Тепловой расчет калькулятор: SmartCalc. Расчет утепления и точки росы для строящих свой дом. СНИП.

Содержание

SmartCalc. Расчет утепления и точки росы для строящих свой дом. СНИП.

JavaScript отключен

К сожалению Ваш браузер не поддерживает JavaScript, или JavaScript отключен в настройках браузера.
Без JavaScript и без поддержки браузером HTML5 работа ресурса невозможна. Если Вы имеете намерение воспользоваться нашим ресурсом, включите поддержку JavaScript или обновите свой браузер.

Теплотехнический калькулятор ограждающих конструкций

Расчет утепления и точки росы для строящих свой дом

СНиП 23-02-2003

СП 23-101-2004

ГОСТ Р 54851—2011

СТО 00044807-001-2006

Старая версия калькулятора

Тепловая защита

Защита от переувлажнения

Ссылка на расчет. Отчет по результатам расчета.

Представленный теплотехнический расчет ограждающих конструкций зданий является оценочным и предназначен для предварительного выбора материалов и проектирования конструкций.


При разработке проекта для проведения точного расчета необходимо обратиться в организацию, обладающую соответствующими полномочиями и разрешениями.

Расчет основан на российской нормативной базе:

  • СНиП 23-02-2003 “Тепловая защита зданий”
  • СП 23-101-2004 “Проектирование тепловой защиты зданий”
  • ГОСТ Р 54851—2011 “Конструкции строительные ограждающие неоднородные. Расчет приведенного сопротивления теплопередаче”
  • СТО 00044807-001-2006 “Теплозащитные свойства ограждающих конструкций зданий”

Добавьте ссылку на расчет в закладки:
Ссылка на расчет

Или скопируйте ее в буфер обмена:

Москва (Московская область, Россия)

Страна

РоссияАзербайджанАрменияБеларусьГрузияКазахстанКыргызстанМолдоваТуркменистанУзбекистанУкраинаТаджикистан

Регион

Республика АдыгеяРеспублика АлтайАлтайский крайАмурская областьАрхангельская областьАстраханская областьРеспублика БашкортостанБелгородская областьБрянская областьРеспублика БурятияВладимирская областьВолгоградская областьВологодская областьВоронежская областьРеспублика ДагестанЕврейская автономная областьЗабайкальский крайИвановская областьРеспублика ИнгушетияИркутская областьКабардино-Балкарская РеспубликаКалининградская областьРеспублика КалмыкияКалужская областьКамчатский крайКарачаево-Черкесская РеспубликаРеспублика КарелияКемеровская областьКировская областьРеспублика КомиКостромская областьКраснодарский крайКрасноярский крайРеспублика КрымКурганская областьКурская областьЛенинградская областьЛипецкая областьМагаданская областьРеспублика Марий ЭлРеспублика МордовияМосковская областьМурманская областьНенецкий АО (Архангельская область)Нижегородская областьНовгородская областьНовосибирская областьОмская областьОренбургская областьОрловская областьПензенская областьПермский крайПриморский крайПсковская областьРостовская областьРязанская областьСамарская областьСаратовская областьСахалинская областьСвердловская областьРеспублика Северная Осетия – АланияСмоленская областьСтавропольский крайТамбовская областьРеспублика ТатарстанТверская областьТомская областьТульская областьРеспублика ТываТюменская областьУдмуртская РеспубликаУльяновская областьХабаровский крайРеспублика ХакасияХанты-Мансийский автономный округ – ЮграЧелябинская областьЧеченская РеспубликаЧувашская Республика – ЧувашияЧукотский АО (Магаданская область)Республика Саха (Якутия)Ямало-Ненецкий автономный округЯрославская область

Населенный пункт

ДмитровКашираМожайскМоскваНаро-ФоминскНовомосковский АОТроицкий АОЧерусти

Основные климатические параметры
Температура холодной пятидневки с обеспеченностью 0.
92
-26˚С
Продолжительность отопительного периода204суток
Средняя температура воздуха отопительного периода-2.2˚С
Относительная влажность воздуха наиболее холодного месяца84%
Условия эксплуатации помещения
Количество градусо-суток отопительного периода (ГСОП)4528.8°С•сут

Средние месячные и годовые значения температуры и парциального давления водяного пара
МесяцТ, ˚СE, гПаМесяцТ, ˚СE, гПа
Январь-7. 83.3Июль19.1
15.7
Февраль-6.93.3Август17.114.6
Март-1.34.3Сентябрь11.310.9
Апрель6.56. 6
Октябрь
5.27.5
Май13.310Ноябрь-0.85.2
Июнь1713.3Декабрь-5.23.9
Год5.68.2

Жилое помещение (Стена)

Помещение Жилое помещениеКухняВаннаяНенормированноеТехническое помещение

Тип конструкции СтенаПерекрытие над проездомПерекрытие над холодным подвалом, сообщающимся с наружным воздухомПерекрытие над не отапливаемым подвалом со световыми проемами в стенахПерекрытие над не отапливаемым подвалом без световых проемов в стенахЧердачное перекрытиеПокрытие (утепленная кровля)

Влажность в помещении*ϕ%
Коэффициент зависимости положения наружной поверхности по отношению к наружному воздухуn
Коэффициент теплоотдачи внутренней поверхности
α(int)
Коэффициент теплоотдачи наружной поверхностиα(ext)
Нормируемый температурный перепадΔt(n)°С
* – параметр используется при расчете раздела “Защита от переувлажнения ограждающих конструкций” (см. закладку “Влагонакопление”).

Слои конструкции

Конструкция
ТипМатериалыТолщина, ммλμ (Rп)Управление
Внутри
СнаружиНаружный воздухВентилируемый зазор (фасад или кровля)Кровельное покрытие с вентилируемым зазором

Внутри: 20°С (55%) Снаружи: -10°С (85%)

Климатические параметры внутри помещения

Температура

Влажность

Климатические параметры снаружи помещения

Выбранные

Самый холодный месяц

Температура

Влажность

  • Тепловая защита
  • Влагонакопление
  • Тепловые потери

Сопротивление теплопередаче: (м²•˚С)/Вт

Слои конструкции (изнутри наружу)
ТипТолщинаМатериалλRТmaxТmin
Термическое сопротивление Rа
Термическое сопротивление Rб
Термическое сопротивление ограждающей конструкции
Сопротивление теплопередаче ограждающей конструкции [R]
Требуемое сопротивление теплопередаче
Санитарно-гигиенические требования [Rс]
Нормируемое значение поэлементных требований [Rэ]
Базовое значение поэлементных требований [Rт]

Расчет защиты от переувлажнения методом безразмерных величин

Нахождение плоскости максимального увлажнения.

Координата плоскости максимального увлажненияX0мм
Сопротивление паропроницанию от внутренней поверхности конструкции до плоскости максимального увлажненияRп(в)0(м²•ч•Па)/мг
Сопротивление паропроницанию от плоскости максимального увлажнения до внешней поверхности конструкцииRп(н)0(м²•ч•Па)/мг
Условие недопустимости накопления влаги в ограждающей конструкции за годовой период эксплуатацииRп.тр(1)0(м²•ч•Па)/мг
Условие ограничения влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами наружного воздухаRп. тр(2)0(м²•ч•Па)/мг

Образование конденсата в проветриваемом чердачном перекрытии или вентилируемом зазоре кровли

Сопротивление паропроницанию конструкцииRп0(м²•ч•Па)/мг
Требуемое сопротивление паропроницаниюRп.тр0(м²•ч•Па)/мг

Послойный расчет защиты от переувлажнения

Слои конструкции (изнутри наружу)
ТолщинаМатериалμRпXRп(в)Rп. тр(1)Rп.тр(2)

Тепловые потери через квадратный метр ограждающей конструкции

Потери тепла через 1 м² за один час при сопротивлении теплопередаче (Вт•ч)
Сопротивление теплопередачеR±R, %Q±Q, Вт•ч
Санитарно-гигиенические требования [Rс]0000
Нормируемое значение поэлементных требований [Rэ]0000
Базовое значение поэлементных требований [Rт]0000
Сопротивление теплопередаче ограждающей конструкции [R]0000
R + 10%0000
R + 25%0000
R + 50%0000
R + 100%0000

Потери тепла через 1 м² за отопительный сезон

кВт•ч

Потери тепла через 1 м² за 1 час при температуре самой холодной пятидневки

Вт•ч

Актуализация данных климатологии (СП 131. 13330.2020)
Внесены изменения в БД климатических параметров для России в соответствии с вступившим в действие СП 131.13330.2020 …
Актуализация климатических параметров для Казахстана
Внесены изменения в БД климатических параметров для Казахстана в соответствии с действующими нормативными документами …
Актуализация в соответствии с норматиными документами
Актуализированы изменения в СП 50.13330.2012 и СП 131.13330.2018 …
Добавлены проекты
Добавлены возможности хранения ссылок на расчеты и расчета тепловых потерь здания…
Добавлен калькулятор тепловой защиты полов по грунту
Калькулятор позволяет рассчитать уровень тепловой защиты и тепловые потери полов по грунту…
Открыта группа “В контакте”
В социальной сети “В контакте” открыта группа, посвященная проекту СмартКалк. ..
Для исследователей и экспериментаторов
Для экспериментаторов, исследователей и вообще всех, кому спокойно не сидится на месте, добавлен тип помещения: “Ненормированное” …
Расчет каркасных конструкций
Как рассчитать каркасную конструкцию?
Какие варианты каркасов можно использовать в калькуляторе?

Основной материал

Материал каркаса или швов

Материал:

Плотность ρ:

кг/м³

Удельная теплоемкость (c):

кДж/(кг•°С)

Коэффициент теплопроводности для условий А λ(А):

Вт/(м•°С)

Коэффициент теплопроводности для условий Б λ(Б):

Вт/(м•°С)

Коэффициент паропроницаемости μ:

мг/(м•ч•Па)

Предельно допустимое приращение расчетного массового отношения влаги в материале ограждающей конструкции Δwcp:

%

Сопротивление паропроницанию Rп:

(м²•ч•Па)/мг

Вставить после:

BIMLIB – Расчет утепления и точки росы для строящих свой дом.

СНИП.

JavaScript отключен

К сожалению Ваш браузер не поддерживает JavaScript, или JavaScript отключен в настройках браузера.
Без JavaScript и без поддержки браузером HTML5 работа ресурса невозможна. Если Вы имеете намерение воспользоваться нашим ресурсом, включите поддержку JavaScript или обновите свой браузер.

Расчёт утепления и точки росы онлайн

СНиП 23-02-2003

СП 23-101-2004

ГОСТ Р 54851—2011

СТО 00044807-001-2006

Строительство дома – сложный процесс, при котором нужно учитывать множество факторов, начиная с этапа проектирования.

Чтобы правильно и в нужном количестве подобрать утеплитель для предотвращения случаев промерзания, перегрева и конденсата в проектируемом здании, необходимо выполнить расчёт утепления и точки росы (теплотехнический расчёт). При расчёте важно учитывать следующие особенности ограждающих конструкций:
• Теплозащитные свойства
• Сопротивление теплопередаче
• Паропроницаемость

Легко сделать точный теплотехнический расчёт вы можете в нашем онлайн калькуляторе. В режиме реального времени вы посчитаете оптимальную толщину утеплителя и ограждающих конструкций для вашего региона. Наш калькулятор разработан специалистами в соответствии с теплотехническими нормами и опирается на нормативную базу РФ:
• СНиП 23-02-2003
• СП 23-101-2004
• ГОСТ Р 54851—2011
• СТО 00044807-001-2006

Тепловая защита

Защита от переувлажнения

Ссылка на расчёт (отчёт по результатам расчета)

Представленный теплотехнический расчет ограждающих конструкций зданий является оценочным и предназначен для предварительного выбора материалов и проектирования конструкций.

При разработке проекта для проведения точного расчета необходимо обратиться в организацию, обладающую соответствующими полномочиями и разрешениями.

Расчет основан на российской нормативной базе:

  • СНиП 23-02-2003 “Тепловая защита зданий”
  • СП 23-101-2004 “Проектирование тепловой защиты зданий”
  • ГОСТ Р 54851—2011 “Конструкции строительные ограждающие неоднородные. Расчет приведенного сопротивления теплопередаче”
  • СТО 00044807-001-2006 “Теплозащитные свойства ограждающих конструкций зданий”

Добавьте ссылку на расчет в закладки:
Ссылка на расчет

Или скопируйте ее в буфер обмена:

Москва (Московская область, Россия)

Страна

РоссияАзербайджанАрменияБеларусьГрузияКазахстанКыргызстанМолдоваТуркменистанУзбекистанУкраинаТаджикистан

Регион

Республика АдыгеяАлтайский крайРеспублика АлтайАмурская областьАрхангельская областьАстраханская областьРеспублика БашкортостанБелгородская областьБрянская областьРеспублика БурятияВладимирская областьВолгоградская областьВологодская областьВоронежская областьРеспублика ДагестанИвановская областьИркутская областьКабардино-Балкарская РеспубликаКалининградская областьРеспублика КалмыкияКалужская областьКамчатский крайКарачаево-Черкесская РеспубликаРеспублика КарелияКемеровская областьКировская областьРеспублика КомиКостромская областьКраснодарский крайКрасноярский крайКурганская областьКурская областьЛипецкая областьЛенинградская областьМагаданская областьРеспублика Марий ЭлРеспублика МордовияМосковская областьМурманская областьНижегородская областьНовгородская областьНовосибирская областьОмская областьОренбургская областьОрловская областьПензенская областьПермский крайПриморский крайПсковская областьРостовская областьРязанская областьСамарская областьСвердловская областьСаратовская областьСахалинская областьРеспублика Северная Осетия – АланияСмоленская областьСтавропольский крайТамбовская областьРеспублика ТатарстанТверская областьТомская областьРеспублика ТываТульская областьТюменская областьУдмуртская РеспубликаУльяновская областьХабаровский крайРеспублика ХакасияЧелябинская областьЧеченская РеспубликаЗабайкальский крайЧувашская Республика – ЧувашияЧукотский АО (Магаданская область)Республика Саха (Якутия)Ненецкий АО (Архангельская область)Ярославская областьРеспублика Крым

Населенный пункт

ДмитровКашираМоскваНовомосковский АОТроицкий АО

Основные климатические параметры
Температура холодной пятидневки с обеспеченностью 0. 92-25˚С
Продолжительность отопительного периода205суток
Средняя температура воздуха отопительного периода-2.2˚С
Относительная влажность воздуха наиболее холодного месяца83%
Условия эксплуатации помещения
Количество градусо-суток отопительного периода (ГСОП)4551°С•сут

Средние месячные и годовые значения температуры и парциального давления водяного пара
МесяцТ, ˚СE, гПаМесяцТ, ˚СE, гПа
Январь-7. 82.8Июль18.714.7
Февраль-7.12.9Август16.814
Март-1.33.9Сентябрь11. 110.4
Апрель6.46.2Октябрь5.27
Май139.1Ноябрь-1.15
Июнь16. 912.4Декабрь-5.63.6
Год5.47.7

Жилое помещение (Стена)

Помещение Жилое помещениеКухняВаннаяНенормированноеТехническое помещение

Тип конструкции СтенаПерекрытие над проездомЧердачное перекрытие или утепленная кровляПерекрытие над холодным подвалом, сообщающимся с наружным воздухомПерекрытие над не отапливаемым подвалом со световыми проемами в стенахПерекрытие над не отапливаемым подвалом без световых проемов в стенах

Влажность в помещении*ϕ%
Коэффициент зависимости положения наружной поверхности по отношению к наружному воздухуn
Коэффициент теплоотдачи внутренней поверхностиα(int)
Коэффициент теплоотдачи наружной поверхностиα(ext)
Нормируемый температурный перепадΔt(n)°С
* – параметр используется при расчете раздела “Защита от переувлажнения ограждающих конструкций” (см. закладку “Влагонакопление”).

Слои конструкции

Конструкция
ТипМатериалыТолщина, ммλμ (Rп)Управление
Внутри
СнаружиНаружный воздухВентилируемый зазор (фасад или кровля)Кровельное покрытие с вентилируемым зазором

Внутри: 18°С (55%) Снаружи: -10°С (85%)

Климатические параметры внутри помещения

Температура

Влажность

Климатические параметры снаружи помещения

Выбранные

Самый холодный месяц

Температура

Влажность

  • Тепловая защита
  • Влагонакопление
  • Тепловые потери

Сопротивление теплопередаче: (м²•˚С)/Вт

Слои конструкции (изнутри наружу)
ТипТолщинаМатериалλRТmaxТmin
Термическое сопротивление Rа
Термическое сопротивление Rб
Термическое сопротивление ограждающей конструкции
Сопротивление теплопередаче ограждающей конструкции [R]
Требуемое сопротивление теплопередаче
Санитарно-гигиенические требования [Rс]
Нормируемое значение поэлементных требований [Rэ]
Базовое значение поэлементных требований [Rт]

Расчет защиты от переувлажнения методом безразмерных величин

Нахождение плоскости максимального увлажнения.

Координата плоскости максимального увлажненияX0мм
Сопротивление паропроницанию от внутренней поверхности конструкции до плоскости максимального увлажненияRп(в)0(м²•ч•Па)/мг
Сопротивление паропроницанию от плоскости максимального увлажнения до внешней поверхности конструкцииRп(н)0(м²•ч•Па)/мг
Условие недопустимости накопления влаги в ограждающей конструкции за годовой период эксплуатацииRп. тр(1)0(м²•ч•Па)/мг
Условие ограничения влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами наружного воздухаRп.тр(2)0(м²•ч•Па)/мг

Образование конденсата в проветриваемом чердачном перекрытии или вентилируемом зазоре кровли

Сопротивление паропроницанию конструкцииRп0(м²•ч•Па)/мг
Требуемое сопротивление паропроницаниюRп. тр0(м²•ч•Па)/мг

Послойный расчет защиты от переувлажнения

Слои конструкции (изнутри наружу)
ТолщинаМатериалμRпXRп(в)Rп. тр(1)Rп.тр(2)

Тепловые потери через квадратный метр ограждающей конструкции

Потери тепла через 1 м² за один час при сопротивлении теплопередаче (Вт•ч)
Сопротивление теплопередачеR±R, %Q±Q, Вт•ч
Санитарно-гигиенические требования [Rс]0000
Нормируемое значение поэлементных требований [Rэ]0000
Базовое значение поэлементных требований [Rт]0000
Сопротивление теплопередаче ограждающей конструкции [R]0000
R + 10%0000
R + 25%0000
R + 50%0000
R + 100%0000

Потери тепла через 1 м² за отопительный сезон

кВт•ч

Потери тепла через 1 м² за 1 час при температуре самой холодной пятидневки

Вт•ч

Основной материал

Материал каркаса или швов

Материал:

Плотность ρ:

кг/м³

Удельная теплоемкость (c):

кДж/(кг•°С)

Коэффициент теплопроводности для условий А λ(А):

Вт/(м•°С)

Коэффициент теплопроводности для условий Б λ(Б):

Вт/(м•°С)

Коэффициент паропроницаемости μ:

мг/(м•ч•Па)

Предельно допустимое приращение расчетного массового отношения влаги в материале ограждающей конструкции Δwcp:

%

Сопротивление паропроницанию Rп:

(м²•ч•Па)/мг

Вставить после:

Теплотехнический расчёт онлайн | Калькулятор точки росы

Страна

Неверный ввод

Область

Неверный ввод

Населенный пункт

Неверный ввод

Тип помещений

Неверный ввод

Тип конструкции

Неверный ввод

Влажность внутри, %

Неверный ввод

Температура внутри, °С

Неверный ввод

Климатические параметры

Климатические параметры

Кол-во градусо-суток отопительного периода (ГСОП), °С·сут

Неверный ввод

Температура холодной пятидневки с обеспеченностью 0. 92

Неверный ввод

Продолжительность отопительного периода, суток

Неверный ввод

Средняя температура воздуха отопительного периода, °С

Неверный ввод

Относительная влажность воздуха наиболее холодного месяца, %

Неверный ввод

Коэффициент a

Неверный ввод

Коэффициент b

Неверный ввод

Коэффициент теплоотдачи наружной поверхности α(ext)

Неверный ввод

Коэффициент теплоотдачи внутренней поверхности α(int)

Неверный ввод

Нормируемый температурный перепад Δt(n), °С

Неверный ввод

Влажностный режим помещения

Неверный ввод

Условия эксплуатации помещения

Неверный ввод

Среднемесячные и годовые значения температуры и давления водяного пара

Месяц

t, °C

Январь

Неверный ввод

Февраль

Неверный ввод

Март

Неверный ввод

Апрель

Неверный ввод

Май

Неверный ввод

Июнь

Неверный ввод

Июль

Неверный ввод

Август

Неверный ввод

Сентябрь

Неверный ввод

Октябрь

Неверный ввод

Ноябрь

Неверный ввод

Декабрь

Неверный ввод

Год

Неверный ввод

Месяц

E, (гПа)

Январь

Неверный ввод

Февраль

Неверный ввод

Март

Неверный ввод

Апрель

Неверный ввод

Май

Неверный ввод

Июнь

Неверный ввод

Июль

Неверный ввод

Август

Неверный ввод

Сентябрь

Неверный ввод

Октябрь

Неверный ввод

Ноябрь

Неверный ввод

Декабрь

Неверный ввод

Год

Неверный ввод

Эффективность утепления

0%

Эффективность от переувлажнения

0%

Нужно выбрать необходимые слои для Вашей конструкции, начиная от внутренней стороны к внешней. Также, с помощью кнопок вы можете менять слои местами, исключать из расчёта путем отключения или вообще удалять.

Результат расчёта

Базовое значение поэлементных требований [R4]

Неверный ввод

Ro-усл

Неверный ввод

Сопротивление теплопередаче ограждающей конструкции [R1]

Неверный ввод

Санитарно-гигиенические требования [R2]

Неверный ввод

Нормируемое значение поэлементных требований [R3]

Неверный ввод

Толщина

Неверный ввод

+Теплопроводность, Вт/(м·°С) – А

Неверный ввод

+Теплопроводность, Вт/(м·°С) – Б

Неверный ввод

+Паропроницаемость, мг/(м·ч·Па) – А, Б

Неверный ввод

Неверный ввод

Rо. п.

Неверный ввод

tн.отр

Неверный ввод

Е

Неверный ввод

ев

Неверный ввод

eн.отр

Неверный ввод

x(м.у.)

Неверный ввод

Сопротивление паропроницанию от внутренней поверхности конструкции до плоскости максимального увлажнения [Rп]

Неверный ввод

Rп.н

Неверный ввод

Сумма R

Неверный ввод

Недопустимость влагонакопления в ограждающей конструкции за год эксплуатации [Rп1]

Неверный ввод

Ограничение влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами наружного воздуха [Rп2]

Неверный ввод

Z0

Неверный ввод

t0

Неверный ввод

E0

Неверный ввод

Pw1, кг/м³

Неверный ввод

Pw2, кг/м³

Неверный ввод

Δwav1

Неверный ввод

Δwav2

Неверный ввод

η

Неверный ввод

Rn-T

Неверный ввод

888

Неверный ввод

Потери тепла через 1 м² за 1 час при температуре самой холодной пятидневки кВт/ч:

Неверный ввод

Потери тепла через 1 м² за отопительный сезон кВт/ч:

Неверный ввод

Скачать отчет

На чём основан расчёт

Калькулятор построен на базе актуальной документации Российской Федерации, в которую входят различные СП, СНиПы, ГОСТы, СТО. Данная документация вполне применима для частных строений и не только, для всех стран СНГ, т.к во многих странах до сих пор действуют частично измененные правила СССР.  Если у Вас стоит задача проектирования не частных строений, то Вам нужно обратится для дополнительной консультации или перепроверки расчётов в компании, у которых есть на это определенные полномочия.

СП 131.13330.2020 Строительная климатология СНиП 23-01-99* от 24 декабря 2020

СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 (с Изменением N 1) от 30 июня 2012

СП 23-101-2004 Проектирование тепловой защиты зданий от 26 марта 2004СНиП 23-02-2003 Тепловая защита зданий от 26 июня 2003

СНиП 23-01-99* Строительная климатология (с Изменением N 1) от 11 июня 1999

ГОСТ Р 54851-2011 Конструкции строительные ограждающие неоднородные. Расчет приведенного сопротивления теплопередаче от 15 декабря 2011

СТО 00044807-001-2006 Теплозащитные свойства ограждающих конструкций зданий от 21 февраля 2006

Тепло в доме – важнейший элемент комфорта. Задача любого помещения создавать и поддерживать определенные температурные режимы. Понятно, что все эти технические условия должны закладываться и учитываться инженерами ещё на этапе проектирования сооружения. Однако, нередко мы имеем дело с уже построенным зданием – в этой ситуации наш калькулятор поможет провести расчет теплопотерь реально существующего дома или наружной стены квартиры  для проверки на соответствие нормам  и возможным последующем  утеплением.

Теплотехнический онлайн калькулятор – его задачи и возможности

Если говорить в целом, то наш онлайн калькулятор предназначен для реализации двух основных задач: расчет слоя утеплителя на стадии проекта, и проверка теплопотерь уже существующих ограждающих конструкции на их соответствие нормативным требованиям. Все остальные расчеты являются лишь уточнениями для решения двух вышеозначенных запросов.

Несомненно, важна финансовая составляющая – использование результатов калькуляции позволит Вам подобрать в необходимом количестве оптимальный материал для утепления постройки, т.е. не надо будет переплачивать, заказывая лишние объемы изоляции, иначе окупаемость их будет нецелесообразна. 

Теплотехнический расчет – методика и обоснование

Теплотехнический расчет ограждающих конструкций учитывает массив законодательной базы РФ, строительных норм и правил, государственных стандартов, которые вполне применимы и для других стран СНГ (как это было в СССР). Вам нужно лишь выбрать Ваш город

Далее для расчета Вам нужно ввести слои ограждающий конструкции с помощью кнопки “Добавить слой”. В появившимся окне выбираем нужные материалы в папках, или же можно найти их через поиск.

Тепловая защита здания, просчитанная с помощью нашего теплотехнического онлайн-калькулятора, имеет высокую степень достоверности.

Расчет точки росы

Точка росы – это момент перехода влаги из газообразного состояния в жидкое. Почему необходимо учитывать этот параметр в теплотехнических расчетах ограждающих конструкций? Дело в том, что конденсат активно образуется именно в стенах, в тех плоскостях, где происходит соприкосновение холодного уличного воздуха с теплыми массами внутри помещения. Если влага начнет образовываться непосредственно на внутренних поверхностях, то очень скоро они потеряют свою целостность, эстетику а самое главное увеличится теплопроводность материалов.

Желательным (оптимальным) местом появления конденсата является наружная изоляция стен. С помощью нашей программы вы сможете рассчитать точку росы так, чтобы она выпадала конкретно на утеплителе.

Расчет тепловых потерь дома

Данный расчет позволит узнать теплопотери ограждающих конструкций за один час и за отопительный сезон с одного квадратного метра поверхности. Как и для всех остальных показателей – уточним базовые данные, которые требуются ввести при расчетах.

  • Географическое расположение квартиры, дома или перспективного строительного проекта – это необходимо для определения климатической зоны и связанных с ней характеристик (температурный режим, влажность и т.д.).  Вам нужно выбрать Ваш город из огромного списка стран СНГ.
  • Строительно-эксплуатационные параметры помещений и их предназначение – это важнейшие данные, помогающие максимально точно провести расчет толщины утеплителя для стен именно для данного типа помещения.
  • Указать слои конструкции – кирпич, пеноблок, наружная и внутренняя штукатурка, утеплитель и т.д. Калькулятор предлагает удобную опцию –возможность менять, добавлять или удалять слой, а также проводить расчеты по каждому из вариантов.  
  • Теплотехнический расчет онлайн имеет отличную визуализацию результатов. Для наглядности, часть информации представлена в виде графиков, таблиц, сносок.  Например, данный опцион позволяет варьировать температуру и влажность в разных помещениях в сторону повышения или понижения, что дает возможность провести сравнительный анализ и выбрать оптимальный расчет теплопотерь дома.

Стремитесь к 100% эфективности утепления и защиты от переувлажнения – это самые оптимальные цифры основанные на нормативных документах.

Смотрите также:

  • Расчёт вентиляции
  • Расчёт радиаторов отопления
  • СНиП 23-01-99* Строительная климатология
  • СП 50.13330.2012 Тепловая защита зданий

Добавить комментарий

Thermal Wizard Калькулятор охлаждения корпуса

Мастер Главная | Калькулятор охлаждения устройства | Калькулятор ПЦР | Калькулятор охлаждения корпуса | Калькулятор воздушного охлаждения | Калькулятор жидкостного охлаждения


Посмотрите видео для справки по использованию:

Калькулятор охлаждения корпуса



Аккумуляторный ящик

Шкаф для электроники

Охладитель проб



Размеры

Длина

Ширина

Высота

Толщина изоляции



ТЕМПЕРА

Внутренний
Окружающая среда



Тип изоляции

Пенопластовая изоляцияСтекловатаВермикулитРезинаОргстеклоСтеклоДругое Теплопроводность: Вт/м*К



Рассеиваемая активная мощность

Активная нагрузка (В х Ампер):


Приток солнечного тепла

Внешняя отделка шкафа: Белый Светоотражающий Металл Светлый Цвет Серый Черный В помещении На улице

Вт
БТЕ/час мм
дюймов °C
 °F


Общая площадь поверхности:

Площадь поверхности теплопередачи:

Общий объем:

Нагрева, чтобы удалить
(объем заполнены воздухом):

тепла до удаления
(объем, заполненный водой):
09

.

Пассивная нагрузка на охлаждение:

Солнечная охлаждающая нагрузка:

Активная нагрузка на охлаждение:

Общая охлаждающая нагрузка:

9007


Центры продаж и поддержки


Азия/Тихоокеанский регион: +86 755 3698 8333 x218
Северная и Южная Америка: +1 919-597-7300
EMEA (DE): +49 8031 ​​6192887
EMEA (SE): +46 31 7046757
EMEA (CZ) +42 31 7046757
EMEA (CZ4) +42 111

Дополнительные контакты


Контакты по продажам
Авторизованные дистрибьюторы
Объекты

Центры продаж и поддержки


Азия/Тихоокеанский регион: +86 755 3698 8333 x218
Северная и Южная Америка: +1 919-597-7300
EMEA (DE): +49 8031 ​​6192887
EMEA (SE): +46 31 7046757
EMEA (CZ) +42 31 7046757
EMEA (CZ4) +42 111

Дополнительные контакты


Контакты по продажам
Авторизованные дистрибьюторы
Объекты

Авторизованные дистрибьюторы

Количество

 

Справка

Переместите ползунок к указанной потребности в охлаждении (Qc) и нажмите кнопку ПОИСК. При перемещении ползунка вправо несколько категорий продуктов могут предлагать подходящие стандартные решения. В это время вы увидите несколько ползунков, перемещающихся одновременно.

  • Оптимальные решения по управлению температурным режимом будут отображаться под ползунками.
  • Если доступно несколько категорий продуктов, они появятся в соответствующих таблицах Термоэлектрический модуль (TEM), Термоэлектрическая сборка (TEA) или Решение для жидкостного охлаждения.
  • Если вы знаете ΔT вашего приложения, введите это значение в поле слева от кнопки ПОИСК, чтобы получить более оптимизированные результаты, и нажмите ПОИСК.
  • Если вы не найдете решение, точно отвечающее вашим требованиям, Laird Thermal Systems разработает специальное решение TEM, TEA или LCS, отвечающее вашим конкретным требованиям.

Термоэлектрические модули Help

Если вы знаете свое значение ΔT, введите это значение в поле слева от кнопки ПОИСК для получения более оптимальных результатов и нажмите ПОИСК.

Просмотр таблиц продуктов и решений
СОРТИРОВКА — при просмотре таблиц продуктов вы можете сортировать каждый столбец данных, увеличивая или уменьшая значения, щелкая стрелку рядом с заголовком каждого столбца.

  • Qc Op — отображает охлаждающую способность термоэлектрического модуля при требуемой разнице температур. Показанная эффективность охлаждения соответствует типичной рабочей точке (Iop), установленной на уровне 75 % от максимального тока (Imax). Нажав на номер детали, производительность охлаждения (Qc) можно просмотреть графически во всем рабочем диапазоне от минимального до максимального напряжения или тока (Imin до Imax или Vmin до Vmax).
  • В Op — отображает напряжение, соответствующее рабочему току, установленному на 75 % Imax.
  • Qc Max — отображает максимальную охлаждающую способность термоэлектрического модуля. Это значение измеряется при нулевой разнице температур с током, установленным на максимальное эффективное значение. Фактические термоэлектрические характеристики всегда меньше, чем QcMax, из-за входного и выходного тепловых сопротивлений, работающих через разность температур. и вероятность работы при более эффективных (более низких) токах (см. Qc Op).
  • ΔT Max — отображает максимальную разницу температур, наблюдаемую на термоэлектрической паре. Это значение измеряется при нулевом тепловом потоке (Qc) с током, установленным на максимальное эффективное значение. Обычно термоэлектрический модуль работает при ΔT намного меньше, чем ΔT max, чтобы передать тепло от холодной к теплой стороне термоэлектрического модуля.

НОМЕР ДЕТАЛИ — отображает активный лист технических данных. Вы можете точно настроить требования вашего приложения, отрегулировав значения напряжения, тока, температуры управления, температуры окружающей среды, ΔT, тепловое сопротивление горячей стороны или тепловое сопротивление холодной стороны, а затем нажмите кнопку ОБНОВИТЬ. Чтобы просмотреть другой продукт, нажмите кнопку «Назад» в браузере или нажмите кнопку «НАЗАД» 9.0005

КУПИТЬ СЕЙЧАС » — отображает доступные запасы и цены для этого номера детали у авторизованных дистрибьюторов через систему поиска запасов Octopart. Номер интересующей вас детали и спецификация Qc будут предварительно заполнены в вашей форме. Специалист Laird по тепловым технологиям свяжется с вами по телефону

Свяжитесь со специалистом по тепловым технологиям Laird сейчас по телефону

Термоэлектрические сборки Справка

Если вы знаете свое значение ΔT, введите это значение в поле слева от кнопки ПОИСК для получения более оптимальных результатов и нажмите ПОИСК.

Просмотр таблиц продуктов и решений
СОРТИРОВКА — при просмотре таблиц продуктов вы можете сортировать каждый столбец данных, увеличивая или уменьшая значения, щелкая стрелку рядом с заголовком каждого столбца.

  • Qc Op — отображает охлаждающую способность термоэлектрического модуля при требуемой разнице температур. Показанная эффективность охлаждения соответствует рабочей точке, определяемой напряжением питания. Нажав на номер детали, производительность охлаждения (Qc) можно просмотреть графически во всем рабочем диапазоне от минимального до максимального напряжения или тока (Imin до Imax или Vmin до Vmax)
  • Блок питания – мощность, потребляемая термоэлектрическими модулями, а также любыми вентиляторами в моделях с воздушным охлаждением
  • Напряжение питания — отображает номинальное напряжение питания, рассчитанное на достижение номинальной холодопроизводительности узла. Вентилятор и термоэлектрические модули в сборе могут работать при более высоких или более низких напряжениях в зависимости от требуемой охлаждающей нагрузки и необходимой эффективности
  • Qc Max – максимальная охлаждающая способность термоэлектрической сборки. Это значение измеряется при нулевой разности температур при напряжении питания, установленном на номинальное значение. Реальная производительность термоэлектрической сборки обычно меньше, чем QcMax, из-за необходимости работы при некотором перепаде температур
  • ΔT Max — отображает максимальную разницу температур, видимую на термоэлектрической сборке. Это значение измеряется при нулевом тепловом потоке (Qc) при напряжении питания, установленном на номинальное значение. Термоэлектрическая сборка обычно работает при ΔTs меньше, чем ΔT max, чтобы передать тепло от холодной к теплой стороне термоэлектрической сборки
  • .

НОМЕР ДЕТАЛИ — отображает активный лист технических данных. Вы можете точно настроить требования вашего приложения, отрегулировав значения напряжения, тока, температуры управления, температуры окружающей среды, ΔT, тепловое сопротивление горячей стороны или тепловое сопротивление холодной стороны, а затем нажмите кнопку ОБНОВИТЬ. Чтобы просмотреть другой продукт, нажмите кнопку «Назад» в браузере или нажмите кнопку «НАЗАД» 9. 0005

КУПИТЬ СЕЙЧАС » — отображает доступные запасы и цены для этого номера детали у авторизованных дистрибьюторов через систему поиска запасов Octopart. Номер интересующей вас детали и спецификация Qc будут предварительно заполнены в вашей форме. Специалист Laird по тепловым технологиям свяжется с вами по телефону

Свяжитесь со специалистом по тепловым технологиям Laird сейчас по телефону

Справка по системам жидкостного охлаждения

Если вы знаете свое значение ΔT, введите это значение в поле слева от кнопки ПОИСК для получения более оптимальных результатов и нажмите ПОИСК.

Просмотр таблиц продуктов и решений
СОРТИРОВКА — при просмотре таблиц продуктов вы можете сортировать каждый столбец данных, увеличивая или уменьшая значения, щелкая стрелку рядом с заголовком каждого столбца.

  • Qc Op — отображает охлаждающую способность термоэлектрического модуля при требуемой разнице температур. Показанная эффективность охлаждения соответствует рабочей точке, определяемой напряжением питания. Нажав на номер детали, производительность охлаждения (Qc) можно просмотреть графически во всем рабочем диапазоне от минимального до максимального напряжения или тока (Imin до Imax или Vmin до Vmax)
  • Блок питания – мощность, потребляемая термоэлектрическими модулями, а также любыми вентиляторами в моделях с воздушным охлаждением
  • Напряжение питания — отображает номинальное напряжение питания, рассчитанное на достижение номинальной холодопроизводительности узла. Вентилятор и термоэлектрические модули в сборе могут работать при более высоких или более низких напряжениях в зависимости от требуемой охлаждающей нагрузки и необходимой эффективности
  • Qc Max – максимальная охлаждающая способность термоэлектрической сборки. Это значение измеряется при нулевой разности температур при напряжении питания, установленном на номинальное значение. Реальная производительность термоэлектрической сборки обычно меньше, чем QcMax, из-за необходимости работы при некотором перепаде температур
  • ΔT Max — отображает максимальную разницу температур, видимую на термоэлектрической сборке. Это значение измеряется при нулевом тепловом потоке (Qc) при напряжении питания, установленном на номинальное значение. Термоэлектрическая сборка обычно работает при ΔTs меньше, чем ΔT max, чтобы передать тепло от холодной к теплой стороне термоэлектрической сборки
  • .

НОМЕР ДЕТАЛИ — отображает активный лист технических данных. Вы можете точно настроить требования вашего приложения, отрегулировав значения напряжения, тока, температуры управления, температуры окружающей среды, ΔT, тепловое сопротивление горячей стороны или тепловое сопротивление холодной стороны, а затем нажмите кнопку ОБНОВИТЬ. Чтобы просмотреть другой продукт, нажмите кнопку «Назад» в браузере или нажмите кнопку «НАЗАД» 9.0005

КУПИТЬ СЕЙЧАС » — отображает доступные запасы и цены для этого номера детали у авторизованных дистрибьюторов через систему поиска запасов Octopart. Номер интересующей вас детали и спецификация Qc будут предварительно заполнены в вашей форме. Специалист Laird по тепловым технологиям свяжется с вами по телефону

Свяжитесь со специалистом по тепловым технологиям Laird сейчас по телефону


Тепловые расчеты для проектирования, строительства, эксплуатации и оценки испытания отработавшего топлива – Climax, испытательный полигон в Неваде (технический отчет)

Тепловые расчеты для проектирования, строительства, эксплуатации и оценки испытательного стенда с отработавшим топливом – полигон Climax, штат Невада (технический отчет) | ОСТИ.GOV

перейти к основному содержанию

  • Полная запись
  • Другое связанное исследование

Испытание отработавшего топлива-Кульминация (SFT-C) представляет собой испытание извлекаемого глубокого геологического хранилища отработавшего топлива ядерных реакторов коммерческого производства в гранитной породе. Одиннадцать отработавших тепловыделяющих сборок вместе с шестью электрическими имитаторами и 20 защитными нагревателями заложены на глубине 420 м в гранит Climax на испытательном полигоне Министерства энергетики США в Неваде. 2 июня 1978 г. LLNL обеспечила финансирование SFT-C и завершила размещение отработавшего топлива 28 мая 1978 г.80. В этом отчете задокументирована серия тепловых расчетов, выполненных в поддержку SFT-C. В ранних расчетах использовались аналитические решения для решения таких вопросов проектирования и строительства, как расположение штреков и расстояние между шпурами. Эксплуатационные аспекты испытаний требовали более подробных численных решений, касающихся уровней мощности вентиляции и обогревателя консьержа. Последний набор расчетов, представленный здесь, обеспечивает историю изменения температуры на всем испытательном стенде для оценки отклика SFT-C и для сравнения расчетов с полученными данными. Этот окончательный набор расчетов использует исходную тестовую геометрию и наилучшие доступные свойства материалов.

Авторов:
Монтан, Д.Н.; Патрик, WC
Дата публикации:
Исследовательская организация:
Ливерморская национальная лаборатория Лоуренса. (LLNL), Ливермор, Калифорния (США)
Идентификатор ОСТИ:
59229
Номер(а) отчета:
UCRL-53238
НА: DE82009019
Номер контракта Министерства энергетики:  
W-7405-ENG-48
Тип ресурса:
Технический отчет
Отношение ресурсов:
Прочая информация: DN: Части неразборчивы в микрофишах. Оригинальная копия доступна до исчерпания запасов; ПБД: 30 сентября 19 г.81
Страна публикации:
США
Язык:
Английский
Тема:
05 ЯДЕРНОЕ ТОПЛИВО; 58 НАУКИ О ГЕО; ХРАНЕНИЕ ОТРАБОТАННОГО ТОПЛИВА; ПОДЗЕМНОЕ ХРАНЕНИЕ; ОЦЕНКА; ГРАНИТЫ; ТЕМПЕРАТУРНОЕ ВОЗДЕЙСТВИЕ; ИСПЫТАТЕЛЬНЫЙ ПЛОЩАДЬ В НЕВАДЕ; ГЕОЛОГИЧЕСКИЕ МЕСТОРОЖДЕНИЯ; отработавшие топливные элементы; ТВС; ОБОГРЕВАТЕЛИ; ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ; ВЕНТИЛЯЦИЯ; КОНТЕЙНЕРЫ; МЕТОДЫ РАСЧЕТА; ПОЛЕВЫЕ ИСПЫТАНИЯ; Юкка Маунтин Проект

Форматы цитирования

  • MLA
  • АПА
  • Чикаго
  • БибТекс

Монтан, Д.Н., и Патрик, В. К. Тепловые расчеты для проектирования, строительства, эксплуатации и оценки испытания отработавшего топлива - Climax, испытательный полигон в Неваде. США: Н. П., 1981. Веб. Дои: 10.2172/59229.

Копировать в буфер обмена

Монтан, Д.Н., и Патрик, В.К. Тепловые расчеты для проектирования, строительства, эксплуатации и оценки испытания отработавшего топлива - Кульминация, испытательный полигон в Неваде. Соединенные Штаты. https://doi.org/10.2172/59229

Копировать в буфер обмена

Монтан, Д. Н., и Патрик, В. К., 1981. «Тепловые расчеты для проектирования, строительства, эксплуатации и оценки испытаний отработавшего топлива - Climax, испытательный полигон в Неваде». Соединенные Штаты. https://doi.org/10.2172/59229. https://www.osti.gov/servlets/purl/59229.

Копировать в буфер обмена

@статья{osti_59229,
title = {Тепловые расчеты для проектирования, строительства, эксплуатации и оценки испытаний отработавшего топлива - Climax, полигон в Неваде},
автор = {Монтан, Д.Н. и Патрик, В.К.},
abstractNote = {Испытание отработавшего топлива-Кульминация (SFT-C) представляет собой испытание извлекаемого глубокого геологического хранилища промышленно произведенного отработавшего топлива ядерного реактора в гранитной породе. Одиннадцать отработавших тепловыделяющих сборок вместе с шестью электрическими имитаторами и 20 защитными нагревателями заложены на глубине 420 м в гранит Climax на испытательном полигоне Министерства энергетики США в Неваде. 2 июня 1978 LLNL обеспечила финансирование SFT-C и завершила размещение отработавшего топлива 28 мая 1980 г. В этом отчете задокументирована серия тепловых расчетов, выполненных в поддержку SFT-C. В ранних расчетах использовались аналитические решения для решения таких вопросов проектирования и строительства, как расположение штреков и расстояние между шпурами. Эксплуатационные аспекты испытаний требовали более подробных численных решений, касающихся уровней мощности вентиляции и обогревателя консьержа. Последний набор расчетов, представленный здесь, обеспечивает историю изменения температуры на всем испытательном стенде для оценки отклика SFT-C и для сравнения расчетов с полученными данными. Этот окончательный набор расчетов использует исходную тестовую геометрию и наилучшие доступные свойства материалов.},
дои = {10.2172/59229},
URL-адрес = {https://www.osti.gov/biblio/59229}, журнал = {},
номер =,
объем = ,
место = {США},
год = {1981},
месяц = ​​{9}
}

Копировать в буфер обмена


Посмотреть технический отчет (0,78 МБ)

https://doi. org/10.2172/59229


Экспорт метаданных

Сохранить в моей библиотеке

Вы должны войти в систему или создать учетную запись, чтобы сохранять документы в своей библиотеке.

Аналогичных записей в сборниках OSTI.GOV:

  • Аналогичные записи
Калькулятор

тм | Thermo Fisher Scientific

Этот инструмент вычисляет T m праймеров и оценивает подходящую температуру отжига при использовании различных ДНК-полимераз. Как пользоваться этим калькулятором

Быстро определите правильную температуру отжига для ДНК-полимеразы Platinum SuperFi (также подходит для набора SuperScript IV One-Step RT-PCR Kit), ДНК-полимераз Phusion и Phire.

Важное примечание:  Если праймер ПЦР содержит желаемые несовпадения, например, для создания мутации или сайта рестрикции, обязательно рассчитывайте T m только для правильно подобранной последовательности

T м калькулятор не требуется для Platinum II Taq ДНК-полимераза, Платиновая ДНК-полимераза SuperFi II и Platinum Direct PCR Universal Master Mix и Phusion Plus DNA Polymerase благодаря своим буферам, специально разработанным для универсальной температуры отжига 60°C для праймеров.

1. Выберите свою ДНК-полимеразу
Platinum SuperFi ДНК-полимеразу
(Также выберите этот вариант при использовании набора SuperScript IV One-Step RT-PCR Kit) ДНК-полимераза Phusion или Phire
ДНК-полимераза DreamTaq или другая Taq на основе ДНК-полимеразы
2. Выберите метод ввода
Одна пара
Пакет
3. Введите или вставьте свою последовательность

Primer#1: 5′-Enter Sequence!!!

Учебник №2: 5′-Введите последовательность!!!

4.
Условия ПЦР

Праймер конц. мкМ

Готовы заказать праймеры? ›

Как пользоваться калькулятором Т

м

Калькулятор рассчитывает рекомендуемую T m (температуру плавления) праймеров и температуру отжига ПЦР на основе последовательности пары праймеров, концентрации праймеров и ДНК-полимеразы, используемой в ПЦР. Калькулятор также рассчитывает длину праймера, процент содержания GC, молекулярную массу и коэффициент экстинкции.

Модифицированный метод термодинамики Allawi & SantaLucia [1] используется для T m и расчета температуры отжига реакций с ДНК-полимеразами Platinum SuperFi, Phusion и Phire. Параметры были скорректированы на наборе праймеров с целью максимизации специфичности и сохранения высоких выходов.

Чтобы использовать этот калькулятор, выберите свою ДНК-полимеразу, введите или вставьте свои последовательности праймеров и укажите конечную концентрацию праймеров. Значения T m , температура отжига и другие данные генерируются автоматически.

При необходимости используйте температурный градиент для дальнейшей оптимизации и эмпирического определения идеальной температуры отжига для каждой комбинации матрицы-праймера. Градиент температуры отжига должен начинаться с температуры на 6–10 °С ниже температуры отжига, выдаваемой калькулятором, и увеличиваться до температуры удлинения (двухступенчатая ПЦР).

  1. Аллави, Х. Т., и Санта-Люсия, Дж. (1997). Термодинамика и ЯМР внутренних несоответствий G-T в ДНК. Биохимия , 36(34), 10581-10594.
     

Дополнительные технические ресурсы

  • Оптимизация T m и отжиг праймеров
  • Инструменты и утилиты Oligos
  • Веб-инструменты для молекулярной биологии
  • Библиотека ресурсов по молекулярной биологии
  • Школа молекулярной биологии Invitrogen

1 Сопутствующие товары
  • ДНК-полимераза DreamTaq
  • ДНК-полимераза Phusion Plus
  • Platinum SuperFi II ДНК-полимераза

Как использовать калькулятор Tm

Калькулятор рассчитывает рекомендуемую T m (температуру плавления) праймеров и температуру отжига ПЦР на основе последовательности пары праймеров, концентрации праймеров и ДНК-полимеразы, используемой в ПЦР. Калькулятор также рассчитывает длину праймера, процент содержания GC, молекулярную массу и коэффициент экстинкции.

Приложение предназначено для расчета Т м по трем различным методикам.

Модифицированный термодинамический метод Allawi & SantaLucia (1) используется для T m и расчета температуры отжига реакций с ДНК-полимеразой Platinum SuperFi. Параметры были скорректированы на наборе праймеров с целью максимизации специфичности и сохранения высокого выхода с помощью ДНК-полимеразы Platinum SuperFi.

Модифицированный метод термодинамики Бреслауера (2) используется для расчета Tm и температуры отжига в реакциях с ДНК-полимеразами Phusion или Phire.

Для T m и расчета температуры отжига реакций с ДНК-полимеразами на основе Taq используется отдельный метод.

Чтобы использовать калькулятор, выберите свою ДНК-полимеразу, введите или вставьте свои последовательности праймеров и укажите конечную концентрацию праймеров.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *