Защита от перенапряжений: Глава 2.8. Защита от перенапряжений / Правила ПТЭЭП / Библиотека / Элек.ру

Содержание

Глава 2.8. Защита от перенапряжений / Правила ПТЭЭП / Библиотека / Элек.ру

2.8.1. Электроустановки Потребителей должны иметь защиту от грозовых и внутренних перенапряжений, выполненную в соответствии с требованиями правил устройства электроустановок.

Линии электропередачи, ОРУ, ЗРУ, распределительные устройства и подстанции защищаются от прямых ударов молнии и волн грозовых перенапряжений, набегающих с линии электропередачи. Защита зданий ЗРУ и закрытых подстанций, а также расположенных на территории подстанций зданий и сооружений (маслохозяйства, электролизной, резервуаров с горючими жидкостями или газами и т.п.) выполняется в соответствии с установленными требованиями.

2.8.2. При приемке после монтажа устройств молниезащиты Потребителю должна быть передана следующая техническая документация:

  • технический проект молниезащиты, утвержденный в соответствующих органах, согласованный с энергоснабжающей организацией и инспекцией противопожарной охраны;
  • акты испытания вентильных разрядников и нелинейных ограничителей напряжения до и после их монтажа;
  • акты на установку трубчатых разрядников;
  • протоколы измерения сопротивлений заземления разрядников и молниеотводов.

2.8.3. У Потребителей должны храниться следующие систематизированные данные:

  • о расстановке вентильных и трубчатых разрядников и защитных промежутках (типы разрядников, расстояния до защищаемого оборудования), а также о расстояниях от трубчатых разрядников до линейных разъединителей и вентильных разрядников;
  • о сопротивлении заземлителей опор, на которых установлены средства молниезащиты, включая тросы;
  • о сопротивлении грунта на подходах линий электропередачи к подстанциям;
  • о пересечениях линий электропередачи с другими линиями электропередачи, связи и автоблокировки, ответвлениях от ВЛ, линейных кабельных вставках и о других местах с ослабленной изоляцией.
  • На каждое ОРУ должны быть составлены очертания защитных зон молниеотводов, прожекторных мачт, металлических и железобетонных конструкций, в зоны которых попадают открытые токоведущие части.

2.8.4. Подвеска проводов ВЛ напряжением до 1000 В (осветительных, телефонных и т. п.) на конструкциях ОРУ, отдельно стоящих стержневых молниеотводах, прожекторных мачтах, дымовых трубах и градирнях и подводка этих линий к указанным сооружениям, а также подводка этих линий к взрывоопасным помещениям не допускаются.

Указанные линии должны выполняться кабелями с металлической оболочкой в земле. Оболочки кабелей должны быть заземлены. Подводка линий к взрывоопасным помещениям должна быть выполнена с учетом требований действующей инструкции по устройству молниезащиты зданий и сооружений.

2.8.5. Ежегодно перед грозовым сезоном должна проводиться проверка состояния защиты от перенапряжений распределительных устройств и линий электропередачи и обеспечиваться готовность защиты от грозовых и внутренних перенапряжений.

У Потребителей должны регистрироваться случаи грозовых отключений и повреждений ВЛ, оборудования РУ и ТП. На основании полученных данных должна проводиться оценка надежности грозозащиты и разрабатываться в случае необходимости мероприятия по повышению ее надежности.

При установке в РУ нестандартных аппаратов или оборудования необходима разработка соответствующих грозозащитных мероприятий.

2.8.6. Вентильные разрядники и ограничители перенапряжений всех напряжений должны быть постоянно включены.

В ОРУ допускается отключение на зимний период (или отдельные его месяцы) вентильных разрядников, предназначенных только для защиты от грозовых перенапряжений в районах с ураганным ветром, гололедом, резкими изменениями температуры и интенсивным загрязнением.

2.8.7. Профилактические испытания вентильных и трубчатых разрядников, а также ограничителей перенапряжений должны проводиться в соответствии с нормами испытаний электрооборудования (Приложение 3).

2.8.8. Трубчатые разрядники и защитные промежутки должны осматриваться при обходах линий электропередачи. Срабатывание разрядников отмечается в обходных листах. Проверка трубчатых разрядников со снятием с опор проводится 1 раз в 3 года.

Верховой осмотр без снятия с опор, а также дополнительные осмотры и проверки трубчатых разрядников, установленных в зонах интенсивного загрязнения, должны выполняться в соответствии с требованиями местных инструкций.

Ремонт трубчатых разрядников должен выполняться по мере необходимости в зависимости от результатов проверок и осмотров.

2.8.9. Осмотр средств защиты от перенапряжений на подстанциях должен проводиться:

  • в установках с постоянным дежурством персонала — во время очередных обходов, а также после каждой грозы, вызвавшей работу релейной защиты на отходящих ВЛ;
  • в установках без постоянного дежурства персонала — при осмотрах всего оборудования.

2.8.10. На ВЛ напряжением до 1000 В перед грозовым сезоном выборочно по усмотрению ответственного за электрохозяйство Потребителя должна проверяться исправность заземления крюков и штырей изоляторов, установленных на железобетонных опорах, а также арматуры этих опор. При наличии нулевого провода контролируется также зануление этих элементов.

На ВЛ, построенных на деревянных опорах, проверяются заземление и зануление крюков и штырей изоляторов на опорах, имеющих защиту от грозовых перенапряжений, а также там, где выполнено повторное заземление нулевого провода.

2.8.11. В сетях с изолированной нейтралью или с компенсацией емкостных токов допускается работа воздушных и кабельных линий электропередачи с замыканием на землю до устранения повреждения.

При этом к отысканию места повреждения на ВЛ, проходящих в населенной местности, где возникает опасность поражения током людей и животных, следует приступить немедленно и ликвидировать повреждение в кратчайший срок

При наличии в сети в данный момент замыкания на землю отключение дугогасящих реакторов не допускается. В электрических сетях с повышенными требованиями по условиям электробезопасности людей (организации горнорудной промышленности, торфоразработки и т.п.) работа с однофазным замыканием на землю не допускается. В этих сетях все отходящие от подстанции линии должны быть оборудованы защитами от замыканий на землю.

2.8.12. В сетях генераторного напряжения, а также в сетях, к которым подключены электродвигатели высокого напряжения, при появлении однофазного замыкания в обмотке статора машина должна автоматически отключаться от сети, если ток замыкания на землю превышает 5 А. Если ток замыкания не превышает 5 А, допускается работа не более 2 ч., по истечении которых машина должна быть отключена. Если установлено, что место замыкания на землю находится не в обмотке статора, по усмотрению технического руководителя Потребителя допускается работа вращающейся машины с замыканием в сети на землю продолжительностью до 6 ч.

2.8.13. Компенсация емкостного тока замыкания на землю дугогасящими реакторами должна применяться при емкостных токах, превышающих следующие значения:

Номинальное напряжение сети, кВ

6

10

15-20

35 и выше

Емкостный ток замыкания на землю, А

30

20

15

10

В сетях напряжением 6-35 кВ с ВЛ на железобетонных и металлических опорах дугогасящие аппараты применяются при емкостном токе замыкания на землю более 10 А.

Работа сетей напряжением 6-35 кВ без компенсации емкостного тока при его значениях, превышающих указанные выше, не допускается.

Для компенсации емкостного тока замыкания на землю в сетях должны использоваться заземляющие дугогасящие реакторы с автоматическим или ручным регулированием тока.

Измерения емкостных токов, токов дугогасящих реакторов, токов замыкания на землю и напряжений смещения нейтрали должны проводиться при вводе в эксплуатацию дугогасящих реакторов и при значительных изменениях режимов работы сети, но не реже 1 раза в 6 лет.

2.8.14. Мощность дугогасящих реакторов должна быть выбрана по емкостному току сети с учетом ее перспективного развития.

Заземляющие дугогасящие реакторы должны устанавливаться на подстанциях, связанных с компенсируемой сетью не менее чем двумя линиями электропередачи. Установка реакторов на тупиковых подстанциях не допускается.

Дугогасящие реакторы должны подключаться к нейтралям трансформаторов через разъединители.

Для подключения дугогасящих реакторов, как правило, должны использоваться трансформаторы со схемой соединения обмоток «звезда-треугольник».

Подключение дугогасящих реакторов к трансформаторам, защищенным плавкими предохранителями, не допускается.

Ввод дугогасящего реактора, предназначенный для заземления, должен быть соединен с общим заземляющим устройством через трансформатор тока.

2.8.15. Дугогасящие реакторы должны иметь резонансную настройку.

Допускается настройка с перекомпенсацией, при которой реактивная составляющая тока замыкания на землю должна быть не более 5 А, а степень расстройки — не более 5%. Если установленные в сети напряжением 6¸20 кВ дугогасящие реакторы имеют большую разность токов смежных ответвлений, допускается настройка с реактивной составляющей тока замыкания на землю не более 10 А. В сетях напряжением 35 кВ при емкостном токе менее 15 А допускается степень расстройки не более 10%. Применение настройки с недокомпенсацией допускается временно при условии, что аварийно возникающие несимметрии емкостей фаз сети (например, при обрыве провода) приводят к появлению напряжения смещения нейтрали, не превышающего 70% фазного напряжения.

2.8.16. В сетях, работающих с компенсацией емкостного тока, напряжение несимметрии должно быть не выше 0,75% фазного напряжения.

При отсутствии в сети замыкания на землю напряжение смещения нейтрали допускается не выше 15% фазного напряжения длительно и не выше 30% в течение 1 ч.

Снижение напряжения несимметрии и смещения нейтрали до указанных значений должно быть осуществлено выравниванием емкостей фаз сети относительно земли (изменением взаимного положения фазных проводов, распределением конденсаторов высокочастотной связи между фазами линий).

При подключении к сети конденсаторов высокочастотной связи и конденсаторов молниезащиты вращающихся машин должна быть проверена допустимость несимметрии емкостей фаз относительно земли.

Пофазные включения и отключения воздушных и кабельных линий электропередачи, которые могут приводить к напряжению смещения нейтрали, превышающему указанные значения, не допускаются.

2.8.17. В сетях напряжением 6¸10 кВ, как правило, должны применяться плавно регулируемые дугогасящие реакторы с автоматической настройкой тока компенсации.

При применении дугогасящих реакторов с ручным регулированием тока показатели настройки должны определяться по измерителю расстройки компенсации. Если такой прибор отсутствует, показатели настройки должны выбираться на основании результатов измерений токов замыкания на землю, емкостных токов, тока компенсации с учетом напряжения смещения нейтрали.

2.8.18. В установках с вакуумными выключателями, как правило, должны быть предусмотрены мероприятия по защите от коммутационных перенапряжений. Отказ от защиты от перенапряжений должен быть обоснован.

2.8.19. Потребитель, питающийся от сети, работающей с компенсацией емкостного тока, должен своевременно уведомлять оперативный персонал энергосистемы об изменениях в своей схеме сети для перестройки дугогасящих реакторов.

2.8.20. На подстанциях напряжением 110¸220 кВ для предотвращения возникновения перенапряжений от самопроизвольных смещений нейтрали или опасных феррорезонансных процессов оперативные действия должны начинаться с заземления нейтрали трансформатора, включаемого в ненагруженную систему шин с трансформаторами напряжения НКФ-110 и НКФ-220.

Перед отделением от сети ненагруженной системы шин с трансформаторами типа НКФ-110 и НКФ-220 нейтраль питающего трансформатора должна быть заземлена.

Распределительные устройства напряжением 150¸220 кВ с электромагнитными трансформаторами напряжения и выключателями, контакты которых шунтированы конденсаторами, должны быть проверены на возможность возникновения феррорезонансных перенапряжений при отключениях систем шин. При необходимости должны быть приняты меры к предотвращению феррорезонансных процессов при оперативных и автоматических отключениях.

В сетях и на присоединениях напряжением 6¸35 кВ в случае необходимости должны быть приняты меры к предотвращению феррорезонансных процессов, в том числе самопроизвольных смещений нейтрали.

2.8.21. Неиспользуемые обмотки низшего (среднего) напряжения трансформаторов и автотрансформаторов должны быть соединены в звезду или треугольник и защищены от перенапряжений.

Защита не требуется, если к обмотке низшего напряжения постоянно подключена кабельная линия электропередачи длиной не менее 30 м.

В других случаях защита неиспользуемых обмоток низшего и среднего напряжения должна быть выполнена заземлением одной фазы или нейтрали либо вентильными разрядниками или ограничителями перенапряжения, присоединенными к выводу каждой фазы.

2.8.22. В сетях напряжением 110 кВ разземление нейтрали обмоток напряжением 110 кВ трансформаторов, а также логика действия релейной защиты и автоматики должны быть осуществлены таким образом, чтобы при различных оперативных и автоматических отключениях не выделялись участки сети без трансформаторов с заземленными нейтралями.

Защита от перенапряжений нейтрали трансформатора с уровнем изоляции ниже, чем у линейных вводов, должна быть осуществлена вентильными разрядниками или ограничителями перенапряжений.

2.8.23. В сетях напряжением 110 кВ при оперативных переключениях и в аварийных режимах повышение напряжения промышленной частоты (50Гц) на оборудовании должно быть в пределах значений, приведенных в табл.П.4.1. (Приложение 4). Указанные значения распространяются также на амплитуду напряжения, образованного наложением на синусоиду 50 Гц составляющих другой частоты.

Перенапряжения и защита от перенапряжений

Перенапряжения представляют собой опасные для изоляции повышения напряжения и подразделяются на грозовые и внутренние.
Грозовые перенапряжения возникают при ударе молнии в электрическую установку (перенапряжения прямого удара) или вблизи нее в землю (индуктированные перенапряжения). Защита электрических установок от грозовых перенапряжений является обязательной. Основным аппаратом защиты от грозовых перенапряжений является вентильный разрядник и ОПН, характеристики которого определяют импульсный уровень изоляции, т. е. максимальное допустимое для изоляции импульсное напряжение с длиной волны 40- 50 мкс.
Внутренние перенапряжения возникают при различных нормальных или аварийных коммутациях и повреждениях в электрической системе и характеризуются кратностью К, т. е. отношением максимального напряжения относительно земли к номинальному фазному напряжению (). Внутренние перенапряжения определяют максимальное допустимое для изоляции импульсное напряжение с длиной волны 2 500 мкс, а также одноминутное испытательное напряжение промышленной частоты. Допустимые кратности внутренних перенапряжений в электрических системах с различными номинальными напряжениями приведены в табл. 40-1.

Таблица 40-1

35

110

150-330

500

750

1100-1200

3,8

3,2

3,0

2,5

2,2

1,8

 

В электрических системах 330 кВ и ниже внутренние перенапряжения ограничиваются до допустимых величин выбором рационального способа заземления нейтрали, применением благоприятных схем электрических соединений и параметров оборудования. В системах более высокого напряжения, особенно при наличии длинных линий, в ряде случаев необходимо принудительное ограничение внутренних перенапряжений путем применения выключателей с шунтирующими резисторами, коммутационных разрядников и искрового присоединения реакторов поперечной компенсации.
При ряде коммутаций (однофазное замыкание на землю, сброс нагрузки, включение линий, АПВ) максимальное значение перенапряжений

или

где -«установившееся» или квазистационарное напряжение, которое имело бы место после затухания свободных составляющих переходного процесса, если бы не работали регуляторы возбуждения генераторов системы; — кратность перенапряжений в установившемся режиме; — ударный коэффициент.
Значительные квазистационарные перенапряжения возникают при однофазных замыканиях на землю и наличии холостых линий большой длины.

Защита частного дома от перенапряжений

Защита сети низковольтного питания*

1. Дом оснащен системой внешней молниезащиты

В данном случае следует учитывать максимальное возможное воздействие – удар молнии в саму систему внешней молниезащиты. Расчетный ток молнии через УЗИП – 100 кА (форма импульса 10/350 мкс).

Для защиты от данного вида угрозы, необходимо разместить во вводном электрическом щите (на стене здания) устройство, способное выдержать и отвести столь мощный импульс. Мы предлагаем уникальное решение – комбинированное УЗИП класса 1+2+3**. Одного такого устройства достаточно чтобы защитить все электрооборудование в доме***.

В зависимости от того, каким образом у Вас выполнено заземление защитного проводника (схема TN-C-S или TT), Вы можете выбрать одно из подходящих для Вас устройств:

 

2. Дом получает питание по воздушной линии (система внешней молниезащиты отсутствует)

Максимальное возможное воздействие – удар молнии в воздушную линию электропередач. Расчетный ток молнии через УЗИП – 100 кА (форма импульса 10/350 мкс).

Для защиты электрооборудования от данного вида угрозы, необходимо разместить во вводном электрическом щите (на столбе у ответвления линии в дом или на стене здания) устройство, способное выдержать и отвести столь мощный импульс.

Если УЗИП устанавливается в распределительный щит на стене здания, схема защиты аналогична случаю 1.

Если ограничитель устанавливается в щит на столбе, УЗИП класса 1+2+3 применять не целесообразно, т.к. на пути от места установки до защищаемого дома в кабеле могут возникнуть повторные (наведенные) перенапряжения. Мы предлагаем использовать УЗИП класса 1+2**. Если расстояние от места установки УЗИП 1+2 до дома превышает 60 м, в расположенном в доме главном щите должен быть установлен дополнительный УЗИП класса 2***.

В зависимости от того, каким образом у Вас выполнено заземление защитного проводника (схема TN-C-S или TT), Вы можете выбрать одну из подходящих для Вас защитных схем:

3. Дом получает питание по подземному кабелю (система внешней молниезащиты отсутствует)

Максимальное возможное воздействие – наведенные импульсные перенапряжения, попадание частичного тока молнии в сеть исключено****. Расчетный импульсный ток через УЗИП – до 40 кА (форма импульса 8/20 мкс).

Для защиты электрооборудования от данного вида угрозы, необходимо разместить во вводном электрическом щите (на стене здания) устройство, способное выдержать и отвести данный импульс – УЗИП класса 2***.

В зависимости от того, каким образом у Вас выполнено заземление защитного проводника (схема TN-C-S или TT), Вы можете выбрать одно из подходящих для Вас устройств:

Примечания

Перенапряжение в сети и защита от перенапряжения

10-11-2015

Понятие  перенапряжения в сети

В различных источниках можно  найти разные определения «перенапряжения» в сети. Вот какое определение этого понятия дает Википедия:

Морской словарь определяет перенапряжение как увеличение напряжения в линиях электропередач и в электрических сетях до такого значения,  которое  может повредить изоляцию.

Согласно ГОСТ Р 54130-2010перенапряжением называется превышение  наибольшего рабочего напряжения, которое устанавливается для данного типа электрического оборудования.

Российская энциклопедия по охране труда определяет перенапряжение как  значительное напряжение проводника относительно земли, которое может значительно превосходить фазное напряжение в результате  внутренних или атмосферных явлений 

Характеристики перенапряжения в электрической сети

Перенапряжением в общем случае может считаться любое значительное превышение напряжения в сети, вызванное различными причинами. Перепады напряжения могут иметь различную амплитуду, продолжительность и периодичность.

К основным характеристикам перенапряжения относятся:

  • значение пика напряжения
  • кратность повторения перенапряжения
  • время периода нарастания значения перенапряжения
  • площадь или длина распространения перенапряжения в сети
  • общее количество импульсов перенапряжения за период времени
  • общее время всего цикла перенапряжения

Типы  перенапряжения в электрической сети

В общем случае по способу образования различают внутренние (или коммутационные) и внешние (грозовые или атмосферные) перенапряжения

Различают следующие основные типы перенапряжения в электрической сети:

  1. грозовые перенапряжения
  2. индуктивные перенапряжения
  3. квазистационарные перенапряжения
  4. коммутационные перенапряжения

Грозовые перенапряжения в сети

Прямое попадание разряда молнии в линию электрических передач может привести к появлению очень сильного перенапряжения. Значение перенапряжения  в случае попадания молнии может достигать нескольких миллионов Вольт. Длительность такого перенапряжения, как правило, не превышает нескольких микросекунд. При появлении грозового перенапряжения изоляция электрических проводников и оборудования не может выдержать высокого напряжения.

Индуктивное электрическое перенапряжение в сети

От удара молнии в землю рядом с линией электропередач может возникнуть индуктивное перенапряжение. Индуктивное перенапряжение появляется вследствие резкого изменения электромагнитного поля. При этом значение перенапряжения может достигать 500 000 Вольт. Такое перенапряжение опасно для электрических приборов, подключенных к сети, электрических подстанций, силовых подстанций. Электрические импульсы индуктивного перенапряжения могут распространяться на значительные расстояния.

Квазистационарное  перенапряжение в сети

Квазистационарные перенапряжения в сети могут продолжаться от нескольких секунд до нескольких минут. Такие перенапряжения опасны для оборудования, подключенного к сети.

Квазистационарные перенапряжения возникают по следующим причинам:

  • появление опасного резонанса в электрической сети
  • при коротких замыканиях в сети
  • при аварийном увеличении скорости электрогенератора в случае резкого падения значения нагрузки в сети
  • при появлении эффекта феррорезонанса в  сетях с мощными индуктивными катушками или магнитопроводами

Коммутационные перенапряжения в сети

Коммутационные перенапряжения могут возникать в случае проведения переключений или коммутации оборудования в электрической сети. Как правило, такие эффекты наблюдаются при быстрых включениях или выключениях мощных электрических приборов и оборудования, имеющего большие индуктивные элементы, при резком включении или отключении оборудования с мощными конденсаторами или мощными электромагнитными катушками

Защита от перенапряжения в сети

Обязанности по защите электрических сетей от действия природных и техногенных факторов лежит на организациях, обслуживающих данные сети. Оборудование по молниезащите и защите от перепадов напряжения в сетях с высоким напряжением устанавливается на опорах и мачтах линий передач, на электрических подстанциях всех уровней. Оборудование для защиты сетей также устанавливается на подстанциях заводов и фабрик, силовых подстанциях питания сетей электротранспорта.

Для защиты электрооборудования дома и бытовых электрических приборов в частных домах и квартирах могут быть установлены локальные устройства для защиты от скачков и перепадов напряжения.

Компания «Бастион» производит линейку устройств защиты от скачков напряжения и перенапряжения. Подробнее об  этих устройствах можно узнать в разделе «Защита от скачков напряжения».

Все устройства защиты по напряжению компании «Бастион» соответствуют требованиям российских и международных стандартов.

Устройства защиты от скачков напряжения и перенапряжения «Альбатрос»  надежно будут защищать вашу сеть, электрическое оборудование и бытовые приборы от пагубного воздействия скачков напряжения и перенапряжения.

Читайте также по теме

Товары из статьи

Устройства защиты от перенапряжений | Руководство по устройству электроустановок | Оборудование

Страница 50 из 77

2 Устройства защиты от перенапряжений
Два основных типа устройств защиты применяются для гашения или ограничения перенапряжений: устройства первичной и вторичной защиты.
2.1 Устройства первичной защиты (молниезащита: IEPF)
Назначение устройств первичной защиты состоит в защите от прямых ударов молнии. Они улавливают и отводят ток молнии на землю. Принцип работы основан на защитной зоне, определяемой конструкцией, расположенной выше всех остальных конструкций. Этот принцип применяется к любому пик-эффекту (мачтовое сооружение, здание или очень высокая металлическая конструкция). Существуют три типа первичной защиты:
Стержневыеолниеотводы, самые старые и известные устройства молниезащиты
Тросовые молнеотводы
Сетка или клетка Фарадея
Стрежневой молниеотвод
Молниеотвод представляет собой конусообразный стержень, расположенный наверху здания.

Он заземляется одним или несколькими проводниками-токоотводами (часто это медные шинки) (см. рис. J8).

Рис. J8: Пример защиты EPF с помощью молниеотвода
Разработка и монтаж молниеотвода – это задача, которой должны заниматься специалисты. При этом необходимо обеспечить соответствующее расположение проводников-токоотвода (медных шинок), испытательных зажимов и заземляющих электродов для отвода высокочастотных токов молнии на землю, а также расстояния их относительно систем электропроводки, газо-, водоснабжение и т.д.
Кроме того, отвод тока молнии на землю индуцирует перенапряжения (из-за электромагнитного излучения) в защищаемых электрических цепях и сооружениях. Такие перенапряжения могут достигать нескольких десятков киловольт. Поэтому, необходимо симметрично развести токи вниз по двум, четырем или более проводникам токоотвода для минимизации электромагнитных эффектов.
Тросовый молниеотвод
Трос натягивается над защищаемым сооружением (см. рис. J9). Этот метод применяется для специальных сооружений: площадки для запуска ракет, оборонные объекты и молниезащитные (грозозащитные) тросы для воздушных высоковольтных линий электропередачи (см. рис. J10).

Рис. J : Пример защиты IEPF с помощью тросовых молниеотводов


Рис. J1: Молниезащитные (грозозащитные) кабели

Устройства первичной защиты (IEPF), такие как сетка или тросовый молниеотвод, применяются для защиты от прямых ударов молнии. Такие устройства не предотвращают разрушительное вторичное воздействие на оборудование. Например, от повышений потенциала земли и электромагнитной индукции из-за прохождения токов на землю. Для ограничения вторичных эффектов необходимо дополнительно использовать низковольтные разрядники в телефонных и электрических сетях.

Сетка (клетка Фарадея)
Этот принцип применяется для защиты зданий, в которых размещается компьютерное оборудование или оборудование для производства интегральных схем (микрочипов). Он заключается в разветвлении ряда вертикальных токоотводов снаружи здания. Горизонтальные связи (обвязки) добавляются в случае высотных зданий; например, через каждые два этажа (см. рис. J11). Вертикальные токоотводы заземляются заземлителем (заземляющим устройством) типа “воронья лапка”. В результате получается сетка с ячейками 10 х 15 м или 10 х 10 м. Это позволяет оптимизировать эквипотенциальное соединение здания и развести токи молнии, что значительно снижает электромагнитные поля и индукцию.


Рис. J1 : Пример защиты IEPF по принципу сетки (клетки Фарадея)

Вторичные защитные устройства разделяются на две категории: устройств последовательной защиты и параллельной защиты.

Устройства последовательной защиты применяются в зависимости от системы или применения. Устройства параллельной защиты используются для защиты питающих силовых сетей, телефонных сетей, цепей управления (шин).
2.2 Вторичные устройства защиты (молниезащита внутреннего оборудования IEPF)
Это устройства защиты от атмосферных и рабочих перенапряжений или перенапряжений промышленной частоты. Они могут классифицироваться по способу их присоединения в установке: последовательное или параллельное.
Устройство последовательной защиты
Это устройство с последовательным подсоединением к питающим проводам защищаемой системы (см. рис. J12).


Рис. J12: Принцип последовательной защиты

Трансформаторы
Ограничивают перенапряжения за счет индуктивного эффекта и устраняют определенные гармоники за счет соответствующего соединения первичной и вторичной обмоток. Данная защита не очень эффективна. Фильтры
Основанные на таких компонентах, как сопротивления, катушки индуктивности и конденсаторы, служат для ограничения перенапряжений из-за нарушений режимов работы в четко заданном диапазоне частот. Такие устройства не предназначены для ограничения атмосферных перенапряжений.

Ограничители перенапряжений
Состоят главным образом из воздушных (без сердечников) катушек индуктивности, ограничивающих перенапряжения, и разрядников, отводящих токи. Наиболее подходят для защиты чувствительного электронного и компьютерного оборудования, но защищают только от перенапряжений. К сожалению, это громоздкие и дорогостоящие устройства. Сетевые кондиционеры и статические источники бесперебойного питания (UPS) Эти устройства применяются главным образом для защиты чувствительного оборудования, такого как компьютерное оборудование, требующее электропитания высокого качества. Они могут использоваться для регулирования напряжения и частоты, подавления помех и обеспечения бесперебойного питания даже в случае отключения сетевого питания (UPS). С другой стороны, они не защищены от больших атмосферных перенапряжений и требуют использования разрядников.
Устройство параллельной защиты Принцип
Устройство параллельной защиты может использоваться в установках любой мощности (см. J13).
Это наиболее широко применяемый тип устройств защиты от перенапряжений.

Рис. J1 : Принцип параллельной защиты
Основные характеристики
Номинальное напряжение устройства защиты должно соответствовать сетевому напряжению на вводах установки.
При отсутствии перенапряжения ток утечки не должен протекать через устройство защиты в режиме «ожидания»
При перенапряжении выше допустимого порогового значения для защищаемой установки устройство защиты должно быстро отводить ток, вызванный перенапряжением на землю, ограничивая напряжение необходимым верхним уровнем защиты (рис. J14).

Рис. J1: Типовая вольт-амперная характеристика идеального устройства защиты
После устранения перенапряжения устройство защиты прекращает проводить ток и возвращается в ждущий режим без удержания тока. Ниже описывается идеальная вольт- амперная характеристика:
Время реакции устройства защиты (tr) должно быть как можно более коротким для быстрой защиты объекта
Устройство защиты должно быть способно проводить энергию, вызванную предсказанным перенапряжением на защищаемом объекте
Устройство защиты от перенапряжений должно быть рассчитано на входной номинальный ток In.
Применяемые устройства
■ Ограничители напряжения
Применяются на понижающих подстанциях (среднего/низкого) напряжения (MV/LV) на выходах трансформаторов при ситеме заземления IT. Поскольку используются только в схемах с изолированной или заземленной через сопротивлнение нейтралью, они могут отводить перенапряжения на землю, особенно перенапряжения промышленной частоты (см. рис. J15).

 

Рис. J15: Ограничитель перенапряжений
Низковольтные ограничители перенапряжений
Этот термин обозначает различные устройства (по технологии и назначению). Низковольтные ограничители перенапряжений представляют собой блоки, устанавливаемые внутри низковольтного распределительного щита. Существуют также сменные ограничители перенапряжений и ограничители перенапряжений для защиты отходящих фидеров. Они обеспечивают защиту соседних элементов, но имеют низкую пропускную способность. Некоторые встраиваются в различные устройства потребляющие электроэнергию, хотя не могут защитить от больших перенапряжений.
Слаботочные разрядники или устройства защиты от перенапряжений
Защищают телефонные или коммутационные сети от перенапряжений из-за внешних (молния) и внутренних причин (помехи, вызываемые работой другого оборудования, коммутация распределительных устройств и т.д.)
Слаботочные ограничители перенапряжений также устанавливаются в распределительных щитах или встраиваются в различные устройства потребляющие электроэнергию.

защита от перенапряжений от Schneider Electric

Анна Архангельская

Наиболее эффективными средствами для обеспечения защиты от перенапряжений в квартирах и частных домах служат модульные аппараты, устанавливаемые в распределительные щиты. Также с целью частичной защиты могут использоваться сетевые фильтры.

Дифференциальные выключатели нагрузки (УЗО) предназначены в первую очередь для защиты  людей от поражения электрическим током и предотвращения возгораний. Однако в линейке модульного оборудования Easy9, разработанного компанией Schneider Electric, также есть УЗО, совмещающие защиту от утечки тока и от превышения напряжения. Если в сети возникнет переходное напряжение промышленной частоты, к примеру, из-за обрыва нейтрального провода в подъезде многоквартирного дома, питание будет отключено. Такое устройство позволит защитить и проводку, и оборудование, и человеческую жизнь.

Устройства защиты от импульсных перенапряжений (УЗИП) помогают предотвратить последствия от непрямых ударов молний и аварийных скачков напряжения, губительных для дорогостоящей электроники; они компенсируют сильные броски напряжения, с которыми УЗО справиться не в состоянии. Как правило, электроника может выдержать перенапряжения до 1300-1500 В, в том время, как скачки напряжения при ударе молнии могут достигать 10 000 В. Задача УЗИП — сгладить импульсные перенапряжения до приемлемого уровня в 1000-1300 В.

Наиболее распространенный вариант УЗИП — это сетевые фильтры (удлинители с кнопкой), однако УЗИП в модульном исполнении (к примеру, Easy9 от Schneider Electric) обеспечивает значительно более надежную и качественную защиту от перенапряжений. К тому же, размещение аппарата в распределительном щитке на входе в квартиру позволяет защитить не только компьютер, но и кухонные приборы, климатическое оборудование, охранную сигнализацию, мультимедийные системы, поставленные на зарядку смартфоны и т.д. К сожалению, пока модульными аппаратами УЗИП оснащено не более 1 % российских домохозяйств.

При выборе устройств защиты от импульсных перенапряжений важно учитывать наличие молниеотвода, организацию системы заземления, информацию о токах короткого замыкания (КЗ). К примеру, если на здании или в 50 метрах от него установлен молниеотвод, можно использовать УЗИП класса I, в остальных случаях — класса II. Поскольку УЗИП не рассчитан на длительное пребывание под действием высокого напряжения, его следует защищать от КЗ с помощью автоматического выключателя.

Наличие УЗИП в электроустановке низкого напряжения обеспечивает полную защиту системы электроснабжения квартиры или частного дома и гарантирует сохранность всех видов дорогостоящей бытовой техники и электроники. При этом защитное оборудование линейки Easy9 характеризует доступная цена.

Ограничители перенапряжений Acti 9 предназначены в первую очередь для промышленных и административных зданий. Однако и в этой серии есть оборудование, которое при необходимости можно применять в жилых помещениях для надежной защиты от атмосферных перенапряжений. Это ограничители перенапряжения типа 2 со встроенным разъединителем — iQuick-PF, iQuick-PRD и модульные ограничители перенапряжений типа 2 — iPF & iPRD. В оборудовании Acti 9 предусмотрена сертифицированная координация срабатывания с автоматическими выключателями, кроме того, аппараты очень легко монтировать на объекте, а их состояние можно отслеживать удаленно с помощью системы мониторинга. Для телекоммуникационных сетей могут использоваться устройства защиты iPRC и iPRI.

Помимо этого в продуктовом портфеле Schneider Electric есть бытовые устройства защиты от всплесков напряжения APC SurgeArrest Performance. Сетевые фильтры этой серии предназначены для обеспечения минимально необходимой защиты компьютеров, бытовых электронных приборов и телефонных линий от импульсных помех.

При выборе решений для защиты от перенапряжений, важно учитывать несколько факторов. Во-первых, стоимость защищаемого оборудования и последствия его выхода из строя. Во-вторых, риски возникновения перенапряжений, которые напрямую связаны с состоянием сети и грозовой активностью в конкретной местности. Продумывая защиту электрооборудования, важно не забывать и о телекоммуникационных сетях (телефонные сети, пожарные и охранные сигнализации, системы «умный дом» и т.д.), которые также могут пострадать от перенапряжений.

Защита сети 220 вольт от перенапряжения

Хотя подача электричества в квартиры и дома регулируется законодательством, жильцам не стоит полностью рассчитывать на то, что соответствующие службы обеспечат подачу электроэнергии нужного качества. Если из-за бросков сетевого напряжения дорогостоящие электроприборы выйдут из строя, получить компенсацию будет практически невозможно. А поскольку неполадки на электролиниях – не редкость, то стоит самостоятельно принять меры, которые помогут уберечь бытовую технику от поломки. Для этого нужна защита от перенапряжения, обеспечить которую можно, установив в сети соответствующий прибор – защитное реле, датчик с УЗО или стабилизатор напряжения.

Допустимые параметры электроэнергии

Номинал напряжения, обозначенный на всей бытовой электротехнике, составляет 220В, однако в реальной жизни это значение стабильно далеко не всегда. Это учитывается при изготовлении современных приборов, и они могут устойчиво работать при колебании напряжения от 209 до 231В, а также переносить разброс от 198 до 242В. Если бы небольшие перепады разности потенциалов не были предусмотрены конструкцией бытовой техники, она ломалась бы постоянно. Более значительные отклонения приводят к перегрузке сети, и это снижает эксплуатационный ресурс аппаратуры.

Чтобы сгладить колебания напряжения и обеспечить безопасность приборов, достаточно установить стабилизатор. Гораздо опаснее для электротехники перенапряжение (так называется резкий скачок разности потенциалов).

Разновидности перенапряжений

Перенапряжение может длиться как короткое, так и достаточно продолжительное время. Оно может быть вызвано ударом молнии во время грозы или коммутацией, возникшей из-за неполадок подстанции. Для защиты от них в сеть 220 или 380 Вольт (бытовую или промышленную) включается УЗИП (устройство защиты от импульсных перенапряжений). Его автоматическое срабатывание помогает обезопасить линию при воздействии, например, мощного грозового разряда, от которого не сможет спасти стабилизатор напряжения.

Наглядно про УЗИП на видео:

Удар молнии приводит к появлению мощного электромагнитного импульса, под влиянием которого в расположенных рядом с местом разряда проводниках возникают электрические потенциалы, и происходит резкий скачок напряжения. Длится он всего около 0,1 с, но величина разности потенциалов при этом составляет тысячи вольт.

Понятно, что при поступлении такого напряжения в домашние и производственные сети последствия могут быть очень тяжелыми.

Перенапряжение в результате коммутации

Такое явление может произойти при включении в линию или выключении приборов, дающих высокую индуктивную нагрузку. К ним относятся блоки питания, электромоторы, а также мощные инструменты, запитывающиеся от сети.

Этот эффект обусловлен законами коммутации. Моментальное изменение величины тока в соленоиде, а также разности потенциалов на конденсаторе произойти не может. Когда цепь с такой нагрузкой соединяется или размыкается, то в месте контакта отмечается появление вызванного самоиндукцией и коммутационными процессами электрического потенциала.

Течение переходного процесса всегда сопровождается выбросом напряжения, которое обладает полярностью, обратной входному. Небольшая емкость проводников в сети вызывает резонанс, длящийся короткое время и вызывающий высокочастотные колебания. По завершении переходного процесса они затухают.

Сколько продлится перенапряжение и какова будет его величина, зависит от следующих показателей:

  • Индуктивность нагрузки.
  • Моментальное значение разности потенциалов при коммутации.

  • Емкость подключающих электрических кабелей.
  • Реактивная мощность.

Опасность перенапряжения

Поскольку изоляция проводов рассчитана на величину напряжения, значительно превышающую номинал, пробоя чаще всего не случается. Если электроимпульс действует в течение незначительного времени, то напряжение на выходе блоков питания со стабилизатором не успевает возрасти до критического показателя. Это же касается и обычных лампочек – если резко возросшее напряжение быстро нормализуется, то спираль не успевает не только перегореть, но даже перегреться.

Если же изоляционный слой не выдерживает увеличившегося напряжения и происходит его пробой, то появляется электрическая дуга. В этом случае поток электронов проникает сквозь микротрещины, возникшие в изоляции, и идет через газы, которыми наполнены образовавшиеся мельчайшие пустоты. А большое количество тепла, выделяемое дугой, способствует расширению токопроводящего канала. В итоге нарастание тока происходит постепенно, и автомат защиты срабатывает с некоторым опозданием. И хотя оно занимает всего несколько мгновений, их оказывается вполне достаточно для выхода электропроводки из строя.

Какими устройствами обеспечивается защита сети от перенапряжения?

Схема защиты электрической линии от скачков напряжения может включать в себя:

  • Систему молниезащиты.
  • Стабилизатор напряжения.
  • Датчик повышенного напряжения (устанавливается вместе с УЗО).
  • Реле перенапряжения.

Отдельно нужно сказать о блоках бесперебойного питания, через которые в домашних сетях чаще всего подключают компьютеры. Этот прибор не предназначен для защиты от перенапряжения в сети. Его функция заключается в другом: при внезапном отключении света он работает как аккумулятор, позволяя пользователю сохранить информацию и спокойно выключить ПК. Поэтому путать его со стабилизатором напряжения не следует.

Принцип работы защитных устройств

Для защиты от электроимпульсов, возникающих под действием молнии, устанавливается грозозащитный разрядник вместе с УЗИП. А обезопасить линию от потока электронов, параметры которого не соответствуют рабочим характеристикам сети, можно с помощью специальных датчиков, а также реле перенапряжения.

Следует сказать, что как ДПН, так и реле по принципу действия и назначению отличаются от стабилизатора.

Задача этих элементов состоит в том, чтобы прекратить подачу электроэнергии в случае превышения величиной перепада максимального порога, указанного в техническом паспорте средства защиты или выставленного регулятором.

После нормализации параметров электрической линии происходит самостоятельное включение реле. ДПН для защиты линии следует устанавливать только в паре с устройством защитного отключения. Его задача заключается в том, чтобы при обнаружении неполадок вызвать утечку тока, под воздействием которой сработает УЗО.

Наглядно про реле напряжения на видео:

Недостаток такой схемы заключается в необходимости ее ручного включения после того, как напряжение придет в норму. В этом плане выгодно отличается стабилизатор напряжения. Это устройство предусматривает регулируемую временную задержку токоподачи, если происходит его срабатывание под воздействием чрезмерного напряжения. Стабилизатор часто используют для подключения кондиционеров и холодильных аппаратов.

Длительные перенапряжения

Продолжительные перенапряжения очень часто происходят из-за обрыва нулевого проводника. Неравномерность нагрузки на фазных жилах становится причиной перекоса фаз – смещения разности потенциалов к проводнику с самой большой нагрузкой.

Иначе говоря, под воздействием неравномерного трехфазного электротока на нулевом кабеле, не имеющем заземления, начинает скапливаться напряжение. Ситуация не нормализуется до тех пор, пока повторная авария окончательно не выведет линию из строя или специалист не устранит неисправность.

При обрыве нулевого провода в электророзетке будет происходить изменение напряжения в соответствии с нагрузкой, которую пользователи, не знающие о неполадках, будут подключать на различные фазы. Пользоваться неисправной цепью практически невозможно, даже если в линию питания включен хороший стабилизатор. Дело в том, что сетевые параметры, регулярно выходящие за пределы стабилизации, приведут к тому, что прибор будет постоянно выключаться.

Наглядно про обрыв ноля и что нужно при этом делать – на видео:

Недостаток напряжения (провал)

Это явление особенно хорошо знакомо людям, проживающим в деревнях и селах. Провалом (проседанием) называется падение величины напряжения ниже допустимого предела.

Опасность проседаний заключается в том, что в конструкцию многих бытовых приборов входит несколько блоков электропитания, и недостаток напряжения приведет к тому, что один из них кратковременно выключится. Аппарат среагирует на это выдачей ошибки на дисплее и остановкой работы.

Если речь идет об отопительном котле, а неисправность произошла в зимнее время, то дом останется без отопления. Избежать такой ситуации поможет подключение стабилизатора. Этот прибор, зафиксировав проседание, повысит величину напряжения до номинала. Стабилизатор может спасти ситуацию, даже если напряжение в сети упало по вине трансформаторной подстанции.

Заключение

В этой статье мы рассказали, для чего нужна защита от перенапряжения в сети, какими устройствами она обеспечивается и как правильно ими пользоваться. Приведенные рекомендации помогут читателям разобраться в причинах сбоя сетевого напряжения, а также выбрать и установить устройство для защиты электросети.

Повышенное напряжение источника питания »Примечания по электронике

Защита от перенапряжения блока питания действительно полезна – некоторые отказы блока питания могут привести к повреждению оборудования большим напряжением. Защита от перенапряжения предотвращает это как на линейных регуляторах, так и на импульсных источниках питания.


Пособие по схемам источника питания и руководство Включает:
Обзор электроники источника питания Линейный источник питания Импульсный источник питания Защита от перенапряжения Характеристики блока питания Цифровая мощность Шина управления питанием: PMbus Бесперебойный источник питания


Хотя современные блоки питания сейчас очень надежны, всегда есть небольшая, но реальная вероятность того, что они могут выйти из строя.

Они могут выйти из строя по-разному, и одна особенно тревожная возможность заключается в том, что элемент последовательного прохода, то есть транзистор главного прохода или полевой транзистор, может выйти из строя таким образом, что произойдет короткое замыкание. Если это произойдет, в цепи, на которую подается питание, может появиться очень большое напряжение, часто называемое перенапряжением, что приведет к катастрофическому повреждению всего оборудования.

Добавив небольшую дополнительную схему защиты в виде защиты от перенапряжения, можно защититься от этой маловероятной, но катастрофической возможности.

В большинстве источников питания, предназначенных для очень надежной работы дорогостоящего оборудования, предусмотрена защита от перенапряжения в той или иной форме, чтобы гарантировать, что любой отказ источника питания не приведет к повреждению оборудования, на которое подается питание. Это относится как к линейным источникам питания, так и к импульсным источникам питания.

Некоторые блоки питания могут не иметь защиты от перенапряжения, и их не следует использовать для питания дорогостоящего оборудования – можно немного спроектировать электронную схему и разработать небольшую схему защиты от перенапряжения и добавить ее в качестве дополнительного элемента. .

Основы защиты от перенапряжения

Есть много причин, по которым блок питания может выйти из строя. Однако, чтобы понять немного больше о защите от перенапряжения и проблемах схемы, легко взять простой пример линейного регулятора напряжения, использующего очень простой стабилитрон и транзистор с последовательным проходом.

Базовый последовательный стабилизатор с использованием стабилитрона и эмиттерного повторителя

Хотя более сложные источники питания обеспечивают лучшую производительность, они также используют последовательный транзистор для передачи выходного тока.Основное отличие заключается в способе подачи напряжения регулятора на базу транзистора.

Обычно входное напряжение такое, что на элемент последовательного регулятора напряжения падает несколько вольт. Это позволяет последовательному транзистору адекватно регулировать выходное напряжение. Часто падение напряжения на последовательном транзисторе является относительно высоким – для источника питания 12 вольт входное напряжение может составлять 18 вольт и даже больше, чтобы обеспечить необходимое регулирование и подавление пульсаций и т. Д.

Это означает, что в элементе регулятора напряжения может быть значительное количество тепла, рассеиваемого в сочетании с любыми переходными выбросами, которые могут появиться на входе, это означает, что всегда существует вероятность отказа.

Устройство последовательного прохода транзисторов обычно выходит из строя в условиях разомкнутой цепи, но при некоторых обстоятельствах в транзисторе может возникнуть короткое замыкание между коллектором и эмиттером. Если это произойдет, то на выходе регулятора напряжения появится полное нерегулируемое входное напряжение.

Если на выходе появится полное напряжение, это может привести к повреждению многих микросхем в цепи питания. В этом случае ремонт схемы вполне может оказаться невозможным.

Принцип работы импульсных регуляторов сильно отличается, но есть обстоятельства, при которых полный выходной сигнал может появиться на выходе источника питания.

Как для источников питания с линейным стабилизатором, так и для импульсных источников питания всегда рекомендуется какая-либо защита от перенапряжения.

Виды защиты от перенапряжения

Как и во многих электронных технологиях, существует несколько способов реализации той или иной возможности. Это верно для защиты от перенапряжения.

Можно использовать несколько различных техник, каждая со своими характеристиками. При определении того, какой метод использовать на этапе проектирования электронных схем, необходимо взвесить производительность, стоимость, сложность и режим работы.

  • Лом SCR: Как следует из названия, цепь лома вызывает короткое замыкание на выходе источника питания, если возникает состояние перенапряжения.Обычно для этого используются тиристоры, то есть тиристоры, поскольку они могут переключать большие токи и оставаться включенными до тех пор, пока не рассеется какой-либо заряд. Тиристор может быть снова подключен к предохранителю, который перегорает и изолирует регулятор от дальнейшего воздействия на него напряжения.

    Схема защиты от перенапряжения тиристорного лома

    В этой схеме стабилитрон выбран так, чтобы его напряжение было выше нормального рабочего напряжения на выходе, но ниже напряжения, при котором может произойти повреждение. При такой проводимости через стабилитрон не протекает ток, потому что его напряжение пробоя не было достигнуто, и ток не течет на затвор тиристора, и он остается выключенным.Блок питания будет работать нормально.

    Если последовательный транзистор в блоке питания выходит из строя, напряжение начинает расти – развязка в блоке гарантирует, что оно не поднимется мгновенно. Когда он поднимается, он поднимается выше точки, в которой стабилитрон начинает проводить, и ток будет течь в затвор тиристора, вызывая его срабатывание.

    Когда тиристор срабатывает, он замыкает выход источника питания на землю, предотвращая повреждение схемы, которую он питает.Это короткое замыкание также может использоваться для перегорания предохранителя или другого элемента, отключая питание регулятора напряжения и изолируя устройство от дальнейшего повреждения.

    Часто развязка в виде небольшого конденсатора помещается между затвором тиристора и землей, чтобы предотвратить резкие переходные процессы или высокочастотные помехи от источника питания, которые поступают на соединение затвора и вызывают ложный запуск. Однако его не следует делать слишком большим, так как это может замедлить срабатывание цепи в реальном случае отказа, а защита может сработать слишком медленно.

    Примечание по защите от перенапряжения тиристорного лома:

    Тиристор или тиристор, кремниевый выпрямитель можно использовать для защиты от перенапряжения в цепи источника питания. Обнаруживая высокое напряжение, схема может активировать тиристор, чтобы поместить короткое замыкание или лом на шину напряжения, чтобы гарантировать, что оно не поднимется до высокого напряжения.

    Подробнее о Схема защиты тиристорного лома от перенапряжения.

  • Фиксация напряжения: Другая очень простая форма защиты от перенапряжения использует подход, называемый фиксацией напряжения. В простейшей форме это может быть обеспечено с помощью стабилитрона, установленного на выходе регулируемого источника питания. Если напряжение на стабилитроне выбрано немного выше максимального напряжения шины, в нормальных условиях он не будет проводить. Если напряжение поднимается слишком высоко, оно начинает проводить, ограничивая напряжение на значении, немного превышающем напряжение шины.

    Если для регулируемого источника питания требуется более высокий ток, можно использовать стабилитрон с транзисторным буфером. Это увеличит пропускную способность по току по сравнению с простой схемой на стабилитроне в раз, равный коэффициенту усиления по току транзистора. Поскольку для этой схемы требуется силовой транзистор, вероятные уровни усиления по току будут низкими – возможно, 20-50.

    Зажим перенапряжения на стабилитроне
    (а) – простой стабилитрон, (б) – повышенный ток с транзисторным буфером
  • Ограничение напряжения: Когда для импульсных источников питания требуется защита от перенапряжения, методы SMPS с зажимом и ломом используются менее широко из-за требований к рассеиваемой мощности, а также из-за возможных размеров и стоимости компонентов.

    К счастью, большинство импульсных регуляторов выходят из строя из-за низкого напряжения. Однако часто бывает целесообразно использовать возможности ограничения напряжения в случае возникновения перенапряжения.

    Часто этого можно достичь, определив состояние перенапряжения и отключив преобразователь. Это особенно применимо в случае преобразователей постоянного тока в постоянный. При реализации этого необходимо включить измерительную петлю, которая находится за пределами основного регулятора IC – многие регуляторы режима переключения и преобразователи постоянного тока используют микросхему для создания большей части схемы.Очень важно использовать внешний контур считывания, потому что, если микросхема регулятора режима переключения повреждена, вызывая состояние перенапряжения, механизм считывания также может быть поврежден.

    Очевидно, что для этой формы защиты от перенапряжения требуются схемы, специфичные для конкретной схемы, и используемые микросхемы импульсного источника питания.

Используются все три метода, которые могут обеспечить эффективную защиту источника питания от перенапряжения. У каждого есть свои преимущества и недостатки, и выбор техники должен зависеть от конкретной ситуации.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Возврат в меню проектирования схем. . .

Схема защиты от перенапряжения

Цепи защиты, такие как защита от обратной полярности, защита от короткого замыкания и защита от повышенного / пониженного напряжения, используются для защиты любого электронного устройства или схемы от любых неожиданных сбоев.Обычно для защиты от перенапряжения используется предохранитель или MCB, здесь, в этой схеме, мы построим схему защиты от перенапряжения без использования предохранителя.

Защита от перенапряжения – это функция источника питания, которая отключает подачу питания, когда входное напряжение превышает заданное значение. Для защиты от перенапряжения мы всегда используем защиту от перенапряжения или схему защиты ломом. Схема защиты ломом – это тип защиты от перенапряжения, который чаще всего используется в электронных схемах.

Существует множество различных способов защиты вашей цепи от перенапряжения. Самый простой способ – подключить предохранитель со стороны входа питания. Но проблема в том, что это разовая защита, потому что, когда напряжение превышает заданное значение, провод внутри предохранителя сгорает и разрывает цепь. Затем вам необходимо заменить поврежденный предохранитель на новый, чтобы снова выполнить соединения.

Здесь, в этой схеме, стабилитрон и биполярный транзистор используются для автоматической защиты от перенапряжения.Это можно сделать двумя способами:

1. Цепь стабилитрона напряжения: Этот метод регулирует входное напряжение и защищает схему от перенапряжения путем подачи стабилизированного напряжения, но он не отключает выходную часть , когда напряжение превышает пределы безопасности . Мы всегда будем получать выходное напряжение, меньшее или равное номинальному значению стабилитрона.

2. Схема защиты от перенапряжения с использованием стабилитрона: Во втором методе защиты от перенапряжения, когда входное напряжение превышает заданный уровень, он отключает выходную часть или нагрузку от схемы.

Цепь стабилитрона

Стабилитрон стабилизатора напряжения защищает схему от перенапряжения, а также регулирует входное напряжение питания. Принципиальная схема защиты от перенапряжения с использованием стабилитрона приведена ниже:

Предустановленное значение напряжения цепи – это критическое значение, при превышении которого либо отключается питание, либо напряжение выше этого значения не допускается.Здесь предустановленное значение напряжения – это номинал стабилитрона. Например, мы используем стабилитрон 5.1V, тогда напряжение на выходе не будет превышать 5.1V.

Когда выходное напряжение увеличивается, напряжение база-эмиттер уменьшается, из-за этого транзистор Q1 проводит меньше. Поскольку Q1 проводит меньше, он снижает выходное напряжение, следовательно, поддерживает постоянное выходное напряжение.

Выходное напряжение определяется как:

  VO = VZ - VBE  

Где,

VO – выходное напряжение

ВЗ – напряжение пробоя стабилитрона

VBE – напряжение база-эмиттер

Схема защиты от перенапряжения с использованием стабилитрона

Приведенная ниже принципиальная схема защиты от перенапряжения построена с использованием стабилитрона и транзистора PNP. Эта схема отключает выход, когда напряжение превышает заданный уровень . Заданное значение – это номинальное значение стабилитрона, подключенного к цепи. Вы даже можете изменить стабилитрон в соответствии с вашим подходящим значением напряжения. Недостатком схемы является то, что вы не можете найти точное значение стабилитрона, поэтому выберите тот, который имеет наиболее близкое значение к заданному вами значению.

Необходимые материалы
  • FMMT718 Транзистор PNP – 2 шт.
  • Стабилитрон
  • 5.1V (1N4740A) – 1шт.
  • Резисторы
  • (1 кОм, 2,2 кОм и 6,8 кОм) – 1 шт. (каждый)
  • Макет
  • Соединительные провода

Схема цепи защиты от перенапряжения

Работа цепи защиты от перенапряжения

Когда напряжение ниже заданного уровня , на клемме базы Q2 высокий уровень, и, поскольку это транзистор PNP, он выключается.И, когда Q2 находится в выключенном состоянии, базовая клемма Q1 будет LOW, и это позволяет току течь через него.

Теперь, когда напряжение превышает заданное значение , стабилитрон начинает проводить ток, который соединяет базу Q2 с землей и включает Q2. Когда Q2 включается, базовая клемма Q1 становится ВЫСОКОЙ, а Q1 включается, что означает, что Q1 ведет себя как разомкнутый переключатель. Следовательно, Q1 не пропускает ток через него и защищает нагрузку от превышения напряжения.

Теперь нам также нужно учесть падение напряжения на транзисторах, оно должно быть небольшим для правильной схемы.Поэтому мы использовали транзистор FMMT718 PNP , который имеет очень низкое значение насыщения VCE, из-за чего падение напряжения на транзисторах невелико.

Далее проверьте наши другие схемы защиты.

Разработка простой схемы защиты от перенапряжения с использованием стабилитронов

Каждая конструкция схемы работает с разными уровнями напряжения, наиболее распространенными уровнями напряжения для цифровой схемы являются 3,3 В, 5 В и 12 В. Но каждая конструкция уникальна, и для схемы также характерно иметь более одного рабочего напряжения.Типичная компьютерная система SMPS, например, может работать на шести различных уровнях напряжения, а именно: ± 3,3 В, ± 5 В и ± 12 В. Для питания различных типов компонентов будут использоваться разные уровни напряжения, в этих случаях, если компонент с низким энергопотреблением запитан высоким напряжением, компонент будет безвозвратно поврежден. Следовательно, разработчик всегда должен концентрироваться на реализации схемы защиты от перенапряжения в своих конструкциях, чтобы предотвратить повреждение от перенапряжения.

Любой компонент или цепь будет иметь три различных номинальных напряжения, а именно минимальное рабочее напряжение, рекомендуемое или стандартное рабочее напряжение и максимальное рабочее напряжение.Любое значение выше максимального рабочего напряжения может быть фатальным для любых цепей или компонентов. Очень распространенным и экономичным решением является использование схемы защиты от перенапряжения на стабилитроне .

Стабилитроны – основы

Стабилитроны в большинстве случаев являются первым выбором для защиты схемы от состояния перенапряжения . Стабилитрон работает по тому же принципу, что и диод, который блокирует ток в обратном направлении.Но существует ограничение, заключающееся в том, что стабилитрон блокирует ток в обратном направлении только для ограниченного напряжения, указанного в номинальном напряжении стабилитрона . Если быть точным, стабилитрон на 5,1 В блокирует протекание тока в обратном направлении до 5,1 В. Если напряжение на стабилитроне больше 5,1 В, он позволяет току проходить через него. Эта особенность стабилитрона делает его отличным компонентом для защиты от перенапряжения .

Как защитить схемы от перенапряжения?

Рассмотрим изображение ниже, где нам нужна защита от перенапряжения для микроконтроллера .Микроконтроллер может быть любым, что имеет максимальное напряжение 5 В на выводах ввода-вывода. Следовательно, напряжение более 5 В может повредить микроконтроллер.

Стабилитрон, используемый в приведенной выше схеме, представляет собой стабилитрон с напряжением 5,1 В. Он будет работать нормально при перенапряжении. Если напряжение больше 5,1 В, стабилитрон пропускает ток и регулирует напряжение до 5,1 В. Но менее 5,1 В стабилитрон будет действовать как обычный диод и блокировать

Изображение ниже представляет собой моделирование цепи стабилитрона Protection на Spice.Вы можете посмотреть видео внизу этой страницы для полного объяснения симуляции.

На приведенной выше схеме имеется входное напряжение V1. R1 и D2 – это два компонента, защищающие выход от защиты от перенапряжения. В данном случае D2, 1N4099 представляет собой стабилитрон на 6,8 В. Выход будет защищен, если напряжение V1 превысит 6,8 В. Из-за опорного напряжения 6,8 В на 1N4099 выходное напряжение останется максимальным 6,8 В.

Давайте посмотрим, как приведенная выше схема действует как схема защиты входа стабилитрона и защищает выход от напряжения более 6.8V.

Вышеупомянутая схема моделируется с использованием каденции pspice . При входном напряжении 6 В на V1 выход остается постоянным на уровне 5,999 В (что составляет 6,0 В).

В приведенном выше моделировании входное напряжение составляет 6,8 В. Таким образом, выходное напряжение составляет 6,785 В, что близко к 6,8 В. Давайте дальше увеличим входное напряжение и создадим ситуацию перенапряжения.

Теперь входное напряжение 7,5 В, что больше, чем 6.8V. Теперь на выходе все еще 6,883 В. Таким образом, стабилитрон эффективен для спасения подключенной схемы от ситуации перенапряжения, а также, когда напряжение возвращается ниже 6,8 В, схема снова будет нормально работать, как показано на предыдущем шаге. Это означает, что, в отличие от предохранителя, стабилитрон не повреждается даже при перенапряжении.

Любые другие стабилитроны с другими значениями, такими как 3,3 В, 5,1 В, 9,1 В, 10,2 В, могут использоваться для выбора различных пределов перенапряжения в приведенной выше схеме.

Как выбрать стабилитрон для защиты от перенапряжения?

Следующей важной частью является выбор значения стабилитрона. Приведенные ниже пункты помогут вам выбрать правильное значение и номер детали для стабилитрона.

1. Сначала выберите напряжение стабилитрона . Это значение напряжения, при котором стабилитрон будет действовать как замыкающая цепь и защищать нагрузку от перенапряжения.Для приведенного выше примера в Pspice напряжение стабилитрона составляет 6,8 В.

В некоторых случаях заданное напряжение на стабилитроне может быть недоступно. В таких случаях можно выбрать близкое значение стабилитрона. Например, для защиты от перенапряжения до 7 В стабилитрон 6,8 В является близким значением.

2. Рассчитайте ток нагрузки , подключенный к цепи защиты от перенапряжения. Для нашего примера, описанного выше, это 50 мА.Помимо тока нагрузки, стабилитроны нуждаются в токе смещения . Следовательно, полный ток должен быть равен току нагрузки плюс ток смещения стабилитрона. В рассмотренном выше примере это может быть

.
Общий ток = 50 мА + 10 мА = 60 мА 

3. Стабилитроны имеют номинальную мощность . Таким образом, для надлежащего отвода тепла требуется стабилитрон правильной номинальной мощности. Номинальная мощность может быть рассчитана на основе расчетного полного тока на шаге 2, который составляет 60 мА.
Следовательно, номинальная мощность стабилитрона будет равна напряжению стабилитрона, что связывает полный ток, который будет протекать через диод.

В нашем примере

номинальная мощность = 6,8 В x 0,060 = 0,408 Вт. 

Следовательно, стабилитрона мощностью 500 мВт будет достаточно.

4. Рассчитайте номинал резистора , дифференцируя напряжение источника и общее напряжение. Напряжение источника будет максимальным, которое можно приложить к цепи.

Например, максимальное перенапряжение, которое может произойти или может быть применено в качестве напряжения питания, может составлять 13 В.

Таким образом, падение напряжения на резисторе будет = 13 В-6,8 В = 6,2 В

По закону Ома номинал резистора будет = 6,2 В / 0,060 А = 103R

Можно выбрать стандартное значение резистора 100R.

Популярные стабилитроны

Напряжение стабилитрона

Стабилитрон Номер детали

3.3В

1N5226

5,1 В

1N5231

6,8 В

1N5235

9,1 В

1N5239

11.0V

1N5241

13,0 В

1N5243

15,0 В

1N5245

Схема защиты стабилитрона от перенапряжения – за и против Защита от перенапряжения

с использованием стабилитронов – самый простой и легкий способ защиты устройств от перенапряжения.В этом методе напряжение остается регулируемым, а стоимость этой схемы намного меньше по сравнению с другими методами.

Но, конечно, у этой схемы есть недостатки. Основным недостатком схемы этого типа является рассеиваемая мощность . Благодаря подключенному последовательно резистору он всегда рассеивает тепло и приводит к потере энергии.

NCP346 – IC защиты от перенапряжения

% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj > эндобдж 2 0 obj > эндобдж 3 0 obj > поток Акробат Дистиллятор 7.0 (Windows) BroadVision, Inc.2020-09-21T10: 13: 25 + 02: 002006-09-13T09: 01: 40-07: 002020-09-21T10: 13: 25 + 02: 00application / pdf

  • NCP346 – Защита от перенапряжения IC
  • ON Semiconductor
  • uuid: 773d444e-a5c9-4e18-adc6-cee9aadac775uuid: 17f2c5e8-7e39-4463-b149-b3dd7ee7d464 конечный поток эндобдж 4 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > поток HWr6QwHvl

    Ограничитель перенапряжения, перенапряжения и защиты от перегрузки по току

    Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности.Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

    Принять и продолжить Принять и продолжить

    Файлы cookie, которые мы используем, можно разделить на следующие категории:

    Строго необходимые файлы cookie:
    Это файлы cookie, которые необходимы для работы аналога.com или предлагаемые конкретные функции. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
    Аналитические / рабочие файлы cookie:
    Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
    Функциональные файлы cookie:
    Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
    Файлы cookie для таргетинга / профилирования:
    Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили.Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. Мы также можем передавать эту информацию третьим лицам с этой целью.
    Отклонить файлы cookie

    Защита от перенапряжения | UL

    Чтобы помочь вам узнать больше о том, как требования к защите от перенапряжений от молнии и коммутационных перенапряжений цепей безопасности были пересмотрены в соответствии с редакцией 2021 года Национальной ассоциации противопожарной защиты (NFPA) 79, UL и экспертов подразделения Eaton Bussmann. объединились, чтобы ответить на следующие часто задаваемые вопросы нашего веб-семинара.

    Требуется ли дополнительная защита от перенапряжения, если она включена в оборудование, обеспечивающее функцию безопасности?

    Как правило, большая часть оборудования, в котором используются чувствительные электронные схемы, снабжена защитой от перенапряжения определенного типа. Эта защита от перенапряжения обычно представляет собой сборку компонентов типа 5 или 4. Тип защиты от перенапряжения, используемый в оборудовании, может не обеспечивать желаемый уровень защиты. Необходимая защита может варьироваться в зависимости от условий подачи питания на оборудование, а также от расположения оборудования в цепи и расстояния от источника питания.Если известно, что источник питания чувствителен к скачкам напряжения в сети, а скачки напряжения из-за ударов молнии являются распространенной проблемой, защита от перенапряжения, поставляемая с оборудованием, может не обеспечить подходящей защиты. Если источник питания не соответствует этим условиям или оборудование расположено значительно ниже по потоку от того места, где находится источник питания, защита от перенапряжения, поставляемая с оборудованием, может обеспечить подходящую защиту. При разработке схемы, включающей чувствительное электронное оборудование, особенно схемы для промышленной панели управления, лучше всего проконсультироваться с производителем оборудования, чтобы определить, обеспечивает ли защита от перенапряжения, входящая в состав оборудования, требуемую защиту.

    Должно ли устройство защиты от перенапряжения (SPD) подключаться к сетевому напряжению 120 В переменного тока или к системе постоянного тока 24 В (В постоянного тока), которая питает цепь безопасности?

    В общем, SPD следует устанавливать как можно ближе к устройству, которое необходимо защитить. Таким образом, если устройство, выполняющее функцию безопасности, находится на стороне 24 В постоянного тока, то именно там должно быть расположено УЗИП. Однако нередко применять SPD перед этим SPD для обеспечения повышенной защиты.

    Требуется ли защита от перенапряжения для всех промышленных панелей управления промышленного оборудования?

    Нет, защита от перенапряжения требуется только для промышленных панелей управления, которые питают цепи безопасности промышленного оборудования. Устройства защиты от перенапряжения могут быть установлены в цепи управления и / или силовой цепи в зависимости от конкретной конструкции и конструкции цепи безопасности.

    Если SPD снабжен проводниками для фазных и нейтральных проводов, следует ли уменьшить длину этих проводов, если это возможно?

    Да, для обеспечения наилучших характеристик и защиты SPD очень важно, чтобы проводники от SPD были как можно короче и по возможности избегали изгибов под углом 90 градусов.

    Какой рейтинг для СПД самый важный?

    Для SPD существует несколько важных рейтингов. С точки зрения безопасности очень важно, чтобы номинальное напряжение системы и номинальный ток короткого замыкания (SCCR) были правильно выбраны для применяемой системы. С точки зрения производительности и защиты наиболее важными параметрами являются номинальный ток разряда (In), максимальное непрерывное рабочее напряжение (MCOV) и номинальное напряжение защиты (VPR).

    Что такое защита от перенапряжения? – Определение из Техопедии

    Что означает защита от перенапряжения?

    Защита от перенапряжения – это процесс защиты электрической системы от возможных повреждений, которые могут быть вызваны перенапряжением, за счет использования таких устройств, как дугогасительные сигнальные устройства, прикрепленные к линиям передачи, и стабилитроны для электронных схем.Перенапряжение – это состояние, при котором напряжение в цепи быстро достигает своего верхнего расчетного предела из-за такого явления, как скачок напряжения от ударов молнии.

    Techopedia объясняет защиту от перенапряжения

    Защита от перенапряжения является неотъемлемой частью любой электрической и электронной системы. Это гарантирует, что система работает должным образом и не имеет повреждений, несмотря на изменения внешних условий, особенно те, которые вызывают перенапряжение и скачки напряжения. Типичные причины перенапряжения включают в себя природные явления, такие как удары молнии, искусственные источники, такие как индуктивные нагрузки, такие как двигатели и электромагниты, и электромагнитные импульсы.Все это приводит к скачку уровня напряжения и тока в цепи, что может привести к повреждению некоторых ее частей, а для электронных схем, требующих лишь минимального напряжения, скачок может поджарить большинство чувствительных компонентов, таких как микрочипы.

    В более крупных электрических системах, таких как сама электросеть, также должен быть хороший уровень защиты от перенапряжения. В линиях передачи высокого напряжения, например, такие события, как скачок напряжения или перенапряжение, могут привести к тому, что электрическое поле превысит электрическую прочность или удельное сопротивление воздуха, что приведет к возникновению электрической дуги между проводниками или проводами и над изоляторами.

    Вам может понравится

    Добавить комментарий

    Ваш адрес email не будет опубликован.