понимания физических свойств конструкций, но и для последующих расчётов.

Приведём данные для некоторых основных материалов в виде таблицы.

МатериалКоэффициент теплопроводности Вт/(м*К)
1Сталь52
2Стекло1,15
3Железобетон с щебнем1,7-2
4Минеральная вата0,035-0,053
5Сосна влажности 15%0,15-0,23
6Кирпич с пустотами0,44
7Кирпич сплошной0,67- 0,82
8Пенопласт0,04-0,05
9Пенобетонные блоки0,3-0,5

Теперь о сопротивлении теплопередаче. Значение сопротивления теплопередаче обратно пропорционально теплопроводности. Этот показатель относится и к ограждающим конструкциям, и к материалам как таковым. Он используется для того, чтобы охарактеризовать теплоизоляционные характеристики стен, перекрытий, окон, дверей, кровли…

Для расчёта термического сопротивления используют следующую общедоступную формулу:

R=d/k.

Показатель «d» здесь означает толщину слоя, а показатель «k» – теплопроводность материала. Получается, что сопротивление теплопередаче напрямую зависит от массивности материалов и ограждающих конструкций, что при использовании нескольких таблиц поможет нам рассчитать фактическое теплосопротивление существующей стены или правильный утеплитель по толщине.

Для примера: стена в половину кирпича (полнотелого) имеет толщину 120 мм, то есть показатель R получится 0,17 м²·K/Вт (толщина 0,12 метра, разделённая на 0,7 Вт/(м*К)). Аналогичная кладка в кирпич (250 мм) покажет 0,36 м²·K/Вт, а в два кирпича (510 мм) – 0,72 м²·K/Вт.

Допустим, по минеральной вате толщиной 50; 100; 150 мм показатели термического сопротивления будут следующие: 1,11; 2,22; 3,33 м²·K/Вт.

Важно! Большинство ограждающих конструкций в современных зданиях являются многослойными. Поэтому, чтобы рассчитать, например, термическое сопротивление такой стены, нужно отдельно рассматривать все её прослойки, а затем полученные показатели суммировать.

Существуют ли требования к тепловому сопротивлению

Возникает вопрос: а каким, собственно, должен быть показатель сопротивления теплопередачи для ограждающих конструкций в доме, чтобы в помещениях было тепло, и в отопительный период расходовалось минимум энергоносителей? К счастью для домовладельцев, не обязательно снова использовать сложные формулы. Вся необходимая информация есть в СНиП 23-02-2003 «Тепловая защита зданий». В данном нормативном документе рассматриваются строения различного назначения, эксплуатируемые в различных климатических зонах. Это вполне объяснимо, так как температура для жилых помещений и производственных помещений не нужна одинаковая. Кроме того, отдельные регионы характеризуются своими предельными минусовыми температурами и длительность отопительного периода, поэтому выделяют такую усреднённую характеристику, как градусо-сутки отопительного сезона.

Важно! Ещё один интересный момент заключается в том, что основная интересующая нас таблица содержит нормируемые показатели для различных ограждающих конструкций. Это в общем-то не удивительно, ведь тепло покидает дом неравномерно.

Попробуем немного упростить таблицу по необходимому тепловому сопротивлению, вот что получится для жилых зданий (м²·K/Вт):

Регион по градусо-суткамОкнаСтеныПерекрытия холодного чердака и холодного подвала
20000,32,12,8
40000,452,83,7
60000,63,54,6
80000,74,25,5
100000,754,96,4
120000,85,67,3

Согласно данной таблице, становится понятно, что если в Москве (5800 градусо-суток при средней температуре в помещениях порядка 24 градусов) строить дом только из полнотелого кирпича, то стену придётся делать по толщине более 2,4 метра (3,5 Х 0,7). Реально ли это технически и по деньгам? Конечно – абсурд. Вот почему нужно применить утепляющий материал.  

Очевидно, что для коттеджа в Москве, Краснодаре и Хабаровске будут предъявляться разные требования. Всё, что нам нужно, так это определить градусо-суточные показатели для нашего населённого пункта и выбрать подходящее число из таблицы. Потом применяя формулу сопротивления теплопередаче, работаем с уравнением и получаем оптимальную толщину утеплителя, который необходимо применить. 

ГородГрадусо-сутки Dd отопительного периода при температуре, + С
242220181614
Абакан730068006400590055005000
Анадырь10700101009500890082007600
Арзанас620058005300490045004000
Архангельск720067006200570052004700
Астрахань420039003500320029002500
Ачинск750070006500610056005100
Белгород490046004200380034003000
Березово (ХМАО)900085007900740069006300
Бийск710066006200570053004800
Биробиджан750071006700620058005300
Благовещенск750071006700620058005400
Братск810076007100660061005600
Брянск540050004600420038003300
Верхоянск134001290012300117001120010600
Владивосток550051004700430039003500
Владикавказ410038003400310027002400
Владимир590054005000460042003700
Комсомольск-на-Амуре780073006900640060005500
Кострома620058005300490044004000
Котлас690065006000550050004600
Краснодар330030002700240021001800
Красноярск730068006300590054004900
Курган680064006000560051004700
Курск520048004400400036003200
Кызыл880083007900740070006500
Липецк550051004700430039003500
Санкт Петербург570052004800440039003500
Смоленск570052004800440040003500
Магадан900084007800720067006100
Махачкала320029002600230020001700
Минусинск470069006500600056005100
Москва580054004900450041003700
Мурманск750069006400580053004700
Муром600056005100470043003900
Нальчик390036003300290026002300
Нижний Новгород600053005200480043003900
Нарьян-Мар900085007900730067006100
Великий Новгород580054004900450040003600
Олонец630059005400490045004000
Омск720067006300580054005000
Орел550051004700420038003400
Оренбург610057005300490045004100
Новосибирск750071006600610057005200
Партизанск560052004900450041003700
Пенза590055005100470042003800
Пермь680064005900550050004600
Петрозаводск650060005500510046004100
Петропавловск-Камчатский660061005600510046004000
Псков540050004600420037003300
Рязань570053004900450041003600
Самара590055005100470043003900
Саранск600055005100570043003900
Саратов560052004800440040003600
Сортавала630058005400490044003900
Сочи1600140012501100900700
Сургут870082007700720067006100
Ставрополь390035003200290025002200
Сыктывкар730068006300580053004900
Тайшет780073006800630058005400
Тамбов560052004800440040003600
Тверь590054005000460041003700
Тихвин610056002500470043003800
Тобольск750070006500610056005100
Томск760072006700620058005300
Тотьна670062005800530048004300
Тула560052004800440039003500
Тюмень700066006100570052004800
Улан-Удэ820077007200670063005800
Ульяновск620058005400500045004100
Уренгой10600100009500890083007800
Уфа640059005500510047004200
Ухта790074006900640058005300
Хабаровск700066006200580053004900
Ханты-Мансийск820077007200670062005700
Чебоксары630058005400500045004100
Челябинск660062005800530049004500
Черкесск400036003300290026002300
Чита860081007600710066006100
Элиста440040003700330030002600
Южно-Курильск540050004500410036003200
Южно-Сахалинск65006005600510047004200
Якутск114001090010400990094008900
Ярославль620057005300490044004000

Примеры расчёта толщины утеплителя

Предлагаем на практике рассмотреть процесс расчётов утепляющего слоя стены и потолка жилой мансарды. Для примера возьмём дом в Вологде, построенный из блоков (пенобетон) толщиной 200 мм.

Итак, если температура в 22 градуса для обитателей будет нормальной, то актуальный в данном случае показатель градусо-суток равняется 6000. Находим в таблице нормативов по термическому сопротивлению соответствующий показатель, он составляет 3,5 м²·K/Вт – к нему будем стремиться.

Стена получится многослойная, поэтому сначала определим, сколько термического сопротивления даст голый пеноблок. Если средняя теплопроводность пенобетона составляет порядка 0,4 Вт/(м*К), то при 20-миллиметровой толщине эта наружная стена даст сопротивление теплопередаче на уровне 0,5 м²·K/Вт (0,2 метра делим на коэффициент теплопроводности 0,4).

То есть для качественного утепления нам не хватает порядка 3 м²·K/Вт. Их можно получить минеральной ватой или пенопластом, который будут установлены со стороны фасада в вентилируемой навесной конструкции или мокрым способом скреплённой теплоизоляции. Чуть трансформируем формулу термического сопротивления и получаем необходимую толщину – то есть умножаем необходимое (недостающее) сопротивление теплопередачи на теплопроводность (берём из таблицы).

В цифрах это будет выглядеть так: d толщина базальтовой минваты = 3 Х 0,035 = 0,105 метра. Получается, что мы может использовать материал в матах или рулонах толщиной 10 сантиметров. Заметим, что при использовании пенопласта плотностью 25 кг/м3 и выше – необходимая толщина получится аналогичной.

Кстати, можно рассмотреть другой пример. Допустим, хотим из полнотелого силикатного кирпича в этом же доме сделать ограждение тёплого остеклённого балкона, тогда недостающего термического сопротивления будет порядка 3,35 м²·K/Вт (0,12Х0,82). Если планируется применять для утепления пенопласт ПСБ-С-15, то его толщина должна быть 0,144 мм – то есть 15 см.  

Для мансарды, крыши и перекрытий техника расчётов будет примерно такая же, только отсюда исключается теплопроводность и сопротивление теплопередачи несущих конструкций. А также несколько увеличиваются требования по сопротивлению – потребуется уже не 3,5 м²·K/Вт, а 4,6. В итоге, вата подойдёт толщиной до 20 см = 4,6 Х 0,04 (теплоизолятор для кровли).

Применение калькуляторов 

Производители изоляционных материалов решили упростить задачу рядовым застройщикам. Для этого они разработали простые и понятные программки для расчёта толщины утеплителя.

Рассмотрим некоторые варианты:

http://www.xps.tn.ru/calculate/

http://calc.rockwool.ua/#professional

http://www.penoplex.ru/school/index.php?step=4

http://www.knaufinsulation.ru/kalkulyator-dlya-rascheta-kolichestva-teploizolyatsii-0

В каждом из них в несколько шагов нужно заполнить поля, после чего, нажав на кнопку, можно мгновенно получить результат.

Вот некоторые особенности использования программ:

1. Везде предлагается из выпадающего списка выбрать город/район/регион строительства.

2. Все, кроме Технониколь, просят определить тип объекта: жилое/производственное, либо, как на сайте Пеноплекс – городская квартира/лоджия/малоэтажный дом/хозпостройка.

3. Потом указываем, какие конструкции нас интересуют: стены, полы, перекрытие чердака, крыша. Программа Пеноплекс рассчитывает также утепление фундамента, инженерных коммуникаций, уличных дорожек и площадок.

4. Некоторые калькуляторы имеют поле для указания желаемой температуры внутри помещения, на сайте Rockwool интересуются также габаритами здания и типом применяемого для отопления топлива, количеством проживающих людей. Кнауф ещё учитывает относительную влажность воздуха в помещениях.

5. На penoplex.ru нужно указать тип и толщину стен, а также материал, из которого они изготовлены. 

6. В большинстве калькуляторов есть возможность задать характеристики отдельных или дополнительных слоёв конструкций, например, особенности несущих стен без теплоизоляции, тип облицовки…

7. Калькулятор пеноплекс для некоторых конструкций (допустим для утепления кровли методом «между стропил») может считать не только экструдированный пенополистирол, на котором фирма специализируется, но также минеральную вату.

Как вы понимаете, в том, чтобы рассчитать оптимальную толщину теплоизоляции – ничего сложного нет, следует только со всей тщательностью подойти к данному вопросу. Главное, чётко определиться с недостающим сопротивлением теплопередаче, а потом уже выбирать утеплитель, который будет лучше всего подходить для конкретных элементов здания и применяемых строительных технологий. Также не стоит забывать, что к теплоизоляцией частного дома необходимо заниматься комплексно, в должной степени должны быть утеплены все ограждающие конструкции.

калькулятор расчета толщины утеплителя (теплоизоляции) для стен

Содержание   

В процессе утепления стен минеральной ватой для утепления стен очень важно заранее рассчитать все параметры теплоизоляции. Убедиться в том, что вы все сделали правильно.

Только после расчета следует приступать непосредственно к монтажу утеплителя. Но как выполнить расчет теплоизоляции правильно и не сделать ошибку во время его осуществления?

Монтаж пенополистирольных плит на стену

Сейчас мы в этом подробно разберемся.

1 Зачем нужен расчет?

Кто-то из вас может задать закономерный вопрос, а зачем собственно рассчитывать все так дотошно?

Ведь можно просто на глаз взять, к примеру, 10 сантиметров утеплителя из пенопласта, и его наверняка хватит для полноценного утепления дома.

И действительно, при отделке тех же стен часто расчет вообще не выполняется. Но это не всегда правильно.

Если вы экономный человек и желаете расходовать свои средства правильно, то вам придется выполнить несколько простых действий.

Это необходимо для того, чтобы получить возможность использовать точное количество утеплительного материала. При этом его будет достаточно и для надежной теплоизоляции, и для размещения точки росы в правильном месте.

С теплоизоляцией все и так понятно, даже если производится утепление ангара с помощью ППУ. Если толщины утеплителя не хватит, то поверхность стен не будет защищена должным образом. Рано или поздно она промерзнет, а это значит, что температура у вас в доме упадет, и очень быстро.

Тут важно использовать формулы расчета, чтобы не прогадать с толщиной, при этом не затрачивая лишних средств на работу. Ведь лишние пару сантиметров того же пенопласта – это тоже деньги.

В особенности если вы собираетесь отделывать всю наружную поверхность стен. На таких площадях перерасход теплоизоляции может существенно отразиться на вашем кошельке.

к меню ↑

1.1 Что такое точка росы?

Второй – более неочевидный момент, заключается в необходимости смещения точки росы. Для стен, особенно наружных, важно просчитать точку росы правильно.

Точкой росы называют место отложения конденсата. Конденсат образуется из-за пара, что проходит через стену. Выходит он из помещений внутри. Это нормальный процесс. Поверхность стен постоянно подвергается воздействию пара, так как пар – это продукт жизнедеятельности человека.

Горячий, слегка увлаженный воздух довольно легко проходит через почти все конструкции. И если стена не защищена пароизоляцией, то пар будет беспрепятственно выходить наружу.

Внутреннее утепление стен минеральной ватой по каркасу

Однако выход пара может существенно затрудниться, если температура разных конструкций имеет разные показатели.

Наверняка вы видели, как на поверхности стен в сарае или на даче скапливается вода даже с утеплителем для стен снаружи. Она появляется ниоткуда и провоцирует появление на площади стен грибков, а также других подобных неприятностей.

Образуется конденсат из-за того, что неутепленные стены имеют пониженную температуру. Они промерзают, и на внешнем крае стены появляется так называемая точка росы. Положение, где температура конструкции находится на уровне примерно 10 градусов по Цельсию.

Именно в этом месте при образовании конфликта температур происходит физический процесс образования конденсата.

Если человек позаботился о монтаже утеплителя на поверхность стен, то они уже не промерзнут так, как раньше. Однако это не значит, что проблема решена. Без основательного расчета утеплитель может тоже частично промерзать. Это означает, что точка росы просто сместится на дальний край утеплителя.

Все бы ничего, да вот только большинство теплоизоляционных материалов влагу не любят, особенное ее избыточное количество. Нахождение в таких условиях может привести к различным неприятностям.

А всего этого можно избежать, если использовать калькулятор для расчета рабочей толщины теплоизоляции стен.

к меню ↑

1.2 Функции калькулятора

Выполнять расчет толщины для утепления стены можно вручную, а можно и с помощью калькулятора.

Калькулятор в привычном понимании – это специальная вычислительная машина, которая помогает проводить нам расчеты. Он часто используется даже при ручном выведении оптимальной толщины стен.

Однако в данном случае подразумевается другой калькулятор. Имеется в виду специальная программа по расчету эффективности теплоизоляции и утепления полиуретаном.

Сам по себе расчет можно изложить всего в нескольких формулах. Основные различия есть только в том, что каждый хозяин использует определенные материалы.

Так, стены могут быть выполнены из:

  • Кирпича;
  • Бетона;
  • Легких блоков;
  • Древесины и т.д.

Слой утеплителя в пустотелой стене из пеноизола

При этом каждый материал имеет свою теплопроводность и влияет на конструкции. Аналогичная ситуация проходит с утеплителем для стен. Строители часто прибегают к помощи:

То есть по сути, все что от нас требуется – заранее определить нужные значения и подставить их в формулу. Этим и занимается калькулятор. Будучи прописанной по текущим стандартам программой, он содержит в себе все необходимые для работы данные.

Вам же нужно только выбрать материал, вписать его параметры и получить ответ. У того же пенопласта теплопроводность немного отличается от минваты.

Калькулятор же примет все заданные свойства и через секунду выдаст вам результат. Причем результат будет максимально точным, ведь калькулятор не может ошибаться.

Такие программы существенно упрощают жизнь людям. Даже далекому от математических формул и строительства человеку справиться с ними будет достаточно легко.

к меню ↑

2 Процедура расчета

Использовать калькулятор – это конечно хорошо. Но не будем забывать и про личные качества. Все-таки знание и понимание процесса расчета даст нам намного больше сведений, чем бездумное забивание нескольких цифр в рабочую программку.

Да и к тому же рассчитывать утеплители очень просто. Вся процедура заключается в сравнении наличных параметров и свойств, которые необходимы для качественного утепления.

Сначала рассчитывают номинальное теплосопротивление стен. То есть те их теплоизоляционные свойства, которыми они обладают изначально.

Теплосопротивление на утепление стен минеральными плитами считают по формуле:

R=p/k, где

  • R – непосредственно теплосопротивление;
  • P – толщина слоя;
  • k – коэффициент теплопроводности.

Однако показателей сопротивления будет несколько. Ведь стена может состоять не только из одного лишь кирпича или бетона. Снаружи ее могут отделать слоем в 3-4 см штукатурки, а изнутри нанесут еще несколько сантиметров шпаклевки. Все это надо рассчитать и сложить.

В итоге вы получите общий показатель сопротивления, что есть у ваших стен на данный момент. Затем вы сравните его с номинальными показателями по температурному региону.

Схематическое изображение теплоизоляционного пирога

Для этого загляните в справочник строительных норм. Под каждый регион в нем указывается показатель теплосопротивления, при котором стена эффективно удерживает тепло внутри дома. В большинстве случаев полученный показатель будет ниже номинального, и это нормально.

При несоответствии вам нужно отнять от номинального сопротивления реальное. Полученный результат и будет тем теплосопротивлением, которое необходимо будет нивелировать с помощью использования утеплителя.

к меню ↑

2.1 Расчет утеплителя

Итак, недостающие показатели получены. Что же делать дальше? А все очень просто. Действуем по той же схеме. Теперь у нас уже есть понимание того, сколько примерно тепла нужно компенсировать.

Также у нас есть показатели теплопроводности самих утеплительных материалов. Например, у пенопласта он находится 0,035 Вт/м. Данные берутся с таблиц.

Мы перемножаем показатели друг на друга, чтобы получить примерную рабочую толщину утеплителя. Если, например, 50 мм пенопласта не хватит, чтобы полностью компенсировать потери теплосопротивления, то нужно просто увеличить эту толщину и пересчитать ее еще раз.

В конце концов, вы придете к нормальному значению, что будет вас устраивать. Прелесть выполнения расчета в том, что вы сможете подобрать практически идеальный слой утеплителя и сэкономить на этом существенные деньги.

Вместо того чтобы по стандарту утеплять стены десятисантиметровыми пенополистирольными плитами или жидкими утеплителями для стен, можно задействовать несколько формул и определить, что в вашем случае, например, хватит и 7 см пенопласта. Так зачем платить больше?

Собственно, все калькуляторы расчета утеплителя работают по этим же формулам. Просто там все данные уже забиты в ядро программы. Это касается как табличных параметров, так и формул, а также порядка их просчета.

Человеку больше не нужно искать формулы, подставлять в них значения и мучиться с расчетами. Программа перебирает все эти функции на себя, при этом выполняя работу намного быстрее. Любой расчет такой калькулятор способен выполнить почти мгновенно, что тоже большой плюс.

к меню ↑

2.2 Пример расчета теплоизоляционных конструкций (видео)

Толщина пенопласта для утепления стен: где учитывается этот показатель?

Автор Марсель Сагитов На чтение 3 мин. Просмотров 47

Напомним, что утепление стен пенопластом может осуществляться изнутри и снаружи. Последний вариант считается оптимальным, однако далеко не всегда в зданиях, уже введенных в эксплуатацию, есть возможность утеплить фасад. В таком случае — выполняется утепление изнутри. И хотя технология во многом будет схожей, и в том, и в другом случае толщина пенопласта для утепления стен будет разной.

Почему это важно? Не проще ли было бы использовать один и тот же вариант для всех этих случаев? Ведь казалось бы, чем больше слой утеплителя, тем лучше? Однако следует помнить, что чем толще пенопласт, тем он дороже, и в большинстве случаев при прочих равных это будет только лишняя трата денег. Кроме того, при утеплении изнутри лишняя толщина пенопласта – это сокращение полезной площади помещения.

Попытки сэкономить и купить более тонкие листы — также не приведут ни к чему хорошему. Слишком тонкий пенопласт, не сможет как следует защитить стены от низких температур. Однако, в результате разницы температур, между улицей и помещением, может образовываться конденсат. Так что, для того, чтобы теплоизоляция принесла нужный эффект, толщина пенопласта для утепления стен, должна соответствовать конкретным условиям.

Толщина пенопласта: как ее рассчитать?

Для того, чтобы рассчитать, какая толщина пенопласта для утепления стен понадобится — в том или в другом случае, нужен такой показатель, как теплосопротивление. Это постоянная величина, она не меняется в пределах отдельно взятого региона.

В среднем, для наших климатических условий она варьирует в пределах: 3,5-4,6 кв.м*К/Вт. Для пола и потолка — эти величины будут выше. Как эта цифра влияет на такую величину, как толщина пенопласта для утепления стен? Она помогает правильно посчитать, какой пенопласт нужно взять для того, чтобы достичь нужного уровня теплосопротивления.

Для этого, желаемый показатель теплосопротивления (он обозначается как R) делится на k– коэффициент теплопроводности пенопласта, его можно узнать из технической документации. В среднем, в зависимости от марки, коэффициент теплопроводности для этого материала варьирует в пределах 0,031-0,041 Вт/м*К. Следует отметить, что сегодня в Интернете можно найти специальные компьютерные программы, которые помогают произвести необходимые расчеты.

Толщина пенопласта для утепления стен изнутри: практическое применение

Иногда, производители этого материала публикуют таблицы, с помощью которых — можно сориентироваться, какая марка пенопласта вам понадобится. Ведь, помимо, климатических условий, имеют значения и условия эксплуатации.

Одно дело – стены в городской квартире, и совсем другое – стены мансарды, неотапливаемого чердака или балкона.

Так что, если вы хотите поддерживать определенную температуру на балконе или чердачном помещении, при минимальных расходах на электричество и отопление, вам понадобится слой пенопласта толщиной в 5-6 см.


Это касается и стен в обычных помещениях. Если чердак не будет использоваться вовсе, и вы просто хотите сократить потери тепла, через неотапливаемое помещение, можно ограничиться листами пенопласта толщиной в 2-4 см. Это будет недорогой, но достаточно эффективный вариант, который часто используют в частном строительстве.

ПолезноБесполезно

Толщина утеплителя в таблице. Правила расчета

Правильный расчет теплоизоляции повысит комфортность дома и уменьшит затраты на обогрев. При строительстве не обойтись без утеплителя, толщина которого определяется климатическими условиями региона и применяемыми материалами. Для утепления используют пенопласт, пеноплекс, минеральную вату или эковату, а также штукатурку и другие отделочные материалы.

Как рассчитать утепление самостоятельно

Чтобы рассчитать, какая должна быть у утеплителя толщина, необходимо знать величину минимального термосопротивления. Она зависит от особенностей климата. При ее расчете учитывается продолжительность отопительного периода и разность внутренней и наружной (средней за это же время) температур. Так, для Москвы сопротивление передаче тепла для наружных стен жилого здания должно быть не меньше 3,28, в Сочи достаточно 1,79, а в Якутске требуется 5,28.

Термосопротивление стены определяется как сумма сопротивления всех слоев конструкции, несущих и утепляющих. Поэтому толщина теплоизоляции зависит от материала, из которого выполнена стена. Для кирпичных и бетонных стен требуется больше утеплителя, для деревянных и пеноблочных меньше. Обратите внимание, какой толщины бывает выбранный для несущих конструкций материал, и какая у него теплопроводность. Чем тоньше несущие конструкции, тем больше должна быть толщина утеплителя.

Если требуется утеплитель большой толщины, лучше утеплять дом снаружи. Это обеспечит экономию внутреннего пространства. Кроме того, наружное утепление позволяет избежать накопления влаги внутри помещения.

Теплопроводность

Способность материала пропускать тепло определяется его теплопроводностью. Дерево, кирпич, бетон, пеноблоки по-разному проводят тепло. Повышенная влажность воздуха увеличивает теплопроводность. Обратная к теплопроводности величина называется термосопротивлением. Для его расчета используется величина теплопроводности в сухом состоянии, которая указывается в паспорте используемого материала. Можно также найти ее в таблицах.

Приходится, однако, учитывать, что в углах, местах соединения несущих конструкций и других особенных элементах строения теплопроводность выше, чем на ровной поверхности стен. Могут возникнуть “мостики холода”, через которые из дома будет уходить тепло. Стены в этих местах будут потеть. Для предотвращения этого величину термосопротивления в таких местах увеличивают примерно на четверть по сравнению с минимально допустимой.

Пример расчет

Нетрудно произвести с помощью простейшего калькулятора расчет толщины термоизоляции. Для этого вначале рассчитывают сопротивление передаче тепла для несущей конструкции. Толщина конструкции делится на теплопроводность используемого материала. Например, у пенобетона плотностью 300 коэффициент теплопроводности 0,29. При толщине блоков 0,3 метра величина термосопротивления:

0,3/0,29=1,03.

Рассчитанное значение вычитается из минимально допустимого. Для условий Москвы утепляющие слои должны иметь сопротивление не меньше чем:

3,28-1,03=2,25

Затем, умножая коэффициент теплопроводности утеплителя на требуемое термосопротивление, получаем необходимую толщину слоя. Например, у минеральной ваты с коэффициентом теплопроводности 0,045 толщина должна быть не меньше чем:

0,045*2,25=0,1 м

Кроме термосопротивления учитывают расположение точки росы. Точкой росы называется место в стене, в котором температура может понизиться настолько, что выпадет конденсат – роса. Если это место оказывается на внутренней поверхности стены, она запотевает и может начаться гнилостный процесс. Чем холоднее на улице, тем ближе к помещению смещается точка росы. Чем теплее и влажнее помещение, тем выше температура в точке росы.

Толщина утеплителя в каркасном доме

В качестве утеплителя для каркасного дома чаще всего выбирают минеральную вату или эковату.

Необходимая толщина определяется по тем же формулам, что и при традиционном строительстве. Дополнительные слои многослойной стены дают примерно 10% от его величины. Толщина стены каркасного дома меньше, чем при традиционной технологии, и точка росы может оказаться ближе к внутренней поверхности. Поэтому излишне экономить на толщине утеплителя не стоит.

Как рассчитать толщину утепления крыши и чердака

Формулы расчета сопротивления для крыш используют те же, но минимальное термосопротивление в этом случае немного выше. Неотапливаемые чердаки укрывают насыпным утеплителем. Ограничений по толщине здесь нет, поэтому рекомендуется увеличивать ее в 1,5 раза относительно расчетной. В мансардных помещениях для утепления крыши используют материалы с низкой теплопроводностью.

Как рассчитать толщину утепления пола

Хотя наибольшие потери тепла происходят через стены и крышу, не менее важно правильно рассчитать утепление пола. Если цоколь и фундамент не утеплены, считается, что температура в подполе равна наружной, и толщина утеплителя рассчитывается также, как для наружных стен. Если же некоторое утепление цоколя сделано, его сопротивление вычитают из величины минимально необходимого термосопротивления для региона строительства.

Расчет толщины пенопласта

Популярность пенопласта определяется дешевизной, низкой теплопроводностью, малым весом и влагостойкостью. Пенопласт почти не пропускает пара, поэтому его нельзя использовать для внутреннего утепления. Он располагается снаружи или в середине стены.

Теплопроводность пенопласта, как и других материалов, зависит от плотности. Например, при плотности 20 кг/м3 коэффициент теплопроводности около 0,035. Поэтому толщина пенопласта 0,05 м обеспечит термосопротивление на уровне 1,5.

Калькулятор утеплителя, расчет теплоизоляции – экструдированный пенополистирол “Экстрол”

Алтайский край

Амурская область

Архангельская область

Астраханская область

Белгородская область

Брянская область

Владимирская область

Волгоградская область

Вологодская область

Воронежская область

Ивановская область

Иркутская область

Кабардино-Балкарская республика

Калининградская область

Калужская область

Камчатская область

Карачаево-Черкесская Республика

Кемеровская область

Кировская область

Костромская область

Краснодарский край

Красноярский край

Курганская область

Курская область

Ленинградская область

Липецкая область

Магаданская область

Московская область

Мурманская область

Ненецкий АО

Нижегородская область

Новгородская область

Новосибирская область

Омская область

Оренбургская область

Орловская область

Пензенская область

Пермский край

Приморский край

Псковская область

Республика Башкортостан

Республика Бурятия

Республика Дагестан

Республика Калмыкия

Республика Карелия

Республика Коми

Республика Марий Эл

Республика Мордовия

Республика Саха (Якутия)

Республика Северная Осетия – Алания

Республика Татарстан

Республика Тыва

Республика Хакасия

Ростовская область

Рязанская область

Самарская область

Саратовская область

Сахалинская область

Свердловская область

Смоленская область

Ставропольский край

Таймырский АО

Тамбовская область

Тверская область

Томская область

Тульская область

Тюменская область

Удмуртская республика

Ульяновская область

Хабаровский край

Ханты-Мансийский АО

Челябинская область

Чеченская республика

Читинская область

Чувашская Республика

Чукотский АО

Ярославская область

Оптимальная амортизационная конструкция из пеноматериала | Жесткие футляры Gemstar® на заказ

Основная цель любого упаковочного решения – защитить содержимое. При использовании жесткого пластикового ящика часть уравнения упаковки покрывается. Пластиковый корпус, изготовленный в соответствии с отраслевыми стандартами, такими как ATA 300 для долговечности или IP для защиты от воды и пыли, может надежно защитить от окружающей среды и повторных злоупотреблений. Следующая часть уравнения – что использовать внутри корпуса. Амортизирующий пеноматериал – наиболее распространенное решение, которое при правильном использовании может быть весьма эффективным и экономичным.В этом техническом обзоре рассказывается, как правильно рассчитать пенопласт и толщину с учетом трех важных факторов ваших деталей – хрупкости, веса и размера – чтобы вы могли быть уверены в конечном продукте, который будет точно соответствовать тому, что требуется для вашего проекта упаковки.

Фактор хрупкости
Одним из ключевых факторов для определения является хрупкость содержимого ящика. Это можно определить в терминах ограничения g. Перегрузка объекта – это измерение ускорения свободного падения, которое выражает точку, в которой может произойти повреждение.Более прочные предметы могут пережить более высокие уровни перегрузки, прежде чем они будут повреждены, в то время как более хрупкие предметы будут повреждены на более низких уровнях. Определение точного предела g элемента – это повторяющийся и подробный процесс. Проводятся испытания на скорость шага и ускорение шага, в которых объекту подвергаются разные уровни до тех пор, пока не произойдет повреждение. Предмет необходимо уничтожить, чтобы узнать его точный предел g. Это не всегда возможно во время разработки продукта из-за сроков и затрат. В большинстве случаев точная хрупкость неизвестна.В этих случаях вы можете использовать диапазоны g, установленные для аналогичных типов продуктов.

Чрезвычайно хрупкий | 15-25 G’s
Специальное военное применение, прецизионные измерительные приборы
Очень тонкие | 25-40 G’s
Инструменты и электронное оборудование с механическим противоударным креплением (противоударные опоры должны быть надежно закреплены перед упаковкой и предназначены только для защиты в процессе эксплуатации)
Деликатный | 40-60 G’s
Аксессуары для самолетов, компьютерное оборудование и другая электроника
Умеренно деликатные | 60-85 G’s
Видеооборудование, компьютерные мониторы
Умеренно защищенный | 85-115 G’s
Оборудование с минимальным электронным управлением
Прочный | 115 G и выше
Машины

Размер и весовой коэффициент
Размер и вес детали являются следующими двумя факторами, которые необходимо учитывать. Во-первых, вес деталей поможет определить, как посылка будет обрабатываться при распределении. Чем тяжелее упаковка, тем меньше вероятность ее падения. Соответственно, размер и вес используются отраслевыми стандартами, такими как ASTM 4169 и ATA 300, для определения высоты и частоты падений, которые будут использоваться для проверочных испытаний.

Вес брутто в фунтах
Тип обращения Высота сбрасывания в дюймах
0-20 Метание 1 человека 42
21-50 1 человек, несущий 36
51-250 2 человека на борту 30
251-500 транспортировка легкого оборудования 24
501-1000 транспортировка легкого оборудования 18
1001-up погрузка и разгрузка тяжелой техники 12

Во-вторых, вес и размер используются для расчета PSI или статического напряжения – фактора, который поможет выбрать тип используемой пены.Это определяется путем деления веса предмета в фунтах на квадратные дюймы каждой стороны предмета. Понимание PSI каждой стороны детали также поможет в размещении предметов в комплекте из пеноматериала. В общем, лучше всего стараться удерживать детали на самых больших и плоских сторонах, чтобы минимизировать статическое напряжение. Вы не хотите, чтобы весь вес детали распределялся на ее наименьшую сторону во время падения. Обычно посылка отправляется самой большой и плоской стороной при нормальном обращении.

Коэффициент пенообразования

После определения хрупкости, высоты падения в зависимости от веса и PSI можно определить тип, плотность и толщину пены. Для начала, PSI используется для определения плотности вашей пены. Три распространенных типа пеноматериалов следующие:
• 0,1-0,3 фунта / кв. Дюйм – полиуретан 2 фунта / фут3
• 0,4-0,6 фунта / кв. Дюйм – полиуретан 4 фунта / фут3
• 0,7-1,0 фунт / кв. Дюйм – полиэтилен 2 фунта / фут3
Каждая пена Тип и плотность имеют свою собственную кривую амортизации, которая используется для иллюстрации оптимальных характеристик в зависимости от предела g, веса и высоты падения.Эти кривые помогут определить необходимую вам толщину пены. Может возникнуть соблазн использовать пену максимальной плотности и толщины, чтобы обеспечить высочайший уровень защиты. Однако на самом деле это может быть вредно. Чем выше плотность и толще пенопласт, тем выше стоимость, дополнительные расходы, которые не нужны, если деталь не нуждается в такой большой защите. Кроме того, очень легкие и хрупкие вещи могут быть повреждены, если пена будет слишком толстой и слишком плотной. Для оптимальной защиты лучше всего следовать кривым амортизации.

Лучшая проверка любого набора из пеноматериала – это соответствие его загруженного содержимого отраслевым стандартам качества упаковки. Gemstar имеет собственное испытательное оборудование для проверки вашего индивидуального решения. Наши возможности тестирования включают:
• Вибрация: испытания на вибрацию незакрепленной нагрузки, повторяющиеся удары и отскок в соответствии с ASTM D4169, MILSTD-810, ATA300, FedEx, ISTA 1A, FED-STD-101 и множеством других отраслевых стандартов для оценки структурной целостности ящиков. и способность упаковки защищать содержимое от вибрации.
• Падение: испытания на падение в соответствии с ASTM D4169, MILSTD-810, ATA300, FedEx, ISTA 1A, FED-STD-101 и множеством других отраслевых стандартов моделируют удары, которые могут возникнуть во время транспортировки.

Руководство по дизайну упаковки

ШАГ ТРЕТИЙ: Рассчитайте фундаментальные требования к амортизации

При хрупкости продукта (g-фактор) и условиях обращения (высота падения) были определены, следующая процедура может быть использована для определения количество функционального амортизирующего материала, которое обеспечит адекватное защита упакованного товара.

Под функциональным амортизирующим материалом мы понимаем ту часть конструкции, который непосредственно поддерживает нагрузку и функционирует для поглощения ударов во время ударов. В дизайне также может быть использован дополнительный материал. для соединения функциональных амортизирующих частей вместе, облегчения сборки пакета, и т. д. Данная процедура не учитывает такие факторы, как эффект внешнего контейнера или другие эффекты, которые могут иметь место внутри контейнер.

Обычно такие эффекты полезны, поэтому с помощью этой процедуры можно уверенно использоваться в качестве отправной точки для разработки упаковки, обеспечивающей надежную уровень защиты и оптимальная рентабельность. Для расчета функционала амортизации необходимо будет понять и использовать динамические амортизационные изгибы.

Использование кривых динамического демпфирования: обзор

Типичная кривая динамического демпфирования

Кривая амортизации показывает, как конкретный упаковочный материал данного толщина ведет себя при различных условиях удара.Кривые генерируются сбросив несколько грузов с известными гирями на образец подушки из указанного рост и измерение силы удара, испытываемого гирями поскольку они воздействуют на пену. Проще говоря, это тестирование представляет собой продукт падает на подушку с высоты, с которой можно столкнуться во время отгрузки.

Идеализированная кривая амортизации показана ниже. Он представляет собой амортизацию характеристики амортизирующего материала для данной комбинации толщины и высота падения.Горизонтальная ось представляет собой диапазон статических нагрузок. (в фунтах на квадратный дюйм), которые упакованные предметы могут относиться к амортизации материал. Вертикальная ось представляет собой удар, испытанный как подушка ударилась. Кривые часто представлены как для первого удара и данные о множественных ударах (в среднем 2-5 капель). Обычно включают данные для нескольких толщин подушки при постоянной высоте падения на единый набор осей.

Кривые демпфирования для продуктов ETHAFOAM * можно получить, связавшись с ваш местный уполномоченный производитель Dow, ваш местный представитель Dow, или научно-исследовательский центр Dow.

Использование кривых динамического демпфирования:


Пример

Определение толщины подушки
Высота падения 24 дюйма, среднее падение 2-5

Упаковываемый объект представляет собой 10-дюймовый куб весом 60 фунтов с хрупкость 50 г.Поскольку продукт обычно сталкивается с повторяющимися ударов во время транспортировки, вы, вероятно, захотите использовать множественные удары данные. Типичная высота падения продукта такого веса может быть оценена в таблице ниже как 24 дюйма, однако особые знания о доставке условия или корпоративные стандарты могут диктовать другой выбор для высота падения.

Сначала получите кривые амортизации для амортизирующего материала, который вы хотите использовать.Найдите кривые, которые представляют данные нескольких ударов из высота падения 24 дюйма. Здесь показан один из таких наборов кривых.

Определение толщины

Используя приведенную ниже таблицу для справки, определите уязвимость нашего продукта. уровень (50 г) на вертикальной оси рисунка и проведите воображаемая горизонтальная линия на графике на этом уровне.

Это разделяет диаграмму на две части:

  • наша линия хрупкости и ниже, где может быть упакован товар. чтобы пережить ожидаемый уровень шока, и
  • участок над нашей линией, где уровни шока достаточно высоки повредить изделие

Обратите внимание, что в этом примере толщина этого амортизирующего материала составляет 1 дюйм. не защитит предмет весом до 50 г, потому что весь 1-дюймовый кривая расположена выше линии 50 г, в зоне «повреждения». Все остальные кривые, представляющие подушки толщиной 2 дюйма и более, имеют части в зоне “без повреждений”, и, таким образом, могут быть использовал. В большинстве случаев соображения по транспортировке и транспортировке обеспечивают сильный экономический стимул для разработки упаковки как можно меньшего размера, поэтому самая тонкая толщина подушки, которая будет выполнять эту работу, чаще всего выбрано. В этом случае мы выберем толщину 2 дюйма.

Определение статической нагрузки и площади опоры

Определение диапазона статической нагрузки
Высота падения 24 дюйма, среднее падение 2-5

Только часть 2-дюймовой изгиба амортизатора может быть использована для защиты наших продукт до 50 г.Как видно ниже, полезная часть кривой ограничен статической нагрузкой 0,3 фунта на квадратный дюйм на нижнем конце и 1,4 фунта на квадратный дюйм на высоком уровне. Это говорит нам о том, что с помощью 2-дюймовой подушки мы можем применять статическая нагрузка в любом месте в пределах этого «диапазона амортизации» и все еще защищают до 50 г или ниже.

Теперь мы должны выбрать статическую нагрузку для использования в этом диапазоне и конструкции. наши подушки. Наивысшее значение статической нагрузки в амортизации диапазон приведет к наиболее экономичному дизайну, потому что он будет использовать меньшее количество амортизирующего материала для обеспечения надлежащей защиты, что снижает затраты на проектирование.Продолжение нашего примера покажет, как это сделать.

После того, как мы выбрали статическую нагрузку, мы можем подсчитать, сколько квадратных дюймов пены выбранной толщины, которая нам понадобится для поддержки и защитить любую сторону упакованного продукта. В большинстве случаев это будет необходимо создать подушку для защиты каждой стороны изделия.

Область подшипника подушки легко вычисляется как вес продукта делится на выбранную нами статическую нагрузку. В этом примере у нас есть допустимый диапазон статической нагрузки от 0,3 до 1,4 фунта на кв. дюйм. Если бы мы выбрали дизайн при статической нагрузке на нижнем пределе нашего диапазона, 0,3 фунта на кв. дюйм, мы бы разделите вес нашего 60-фунтового продукта на 0,3 фунта на квадратный дюйм и обнаружите, что необходимо поддержать наш продукт 200 квадратных дюймов пены для производства конструкция, которая нагружает пену до 0,3 фунта на квадратный дюйм.

Если бы вместо этого мы выбрали более высокое значение нагрузки 1,4 фунта на кв. Дюйм, мы разделит 60 фунтов на 1.4 фунта на квадратный дюйм и обнаруживаем, что всего 43 квадратных дюйма пены необходимы для поддержки продукта при этой более высокой загрузке. Это на 78,5% меньше амортизирующего материала по сравнению с конструкцией. при 0,3 фунта на квадратный дюйм. Вы можете себе представить, какую экономию можно получить.

Невозможно переоценить использование более высоких значений нагрузки для оптимизации конструкции. Как правило, если вы можете удвоить или утроить значение нагрузки и все еще не превышайте уровень хрупкости вашего продукта, вы можете уменьшить подушку использование от половины до двух третей.В результате общие материальные затраты будут быть минимизированным.

Обратите внимание, что можно использовать даже меньший объем пены, несколько увеличивая толщину и используя более высокую нагрузку (и меньшая площадь опоры) это позволяет. В результате увеличилась доставка а затраты на транспортировку из-за увеличения размера упаковки часто превышают экономия затрат на амортизирующий материал благодаря минимальной толщине конструкции это общая практика.

Повторяя эту процедуру с несколькими материалами, вы можете быстро генерировать сравнения, которые позволят вам достичь экономического баланса между стоимостью материала и размером упаковки.

Калькулятор для проекта пены с закрытыми ячейками

Xfixi – Калькулятор для проекта пены с закрытыми ячейками

google-site-verify = cQSWBe8T9U0j__fYVBVKwORxoQW5H6jziJpDMp1Aqwk

Как использовать

XFIXI Калькулятор изоляции:

Используйте Таблица №. 1 , если вам уже известна необходимая толщина изоляции (мм)

Пример: Если необходимо утеплить крышу здания:

  1. В поле «Толщина пены» введите 100
  2. «Размер проекта» введите приблизительный м2 конструкции крыши, которая будет изолирована
  3. Полученный коэффициент U составляет 0,240
  4. Свяжитесь с архитектором / строителем или свяжитесь с представителями XFIXI, чтобы убедиться, что полученный коэффициент U соответствует наилучшим стандартам энергоэффективности.Также, консультируясь с профессионалами, убедитесь, что этот коэффициент U подходит для вашего здания.

Использовать Таблица № 2 , если вы уже знаете необходимый коэффициент U (теплоизоляция)

  1. В поле «Предпочтительный коэффициент U» введите предпочтительный коэффициент U, например 0,200
  2. «Размер проекта» введите приблизительный м2 кровельной конструкции, которая будет утеплена
  3. Полученная толщина пены – 120 мм
  4. Свяжитесь с архитектором / строителем или свяжитесь с представителями XFIXI, чтобы убедиться, что полученная толщина пены (мм) соответствует лучшим стандартам энергоэффективности.Также, посоветовавшись с профессионалами, убедитесь, что толщина пены (мм) подходит для вашего здания.

Правила:

  • При вводе U-коэффициента используйте запятую!
  • Минимальное количество для каждого проекта (м2) – 100
  • Минимальная толщина пены (мм) – 40
  • Максимальная толщина пены (мм) – 150
  • Пределы коэффициента U: 0,599 (40 мм) – 0,160 (150 мм)
  • XFIXI Система пенопласта с закрытыми порами используется только в качестве информационного материала! Каждый проект рассчитывается индивидуально.

Преимущества нашей системы утепления:

  • В течение одного дня мы можем изолировать до 400-500 м2 площади.
  • Система утепления XFIXI не имеет стыков, которые способствуют постоянному образованию пены. (Высокая энергоэффективность)
  • Не производите отходы
  • Не наносите вред окружающей среде
  • Дополнительная информация Нажмите здесь или свяжитесь с нами
.www.gudriem.lv/atrie-krediti google-site-verify = cQSWBe8T9U0j__fYVBVKwORxoQW5H6jziJpDMp1Aqwk

Ищете калькулятор изоляции? Вот важные факторы, которые следует учитывать

Определить стоимость и другие детали проекта изоляции сложно. Знание, с чего начать и как найти качественную информацию в Интернете, очень поможет.К сожалению, поиск в Google таких вещей, как «калькулятор изоляции», приводит к потоку всевозможных калькуляторов из различных источников. Это может быть ошеломляющим, и большинство лучших результатов ориентированы именно на проблемные подходы, такие как устаревшая изоляция из стекловолокна для проектов по благоустройству дома. Если вы еще не знаете, пойдете ли вы вообще со стекловолокном, не говоря уже о таких деталях, как количество рулонов, которые вам могут понадобиться, эти калькуляторы часто вообще бесполезны. Давайте рассмотрим два наиболее важных фактора, на которых вам следует сосредоточиться на этом этапе:

  • Сравнение значений R
  • Сравнение затрат

Сравнение значений сопротивления изоляции

При сравнении значения r различных типов изоляции и того, как их установка повлияет на ваш дом, вам необходимо учитывать комбинацию факторов и их потенциальные преимущества.Создателями большинства калькуляторов R-значения изоляции являются либо хозяйственные магазины, либо компании-производители изоляционных материалов. Это означает, что они обычно рассчитывают только изоляцию, необходимую для их собственной марки. Обычно они предоставляют ограниченные результаты с указанием предполагаемой производительности своей продукции, если она была установлена ​​в месте и по размеру вашего дома. Для тех, кто только начинает свое исследование, эти калькуляторы задают неправильные вопросы, предвзяты и бесполезны.

Есть способ лучше вычислять значимые ответы.Сначала вам нужно будет собрать некоторые данные. Мы разбили все, что вам нужно знать, на три этапа. Каждый из них объясняется ниже. К тому времени, когда вы закончите, у вас будет надежный набор ответов, основанный на реальных данных, по любому типу изоляции, которую вы планируете.

Мы во всем полагались на рекомендации и данные Министерства энергетики США. Они являются отличным ресурсом, особенно для первых двух этапов процесса.

Шаг первый: определите свою ценность R по климатической зоне

Во-первых, вам нужно найти номер климатической зоны со значением r, который можно найти с помощью следующей карты Министерства энергетики:

Например, если вы живете в Боулдере, штат Колорадо, вас отнесут к климатической зоне 5.

Шаг второй: сопоставьте номер климатической зоны с номером D.O.E. Рекомендуемые значения R

Затем вы должны сопоставить свою климатическую зону с таблицей, в которой указаны рекомендуемые значения r по климатической зоне , используя эту таблицу (также из Министерства энергетики):

Рекомендуемое значение R по климатической зоне
Расположение Тип нагрева Чердак Стенка Этаж Ползун Стена подвала
Зона 1 Природный газ 38-49 13 13 13 11
Масляная печь 38-49 13 13 13 11
Электропечь 38-49 13 13 13 11
Плинтус электрический 38-49 13 13 13 11
Тепловой насос 38-49 13 13 13 11
Печь для сжиженного нефтяного газа 38-49 13 13 13 11
Зона 2 Природный газ 38 13 13-19 13 11
Масляная печь 38 13 13-19 13-25 11
Электропечь 38-49 13 19-25 25 11
Плинтус электрический 38-49 13 13-25 13-25 11
Тепловой насос 38 13 13-19 13 11
Печь для сжиженного нефтяного газа 38-49 13 19-30 25 11
Зона 3 Природный газ 30–38 13 13-19 13-25 11
Масляная печь 38 13 13-19 13 11
Электропечь 38 13 13-19 13-25 11
Плинтус электрический 38 13 13-19 13 11
Тепловой насос 30–38 13 13 13 11
Печь для сжиженного нефтяного газа 38-49 13 13-30 13-25 11
Зона 4 Природный газ 38-49 13 25-30 25 11
Масляная печь 49 13 30 25 11
Электропечь 38-49 13 25-30 25 25
Плинтус электрический 49 13 30 25 11
Тепловой насос 38-49 13 13-25 13-25 11
Печь для сжиженного нефтяного газа 49 13 30 25 11-25
Зона 5 Природный газ 38 13 25 25 11
Масляная печь 49 13 30 25 11-15
Электропечь 49 13 30 25 25
Плинтус электрический 49 13 30 25 11
Тепловой насос 38 13 30 25 11
Печь для сжиженного нефтяного газа 49 13 30 25 25
Зона 6-8 Природный газ 49 13 30 25 25
Масляная печь 49 13 30 25 25
Электропечь 49 13 30 25 25
Плинтус электрический 49 13 30 25 25
Тепловой насос 49 13 30 25 25
Печь для сжиженного нефтяного газа 49 13 30 25 25


Так, например: если вы находитесь в зоне 5 на диаграмме климатических зон, вы найдете зону 5 на предложенной диаграмме r-значений.Оттуда вы сможете дополнительно определить, какое значение r необходимо в зависимости от типа отопления вашего дома и того, какую область вы хотите изолировать. Если вы ищете лучший способ изолировать чердак дома с электропечи, отапливаемого в Зоне 5, рекомендуется значение r 49.

Шаг 3: Расчет необходимой толщины изоляции

Последний шаг, который требует легкого расчета, – это определить, какая толщина каждого типа изоляции вам понадобится.

Чтобы выполнить расчет, вам нужно будет найти значение r на дюйм для каждого рассматриваемого типа изоляции.Большинство соответствующих типов и связанные с ними значения r / дюйм перечислены в следующей таблице:

Значения R для типа изоляции в зависимости от области применения
Материал R-Value / дюйм
Пена для спрея с закрытыми ячейками 6,0 – 6,5
Пена для спрея с открытыми ячейками 3,5 – 3,6
Полиизоциануратная плита (фольгированная) 5.6 – 8,0
Полиуретановая плита 5,5 – 6,5
Пенополистирол 3,8 – 5,0
Выдувная целлюлоза (чердак) 3,2 – 3,7
Выдувная целлюлоза (стенка) 3,8 – 3,9
Минеральная вата с обдувом (чердак) 3,1 – 4,0
Минеральная вата выдувная (стена) 3,1 – 4,0
Минеральная вата (войлок) 3.1 – 3,4
Стекловолокно выдувное (чердак) 2,2 – 4,3
Стекловолокно выдувное (стена) 3,7 – 4,3
Стекловолокно (ватт) 3,1 – 3,4


Требуемый вами расчет прост: разделите рекомендуемое значение r на значение r на дюйм каждого из сравниваемых типов изоляции. Продолжая предыдущий пример, чердак дома с электропечи для Зоны 5 рекомендуется изолировать с коэффициентом сопротивления 49.Это означает, что для достижения рекомендуемого уровня энергоэффективности вашему чердаку потребуется от 11,4 до 22,3 дюйма выдувной стекловолоконной изоляции. Для сравнения, для того же чердака потребуется всего от 7,5 до 8,2 дюйма изоляции из распыляемой пены, чтобы соответствовать тому же стандарту энергоэффективности. Быстро становится очевидно, насколько это может иметь большое значение! Это может оказаться непрактичным или даже невозможным для достижения рекомендованного значения r с определенными формами изоляции, если они не могут быть применены или уложены слоями такой толщины.Это со временем приведет к значительной потере энергии.

Сравнение стоимости

Второй важный фактор, который следует учитывать, – это сравнение первоначальных затрат на установку различных типов изоляции и стоимости с течением времени. Это основная забота многих людей. К счастью, существуют калькуляторы, которые будут использовать квадратные метры вашего дома для оценки ваших первоначальных затрат на установку каждого типа изоляции, стоимости ваших ежемесячных счетов за электроэнергию после установки указанной изоляции, а также потенциальной экономии или потерь с течением времени.Многие из этих оценщиков сосредотачиваются на сравнении различных форм изоляции и стекловолокна. Это связано с тем, что стекловолокно – самый распространенный материал, используемый для изоляции домов. Стекловолокно также является одним из наименее эффективных изоляторов, имеющихся на рынке.

Вот простой калькулятор, который сравнивает изоляцию из стекловолокна и пенопласта. Разница в стоимости с течением времени по сравнению с первоначальной стоимостью поразительна. Хотя установка напыляемой пенопластовой изоляции в три раза дороже, чем установка стекловолокна, эта разница в стоимости обычно перекрывается за счет экономии энергии менее чем за 4 года.И после того, как преимущества перевешивают дополнительные первоначальные затраты, более низкие счета за электроэнергию за счет более эффективной изоляции вашего дома будут продолжать расти.

Сравнение добавленного капитала с вашим домом

Еще один фактор, для которого вы, возможно, ищете калькулятор, – это сравнение рыночной стоимости, которую различные типы изоляции добавляют вашему дому. К сожалению, не существует универсального инструмента для сравнения, который позволил бы найти лучшую изоляцию. Нет никаких сомнений в том, что добавление теплоизоляции в ваш дом, независимо от его типа, автоматически увеличивает ценность.Однако после того, как вы проведете исследование и расчеты по первым двум факторам, вам даже не понадобится калькулятор, чтобы оценить, какие типы теплоизоляции принесут наибольшую пользу вашему дому. При поиске указанного калькулятора вы столкнетесь с множеством различных источников, которые дают вам одно и то же общее практическое правило: чем выше r-значение у вашей изоляции, тем более энергоэффективным будет ваш дом. И чем более энергоэффективен ваш дом, тем выше его ценность.

Какой бы вариант ни был наиболее очевидным при сравнении r-ценности и рентабельности, он, скорее всего, будет лучшим выбором с точки зрения увеличения стоимости вашего дома.В наших примерах и повсюду изоляция из распыляемой пены имела наивысшее значение коэффициента теплопередачи на дюйм, а также наивысшую прогнозируемую экономию на счетах за электроэнергию с течением времени, что делает ее очевидным выбором для наилучшего вложения, позволяющего не только сэкономить ваши деньги в месяц, но и добавляйте ценность вашему дому, если вы планируете вывести его на рынок в будущем.


Источники, упомянутые в статье:

https://energy.gov/energysaver/insulation

http://polarpakfoam.com/calculator/

Общие сведения об измерениях изоляции для достижения надлежащей толщины изоляции; R-значение, K-фактор и C-фактор

Одним из ключей к эффективной работе механической системы является использование надлежащего типа изоляции и ее правильного размера.

Основная функция изоляции – уменьшить теплопередачу в системе. Помимо качества изоляционного материала и монтажа, выбор правильной толщины изоляции имеет решающее значение для замедления теплопередачи и достижения долгосрочного контроля температуры и конденсации даже в экстремальных условиях. Для расчета толщины утеплителя необходимо знать и понимать термические свойства утеплителя. Три из наиболее важных из этих свойств – это теплопроводность (значение K), термическое сопротивление (значение R) и теплопроводность (коэффициент C).

Теплопроводность:

Теплопроводность, часто называемая значением К, представляет собой скорость устойчивого теплового потока через единицу площади однородного материала, вызванного единичным градиентом температуры в направлении, перпендикулярном этой единице площади. Помимо определения, важнее всего знать, что чем ниже значение K, тем выше значение изоляции. Таким образом, у большинства изоляционных материалов значение K меньше единицы. Кроме того, важно понимать, что значение K – это свойство материала; это означает, что он не зависит от толщины.

Еще одна важная вещь, которую следует знать о значении K, – это то, что оно изменяется в зависимости от средней температуры (среднее значение температуры с каждой стороны изоляции). По мере увеличения средней температуры растет и значение K. Следовательно, необходимо смотреть на значение K при соответствующей средней температуре, чтобы определить фактическое значение K для конкретного приложения.

Термическое сопротивление:

Термическое сопротивление, более известное как R-значение, представляет собой сопротивление изоляции тепловому потоку.Следовательно, чем выше значение R, тем больше изоляционная способность. Значение R зависит от значения K и толщины изоляции, а для плоской изоляции, например, облицовки воздуховода, значение R представляет собой просто толщину, деленную на значение K. Для цилиндрической изоляции, как и для трубы, расчет более сложен и основан также на внутреннем диаметре изоляции с меньшими внутренними диаметрами, имеющими более высокие значения R для данной толщины изоляции.

Все материалы с одинаковым значением R, независимо от типа; толщина; или вес, равны по изолирующей способности.В результате энергетические стандарты, строительные нормы и спецификации часто требуют определенного значения R, чтобы все изоляционные материалы можно было сравнивать одинаково.

Теплопроводность:

Теплопроводность или C-фактор – это скорость теплового потока через определенную толщину изоляции, обратная величине R. Отсюда следует, что чем ниже C, тем лучше изолятор, а C-фактор для плоской изоляции – это значение K, деленное на толщину изоляции.

Калькулятор толщины изоляции:

Чтобы помочь вам определить правильную толщину изоляции, компания Armacell разработала ArmWin, бесплатный профессиональный инструмент для расчета толщины изоляции. С помощью этого инструмента любой может рассчитать надлежащую толщину Armaflex для удовлетворения своих проектных критериев, будь то контроль конденсации, энергосбережение или защита от замерзания. Щелкните здесь, чтобы получить доступ к ArmWin.

Глоссарий:

R = термическое сопротивление; число, обозначающее сопротивление материала или системы потоку тепла (час фут2 ° F / британская тепловая единица)

K = теплопроводность; тепло, передаваемое за единицу времени на единицу площади для температурного градиента 1 ° F на единицу длины теплового пути (британские тепловые единицы / час фут2 ° F)

C = теплопроводность; число, обозначающее скорость теплового потока через материал или систему (Btu / hr ft2 F)

Как рассчитать площадь мансарды под утепление

Как чердак, так и неиспользуемые чердаки стоит защитить от утечки тепла и перепадов температуры.Для этого стоит выбрать один из самых эффективных изоляционных материалов – пенополиуретан. Узнайте, как рассчитать площадь мансарды для утепления и в чем преимущества использования пенополиуретана.

Как рассчитать площадь мансарды под утепление?

Расчет полезной площади чердака может вызвать проблемы. Стоит помнить, что поверхность для утепления не равна поверхности верхнего этажа.Чтобы точно рассчитать его стоимость, нужно учитывать размеры потолков и уклоны. Точный результат можно получить, замерив чердак целиком. Вы также можете использовать формулу, которая примерно определяет его полезную площадь. Как рассчитать квадратные метры уклонов? Предположим, что на каждый м 2 верхней площади приходится 1,4 м 2 для изоляции поверхности крыши. Подробную информацию о том, как рассчитать полезную площадь мансарды, можно найти в строительных нормах.

Если вы не планируете создавать полезную площадь под крышей, расчеты будут менее сложными. Как посчитать уклоны на нехозяйственном чердаке? Вам не нужно знать их размеры. К тому же теплоизоляцию можно проводить только на верхнем этаже. Тогда стоимость утепляемой поверхности равна поверхности потолка.

Толщина утеплителя мансарды

В случае теплоизоляции чердака толщина изоляционного слоя имеет решающее значение, особенно если помещение должно быть пригодным для использования.Теплоизоляция занимает немного места, уменьшая ее объем.

Толщина изоляции чердака зависит от значения коэффициента теплопередачи U. Его значение в настоящее время составляет 0,18 Вт / (м 2 K), следовательно, толщина слоя пенополиуретана с открытыми порами, например Purios E, которым следует застелить чердак, составляет не менее 21 см. Чем ниже желаемый коэффициент теплопередачи, тем толще должен быть нанесен слой пены. Для достижения показателя U для пенопласта с закрытыми порами, например.грамм. Purios H, оптимальная толщина пены составляет всего 12 см, что в случае функциональных чердаков имеет большое значение.

Если вы ожидаете более высокого уровня изоляции, вы можете нанести более толстый слой до 24 см. Такая толщина пенополиуретана повысит уровень теплоизоляции, что даст дополнительную экономию в случае обогрева помещения и, как следствие, ваших финансов.

Какой пенополиуретан выбрать для утепления чердака? Однозначного ответа нет – оба вида отлично подходят для теплоизоляции.Пенополиуретан с открытыми порами, например Purios E – легкий материал с превосходными тепловыми свойствами. Кроме того, он идеален как акустический изолятор. В свою очередь, пена с закрытыми порами, например Purios H, отличается низким коэффициентом теплопередачи. Он жесткий, устойчив к механическим повреждениям и не впитывает влагу, что является результатом высокого сопротивления диффузии и структуры закрытых ячеек. Пенопласт с открытыми порами рекомендуется для деревянных чердаков, а пенопласт с закрытыми порами – для чердаков из бетона.

Если вам сложно рассчитать первоначальную стоимость утепления мансарды, можно воспользоваться формой калькулятора утепления мансарды. Этот инструмент поможет вам определить сумму, которую вам, вероятно, придется потратить на теплоизоляцию крыши.

Вы можете использовать калькулятор изоляции чердака, если вы уже определили размер утепляемой поверхности крыши, знаете, какой материал вы хотите использовать, и знаете требования к толщине изоляции.Проверьте, планируете ли вы утеплять крышу деревянным потолком и диагональным чердачным перекрытием или утеплять потолок над этажом. Следующий шаг включает определение объема работ с учетом типа утепляемой поверхности.

Калькулятор утепления чердака – установите затраты на производительность

Если вам сложно рассчитать первоначальную стоимость утепления мансарды, можно воспользоваться формой калькулятора утепления мансарды.Этот инструмент поможет вам определить сумму, которую вам, вероятно, придется потратить на теплоизоляцию крыши.

Калькулятор утепления чердака – установите затраты на производительность

Вы можете использовать калькулятор изоляции чердака, если вы уже определили размер утепляемой поверхности крыши, знаете, какой материал вы хотите использовать, и знаете требования к толщине изоляции.Проверьте, планируете ли вы утеплять крышу деревянным потолком и диагональным чердачным перекрытием или утеплять потолок над этажом. Следующий шаг включает определение объема работ с учетом типа утепляемой поверхности.

Пример – Расчет пенополиуретановой изоляции

Пример – изоляция из пенополиуретана

Основной источник потерь тепла из дома – через стены.Рассчитайте скорость теплового потока через стену площадью 3 м x 10 м (A = 30 м 2 ). Стена толщиной 15 см (L 1 ) сделана из кирпича с теплопроводностью k 1 = 1,0 Вт / м · К (плохой теплоизолятор). Предположим, что температура внутри и снаружи составляет 22 ° C и -8 ° C, а коэффициенты конвективной теплопередачи на внутренней и внешней сторонах h 1 = 10 Вт / м 2 K и h 2 = 30 Вт / м 2 К соответственно.Обратите внимание, что эти коэффициенты конвекции сильно зависят, в частности, от внешних и внутренних условий (ветер, влажность и т. Д.).

  1. Рассчитайте тепловой поток ( потери тепла ) через эту неизолированную стену.
  2. Теперь предположим, что теплоизоляция на внешней стороне этой стены. Используйте изоляцию из пенополиуретана толщиной 10 см (L 2 ) с теплопроводностью k 2 = 0,028 Вт / м · К и рассчитайте тепловой поток ( потери тепла ) через эту композитную стену.

Решение:

Как уже было написано, многие процессы теплопередачи включают композитные системы и даже включают комбинацию теплопроводности и конвекции. С этими композитными системами часто удобно работать с общим коэффициентом теплопередачи , , известным как U-фактор . Коэффициент U определяется выражением, аналогичным закону охлаждения Ньютона :

Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии проблемы.

  1. голая стена

Предполагая одномерную теплопередачу через плоскую стенку и не принимая во внимание излучение, общий коэффициент теплопередачи можно рассчитать как:

Тогда общий коэффициент теплопередачи равен:

U = 1 / (1/10 + 0,15 / 1 + 1/30) = 3,53 Вт / м 2 K

Тепловой поток можно рассчитать просто как:

q = 3,53 [Вт / м 2 K] x 30 [K] = 105.9 Вт / м 2

Суммарные потери тепла через эту стену будут:

q убыток = q. A = 105,9 [Вт / м 2 ] x 30 [м 2 ] = 3177 Вт

  1. композитная стена с теплоизоляцией

Предполагая одномерную теплопередачу через плоскую композитную стенку, отсутствие теплового контактного сопротивления и без учета излучения, общий коэффициент теплопередачи можно рассчитать как:

Тогда общий коэффициент теплопередачи равен:

U = 1 / (1/10 + 0.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *