Защита от превышения напряжения: Статьи о стабилизаторах напряжения, ИБП и другой продукции ГК «Штиль»

Содержание

Схемы защиты устройств от всплесков тока и напряжения

Аварийные «экстратоки» и «экстранапряжения» не идут на пользу ни одному электронному устройству. Необходимо вводить защитные цепи с автоматическим ограничением, снижением, отключением питания или, в крайнем случае, с визуальной/звуковой индикацией аварийного состояния.

Простейшим элементом защиты служит плавкий предохранитель. При его выборе надо ориентироваться на стандартные номинальные токи срабатывания:

• SМD-предохранители – 62; 125; 250; 375; 500; 750 мА, 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.0; 5.0 А;

• обычные «стеклянные» предохранители — 50; 60; 80; 100; 160; 200; 250; 315; 500; 630; 800 мА, 1.0; 1.25; 1.6; 2.0; 3.15; 3.5; 4.0 А.

Время срабатывания предохранителя зависит от величины протекающего тока. Судя по Табл. 6.9, ориентироваться на номинальный ток ПЛАВ нельзя, необходимо его многократное превышение, например, 4/ПЛАВ. На практике считается, что плавкая вставка с надписью «1А» гарантированно «сгорает» при токе 2.5 А.

Радиолюбители за неимением времени иногда изготавливают кустарные проволочные предохранители, называемые в обиходе «жучками». Если используется медный провод, то можно взять данные из Табл. 6.10. Разумеется, «жучки» после проведения эксперимента надо заменить нормальными предохранителями.

Следует отличать плавкие предохранители (fuse) от предохранительных резисторов (fusible resistor). Последние по конструкции напоминают обычные резисторы, но при перегорании не оставляют вокруг себя чёрного пятна металлизированной сажи, которая может закоротить другие цепи на печатной плате.

Ещё один важный элемент защиты — это варисторы (Табл. 6.11). В отличие от предохранителей, они устанавливаются не последовательно, а параллельно, т.е. защита осуществляется по напряжению, а не по току.

Если напряжение меньше порогового, то сопротивление варистора большое, и он практически не оказывают влияние на защищаемую цепь. Если порог достигнут, то сопротивление варистора быстро снижается. Это позволяет эффективно защищать аппаратуру от кратковременных импульсных помех.

На Рис. 6.20, а…к показаны схемы защиты питания от всплесков напряжения и коротких замыканий.

Рис. 6.20. Схемы защиты питания от всплесков напряжения и коротких замыканий (начало):

а) защита от повышенного входного напряжения с порогом, определяемым стабилитроном VD1. Оптореле VU1 имеет нормально замкнутые контакты с током нагрузки не более 250 мА;

б) электронное отключение питания при пробое мощного регулирующего транзистора, находящегося внутри стабилизатора напряжения А1. Быстродействие определяется параметрами оптотиристора VU1. Излучатель HL1 красным цветом индицирует аварийное состояние. Резистор R3 устанавливает напряжение перехода транзистора VT1 в закрытое состояние;

в) «параллельная» защита цепи +5 В. При всплесках напряжения открывается тиристор VS1 и перегорает плавкая вставка FU1 (или самовосстанавливающийся предохранитель). Конденсатор C1устраняет ложные срабатывания тиристора. Мощный проволочный резистор R3защищает тиристор VS1 от «экстратоков». Пороговое напряжение стабилитрона VDI имеет разброс 3.1…3.5 В, поэтому его точное значение устанавливается подстройкой резистора R1.

г) аналогично Рис. 6.20, в, но с заменой тиристорного ключа мощным параллельным стабилизатором напряжения на элементах VDI, VTI, R1…R3 и дополнительной защитой по входу при помощи варистора RV1. Порог срабатывания устанавливается резистором R1 на уровне примерно на 0.2…0.4 В выше, чем напряжение питания +3…+5 В;

Рис. 6.20. Схемы защиты питания от всплесков напряжения и коротких замыканий (окончание):

д) HL1 — это индикатор снижения напряжения питания с +5 до +4 В, что может свидетельствовать о предаварийном состоянии. Точный порог устанавливается резистором R3. Схема служит только для индикации неполадок. Устранение аварии производится оператором вручную;

е) защита от помех и перенапряжений в бортовой сети автомобиля (элементы R1, C1). Мигающий светодиод HL1 служит индикатором неверной полярности подачи питания;

ж) красный цвет светодиода HL1 индицирует обрыв предохранителя FU1, зелёный — нормальную работу. При оранжевом или жёлтом цвете следует выбрать другой тип диода VD1

з) защита от превышения тока в «минусовом» проводе. Резистором R3 добиваются триггер-ного режима работы. Резистором R1 устанавливают ток защиты в пределах 10…600 мА. Для ориентира, если R2= 10 Ом, то ток срабатывания равен 85… 111 мА;

и) варисторная защита устройств, подключённых к телефонной линии. При большой амплитуде или случайной подаче сетевого напряжения 220 В перегорает плавкая вставка FU1;

к) стабилитрон VD2 защищает от всплесков входного напряжения. Ток ограничивается резистором R1, короткие импульсные помехи сглаживаются конденсатором C1.

Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.

Защита от повышенного напряжения в сети


Тут архив со схемами и печатными платами.

Бытовая техника, как правило, имеет внутренний источник питания, который в случае перегрузки выходит из строя. Постоянно контролировать сетевое напряжение невозможно, так как перегрузка при работающей радиоаппаратуре может произойти в любой момент времени.
Предлагаемые ниже устройства позволяют предотвратить повреждение электроприборов и радиоаппаратуры от повышенного или пониженного напряжения.

 

Данное устройство в качестве коммутатора использует симистор, порог открывания которого устанавливается с помощью резистора R4 на уровне 260V (действующее значение).

Конденсатор С1 устраняет срабатывание схемы от кратковременных помех (выбросов).

Устанавливать светодиод HL1 не обязательно, но при его наличии  удобно настраивать устройство (когда управление симистором отключено).

Ток потребления в ждущем режиме не более 3 мА.

 
АВТОМАТИЧЕСКАЯ ЗАЩИТА.

Схема контролирует состояние сети и в случае несоответствия сетевого напряжения (170. ..260В) отключает нагрузку.

При нажатии на кнопку ВКЛ (SB1), реле К1 срабатывает с задержкой примерно в 1 секунду и контактами К1.2 блокирует кнопку. Время задержки включения реле зависит от номинала емкости С2 и резистора R7. Выключение реле К1 может производиться кнопкой ОТКЛ (SB2) или от схемы автоматики, когда на выходе появится импульс или лог. “1” (при выходе напряжения за допуск).

Реле К1 с рабочим напряжением 24В.

Если у трансформатора Т1 имеется свободная обмотка на напряжение 6…12 В, то она может быть подключена к цепям 5 и 6 (вместо R1,R3 установить перемычки, а R4 и R10 исключить из схемы).

Схема контроля напряжения состоит из транзисторов, работающих в режиме микротоков. В нормальном состоянии резисторами R12 и R15 устанавливаем на коллекторах VT2 и VT3 лог. “0” и лог. “1” соответственно.

В этом случае транзисторы VT4 и VT5 заперты и на резисторе R19 нет напряжения (при его появлении сработает VS1).

Меняя напряжение, устанавливаем порог срабатывания схемы: резистором R12 при напряжении ниже 170В, а R15 — при превышении 260В.

 

Устройство аварийной защиты от превышения сетевого напряжения.


Устройство отличается малым потребляемым током в дежурном режиме — около 2 мА.

В исходном состоянии реле К1 выключено и на конденсаторе С1 накапливается энергия за счет его заряда от сети через резистор R2. Стабилитрон VD1 ограничивает величину напряжения на конденсаторе С1 уровнем 33V.

Как только напряжение в сети превысит на резисторе R5 порог открывания стабилитрона VD3 — открываются транзистор VT1 и тиристор VS1. За счет накопленной на конденсаторе С1 энергии срабатывает реле К1.

Группа контактов К1.1 подключает резистор R1 параллельно с R2. Проходящий через него ток удерживает реле во включенном состоянии после срабатывания, когда конденсатор разрядится через обмотку.

Конденсатор С2 предотвращает срабатывание защиты от кратковременных помех в сети.

Индикатором срабатывания защиты является светодиод HL1.

Диод VD8 предохраняет светодиод от воздействия высокого обратного напряжения.  Вернуть схему в исходное состояние можно, нажав на кнопку “сброс” (SB1).

Детали:

R1 типа ПЭВ на 25 Вт, а остальные — постоянные резисторы типа МЛТ соответствующей мощности.

Подстроечный R5 типа СП5-16А-1 Вт.

Диоды VD1, VD2, VD5…VD7 подойдут любые выпрямительные на ток 0,5А и обратное напряжение не менее 400 В. Транзистор VT1 КТ3102 можно заменить на КТ315 или КТ312.

Стабилитрон VD3 любой из серии прецизионных с напряжением стабилизации 6,6…9,1 В, VD4 на КС533А.

Светодиод HL1 из серии КИПД или АЛ310А. Светодиод можно заменить неонкой. Тиристор VS1 из серий Т112 или Т122, например Т122-20-6 (последняя цифра в обозначении указывает класс допустимого обратного напряжения и в данной схеме значения не имеет).

Реле К1 может быть типа ТКЕ54ПОД или из серии РНЕ44. Такие реле допускают коммутацию напряжения 220В и позволяют пропускать через свои контакты ток более 10А.

Уровень повышенного сетевого напряжения, при котором срабатывает защита, устанавливается резистором R5.

Номинал резистора R6 подбирается для получения нужной яркости свечения светодиода HL1.

 

Реле контроля напряжения «РН»  предназначено для контроля  питающей сети и автоматического отключения участка цепи (нагрузки) при превышении или понижении напряжения питания выше или ниже установленного предела с целью защиты электрооборудования.

Имеет нижний (175 ±5В) и верхний (245 ±5В) пороги включения, ток нагрузки до 40А.


Схема  рис.1

Обозначения элементов на плате:  “L” — клемма “фаза”, “N” — клемма “нейтраль”.


Элементы C1, R1, D1-D4 и С2 образуют источник постоянного напряжения величиной около 30В, который питает реле К1. Элементы R5, DW1 и С4 образуют источник постоянного напряжения величиной 12В, для питания микросхемы LM324N, содержащей 4 операционных усилителя, которые используются как компараторы. Элементы R6-R9, DW2 используются для формирования опорных напряжений для компараторов (с анода стабилитрона DW2 снимается напряжение около 6,2 В). Опорное напряжение Uoп2, определяющее величину верхнего опорного, поступает на инвертирующий вход компаратора верхнего порога DA2, опорное напряжение Uoп1, определяющее величину нижнего порога, поступает на неинвертирующий вход компаратора нижнего порога DA3. Сетевое напряжение отслеживается посредством цепочки R2;D5;R3;R4;C3.

Постоянное напряжение с плюсового вывода СЗ (величина которого находится в соответствии с напряжением питающей сети) поступает на инвертирующий вход компаратора нижнего порога и неинвертирующий  вход компаратора верхнего порога.

Если напряжение питающей сети ниже нижнего порога, то напряжение на инвертирующем входе компаратора DA3 меньше опорного напряжения Uoп1, соответственно, на его выходе имеем условную лог.”1″ (напряжение, несколько меньшее напряжения питания компараторов). Транзистор Т2 открыт, напряжение на неинвертирующем входе компаратора DA1 близко к нулю, поэтому на его выходе имеем условный лог.”0″ (напряжение, близкое к нулю). Транзистор Т1 закрыт, реле обесточено, нагрузка отключена.

Теперь предположим, что входное сетевое напряжение находится в пределах нормы, т.е. выше нижнего порога и ниже верхнего. При этом напряжение на инвертирующем входе компаратора DA3 превышает опорное напряжение Uоп1, поэтому на его выходе будет условный лог.”0″. В то же время напряжение на неинвертирующем входе компаратора DA2 меньше опорного напряжения Uon2, поэтому но его выходе также будет условный лог.”0″. Транзистор Т2 закрыт, напряжение на неинвертирующем входе компаратора DA1 больше опорного напряжения Uоп2, поэтому условная лог.”1″ на его выходе открывает транзистор Т1, реле К1 через контакты К1.1 подключает нагрузку. Если входное сетевое напряжение станет больше верхнего порога, то напряжение на неинвертирующем входе компаратора DA2 превысит опорное напряжение Uon2, условная лог.

“1” но его выходе откроет транзистор Т2, условный лог.”0″ на выходе компаратора DA1 закроет транзистор T1, реле выключится, нагрузка будет отключена. Индикацию роботы обеспечивает двухцветный светодиод LED. В нормальном режиме, когда нагрузка подключена, лог.”1″ с выхода DA1 зажигает нижний (по схеме) светодиод зеленого цвета свечения. Если нагрузке отключена, питающее напряжение через реле К1 зажигает верхний (по схеме) светодиод красного цвета свечения.

Задержку перед первым и повторным включением (после того, как сетевое напряжение вошло в норму) обеспечивают элементы R14 и С6.

С указанными номиналами обеспечивается задержка около 1,5 мин. Элементы R12, R11, C5 подавляют помехи и импульсы с частотой питающей сети, которые могут иметь место при колебании входного напряжения вблизи верхнего или нижнего порогов.

Резистор R10 обеспечивает гистерезис компаратора DA3.

В процессе эксплуатации было замечено, что при кратковременном пропадании напряжения (<1c), якорь реле успевает отпуститься, а коммутирующий транзистор еще не закрылся и при восстановлении сетевого напряжения конденсатор в БП не может накопить необходимый заряд для повторного включения реле т.к. шунтирован подключенной катушкой силового реле.

Так все и остается, горит светодиод все ОК, а силовое реле не включено.

Проблема исправлена заменой резистора R11 с 100кОм на 2,4кОм, С3 на 10 мкФ и С1 на 470мф. Теперь транзистору Т2 достаточно тока, чтоб успеть разрядить конденсатор С6.  Схема перейдет в аварийный режим, светодиод загорится красным цветом.

 

Защита от превышения напряжения сети

Устройство весьма экономично, поскольку для управления полевыми транзисторами IRF840, требуется очень небольшая статическая мощность.


Если вероятно появление напряжения до 380В (амплитудное —540В), следует применить полевые транзисторы с большим допустимым напряжением сток—исток.

Узел управления содержит RS-триггер на DD1 – К561ТМ2 и ключ на VT1.

Питают узел управления от выпрямителя на диоде VD3 и параметрического стабилизатора напряжения, собранного на стабилитроне VD6 и гасящем резисторе R6, с фильтрующим конденсатором С2. Диоды VD4, VD5 и резистор R8 защищают выход микросхемы от импульсных сетевых помех.

   Выпрямленное напряжение через резистор R3 поступает на подстроечный резистор R1, а с его движка на последовательно включенные стабилитроны VD1, VD2 и подстроечный резистор R2. Если сетевое напряжение соответствует норме или немного меньше, стабилитроны VD1, VD2 закрыты и напряжение на резисторе R2 равно нулю. Транзистор VT1 закрыт, поэтому конденсатор С1 заряжается через резистор R7, когда напряжение на конденсаторе и, соответственно, на входе S микросхемы DD1 1 достигнет высокого уровня, на выходе триггера также появится высокий уровень. Транзисторы VT2 и VT3 открываются, и сетевое напряжение поступает на нагрузку.

Если сетевое напряжение увеличится, стабилитроны VD1. VD2 начнут открываться. На резисторе R2 появятся импульсы напряжения которые через резистор R4 поступают на вход R триггера, а с движка резистора R2 — на базу транзистора VT1 Транзистор открывается, и конденсатор С1 разряжается, поэтому на входе S триггера присутствует низкий уровень.

При дальнейшем повышении сетевого напряжения амплитуда импульсов на резисторе R2 увеличится. Когда она достигнет высокого логического уровня на входе R, триггер переключится — на его выходе появится низкий уровень. Коммутирующие полевые транзисторы закроются, и нагрузка отключится.

Если теперь сетевое напряжение начнет уменьшаться, амплитуда импульсов на резисторе R2 также будет снижаться и станет меньше высокого логического уровня, но состояние триггера не изменится. При дальнейшем снижении сетевого напряжения амплитуда импульсов уменьшится настолько, что транзистор VT1 открываться не будет и конденсатор С1 вновь начнет заряжаться на входе S триггера DD1.1 и, соответственно, на его выходе появится высокий уровень, полевые транзисторы откроются, и на нагрузку поступит сетевое напряжение.

Стабилитроны KC551A(VD1; VD2) можно заменить одним КС591А; КС600А или тремя включенными последовательно КС527А, 2С530А, 2С536А, диод КД105Б (VD3) — КД105В, КД105Г диоды КД521А (VD4\ VD5) — КД503А. КД510А, КД522Б.

Если ток нагрузки превышает 2А полевые транзисторы необходимо установить на теплоотводы.

Налаживание:

Движок подстроенного резистора R2 устанавливают в верхнее, а резистора R1 — в левое по схеме положение и подают на устройство напряжение, соответствующее порогу отключения, (250В) Медленно перемещая движок резистора R1, добиваются отключения нагрузки.

Затем на входе устройства устанавливают напряжение подключения нагрузки, (230В) и, перемещая движок резистора R2, добиваются ее включения.

Чтобы увеличить гистерезис (разность значений напряжения отключения и подключения), общее напряжение стабилизации последовательно включенных стабилитронов VD1, VD2 следует уменьшить.

 

Схема представленная ниже, отключит нагрузку, когда напряжение превысит 242В или станет ниже 170В.

В исходном состоянии контакты реле находятся в положении указанном на схеме.


Подключение нагрузки к сети происходит при нажатии на кнопку SB1 «Пуск». Сетевое напряжение через гасящий конденсатор С1 и резистор R10 поступает на выпрямитель на диодах VD9, VD10, и заряжает конденсатор С3. Напряжение на конденсаторе стабилизировано стабилитроном VD11. От этого выпрямителя питается маломощное реле К2, которое управляет работой мощного реле К1.

Через диод VD2 сетевое напряжение поступает на узел включения реле К2.

Если напряжение в сети будет более 170В стабилитрон VD7 откроется, что позволит зарядиться конденсатору С2 до напряжения достаточного для открывания транзистора VT1, который включит реле К2. Параллельно катушке реле К2 включен диод VD8 для защиты транзистора от ЭДС самоиндукции, при выключении реле К2.

Это реле своим контактом К2.1 включит мощное реле К1, а оно своими контактами К1. 1…К1.4 подаст сетевое напряжение в нагрузку.

При этом загорается светодиод HL2, сигнализирующий о нормальной работе устройства.  Светодиод HL1 погаснет, устройство вошло в рабочий режим.

Защита от понижения напряжения

Если напряжение сети станет меньше, чем 170В, стабилитрон VD7 закроется, и зарядка конденсатора С2 прекратится. Это приведет к тому, что конденсатор С2 разрядится через резистор R8 и переход база – эмиттер транзистора VT1. Транзистор закроется и промежуточное реле К2 отключится и контактом К2.1 выключит мощное реле К1 – нагрузка обесточена.

Защита от повышенного напряжения

Узел защиты от превышения напряжения собран на тиристоре VS1. Сетевое напряжение, а точнее его положительная полуволна, через диод VD2 поступает на соединенные последовательно стабилитроны VD3… VD6, а через них на резисторы R2 и R3. При повышении сетевого напряжения свыше 242В стабилитроны откроются и на резисторе R3, создастся падение напряжения, величина которого будет достаточна для открытия тиристора VS1.

Открытый тиристор через резистор R5 «посадит» напряжение на конденсаторе С3 реле К2 выключится, а вместе с ним отключится реле К1, и нагрузка будет отключена.

Повторное включение нагрузки можно осуществить лишь нажатием кнопки «Пуск».

Детали: подстроечный резистор типа СП3-3 или СП3-19. Конденсатор С1 типа К73-17 на напряжение не ниже 630v. Диоды VD1, VD2, VD8…VD10 любые маломощные с обратным напряжением не менее 400 В, типа 1N4007.

Транзистор VT1 можно заменить на КТ817Г, КТ603А,Б или КТ630Д.

В качестве мощного реле К1 использовано реле с катушкой на переменное напряжение 220В.

Реле К2 с напряжением срабатывания около 50В и током катушки не более 15 мА.

В качестве VD3… VD6, указанных на схеме, возможно применение стабилитронов КС600А, КС620А, КС630А, КС650А, КС680А.

Налаживание:

Сначала следует настроить верхний порог, подбором стабилитронов VD3…VD6 и резистора R3 добиться отключения прибора при напряжении 242В. Точная настройка осуществляется подбором резистора R3. При настройке вместо него установить переменный резистор сопротивлением около 10 ком, а по окончании настройки заменить его постоянным. Чтобы не происходило срабатывания устройства по нижнему порогу движок резистора R7 установить в верхнее по схеме положение.

После настройки верхнего порога следует с помощью резистора R7 добиться отключения устройства при понижении напряжения до 170В.

 

Автомат защиты

Отключает нагрузку от сети в случае выхода напряжения за установленные пределы (185…250 В), и обеспечивает 5и минутную задержку включения после нормализации сетевого напряжения.

Схема устройства приведена на рис. 1.

Напряжение питания поступает от однополупериодного выпрямителя на диоде VD3 с гасящим конденсатором С1. Стабилитрон VD2 пропускает положительные полупериоды тока гасящего конденсатора и стабилизирует выходное напряжение в отрицательных полупериодах.

Контроль сетевого напряжения выполнен на сдвоенном ОУ DA1, элементы которого работают в режиме компараторов.

Измерительный выпрямитель на диоде VD1 формирует пропорциональное средневыпрямленному значению переменного сетевого постоянное напряжение. Оно поступает на входы ОУ микросхемы DA1 с движков подстроечных резисторов R2 и R6. Ими регулируют соответственно верхнюю и нижнюю границы допустимого интервала изменения сетевого напряжения.

Специализированная “часовая” микросхема DD1 отсчитывает пятиминутный интервал задержки включения холодильника. Частоту задающего генератора (2,12 кГц) устанавливают подборкой резистора R11. Импульсы этой же частоты использованы для управления симистором VS1. Светодиод HL1, служит индикатором режима работы устройства.

На вторые входы ОУ со стабилитрона VD4 подано образцовое напряжение. Если напряжение в сети вышло за установленные пределы, уровень на одном из выходов DA1 станет высоким (относительно минусового вывода конденсатора СЗ).

Поступив через диод VD5 или VD6 на вход R (выв. 9) счетчика-делителя на 60 микросхемы DD1, этот уровень запрещает работу счетчика, на выходе М которого будет установлен низкий уровень. В результате импульсы с выхода элемента DD2.1 не проходят на выход элемента DD2.2.

Симистор VS1, на управляющий электрод которого не поступают открывающие импульсы, закрыт – нагрузка обесточена. Транзистор VT2 открыт, светодиод HL1 включен и сигнализирует о временной блокировке.

Как только напряжение сети придет в норму, на обоих выходах DA1 будет установлен низкий уровень. Так как конденсатор С5 разряжен, уровень на выходе элемента DD2 4 тоже низкий. Таким же, благодаря связи через резистор R24, станет и уровень на входе R счетчика-делителя на 60. Счетчик заработает и через 5 мин, низкий уровень на его выходе М сменится высоким. Дальнейшее поступление импульсов с выхода S2 микросхемы DD1 на вход С счетчика будет заблокировано открывшимся диодом VD7, и счетчик останется в этом состоянии, пока не будет возвращен в исходное высоким уровнем на входе R.

Высокий уровень на выходе М разрешает прохождение импульсов частотой 2,12 кГц через элемент DD2.2. Продифференцированные цепью C6R22 и усиленные транзистором VT3, эти импульсы открывают симистор VS1 – нагрузка подключена, а светодиод HL1 погашен.

Перемычку S1 устанавливают при налаживании устройства или в случае, если задержка включения нагрузки не требуется. За счет увеличения частоты импульсов, поступающих на счетный вход счетчика-делителя на 60, продолжительность задержки сокращается приблизительно до 20 мс, что равносильно ее отсутствию.

Детали:

Конденсатор С1 — К73-17 на 630v, С4 и С6 — любого типа. Подстроечные резисторы — СПЗ-386. Симистор ВТ137-600 — ТС106-10 на напряжение не ниже 600V.

Вместо К157УД2 подойдет любой сдвоенный ОУ, Стабилитрон КС133Г можно заменить любым на напряжение 3…3,6V.

Налаживание  автомата:

устанавливают требуемую задержку включения холодильника, пороги срабатывания узла контроля сетевого напряжения и время срабатывания токовой защиты.

Для получения пятиминутной задержки частота импульсов на выходе элемента DD2.1 должна быть равна 2,12 кГц. Ее устанавливают подборкой резистора R11.

На время регулировки порогов рекомендуется отключить задержку, установив перемычку S1, как показано на рис. 2 штриховой линией.

Подав на автомат переменное напряжение 185В, установите движок резистора R2 в положение, соответствующее границе включения светодиода HL1.

Затем, увеличив напряжение до 250В повторите процедуру, вращая на этот раз движок резистора R6.

Ложные срабатывания автомата удается устранить увеличением емкости конденсатора С2 до 100…220 мкФ.

Учитывая возможность аварийного повышения напряжения в сети до 380В, следует применять конденсатор С1 на напряжение не менее 1000 В.

 

ЗАЩИТА ОТ ПЕРЕНАПРЯЖЕНИЯ

     При превышении напряжения выше заданного безопасного уровня, устройство замкнёт сеть и сгорят или выбьют пробки. Напряжение срабатывания защиты примерно 270 В. Резистором R1 можно в небольших пределах изменять напряжение срабатывания. Конденсаторы С1 и С2 образуют с R1 RC-цепочку, которая препятствует срабатыванию устройства при импульсных выбросах в сети.


При напряжении в сети до 270В стабилитроны VD3, VD4 и тиристоры закрыты. При превышении напряжения свыше 270В открываются стабилитроны VD3, VD4, и на управляющие электроды тиристоров поступает открывающее напряжение. В зависимости от полярности полупериода сетевого напряжения, ток проходит либо через тиристор VS1, либо через VS2 которые открываясь – замкнут сеть.

Без конденсаторов С1 и С2 время срабатывания не превышает одного полупериода напряжения сети, но возможны ложные срабатывания.

С конденсаторами С1 и С2 снижается быстродействие устройства, можно сделать и однополупериодную схему с одним тиристором (VS1), удалив VS2, С2, VD1, VD2 и VD6.

Радиолюбитель №9 2006г стр. 9

 

Устройство защиты аппаратуры от аномального напряжения в сети.


Устройство отключает нагрузку при выходе сетевого напряжения за пределы 180…240В. Когда напряжение сети придет в норму, устройство отрабатывает паузу (10 с) и автоматически подключает нагрузку к сети.

Элемент, коммутирующий переменный ток — пара полевых транзисторов VT2 и VT3 с изолированным затвором, включенных встречно-последовательно.

На ОУ DA1.1 собран компаратор, контролирующий снижение напряжения сети, а на ОУ DA1.2 — повышение.

Резисторы R1—R3 образуют делитель выпрямленного напряжения сети, пульсации которого сглажены конденсатором С1.

На неинвертирующие входы обоих компараторов поступает образцовое напряжение со светодиода HL1, ток через который стабилизирован полевым транзистором VT1.

Логические элементы микросхемы DD1 обрабатывают сигналы компараторов и формируют напряжение затвор-исток транзисторов VT2 и VT3, управляющее их состоянием. Микросхемы DA1 и DD1 получают питание от конденсатора С2, который заряжается импульсами напряжения сети через диод VD1, резистор R4 и встроенный защитный диод транзистора VT2. Напряжение на конденсаторе С2 ограничено с помощью стабилитрона VD2.

Когда напряжение сети упадет ниже 180В, напряжение на движке подстроенного резистора R2 станет меньше образцового, в результате чего на выходе компаратора DA1.1 установится высокий уровень, на выходе элемента DD1.1 — низкий уровень, на выходе элемента DD1.4 — высокий уровень, светодиод HL2 погаснет, диод VD3 откроется, конденсатор СЗ быстро зарядится через токоограничительный резистор R6 и диод VD5.

Напряжение с конденсатора СЗ подается на верхний по схеме вход (вывод 1) элемента DD1.2, а с анода диода VD3 — на верхний по схеме вход (вывод 12) элемента DD1.3. RS-триггер, собранный на этих элементах, переключится в состояние низкого уровня на выводе 3 микросхемы DD1. Именно это напряжение подано на затворы транзисторов VT2 и VT3. Эти транзисторы закроются и отключат нагрузку от сети.

Когда напряжение сети превысит 240В, напряжение на резисторе R3 станет больше образцового, в результате чего на выходе компаратора DA1. 2 установится низкий уровень, на выходе элемента DD1.4 — высокий уровень, светодиод HL2 погаснет. Конденсатор СЗ зарядится, как описано выше. Высокий уровень на выводе 1 микросхемы DD1 и низкий уровень на ее выводе 13 аналогично переключат триггер на элементах DD1.2 и DD1.3, транзисторы VT2 и VT3 закроются и отключат нагрузку от сети. Когда напряжение сети вернется в допустимые пределы, на выходе компаратора DA1.1 установится низкий уровень, а на выходе компаратора DA1.2 — высокий. На выходе элемента DD1.4 установится низкий уровень, включится светодиод HL2 — индикатор допустимого напряжения сети. Но нагрузка включена не будет, пока конденсатор СЗ не разрядится через резисторы R9, R6 и выход элемента DD1.4. Пауза продолжается около 10с из-за большого сопротивления резистора R9. Лишь когда напряжение на конденсаторе СЗ, а значит, и на верхнем по схеме входе элемента DD1.2 будет соответствовать низкому логическому уровню, произойдет переключение триггера в состояние высокого уровня на выводе 3 микросхемы DD1, в результате чего транзисторы VT2 и VT3 откроются и подключат нагрузку к сети.

Если во время паузы напряжение сети выйдет за допустимые пределы, на выходе элемента DD1.4 установится высокий уровень, светодиод HL2 погаснет, конденсатор снова быстро зарядится через резистор R6 и диод VD5. Поэтому, когда напряжение сети войдет в допустимые пределы, пауза будет отработана снова. Благодаря этой паузе нагрузка защищена от колебаний напряжения сети.

Транзисторы VT2 и VT3 должны быть рассчитаны на максимальный ток нагрузки и напряжение не менее 600В, чтобы устройство выдерживало аварийное повышение напряжения сети до 380В.

Если мощность нагрузки не превышает 700 Вт, можно применить транзисторы КП707Б— КП707Г. Если напряжение сети не превышает 350В, можно применить транзисторы из серии IRF840. Транзистор VT1 — из серии КП303 с начальным током стока 1,6—2 мА. Светодиод HL1 — с падением напряжения 1.7…1,9В при указанном выше прямом токе. Светодиод HL2—любой, свечение которого заметно под прямым током около 1 мА. Диод VD1 на прямой ток не менее 100 мА и обратное напряжение не менее 600 В. Стабилитрон VD2 — с напряжением стабилизации 11… 15В при токе 5мА. Диоды VD3— VD5 из серий КД521, КД522. Микросхему LM358N (DA1) можно заменить на КР1040УД1, КР1464УД1Р.

Налаживание:

Резистор R2 устанавливают в верхнее по схеме положение, а R3 — в нижнее. На входе подают напряжение 240В, при этом светодиод HL2 должен быть погашен.  Перемещают движок резистора R3 до включения светодиода HL2. Затем подают напряжение 180В и перемещают движок резистора R2 до гашения светодиода HL2. После этого изменяя напряжение, отслеживают включение и отключение нагрузки, а также длительность паузы, которую можно изменить подбором резистора R9. Для надежности устройства можно измерить сопротивление резистора R3 и обоих участков резистора R2, после чего впаять вместо них постоянные резисторы.

 

Схема ниже, применяется как защитный элемент электрических цепей с напряжением от 115 до 180V.

Она содержит цепь контроля напряжения на транзисторах VT1;VT2, включенных по лавинно-встречной схеме, простенький усилитель управляющего тока на VT3 и собственно тиристор.

В исходном состоянии тиристор и усилитель выключены, а цепь контроля потребляет ничтожный ток. Цепь контроля сравнивает два напряжения: опорное со стабилитрона VD1 и уменьшенное делителем R1;R2;R3 исходное напряжение. Для предотвращения случайных срабатываний ограничителя при различных помехах, небольших скачках напряжений и т.п. имеется сглаживающий конденсатор C1, причём постоянная времени цепочки R2;R3;C1 выбрана порядка миллисекунд. На транзисторе VT1 происходит собственно сравнение напряжений. В исходном состоянии VT1 и VT2 закрыты. Когда на эмиттере VT1 напряжение становится больше на 0.7V, чем на базе, VT1 открывается. При этом ток через коллектор VT1 поступает в базу VT2, что приводит к его открытию. Открывающийся транзистор VT2 начинает забирать ток из точки опорного напряжения и передавать его для открытия VT3. Уменьшение опорного напряжения приводит к ещё большему открытию VT1, который в свою очередь ещё больше открывает VT2. Через некоторое время оба транзистора оказываются в состоянии насыщения. Поскольку ток с лавинной пары недостаточен для открывания тиристора, имеется усилительный каскад на VT3. Открытый поступающим с VT2 током транзистор VT3 надёжно и уверенно открывает тиристор, и тот начинает шунтировать схему.

 

Защита от аварийного напряжения сети.

Устройство отключает нагрузку от электросети при снижении или превышении сетевым напряжением заранее установленных значений (195 и 245 В).


Характеристики:

Нижний порог отключения нагрузки,  160…195V Верхний порог отключения нагрузки,  230…260V

Время отключения нагрузки при возникновении аварийной ситуации в сети,    1 …3с

Время включения после восстановления напряжения сети,  30…60с

Схема устройства показана на рис. 1. На диодах VD2, VD3 собран выпрямитель с балластными конденсаторами С5, С6, а на стабилитроне VD6 и транзисторе VT1 — ограничитель выходного напряжения выпрямителя, резистор R1 ограничивает зарядный ток конденсаторов С5, С6 при подключении устройства к сети. Резисторы R6, R8 обеспечивают разрядку конденсаторов С5, С6 при отключении устройства, они включены последовательно, так как большинство резисторов (например, МЛТ, С2-23, Р1-4) имеют рабочее напряжение не более 250 В. На диоде VD1 собран однополупериодный выпрямитель, конденсаторы С2, СЗ — сглаживающие, С1, С4 подавляют высокочастотные помехи. ОУ DA1.1, DA1.2 — компараторы напряжения, светодиод HL1 индицирует включение устройства в сеть, а HL2 — нормальное напряжение сети. Диоды VD4 и VD5 образуют “монтажное ИЛИ”, напряжение питания компараторов стабилизировано интегральным стабилизатором на микросхеме DA2, оно использовано и как образцовое.

После подключения устройства к сети на выходе микросхемы DA2 напряжение будет около 12В, на конденсаторах СЗ, С4 — постоянное напряжение, значение которого зависит от сетевого напряжения и сопротивления резисторов R2— R5. При напряжении сети 220 В это напряжение примерно равно 2,5 В. Резисторами R7 и R9 устанавливают верхний и нижний пороги отключения нагрузки. Если напряжение сети в норме, то на выходах ОУ низкий уровень, транзистор VT2 закрыт и начинается зарядка конденсатора С9 через резисторы R13, R14. Через 30…60 с напряжение на конденсаторе С9 становится достаточным для открывания полевого транзистора VT3, а затем и биполярного транзистора VT4. На реле К1 поступает напряжение питания, оно сработает и своими контактами К1.1 подключит нагрузку к сети. Одновременно светит светодиод HL2, сигнализируя, что сетевое напряжение в норме и оно подано на нагрузку.

Если напряжение сети превысит верхний порог отключения, компаратор на ОУ DA1.1 переключится, на его выходе установится высокий уровень, транзистор VT2 откроется и конденсатор С9 быстро разрядится через этот транзистор и резистор R14. Транзисторы VT3, VT4 закроются, светодиод HL2 погаснет и реле отключит нагрузку от сети. При уменьшении напряжения сети до нижнего порога переключится компаратор на ОУ DA1.2, процесс повторится и нагрузка также будет отключена от сети. Длительность временного интервала между моментом возникновения аварийной ситуации и отключением нагрузки (1…3с) зависит от скорости разрядки конденсатора С9 (т. е. от его емкости и сопротивления резистора R14), напряжения открывания транзистора VT3 и постоянной времени цепи выпрямителя (R4, R5, конденсаторы С2, СЗ).

Когда напряжение сети вернется в допустимые пределы, транзистор VT2 закроется, начнется зарядка конденсатора С9 и через 30…60 с реле К1 подключит нагрузку к сети. Время задержки зависит от сопротивления резистора R13, емкости конденсатора С9 и напряжения открывания транзистора VT3.

В устройстве применены конденсаторы С5, С6 — К73-17, оксидные — К50-35, остальные   —   К10-17.   Транзисторы

2N2222 заменимы на КТ3102 с любыми буквенными индексами (VT2) или КТ3117А, КТ815А, КТ815Б, КТ815В (VT1, VT4). Транзистор BS170P можно заменить на КП501А, КП501Б, взамен стабилитрона КС518А можно применить любой маломощный стабилитрон с напряжением стабилизации 15. ..22 В. Светодиоды допустимы любые в пластмассовом корпусе диаметром 3…5 мм, желательно разного цвета свечения, с рабочим током 5….20 мА. Автор применил многооборотные подстроечные резисторы W3296 (R7, R9), но подойдут СП5-2ВБ, постоянные резисторы — С2-23, МЛТ, реле — TRJ-12VDC, но можно использовать и аналогичные TRIL-12VDC, TRU-12VDC, TRV-12VD с одной группой контактов на замыкание или переключение.

Налаживание:

На выход устройства подают напряжение 220V, светодиод HL1 должен светить, на конденсаторе С11 — напряжение примерно 12V, а на выводах 2 и 5 микросхемы DA1 — около 2,5V. Резистором R7 устанавливают на выводе 6 микросхемы DA1 напряжение 2,9V, что соответствует верхнему порогу отключения (около 245V), а резистором R9 — напряжение 2,2V на выводе 3 микросхемы DA1, что соответствует нижнему порогу отключения (около 195V). После установки напряжений подключают нагрузку, ЛАТРом изменяют напряжение и проверяют напряжения отключения нагрузки. При необходимости их изменяют в нужную сторону резисторами R7 и R9.

Примечание:

Примененные конденсаторы К73-17(С5, С6), хотя и имеют рабочее напряжение 630V, но амплитуда приложенного к ним переменного напряжения не должна превышать 50 % этого значения (315V). Поэтому при сетевом напряжении 230V и более конденсаторы будут работать в запредельном режиме, что снижает надежность устройства. Поэтому лучше использовать конденсаторы К75-10 (2 х 0,47мкФ на 500V или 1 шт. 1мкФ на 500V).

 

БЛОК ЗАЩИТЫ

Следит за уровнем напряжения в сети, и если его величина выходит за заданные пределы отключает нагрузку.

Включение нагрузки происходит не сразу после прихода напряжения сети в норму, а через несколько секунд после этого. Задержка не дает переходным процессам, возникшим в сети, отрицательно повлиять на оборудование.

Включение и выключение нагрузки осуществляется с помощью реле К1. Схема питаются от трансформаторного источника питания на Т1. Напряжение питания микросхемы D1 поддерживается с помощью стабилизатора А1.

Датчиком величины сетевого напряжения служит выпрямитель на VD4 и СЗ, а так же, R1-R4.

На выходе выпрямителя (VD4-СЗ) будет постоянное напряжение, пропорциональное переменному напряжению в сети. Резисторы R1-R4 представляют собой два подстраиваемых делителя напряжения.

Элементы микросхемы D2 образуют своеобразные усилители сигналов датчика. Резистором R4 выставляют нижний порог напряжения сети, а резистором R3 – верхний. Когда в сети напряжение ниже установленного порога напряжение на входе D2.1 сползает в сторону логического нуля. Напряжение на выходе D2.1 начинает повышаться и элемент D1.1 переключается в нулевое состояние на выходе. Это приводит к переключению элемента D1.2 в единичное состояние.


 

Конденсатор С4 быстро заряжается через VD5 и R5. На выходе D1.3 возникает ноль. Транзисторы VT1-VT2 выключаются и реле К1 отключает нагрузку. При входе напряжения в норму происходит обратный процесс и на выходе D1.2 устанавливается ноль. При этом разрядка конденсатора С4 происходит через относительное большое сопротивление R8, поэтому на включение нагрузки уходит несколько секунд (пока С4 разряжается до порога логического нуля). Если напряжение в сети превышает установленный резистором R3 максимальный предел, то срабатывает элемент D2.2. На его выходе напряжение снижается и это приводит к переключению элемента D1.2 в состояние единицы на выходе. Дальше все, как и в случае с понижением напряжения.
Детали. Конденсатор С3 должен быть на напряжение не ниже 400V. Трансформатор Т1 – со вторичной обмоткой 9+9V, и током 300mA. Тип реле К1 зависит от максимальной мощности нагрузки.

 

Устройство защиты.

Работает оно следующим образом:

При выходе напряжения сети за установленные пределы (регулируют нижний R4, верхний – R6) срабатывает таймер DD2 и на его выходе 3 устанавливается низкий уровень, зеленый светодиод VD6 гаснет, семистор ТС 106 отключает нагрузку.

Низкий уровень на выходе 7 таймера DD2 разрешает работу счетчика DD1 К176ИЕ5, который выполняет роль второго таймера, формирующего время задержки на включение нагрузки. Это время зависит от номиналов R14 и С6 и, при указанных на схеме, составляет около 4 минут.

По прошествии 4 минут через дифцепочку С5 R15 и Т2 проходит очень короткий импульс сброса таймера DD2 и, если напряжение в сети нормализовалось, на выводе 3 таймера установится высокий уровень, засветится зеленый светодиод и симистор VD10 ТС106 подключит нагрузку. В противном случае пройдет еще 4 минуты и все повторится, и так будет происходить до тех пор, пока напряжение в сети не нормализуется.

Красный светодиод VD7 индицирует работу таймера на DD1 и, если все нормально, должен мигать каждые 2-3 сек.
Детали: R2 – не менее 1 Вт, СЗ – с малым током утечки. Оптосимистор VD9 МОС 3022 можно заменить на МОС 3020-3062. С1 – не менее чем на 400 В.
Симистор ТС-106 может коммутировать нагрузку до 10А, если необходим больший ток, то нужно заменить его на более мощный (например ТС-132).
Защита предназначена для круглосуточной работы и боится только КЗ на выходе.
При первом включении через защиту нагрузка подключится через 4 минуты, далее – автоматический режим работы.

 

Схема устройства (рис.3).

На операционном усилителе (ОУ) DA1.1 выполнен компаратор, который опрокидывается в состояние лог.”0″ при достижении напряжения сети 195В, на DA1.2 компаратор, который устанавливается в состояние лог “1” при достижении напряжения сети 200В.

На прямые входы ОУ подается опорное напряжение около 6,2В.

Пороги срабатывания компараторов выставляются переменными резисторами R3 и R4.

Если напряжение в сети, ниже 195В, на выходах обоих компараторов присутствует лог “1”. На выходе инвертора DD1.1 – лог “0”, который устанавливает RS-триггер на элементах DD1.2, DD1.3 в “единичное” состояние (уровень лог.”0″ на выводе 4 DD1.3). При этом транзисторы VT2 и VT3 закрыты и реле К1 обесточено.

При повышении сетевого напряжения до 195В в состояние отрицательного насыщения перебрасывается компаратор DA1.1, на его выходе устанавливается лог “0” и, соответственно, на входе S RS-триггера – уровень лог “1”, и триггер остается в “единичном” состоянии.


Печатная плата показана на рис.4.


При повышении сетевого напряжения до 200В в состояние лог.”0″ переходит и компаратор DA1.2. Уровень лог.”0″ появляется на входе R RS-триггера, и он переключается в “нулевое” состояние. Уровнем лог.”1″ с инверсного выхода RS-триггера открываются транзисторы VT2 и VT3, включается реле К1.

При понижении сетевого напряжения до 200В на выходе компаратора DA1.2 появляется лог”1″, но триггер все равно остается в “нулевом” состоянии, по-прежнему выходное напряжение будет равно сетевому. И только когда сетевое напряжение понизится до 195В, на выходах обоих компараторов появится лог.”1″, на входе S RS-триггера появится лог.”0″, и триггер переходит в “единичное” состояние, реле К1 отпускает. Таким образом, схема не реагирует на повышение напряжения от 195 до 200В и на понижение от 200 до 195В, и “триггерный эффект” в ней отсутствует.

Неиспользуемые выводы (выходы) DA1 и DD1 нужно удалить.

 

По материалам:
http://www.radioradar.net/
http://elwo.ru/
http://pro-radio.ru/
http://lib.qrz.ru/
http://pro-radio.ru/

6.06. Защита от больших напряжении

Cтабилизаторы напряжения и источники питания

Проектирование теплоотвода мощных схем



Как было отмечено в разд. 6.03, полезно на выходе стабилизированного источника питания иметь какую-нибудь защиту от превышения номинального напряжения. Рассмотрим, например, источник питания +5 В, питающий большую цифровую систему (мы встретим много таких примеров после гл. 7). Входное напряжение стабилизатора может быть от + 10 до + 15 В. Если проходной транзистор выйдет из строя и коллектор замкнется на эмиттер (обычная неисправность), то все нестабилизированное напряжение будет приложено к питаемой схеме и результаты будут разрушительны. Хотя предохранитель, возможно, и расплавится, но вообще-то предохранитель и кремниевые элементы в схеме будут соревноваться – кто быстрее выйдет из строя, – и скорее всего предохранитель расплавится позже. Эта проблема особенно серьезна для логических схем ТТЛ, которым требуется питание + 5 В и которые не могут выдерживать больше 7 В. Другая опасная ситуация создается при работе от «стендового» источника питания с широким диапазоном выходных напряжений, имеющего нестабилизированное входное напряжение 40 В или выше, независимо от значения выходного напряжения.

Датчик перенапряжений на стабилитроне. На рис. 6.8 показана известная схема защиты, которая выпускается также в виде модуля фирмами Lambda (тип L-6-OV-5) и Motorola (МРС2004). Ее вставляют между выходом стабилизатора и землей. Если напряжение на выходе стабилизатора превзойдет пробивное напряжение стабилитрона и прямое напряжение на диоде (для изображенной схемы – порядка 6,2 В). КУВ включится и останется в этом состоянии до тех пор, пока его анодный ток не упадет до нескольких миллиампер. Недорогой КУВ типа 2N4441 может отводить ток 5 А постоянно и выдерживать всплески тока до 80 А, перепад напряжения на нем в проводящем состоянии обычно равен 1 В при 5 А. Резистор 68 Ом должен обеспечить нормальный ток стабилитрона (10 мА) при включении КУВ, а конденсатор добавлен, чтобы схема зашиты не срабатывала от безвредных коротких всплесков напряжения.

Рис. 6.8. Защита от перенапряжения.

Описанная схема, как и все схемы защиты подобного типа, жестко устанавливает при срабатывании по напряжению на выводах источника питания напряжение «короткого замыкания» 1 В. и может быть выключена только при отключении пита- ния. Так как на КУВ в проводящем состоянии падает небольшое напряжение, нет проблем с перегревом самой схемы защиты, поэтому такая схема защиты надежна. Важно только, чтобы источник стабилизированного питания имел какую-нибудь токоограничивающую схему или хотя бы плавкий предохранитель на случай короткого замыкания. Могут появиться проблемы с перегревом самого стабилизатора при срабатывании схемы защиты. Если он содержит внутреннюю токоограничивающую схему, то плавкий предохранитель не сработает и источник питания так и будет сидеть на схеме защиты с низким напряжением на выходе, пока кто-нибудь этого не заметит. Здесь хорошо применить схему защиты от короткого замыкания с обратным наклоном характеристики.

С этой простой схемой защиты связано несколько вопросов, в основном по поводу выбора напряжения стабилитрона. Последние выпускаются только на определенные значения пробивного напряжения, задаваемого, вообще говоря, с большим допуском, и часто не имеют резкого излома на вольт-амперной характеристике. Вместе с тем желаемое напряжение срабатывания схемы защиты может быть задано с довольно жестким допуском. Рассмотрим источник питания 5 В, питающий цифровую логическую схему. Обычный допуск напряжения питания составляет 5-10% от номинала, таким образом, напряжение срабатывания схемы защиты не может быть ниже 5,5 В. Эту цифру еще нужно увеличить из-за переходных процессов в источнике питания: при резком изменении тока нагрузки может произойти скачок напряжения – всплеск и вслед за ним затухающие пульсации. Эта проблема усугубляется, если измерительные элементы отдалены и подсоединены длинными проводами (индуктивность). Получающиеся колебания накладывают динамические помехи на уровень выходного напряжения, и схема защиты не должна срабатывать. Поэтому ее напряжение срабатывания не должно быть меньше 6 В, с другой стороны, оно не должно превосходить 7 В во избежание повреждений логических схем. И вот когда вы начнете обдумывать схему с учетом допусков стабилитронов, конкретных значений их номинальных напряжений и допусков напряжения срабатывания КУВ, то вам приходится решать хитрую задачу. В схеме рис. 6.8 напряжение срабатывания может оказаться от 5,9 до 6,6 В даже при использовании обозначенного на схеме сравнительно дорогого 5%-ного стабилитрона.

ИС – датчик перенапряжений. Проблемы возникающие при построении простой схемы защиты на стабилитроне и КУВ (плохая предсказуемость и отсутствие подстройки), превосходно решаются при использовании специальной триггерной ИМС защиты, такой, например, как МС3423-5, TL431 или МС34061-2. Это недорогие ИМС в удобных корпусах (8-штырьковом мини-DIP или 3-выводном ТО-92), напрямую управляющие КУВ и очень простые в использовании. Например, ИМС МС3425 имеет регулируемые порог и время срабатывания, а также имеет вывод для сигнализации о недопустимом уменьшении напряжения питания (очень удобно для схем с микропроцессорами). ИМС содержит встроенный источник опорного напряжения, несколько компараторов и драйверов, и для построения всей схемы защиты требуется еще только два внешних резистора, КУВ и конденсатор (необязательно). Эти ИМС защиты относятся к классу схем «слежения за источником питания», куда входят такие сложные ИМС, как МАХ691, которые не только воспринимают падение напряжения, но и переключаются на батарейное питание в случае отключения питания в сети переменного тока, генерируют сигнал обратного переключения при восстановлении нормального питания и непрерывно контролируют отсутствие замыкания в схеме микропроцессора.

Модули защиты. Зачем что-то строить, если можно это купить?! С точки зрения разработчика самой простой схемой зашиты является приспособление с двумя выводами, у которого на крышке написано «защита». Вы можете купить такие устройства у фирм Lambda или Motorola, которые предлагают серию модулей защиты от перенапряжения в нескольких дипазонах по току. Вы только выбираете необходимые вам номинальные напряжения и ток и подсоединяете защиту на выход стабилизированного источника питаниия постоянного тока. Например, самые маленькие устройства такого типа, выпускаемые фирмой Lambda, рассчитаны максимум на 2 А при следующем наборе фиксированных значений напряжения: 5, 6, 12, 15, 18, 20 и 24 В. Они выпускаются в монолитном исполнении в корпусе ТО-66 (малый металлический корпус для мощных транзисторов) и стоит 2,5 долл. за шт. Монолитные ИМС фирмы Lambda на 6 А выпускаются в корпусе ТО-3 (большой металлический корпус для мощных транзисторов) по цене 5 долл. за штуку. Выпускаются также гибридные ИМС защиты на 12, 20 и 35 А. Вся серия МРС2000 (Motorola) выпускается в монолитном исполнении (только 5, 12 и 15 В, рассчитанные на номинальный ток 7,5, 15 или 35 А). Первые два номинала выпускаются в корпусе ТО-220 (мощный пластмассовый), последний (только на 5 В) – в корпусе ТО-3 (мощный металлический). Цены неправдоподобно низкие – при покупке небольшими партиями ИМС этих трех номиналов по току стоят всего лишь по 1,96, 2,36 и 6,08 долл. соответственно. Эти схемы зашиты имеют одну приятную особенность – у них высокая точность, например, 5-вольтовое устройство фирмы Lambda имеет точку срабатывания 6,6 ± 0,2 В.

Ограничители. Другое возможное решете вопроса защиты от перенапряжения – установка мощного стабилитрона или его аналога параллельно выходу источника питания. Это снимает вопрос о срабатывавши на всплесках, так как стабилитрон немедленно перестает проводить, как только исчезает «лишнее» напряжение (не то что КУВ, у которого память, как у слона). На рис. 6.9 показана схема «активного стабилитрона». К сожалению, схема защиты на мощном стабилитроне также имеет свои недостатки. Если стабилизатор выйдет из строя, схеме защиты придется справляться с рассеянием большой мощности (UстIогр) и она сама может выйти из строя. Это и случалось, например, с серийным источником питания для магнитного диска на напряжение 15 В и ток 4 А. Когда в нем портился проходной транзистор, на стабилитроне 16 В, 50 Вт рассеивалась мощность больше расчетной и он тоже выходил из строя.

Рис. 6.9. Мощный «активный» стабилитрон.


Нестабилизированные источники питания


Устройства защиты от перенапряжений

Обычно в любых электрических сетях напряжение находится в пределах, определяемых техническими нормативами, но иногда оно отклоняется от допустимых значений. Предельно допустимое напряжение находится в пределах ±10 % от номинального значения напряжения, т. е. для однофазной сети в диапазоне 198—242 В, а для трехфазной — 342—418 В. Отклонения от указанных значений называются перенапряжениями. Перенапряжения имеют различную природу и в зависимости от этого отличаются длительностью и величиной. Длительные перенапряжения (свыше 0,01 с) обычно возникают из-за неисправности понижающего трансформатора на подстанции или обрыва нулевого провода в питающей сети.

Такие перенапряжения имеют сравнительно небольшие значения (от 230 В до величины междуфазного напряжения — 380 В), но действуют длительное время и представляют вполне реальную угрозу и для человека, и для оборудования. Длительное повышение напряжения может произойти и в случае неравномерного распределения нагрузок по фазам во внешней сети. Тогда возникает перекос фаз, при котором на самой загруженной фазе напряжение становится ниже, а на незагруженной — выше номинального. Кратковременные всплески напряжения могут произойти и в результате переключений в энергосети или во время включения мощных реактивных нагрузок.

Для надежной защиты домашней электропроводки от перенапряжений рекомендуется создание многоуровневой (по крайней мере, трехступенчатой) системы защиты из УЗИП разных классов. УЗИП класса В (тип 1) рассчитано на номинальный разрядный ток 30— 60 кА, УЗИП класса С (тип 2) — на ток 20—40 кА. УЗИП класса D (тип 3) на ток 5—10 кА. При создании многоступенчатой системы защиты от перенапряжений следует обеспечить соответствие мощности каждой ступени, т. е. максимальный ток, протекающий через них, не должен превышать их номинальных характеристик. Но в первую очередь необходимо создать эффективную систему заземления.

Мощные импульсные перенапряжения (с токами до 100 кА) могут возникать при воздействии грозовых разрядов. При этом напряжение может достигать десятков киловольт. Такие импульсы длятся в течение максимум сотни микросекунд, и защитные автоматы не успевают на них среагировать, так как самые современные типы автоматов имеют время срабатывания единицы миллисекунд, что может стать причиной пробоя и повреждения изоляции между фазой и нейтралью или между фазой и землей. Как правило, это не приводит к короткому замыканию и не нарушает работу сети, но в месте повреждения изоляции возникает небольшой ток утечки. И если он проходит между фазой и нейтралью, то не фиксируется УЗО и автоматами защиты, но зато приводит к повышенному нагреву изоляции и ускорению процесса ее старения. С течением времени сопротивление изоляции на этом участке уменьшается, а ток утечки возрастает.

Последствия воздействия этих негативных факторов на электронное оборудование и электропроводку могут быть фатальными, поэтому домашняя сеть требует комплексной защиты от перенапряжений с использованием различных типов устройств (УЗИП, ОП, PH и т. д.).

Возможность использования различных УЗИП для выполнения конкретных защитных функций определяется по техническим характеристикам, отраженным в маркировке прибора.

Уровень напряжения защиты U является важнейшим параметром, характеризующим УЗИП. Он определяет значение остаточного напряжения, появляющегося на выводах УЗИП вследствие прохождения разрядного тока. Для УЗИП 1-го класса Up не должен превышать 4 кВ, для устройств 2-го класса — 2,5 кВ, для 3-го класса УЗИП устанавливается Up не более 1,5 кВ — тот уровень микросекундных импульсных перенапряжений, который должна выдерживать бытовая техника.

Максимальный разрядный ток Imax — величина импульса тока, которую должно выдержать УЗИП однократно, сохранив при этом работоспособность.

Номинальный разрядный ток 1n — величина импульса тока, которую УЗИП должно выдержать многократно при условии его остывания до комнатной температуры в промежутке между импульсами.

Максимальное длительное рабочее напряжение Uc — действующее значение напряжения переменного или постоянного тока, которое длительно подается на выводы УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения при различных нештатных режимах работы сети. Номинальный ток нагрузки Ii( — максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. Данный параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. Так как большинство УЗИП подключаются параллельно цепи, то данный параметр у них не указывается.

При необходимости дополнительной защиты конкретных приборов используются устройства, выполненные в виде вставок и удлинителей, — сетевые фильтры. В их конструкцию включены варисторы, подавляющие импульсные скачки напряжения.

Варисторы — это полупроводниковые резисторы, в работе которых используется эффект уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения, за счет чего они являются наиболее эффективным (и дешевым) средством защиты от импульсных напряжений любого вида. Варистор включается параллельно защищаемому оборудованию и при нормальной эксплуатации находится под действием рабочего напряжения защищаемого устройства. В рабочем режиме ток через варистор пренебрежимо мал, и он в этих условиях представляет собой изолятор. При возникновении импульса напряжения сопротивление варистора резко уменьшается до долей ома. В этом случае через него кратковременно может протекать ток, достигающий нескольких тысяч ампер. После гашения импульса напряжения он вновь приобретает очень большое сопротивление.

Выбор УЗИП производится в соответствии с принятой системой защиты. При этом обязательно учитываются технические характеристики устройств, которые должны быть приведены в каталоге и нанесены на лицевой части корпуса прибора.

При установке УЗИП необходимо, чтобы расстояние между соседними ступенями защиты было не менее 10 м по кабелю электропитания. Выполнение этого требования очень важно для правильной последовательности срабатывания защитных устройств. Первая ступень защиты класса В монтируется за пределами дома во входном щите.

УЗ-6/220, УЗ-18/380 предназначены для защиты сети от кратковременных (до 12 кВ) и длительных перенапряжений, вызванных коммутационными, индуктивными и грозовыми процессами. Устройства относятся к УЗИП 2-го и 3-го классов и выполнены на варисторах. Для надежной защиты от длительных перенапряжений, вызванных авариями в сети, прибор нужно подключать после УЗО и заземлять. Только при таком подключении создается ток утечки и обеспечивается срабатывание УЗО.

Устройство защиты от импульсных перенапряжений (УЗИП) предназначено для предотвращения возможных повреждений бытовой техники от мощных импульсных перенапряжений, вызванных авариями в питающей сети или грозовыми разрядами. Устройства такого типа могут называться ограничителями перенапряжений (ОП). Они, как правило, изготовлены на базе разрядников или варисторов и часто имеют индикаторные устройства, сигнализирующие о выходе их из строя. Обычно УЗИП на базе варисторов изготавливаются с креплением на DIN-рейку. Сгоревший варистор можно заменить простым извлечением модуля из корпуса УЗИП и установкой нового.

В зависимости от защищаемой зоны ограничители перенапряжений подразделяются на классы или типы. Приборы класса В (тип 1) защищают объекты от атмосферных и коммутационных перенапряжений, прошедших через разрядники класса А внешних сетей. Они устанавливаются на вводном устройстве дома и ограничивают величину перенапряжений до 4,0 кВ, защищая вводные счетчики и электрическое оборудование распределительного щита.

Ограничители класса С (тип 2) защищают электрооборудование от перенапряжений, прошедших через ограничители класса В, и ограничивают величину перенапряжения до 2,5 кВ. Они устанавливаются в распределительных щитках внутри дома или квартиры и осуществляют защиту автоматических и дифференциальных выключателей, внутренней проводки, контакторов, выключателей, розеток и др. Ограничители класса D (тип 3) являются защитой от перенапряжений, прошедших через приборы класса С, и ограничивают их величину до 13 кВ. Такие ограничители устанавливаются в распределительные коробки, розетки и могут встраиваться в само оборудование. Ограничители этого класса осуществляют защиту электрического оборудования с электронными приборами, а также переносных электрических устройств.

Ограничитель перенапряжений серии 0П-101 на основе варистора предназначен для защиты электрооборудования от импульсных перенапряжений, вызванных ударами молнии или коммутационными перенапряжениями. При возникновении скачка перенапряжения варисторы прибора переходят в проводящее состояние, ток возрастает на несколько порядков, достигая сотен и тысяч ампер и ограничивая при этом дальнейшее нарастание напряжения на выводах. После прохождения волны перенапряжения ограничитель возвращается в непроводящее состояние. Время срабатывания прибора составляет около 25 нс.

Ограничители перенапряжений серии 0П-101 бывают однофазными или трехфазными. Трехфазные устройства класса В устанавливаются на трехфазном вводе. Однофазные (класса D) используются для защиты отдельных потребителей или групп.

В распределительном щите внутри дома устанавливаются варисторные УЗИП класса С или D (тип 2 и 3). Недостатком УЗИП на базе варисторов является то, что после срабатывания оно нуждается в охлаждении, чтобы снова прийти в рабочее состояние. Это ухудшает защиту при многократных разрядах. Безусловно, использование УЗИП снижает вероятность выхода из строя оборудования или поражения людей, но лучше всего во время грозы отключать наиболее важные приборы.

Устройство защиты многофункциональное (УЗМ) предназначено для защиты оборудования (в доме, квартире или офисе и пр.) от разрушающего воздействия мощных импульсных скачков напряжения, а также для отключения оборудования при выходе сетевого напряжения за допустимые пределы (170—270 В) в однофазных сетях. Включение напряжения происходит автоматически при восстановлении его до нормального по истечении задержки повторного включения. Устройство представляет собой реле контроля напряжения с мощным электромагнитным реле на выходе, дополненное защитой на варисторах.

Реле напряжения (PH) — это прибор, сочетающий в себе электронное устройство контроля напряжения и электромагнитный расцепитель, собранные в одном корпусе. Реле напряжения серии PH — весьма эффективное устройство для защиты оборудования при возникновении длительных перенапряжений. Оно предназначено для отключения бытовой и промышленной однофазной нагрузки 220 В, 50 ГЦ при недопустимых колебаниях напряжения в сети с последующим автоматическим включением после восстановления ее параметров. Реле может быть изготовлено на базе микропроцессора или простого компаратора и оснащено устройством регулировки верхнего и нижнего порога срабатывания.

Реле напряжения могут быть как однофазными, так и трехфазными. Трехфазные реле напряжения используются на трехфазном вводе для защиты трехфазного оборудования. Они, как правит, отключают сеть не напрямую, а через электромагнитный контактор. При отсутствии трехфазных потребителей лучше всего будет поставить на каждую фазу по однофазному реле напряжения.

В зависимости от способа подключения реле напряжения могут быть выполнены в виде переносного устройства типа «вилка—розетка» или для установки в распределительном шкафу на DIN-рейку. Обычно такие реле имеют широкий диапазон регулировок и могут работать в нескольких независимых режимах: как реле напряжения, как реле минимального напряжения, как реле максимального напряжения или как реле времени с задержкой на включение.

Реле напряжения работают в диапазоне 100—400 В и делятся на устройства, имеющие свою контактную группу и управляющие нагрузкой самостоятельно, а также реле, которые управляют нагрузкой через более мощные контакторы.

Некоторые типы реле напряжения могут использоваться для самостоятельного отключения электрической сети при возникновении аварийного напряжения. Они обладают большей коммутационной способностью и управляют сетью с нагрузкой до 13 кВт, что вполне достаточно для квартиры или частного дома. Приборы устанавливаются на вводе после электросчетчика и УЗО на DIN-рейку.

Реле напряжения не имеет встроенной защиты от высоких токов, поэтому его нужно устанавливать после автоматического выключателя. При этом номинальный ток реле должен быть на 20—30 % выше номинального тока автомата. Реле напряжения также не защищают от высокого напряжения остаточных токов грозовых разрядов.

Датчик превышения напряжения ДПН 260 предназначен для ограничения максимально допустимого напряжения на нагрузке. Он работает совместно с УЗО или дифференциальным автоматом с током утечки 30—300 мА Напряжение срабатывания ДПН 260 устанавливается в пределах 255—260 В, время срабатывания — 0,01 с. Он выполнен в стандартном модуле на базе обычного варистора и предназначен для установки на DlN-рейку 35 мм. Следует отметить, что датчик создает ток утечки и вызывает срабатывание УЗО, которое не может включиться самостоятельно, что является его основным недостатком.

Контактор — это коммутационный аппарат дистанционного действия, коммутирующий нагрузки переменного или постоянного тока, который предназначен для частых включений и отключений. Они могут управлять осветительными, обогревательными и другими устройствами в силовых цепях постоянного и переменного тока с напряжением до 380 В и частотой 50 Гц.

Контакторы не обладают защитными функциями, но эффективно работают совместно с реле напряжения, обеспечивая своевременное отключение сети. Достоинством этих устройств является надежная контактная группа, способная выдержать большое число включений и отключений при значительной мощности управляемой нагрузки.

Контакторы могут использоваться, например, для управления режимом работы системы обогрева полов, когда мощность нагревательных кабелей превышает допустимую мощность терморегулятора.

Контактор, управляемый выключателем, импульсным реле, таймером или другим датчиком, позволяет включить (выключить) необходимую нагрузку, с которой электронные реле, рассчитанные на сравнительно небольшие токи, самостоятельно справиться не могут. Контакторы являются незаменимым элементом многофункциональной системы типа «Умный дам».

Контакторы могут быть как однофазными, так и трехфазными. Основными параметрами, по которым осуществляют выбор контакторов, являются следующие:

  • Номинальное рабочее напряжение сети
  • Номинальный рабочий ток
  • Напряжение катушки управления
  • Каличество/вид дополнительных контактов

Смотрите также:

Микросхема LTC4366: надежная защита от скачков напряжения до 500 В

29 Июн 2017

Авторы статьи

Вячеслав Гульванский, Дмитрий Каплун, к. т. н., Юрий Сердитов, Павел Башмаков [email protected]

(Опубликовано в журнале «Вестник Электроники» №1 2017)

Скачать статью в формате PDF (220 КБ)


В транспортных средствах электроника сталкивается с уникальными проблемами, основной из которых является работа при кратковременных всплесках электроэнергии. Без должной схемы защиты скачки напряжения способны моментально вывести аппаратуру из строя. Из-за сложностей с неустойчивым питанием в этой области были разработаны стандарты, устанавливающие регламенты для электрических систем, действующих от источников питания 12 В и 28 В в различных транспортных средствах. Проектирование систем, устойчивых к скачкам напряжения и связанным с ними переходными процессами, обычно требует больших и дорогих пассивных компонентов. Подавляющая скачки напряжения линейка продуктов от компании Linear Technology не только предназначена для защиты систем от подобных скачков, но и способна сократить стоимость и размер решения.

 

Традиционные способы, позволяющие устранить скачки напряжения, — это подавления с помощью индуктивностей, конденсаторов, разрядников и предохранителей. Компания Linear Technology создала микросхему LTC4366, защищающую электронные системы от скачков напряжения свыше 500 В интеллектуальным регулированием через транзистор с диапазоном рабочих температур –40… +150 ° С. Главной особенностью данной схемы является «плавающая» топология, способная работать с высокими напряжениями независимо от максимально допустимых напряжений внутренних цепей микросхемы. Два внутренних параллельных стабилизатора соединены с внешними резисторами, образуя цепь питания микросхемы. Максимальное напряжение скачков ограничивается параметрами внешних резисторов и транзистора. Микросхема LTC4366 — первый продукт подобного класса, способный, к примеру, предохранить 12-В цепь от скачков напряжения до 500 В без использования дополнительных защитных компонентов.

«Плавающая» топология позволяет LTC4366 функционировать в широком диапазоне входных напряжений 9–500 В. Хорошо регулируемый выход обеспечивает гибкость контроля уровня выходного напряжения, не влияя на работу системы. Суммарное потребление во включенном состоянии не превышает 20 мкА. Применение этой микросхемы снижает затраты при производстве низковольтного оборудования, поскольку исчезает потребность в высоковольтных компонентах. Микросхемы изготавливаются в 8-выводных корпусах TSOT-23 и DFN (размер 3×2 мм).

 

Существующие разновидности

Выпускаются две версии LTC4366, отличающиеся друг от друга реакцией на неисправности. После того как неисправность устранена, LTC4366-1 выключается, в то время как LTC4366-2 автоматически повторяет попытку включения. LTC4366-1 и транзистор остаются выключенными до того момента, пока контакт SD не будет переведен в низкий уровень (LOW), а затем в высокий (HIGH). Данной операцией стирается ошибка, а затем LTC4366-1 включает транзистор. LTC4366-2 ожидает 9 с, потом автоматически стирает все ошибки и перезапускается.

Существует возможность изменения времени выключения питания из-за скачка напряжения. Настраиваемый таймер неисправности ограничивает рассеивание мощности на внешнем транзисторе. Во время «ошибки» по питанию на контакт TIMER подается ток, заряжающий конденсатор (СT). Это позволяет работать транзистору в нижних зонах SOA-диаграмм. Путем регулирования скорости нарастания выходного напряжения на контакте GATE пусковое ограничение исключает выбросы тока, проходящие через транзистор на выход.

В выключенном режиме LTC4366 отключает внешний транзистор, соединяя контакты GATE и OUT вместе с коммутацией на транзистор, что позволяет уменьшить потребление тока до значения, не превышающего 20 мкА. В автомобильной промышленности низкий ток отключения минимизирует разряд аккумулятора при стоянке в течение долгого времени, а в портативной электронике позволяет дополнительно сохранить заряд батареи.

 

Режимы работы

Плата LTC4366 имеет три режима работы: старт, рабочий и регулирование. В рабочем режиме и режиме регулирования микросхема получает большую часть своей мощности с выхода платы, таким образом транзистор изолирует скачок напряжения от контактов питания микросхемы. Соответственно, можно поднять напряжение до напряжения пробоя внешнего транзистора.

В режиме старта протекающий ток номиналом 15 μA течет через резистор RIN, где половина напряжения предназначена для подачи на затвор, а другая половина используется в качестве тока смещения. При подаче напряжения с контакта GATE внешний транзистор подает питание на контакт OUT (рис. 1). Данные события переводят микросхему в рабочий режим, где выход достаточно высок для питания схемы с накачкой заряда, которая управляет затвором транзистора.

Как только на микросхему LTC4366 поступает питание, она готова к защите нагрузки от мгновенного перенапряжения. Защита нагрузки происходит в режиме регулирования при помощи усилителя регулирования перенапряжения, подключенного к источнику напряжения 1,23 В. Если падение напряжения в резисторе обратной связи RFB1 превышает 1,23 В, усилитель регулирования опускает напряжение затвора, чтобы вернуть напряжение RFB1 к значению 1,23 В. Это позволяет отношению RFB1/RFB2 установить выходное напряжение на заданном уровне (рис.1).

Рис. 1. Функциональная схема LTC4366

Во время контроля скачков напряжения избыточное напряжение падает на транзисторе. Для предотвращения перегрева транзистора микросхема LTC4366 ограничивает время контроля перенапряжения, используя внутренний таймер, подключенный к контакту TIMER. Контакт заряжается током номиналом 9 μA, пока напряжение не превысит 2,8 В. В этот момент он устанавливает ошибку перенапряжения, транзистор выключается, и микросхема переходит в 9-с период. При охлаждении транзистора напряжение с контакта GATE подключается к контакту OUT.

В начале пуска, во время завершения работы или после ошибки перенапряжения контакт GATE замыкается на контакте OUT, тем самым отключая транзистор. Это позволяет замкнуть контакты VSS и OUT на «землю» при помощи выходной нагрузки и RSS. В таком состоянии контакт VDD замыкается через 12-В шунтирующий регулятор на VSS. Полное напряжение питания –12 В подается на RIN, который устанавливает шунтирующий ток, достигающий 10 мА — на несколько порядков выше, чем типичный для VDD ток покоя номиналом 9 μA.

 

Ошибка перенапряжения

Как правило, внешний транзистор полностью включен, питая нагрузку с очень небольшим падением напряжения. По мере увеличения входного напряжения, напряжение на выходе также увеличивается, пока не достигнет точки регулирования (VREG). С этой точки дальнейшее увеличение напряжения сбрасывается на транзисторе. Транзистор не выключается, так как LTC4366 разрешает продолжить работу в течение короткого времени перенапряжения.

Рис. 2. Схема включения для защиты от скачков при входном напряжении 28 В

LTC4366 имеет два регулятора в сочетании с внешним резистором для отработки перенапряжения, RSS и RIN, для генерирования внутреннего питания на выводах VDD и OUT. Это шунтирующее внутреннее питание позволяет защитить от перенапряжения при неограниченных высоковольтных переходных процессах, независимо от номинального напряжения внутренней электрической схемы LTC4366.

Когда напряжение на выходе больше или равно VREG, запускается таймер, предотвращающий чрезмерное нагревание транзистора. Обычно TIMER удерживается на низком уровне с током 1,8 μA. Во время регулирования TIMER заряжается током 9 μA. Если режим регулирования держится достаточно долго, чтобы на контакте TIMER оставалось напряжение большее или равное 2,8 В, микросхема генерирует ошибку превышения напряжения.

После ошибки перенапряжения микросхема позволяет транзистору остыть и запустить питание заново (LTC4366-2), или выставляется уровень на контакте SD, пока на микросхему не будет подана команда перезапуска (LTC4366-1).

Правильный выбор RSS резистора (рис. 2) является важным фактором. Во время перенапряжения выходной контакт OUT находится под напряжением регулирования (VREG), а напряжение на RSS соответствует VREG –5,7 В. Большое различие между минимальным напряжением питания и напряжением регулирования может потребовать сопротивления RSS с высокой номинальной мощностью.

Полное напряжение питания –12 В может появиться на сопротивлении RIN во время перенапряжения. Обычно RIN в несколько раз больше, чем RSS, что позволяет снизить требования к мощности и физическим размерам RIN.

 

Применение

Высоковольтное применение

Рис. 3. Защита от высокого переменного напряжения

На рисунке 3 представлена схема, которая выпрямляет напряжение 110 В AC до 160 В DC и защищает нагрузку от случайного подключения к 220 В AC, ограничивая выходной сигнал до 200 В DC.

Данная схема может работать в диапазоне 100–800 В на входе, где напряжением пробоя транзистора служит максимальное входное напряжение. Во внутреннюю схему с накачкой заряда встроен 0,47-μF шунтирующий конденсатор (C1), что обеспечивает хорошую устойчивость к шумам при перепадах напряжения.

 

Автомобильное применение

На рис. 4 показана электрическая схема, которая защищает от обратного напряжения и применяется в автомобильных задачах. Когда положительное напряжение сначала подается на вход, D3 и база-коллектор узла Q2 позволяют получать М2 входное напряжения минус падение напряжение на двух диодах. Диод M2 передает мощность на LTC4366. После подачи питания на LTC4366 напряжение поступает на M1 и M2. Транзисторы M1 и M2 обеспечивают низкий импеданс нагрузке. Во время перенапряжения D1 блокирует избыточное положительное напряжение питания на входе, подходящего к контакту GATE LTC4366. D4 устраняет протекание тока через R6, когда вход положительный. D3 предотвращает пробой между эмиттером и базой Q2, если к входу подключено питание.

Во время отрицательного входного напряжения Q2 включается, когда ток от R6 усиливает прямое падение напряжение диодов на R5. Q2 удерживает затвор M2 на входном напряжении, что приводит к выключению M2.

Рис. 4. Включение при применении в автомобильных задачах

 

Заключение

Продукты ограничения скачков напряжения компании Linear Technology, использующие транзисторы для блокировки входных скачков и пиков высокого напряжения, обеспечивают бесперебойное питание по всей схеме. Блокирование напряжения групповыми компонентами позволяет избежать перегорания предохранителей и повреждений, возникающих при попытке микросхемы подать большую мощность на «землю» при помощи громоздких пассивных компонентов. Если при максимальном рассеивании переходных процессов(например, при скачке напряжения) превышаются возможности одного полевого транзистора, можно создать группу из нескольких транзисторов, что позволит поддерживать более высокие уровни мощности.

LTC4366 идеальна для жестких промышленных, автомобильных и авиационных применений, когда система должна функционировать при ощутимых перепадах и скачках напряжения. Примерами подобных применений могут служить цепи защиты с высоковольтным питанием, защита от переходных процессов электрического двигателя или защита от неправильного подключения к источникам питания.

Как защитить квартиру от превышения напряжения

  • 26 марта 2019 г. в 09:00
  • 2607

В техподдержке интернет-магазина «АСберг АС» клиенты часто задают вопросы о том как защитить дом от перепадов напряжения, что такое устройства защиты от перенапряжения, какие они бывают и как их подбирать.

Класс продукции УЗИП известен покупателям значительно меньше чем автоматические выключатели или УЗО и игнорирование защиты от перенапряжения часто служит причиной пожаров и выхода из строя дорогостоящего электронного оборудования в частных домах.

Хотелось бы восполнить этот пробел в знаниях покупателей и рассказать более подробно о том, что такое УЗИП, для чего он нужен и как его подобрать.

УЗИП: особенности выбора и применения

Даже кратковременные импульсные броски напряжения, в несколько раз превышающие номинальное, могут нанести непоправимый ущерб дорогостоящей электротехнике и электронике, а то и стать причиной пожара.

Перенапряжение в сетях может возникать из-за грозы, аварий или переходных процессов.

Например, импульсные перенапряжения могут стать следствием попадания молнии в систему молниезащиты или линию электропередач, переключения мощных индуктивных потребителей, таких как электродвигатели и трансформаторы, коротких замыканий.

Что такое УЗИП и для чего оно нужно?

Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку

Ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений — УЗИП. Устройства защиты от импульсных перенапряжений — как раз и призваны защитить электрооборудование от подобных ситуаций. Они служат для ограничения переходных перенапряжений и отвода импульсов тока на землю, снижения амплитуды перенапряжения до уровня, безопасного для электрических установок и оборудования. УЗИП применяются как в гражданском строительстве, так и на промышленных объектах.

Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002, «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

УЗИП призваны обеспечить защиту от ударов молнии в систему молниезащиты здания (объекта) или воздушную линию электропередач (ЛЭП), защитить высокочувствительное оборудование и технику от импульсных перенапряжений и коммутационных бросков питания. Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку.

Аппараты защиты от импульсных напряжений включают в себя устройства нескольких категорий:

Тип устройства Для чего предназначено Где применяется
I классДля защиты от непосредственного воздействия грозового разряда. Защищают от импульсов 10/350 мкс: попадание молнии в систему внешней молниезащиты и попадание молнии в линию электропередач вблизи объекта. Амплитуда импульсных токов с крутизной фронта волны 10/350 мкс находится в пределах 25-100 кА, длительность фронта волны достигает 350 мкс.Устанавливаются на вводе питающей сети в здание (ВРУ/ГРЩ). Данными устройствами должны укомплектовываться вводно- распределительные устройства административных и промышленных зданий и жилых многоквартирных домов.
II классОбеспечивают защиту от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции дополнительной молниезащиты. Предназначены для защиты от импульсов 8/20 мкс. Они защищают от ударов молнии в ЛЭП, от переключений в системе электроснабжения. Амплитуда токов — 15-20 кА.Монтируются и подключаются к сети в распределительных щитах. Служат дополнительной защитой от импульсов, которые не были полностью нейтрализованы УЗИП I класса.
III классДля защиты от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нейтралью. Также работают в качестве фильтров высокочастотных помех. Предназначены для защиты от остаточных импульсов 1,2/50 мкс и 8/20 мкс импульсов после УЗИП I и II классов.Используются для защиты чувствительного электронного оборудования, поблизости от которого и устанавливаются. Характерные области применения — ИТ- и медицинское оборудование. Также актуальны для частного дома или квартиры — подключаются и устанавливаются непосредственно у потребителей.

Конструкция УЗИП постоянно совершенствуется, повышается их надежность, снижаются требования по техническому обслуживанию и контролю.

Как работает УЗИП?

УЗИП устраняет перенапряжения:

  • Несимметричный (синфазный) режим: фаза — земля и нейтраль — земля.
  • Симметричный (дифференциальный) режим: фаза — фаза или фаза — нейтраль.

В несимметричном режиме при превышении напряжением пороговой величины устройство защиты отводит энергию на землю. В симметричном режиме отводимая энергия направляется на другой активный проводник.

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника.

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП.

В нем нет контакта для подключения нулевого проводника

В разрядниках при воздействии грозового разряда в результате перенапряжения пробивает воздушный зазор в перемычке, соединяющей фазы с заземляющим контуром, и импульс высокого напряжения уходит в землю. В вентильных разрядниках гашение высоковольтного импульса в цепи с искровым промежутком происходит на резисторе.

УЗИП на основе газонаполненных разрядников рекомендуется к применению в зданиях с внешней системой молниезащиты или снабжаемых электроэнергией по воздушным линиям.

В варисторных устройствах варистор подключается параллельно с защищаемым оборудованием.

При отсутствии импульсных напряжений, ток, проходящий через варистор очень мал (близок к нулю), но как только возникает перенапряжение, сопротивление варистора резко падает, и он пропускает его, рассеивая поглощенную энергию. Это приводит к снижению напряжения до номинала, и варистор возвращается в непроводящий режим.

УЗИП имеет встроенную тепловую защиту, которая обеспечивает защиту от выгорания в конце срока службы. Но со временем, после нескольких срабатываний, варисторное устройство защиты от перенапряжений становится проводящим. Индикатор информирует о завершении срока службы. Некоторые УЗИП предусматривают дистанционную индикацию.

Как выбрать УЗИП?

При проектировании защиты от перенапряжений в сетях до 1 кВ, как правило, предусматривают три уровня защиты, каждая из которых рассчитана на определенный уровень импульсных токов и форму фронта волны. На вводе устанавливаются разрядники (УЗИП класса I), обеспечивающие молниезащиту.

Следующее защитное устройство класса II подключается в распределительном щите дома. Оно должно снижать перенапряжения до уровня, безопасного для бытовых приборов и электросети. В непосредственной близости от оборудования, чувствительного к броскам в сети, можно подключить УЗИП класса III.

Предпочтительнее использовать УЗИП одного вендора.

Для координации работы ступеней защиты устройства должны располагаться на определенном расстоянии друг от друга — более 10 метров по питающему кабелю. При меньших дистанциях требуется включение дросселя, возмещающего недостающие активно-индуктивные сопротивления проводов. Также рекомендуется защищать УЗИП с помощью плавких вставок.

При каскадной защите требуется минимальный интервал 10 м между устройствами защиты.

При каскадной защите требуется минимальный интервал 10 м между устройствами защиты

Классы УЗИП не являются унифицированными и зависят от конкретной страны. Каждая строительная организация может ссылаться на один из трех классов испытаний. Европейский стандарт EN 61643-11 включает определенные требования по стандарту МЭК 61643-1. На основе МЭК 61643 создан российский ГОСТ Р 51992.

Оценка значимости защищаемого оборудования

Необходимость защиты, экономические преимущества устройств защиты и соответствующие устройства защиты должны определяться с учетом факторов риска: соответствующие нормы прописаны в МЭК 62305-2. Критерии проектирования, монтажа и техобслуживания учитываются для трех отдельных групп:

Группа Что включаетГде определяется
ПерваяМеры защиты для минимизации риска ущерба имуществу и вреда здоровью людейМЭК 62305-3
ВтораяМеры защиты для минимизации отказов электрических и электронных системМЭК 62305-4
ТретьяМеры защиты для минимизации риска ущерба имуществу и отказов инженерных сетей (в основном электрические и телекоммуникационные линии)МЭК 62305-5

Оценка риска воздействия на объект

Нормы установки молниезащитных разрядников прописаны в международном стандарте МЭК 61643-12 (принципы выбора и применения). Несколько полезных разделов содержит международный стандарт МЭК 60364 (электроустановки зданий):

  • МЭК 60364-4-443 (защита для обеспечения безопасности). Если установка запитывается от воздушной линии или включает в себя такую линию, должно предусматриваться устройство защиты от атмосферных перенапряжений, если грозовой уровень для рассматриваемого объекта соответствует классу внешних воздействий AQ 1 (более 25 дней с грозами в год).
  • МЭК 60364-4-443-4 (выбор оборудования установки). Этот раздел помогает в выборе уровня защиты для разрядника в зависимости от защищаемых нагрузок. Номинальное остаточное напряжение устройств защиты не должно превышать выдерживаемого импульсного напряжения категории II.

Выбор оборудования по МЭК 6036

В качестве первой ступени лучше применять УЗИП на базе разрядников без съемного модуля. Вряд ли вам удастся найти варисторное устройство с номинальным током Iimp более 20 кА. Шкаф, в котором установлено УЗИП такого типа, должен быть из несгораемого материала.

Важнейшим параметром, характеризующим УЗИП, является уровень напряжения защиты Up. Он не должен превышать стойкость электрооборудования к импульсному напряжению. Для УЗИП I-го класса Up не превышает 4 кВ. Уровень напряжения защиты Up для устройств II-го класса не должен превышать 2,5 кВ, для III-го класса — 1,5 кВ.

Это тот уровень, который должна выдерживать техника. Ещё несколько важных параметров, которые необходимо знать для выбора УЗИП. Максимальное длительное рабочее напряжение Uc — действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП.

Оно равно номинальному напряжению с учетом возможного завышения напряжения в электросети.

Минимальное требуемое значение Uc для УЗИП в зависимости от системы заземления сети

Номинальный ток нагрузки IL — максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке. Этот параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. УЗИП обычно подключаются параллельно цепи, поэтому данный параметр у них не указывается.

Выбор защитной аппаратуры: чувствительное оборудование и оборудование здания Выбор защитной аппаратуры: бытовая техника и электроника Выбор защитной аппаратуры: производственное оборудование Выбор защитной аппаратуры: ответственное оборудование

Сегодня многие крупные потребители электрической энергии с успехом используют на территории России высококачественные элементы УЗИП. Положительные результаты испытаний и эффективность применения УЗИП в России позволяют говорить о том, что их использование в российских условиях выгодно и удобно. Остается подобрать нужную модель устройства и установить ее на объекте.

Источник: Компания «АСберг АС»

Защита от скачков напряжения 220 вольт в доме и квартире

Электрическая энергия – неотъемлемая составляющая быта современных людей, где бы они ни проживали – в городе или сельской местности. Трудно представить себе квартиру или дом, где нет ни одного бытового прибора, а для освещения пользуются свечками или лучинами. Однако вся бытовая техника, как и элементы освещения, питание к которым поступает по домашней линии, подвергается опасности, связанной с нестабильностью напряжения. Превышение этим показателем допустимых пределов влечет серьезные проблемы, вплоть до поломки дорогостоящей аппаратуры и выхода линии из строя. Уберечь проводку и приборы поможет защита от скачков напряжения 220В для дома. В этом материале мы расскажем о том, как защититьсвоими рукамитехнику от скачковнапряжения в квартире или в частном доме.

В чем причины перепадов напряжения в сети?

Система электроснабжения в нашем государстве далеко не совершенна. Из-за этого положенная величина напряжения 220В, с расчетом на которую изготавливают всю бытовую технику, выдерживается далеко не всегда. В зависимости от того, какая нагрузка в конкретный момент приходится на сеть, напряжение в ней может колебаться в значительных пределах.

Скачки напряжения в наших сетях не являются редкостью из-за того, что подавляющее большинство всех элементов энергоснабжающей системы разрабатывалось несколько десятилетий назад и не рассчитывалось на современную нагрузку.

Ведь практически в любой современной квартире имеется множество домашних энергопотребителей. Конечно, это делает проживание более комфортным, но вместе с тем значительно увеличивает потребление электричества.

Линия далеко не всегда может справиться с такими нагрузками, следствием чего становятся частые перепады напряжения.

Один из способов защиты от перенапряжения сети на видео:

Надеяться на то, что вскоре старая система будет полностью переделана с учетом современных требований, не стоит. Поэтому защита от скачков напряжения электролинии и подключенных к ней аппаратов – это та задача, при решении которой хозяевам приходится думать собственной головой и работать своими руками.

Теперь поговорим о причинах, из-за которых возникают скачки напряжения, более подробно. Обычно изменения разности потенциалов происходят без резких бросков, и современная техника, рассчитанная на работу в пределах от 198 до 242В, способна справиться с ними без ущерба для себя.

Речь пойдет о тех случаях, когда напряжение в течение долей секунды повышается в разы, а затем столь же быстро снижается. Это и есть то явление, которое называется – скачок напряжения. Вот каковы причины, по которым оно чаще всего происходит:

  • Одновременное включение (или, наоборот, отключение) нескольких приборов.
  • Обрыв нулевого проводника.
  • Удар молнии в линию электропередачи.
  • Разрыв жил внутри провода из-за падения на ЛЭП дерева
  • Неправильное подключение кабелей в общем электрощите.

Как видим, скачок напряжения может произойти по разным причинам. Предугадать, когда он произойдет, попросту нереально, а значит, подумать о защите от перепадов напряжения следует заблаговременно.

Пример монтажа реле напряжения на видео:

Как защитить технику от перенапряжений?

Конечно, оптимальный вариант защиты от повышенного напряжения домашней сети и включенных в нее приборов – это полная реконструкция системы энергоснабжения с последующим ее обслуживанием опытными специалистами.

Но если целиком заменить проводку в частном доме еще можно, то в многоквартирных зданиях это нереально.

Практика показывает, что несколько десятков жильцов практически никогда не смогут договориться о совместной оплате подобных работ.

Вряд ли будут этим заниматься и управляющие компании. А менять электропроводку в отдельно взятой квартире бесполезно – скачки напряжения от этого никуда не денутся, поскольку возникают они, как правило, из-за общего оборудования.

Что делать, чтобы скачки напряжения не стали причиной серьезного ущерба? Не ждать же, пока у коммунальщиков и всех соседей по дому возникнет желание заменить общую электропроводку в здании? Ответ один – подобрать надежное устройство для защиты домашней сети от скачков напряжения.

Сегодня используются следующие приборы, повышающие безопасность домашней аппаратуры и позволяющие свести к минимуму вероятность ее повреждения из-за перенапряжений:

  • Реле контроля напряжения (РКН).
  • Датчик повышенного напряжения (ДПН).
  • Стабилизатор.

Отдельно следует назвать источники бесперебойного питания. Они близки к перечисленным устройствам, но назвать их полноценными аппаратами для защиты линии от перепадов разности потенциалов нельзя. Более подробно о них расскажем ниже.

Реле контроля напряжения

Когда скачки напряжения в квартире случаются нечасто и в постоянной защите от них нужды не имеется, достаточно подключить к сети специальное реле.

Что представляет собой этот элемент? РКН – это небольшой прибор, задача которого состоит в отключении цепи при перепаде разности потенциалов и возобновлении подачи электричества после того, как сетевые параметры придут в норму. Само по себе реле никак не влияет на величину и стабильность напряжения, а только фиксирует данные. Эти устройства бывают двух типов:

  • Общий блок, который устанавливается в распределительном щите и защищает от перенапряжения всю квартиру.
  • Устройство, по внешнему виду напоминающее удлинитель с гнездами электророзеток, в которые включаются отдельные приборы.

Наглядно перо принцип работы реле напряжения на видео:

Приобретая реле, важно не ошибиться в расчете его мощности. Она должна несколько превышать суммарную мощность подключенных к устройству приборов. Индивидуальные РКН, которые включаются в общую сеть, подобрать несложно – надо просто купить элемент с нужным количеством розеток.

Эти устройства удобны, имеют невысокую стоимость, но пользоваться ими имеет смысл лишь тогда, когда сеть стабильна. Если же скачки напряжения в ней происходят постоянно, такой вариант не подойдет – ведь мало кому из хозяев понравится непрерывное включение-отключение всей сети или отдельных приборов.

Датчик перепадов напряжения

Этот датчик, как и РКН, фиксирует информацию о величине разности потенциалов, отключая сеть при перенапряжениях. Однако функционирует он по другому принципу. Такой прибор нужно устанавливать в сеть вместе с устройством защитного отключения. Когда аппарат обнаружит нарушение сетевых параметров, он вызовет утечку тока, обнаружив которую, автомат защиты (УЗО) обесточит сеть.

Стабилизатор напряжения

В тех линиях, которым нужна постоянная защита от перепадов напряжения, необходимо устанавливать стабилизатор сети.

Эти устройства, будучи включенными в линию, вне зависимости от подающейся на них разности потенциалов, на выходе нормализуют параметры до нужной величины.

Поэтому, если скачки напряжения в вашей домашней сети происходят часто, стабилизатор будет для вас оптимальным решением.

Эти приборы подразделяются по принципу действия. Разберемся, какой из них подойдет для различных случаев:

  • Релейные. Такие аппараты имеют достаточно низкую цену и небольшую мощность. Впрочем, для защиты бытовой аппаратуры они вполне подойдут.
  • Сервоприводные (электромеханические). По своим характеристикам такие приборы мало чем отличаются от релейных, но при этом стоят дороже.

  • Электронные. Эти стабилизаторы собраны на базе тиристоров или симисторов. Они имеют достаточно высокую мощность, точны, долговечны, отличаются хорошим быстродействием и почти всегда гарантируют надежную защиту от перенапряжений. Цена их, естественно, довольно высока.
  • Электронные двойного преобразования. Эти устройства самые дорогие из всех перечисленных, но при этом они обладают наилучшими техническими параметрами и позволяют обеспечить максимальную защиту линии и приборов.

Стабилизаторы бывают однофазными, предназначенными для подключения к домашней линии, и трехфазными, которые устанавливаются в сети крупных объектов. Они также могут быть переносными или стационарными.

Наглядно про стабилизаторы на видео:

Выбирая для себя такой аппарат, предварительно следует рассчитать суммарную мощность энергопотребителей, которые будут к нему подключены, и предельные значения сетевого напряжения. Рекомендуем в этом деле прибегнуть к помощи специалистов – они помогут не запутаться в технических тонкостях и подобрать наилучший вариант для конкретной линии по характеристикам и стоимости.

Источники бесперебойного питания

Теперь поговорим об этих, ранее упомянутых нами, устройствах. Иногда неопытные пользователи путают их со стабилизаторами напряжения, но это совсем не так.

Основная задача ИБП – при внезапном отключении электроэнергии обеспечить подсоединенные устройства питанием в течение определенного времени, что позволит плавно завершить работу на них, сохранив имеющуюся информацию.

Резерв электроэнергии дают встроенные в аппарат аккумуляторы. Как правило, бесперебойники используются вместе с компьютерами.

В некоторых ИБП, например, с интерактивной схемой или режимом двойного преобразования, имеются встроенные стабилизаторы, которые способны нивелировать небольшие перепады разности потенциалов, но при этом цена их очень высока, и для общей защиты сети они подходят плохо. Поэтому полноценной заменой стабилизатору их считать нельзя. Но для защиты ПК при внезапных отключениях электричества такие аппараты поистине незаменимы.

Заключение

В этой статье мы разобрались, для чего нужна защита от скачков сетевого напряжения 220В для дома и с помощью каких устройств можно ее обеспечить. Как читатели могли убедиться, надежнее всего убережет бытовую технику от перенапряжений мощный и дорогой стабилизатор.

Однако это не значит, что ничем другим проблему перепадов разности потенциалов не решить. Во многих случаях подойдут и другие перечисленные приборы. Все зависит от параметров сети и ее стабильности.

Устройства защиты от скачков напряжения

29.11.2019

Высокий уровень развития современных технологий позволил оснастить наше жилье высокотехнологичной бытовой техникой, которая экономит время, облегчает труд и упрощает жизнь.

В подавляющем большинстве квартир и жилых домов обязательно найдутся автоматические стиральные и посудомоечные машины, микроволновки, холодильники, аудио- и видеоаппаратура, персональные компьютеры, а также другие электроприборы, реализованные на основе электронных компонентов и имеющие цифровые алгоритмы управления.

С ростом функциональности, эффективности и удобства эксплуатации растут и требования таких устройств к питающему напряжению, показатели которого, к сожалению, далеко не всегда соответствуют действующим стандартам качества электроэнергии.

По ряду причин, речь о них пойдет ниже, в электрических сетях могут возникать либо резкие колебания (скачки) напряжения, либо его длительные отклонения как в большую, так и в меньшую сторону. И то, и другое приводит не только к сбоям в работе или выходу из строя дорогостоящей бытовой техники, но и представляет реальную угрозу для безопасности жизни и здоровья людей.

Допустимые отклонения сетевого напряжения по ГОСТ

Стандартный уровень напряжения однофазной электросети в нашей стране составляет 230 В — именно на это номинальное значение рассчитана вся современная бытовая техника.

Согласно требованиям ГОСТ 29322-2014 (IEC 60038:2009), определяющего нормы качества электроэнергии, расхождение с данной величиной не должно превышать ±10%.

Таким образом, применительно к однофазной домашней сети диапазон предельно допустимого напряжения составляет 207 — 253 В.

Крайние значения из этого диапазона, не говоря уже о больших отклонениях, губительно влияют на многие современные электроприборы, в особенности на те, которые не имеют в своём составе импульсного блока питания.

При этом следует понимать, что неисправность бытовой техники, вызванная некачественным электропитанием, не будет считаться гарантийным случаем – производитель, как правило, оговаривает подобные ситуации следующим образом: «Гарантия не распространяется на изделие, вышедшее из строя по причине повышенного/пониженного входного напряжения».

В чем причины перепадов напряжения в сети?

Возникновение колебаний и резких перепадов сетевого напряжения чаще всего обусловлено следующими причинами:

  1. Недостаточная мощность и общий износ подстанций, которые не всегда соответствуют фактическому потреблению электроэнергии, в результате чего сеть работает с перегрузкой и постоянными сбоями.

  2. Плохое состояние инфраструктуры энергетического комплекса, являющееся причиной частых аварий и ухудшения общего качества электроэнергии.

  3. Несимметричное (неравномерное) распределение нагрузки, вызывающее перекос фаз и скачок напряжения в однофазной сети.

  4. Атмосферные явления, например, попадание разряда грозовой молнии в линию электропередач или обрывающий провода ледяной дождь.

  5. Человеческий фактор. Короткие замыкания и перенапряжения часто возникают вследствие некорректного подключения или умышленного вандализма.

  6. Включение мощных нагрузок, приводящее к падению сетевого напряжения (при отключении таких нагрузок наблюдается обратная картина – резкий рост сетевого напряжения).

Возможные последствия скачков напряжения

Небольшие перепады напряжения в сети снижают, в первую очередь, эффективность осветительного и нагревательного оборудования. Кроме того, они могут повлечь за собой сбои в работе и остальных электроприборов, в особенности тех, которые имеют электронное управление (газовые котлы, стиральные машины, кухонная техника и т. п.).

Куда более плачевные последствия вызывают значительные сетевых отклонения: даже кратковременные провалы или скачки напряжения довольно часто становятся причиной сокращения срока службы бытовой техники, а в худшем случае и её моментального выхода из строя.

Наиболее опасны перенапряжения – резкие и сильные броски сетевого напряжения в большую сторону (на десятки и сотни вольт), такое явление практически всегда губительно для любого электрооборудования.

Спасут ли пробки или автоматы?

Автоматические выключатели и их более ранние аналоги, предохранительные пробки, являются устройствами защиты от коротких замыканий и длительных перегрузок. Их защитное срабатывание происходит только при недопустимо длительном по времени превышении током в цепи определённого значения, которое во время сетевого перепада может быть и не достигнуто. В итоге пробки и автоматы либо вообще не сработают, либо сработают через длительный промежуток времени, поэтому такие изделия вряд ли можно рассматривать в качестве серьёзной защиты от сетевых скачков и колебаний.

Как защитить технику от скачков напряжения?

Для того, чтобы в условиях нестабильной электросети гарантировать безопасное и надёжное функционирование своей бытовой техники необходимо принять определённые меры защиты. Они заключаются в установке и правильной эксплуатации специального устройства, нейтрализующего скачки напряжения и другие негативные сетевые явления.

Рассмотрим основные типы данных устройств.

Сетевой фильтр

Основное назначение этого прибора определяется его названием: фильтрация и сглаживание приходящих из сети помех. При наличии в составе варистора он будет защищать и от экстремальных перенапряжений. Следует понимать, что сетевой фильтр не обеспечивает коррекцию напряжения, следовательно, при сетевых отклонениях как хронических, так и резких прибор будет неэффективен.

Реле контроля напряжения (РКН)

Основная задача такого реле заключается в своевременном обесточивании подключенного оборудования при выходе питающего напряжения из определённого диапазона. Причем границы максимально допустимого и минимально допустимого значения пользователь задаёт самостоятельно.

РКН отличаются компактностью, достаточным токовым номиналом и удобным исполнением, позволяющим размещать их непосредственно в вводном щитке и использовать для защиты сразу всей домашней электросети.

Из недостатков можно назвать не самую эффективную защиту от значительных импульсных перенапряжений, а также неспособность повышать качество сетевого напряжения. Обратите внимание на то, что в случае электросети с периодическими скачками срабатывание РКН может стать постоянным явлением, а частое обесточивание электросети значительно понизит комфорт проживания в квартире или доме.

Устройства защиты от импульсных перенапряжений (УЗИП)

Эти устройства хорошо зарекомендовали себя в качестве защиты от импульсных перенапряжений, возникающих при грозовых разрядах, коротких замыканиях или переходных коммутационных процессах. Но они совершенно бесполезны при сетевых колебаниях и скачках, в результате которых напряжение не достигает экстремальных значений, а именно такие явления наиболее распространены и случаются во многих электросетях практически ежедневно.

УЗИП логичнее всего использовать в связке с другим устройством защиты, например, с упомянутым выше реле контроля напряжения – это повысит надежность системы электропитания и обеспечит ей максимальный уровень устойчивости перед импульсными перенапряжениями.

Стабилизаторы напряжения

Данные приборы регулируют входное напряжение и стараются максимально приблизить его фактические параметры к номинальным значениям. Качественный прибор способен быстро нейтрализовать сетевое колебание или подтянуть хронически пониженное/повышенное напряжение до установленной величины.

Применение современного стабилизатора (в частности – инверторного) позволит повысить качество электроэнергии в домашней сети до уровня, удовлетворяющего требованиям даже самого чувствительного к характеристикам электропитания оборудования. Однако не все стабилизаторы одинаково эффективны — на рынке представлено большое количество моделей, которые не способны обеспечить защиту должного уровня и уязвимы для скачков напряжения.

Ознакомиться с модельным рядом инверторных стабилизаторов напряжения «Штиль».

Источники бесперебойного питания (ИБП)

Аналогично стабилизаторам напряжения, современный ИБП является эффективным средством защиты от сетевых скачков, отклонений и колебаний. Главным отличием этих приборов от всех вышерассмотренных является способность обеспечить бесперебойное питание нагрузки при отсутствии напряжения в основной сети. Работа в автономном режиме поддерживается благодаря аккумуляторным батареям, от емкости которых зависит ее продолжительность.

ИБП, как и стабилизаторы, строятся на основе разных схем и имеют различные принципы работы. Если требуется устройство, гарантирующее высокое качество электропитания при работе и от сети, и от батарей, то необходимо выбирать ИБП с двойным преобразованием или, иначе говоря, онлайн ИБП.

Ознакомиться с модельным рядом онлайн ИБП «Штиль».

Какое устройство лучше использовать для защиты от скачков напряжения?

Подытожив, можно сказать, что сетевой фильтр и РКН обеспечивают лишь частичную защиту и не справляются со всем спектром сетевых проблем. Стабилизатор напряжения и ИБП универсальнее – подключенное к ним оборудование менее досягаемо для негативных сетевых воздействий (если перед стабилизатором или ИБП дополнительно установить УЗИП, то уровень защиты возрастет ещё больше).

Однако далеко не все стабилизаторы и ИБП качественны и по-настоящему надежны, поэтому следует максимально внимательно подходить к выбору устройства и при возникновении любых вопросов консультироваться с профессионалами.

Стоит отметить, что средняя стоимость качественного ИБП превышает стоимость схожего по мощности и качеству стабилизатора (при примерно одинаковом функционале по борьбе с сетевыми скачками).

Защита от скачков напряжения и обрыва нуля

Добрый день. У меня в старой квартире /загородном доме недавно на ГРЩ произошел обрыв «ноля»/ был скачок напряжения. Вся техника в квартире сгорела. Слава богу, у соседей тоже.

Данный диалог с различными вариациями  в офисе нашей компании раздается достаточно часто. Для того, чтобы Вы не произнесли его в один прекрасный день, предлагаем ознакомиться с некоторыми типовыми устройствами защиты от скачков напряжения, которые можно использовать для защиты перепадов напряжения

1. Ограничители перенапряженией –узип – предназначены для защиты оборудования от импульсных скачков перенапряжений, которые могут возникнуть например вследствие близкого удара молний в линию электропередач или близкой работы устройств с большой индуктивностью.. 

  • В основном применяются  в загородном жилье. 
  • Принцип работы: Во время импульса перенапряжения УЗИП  увеличивают свое сопротивление и замыкают на землю распространяющийся по системе разряд. 
  • Более подробно читаем про ограничители перенапряжений. В основном устанавливаются в электрощиты учета
  • 2. Реле напряжения –используют для защиты оборудования от скачков напряжения в сети или «обрыва нуля»

Применяется как в городском, так и загородном жилье..

Принципе работы- реле разрывает цепь, при отклонениях напряжения в сети больше заданных значений. После восстановления напряжения в сети, устройство автоматически замыкает цепь. . 

Наиболее известные устройства на российском рынке. Устанавливаются при монтаже квартирных щитков

Реле РН 113 

  1. Максимальный ток -32А
  2. Регулировки напряжения Umin 170-230  Umax 240-290
  3. Наличие дисплея, отображающего текущее напряжение в сети.
  4. Устанавливается в распределительных квартирных щитах в однофазных сетях. В случае, если в квартиру или в дом запутывается с помощью трехфазной сети, то обычно обеспечивают защиту каждой фазы
  5. Купить реле РН 113
  6.  Реле 101М

  • Номинальный ток 16А,
  •   Регулировки напряжения Umin 160-220  Umax 230-280
  • Устанавливается путем включения в розетку электросети, защищаемое оборудование включается непосредственно в РН 101М.
  • Наличие ЖК экрана, с индикацией текущего напряжения в сети
  • Купить реле РН 101М
  • Наша компания является дилером компании Новатек Электро, поэтому своим клиентам мы преимущество рекомендует использовать именно реле РН 113.
  • Реле УЗМ 51  
  • Защита нагрузки от импульсных скачков сетевого напряжения
  • Макс. ток шунтирования импульсов варистором — 8000 А 
  • Обеспечивает подавление импульсов с энергией до 200 Дж
  • Защита нагрузки от повышенного напряжения (более 270 В, для УЗМ-51 242-286 В)
  • Защита нагрузки от пониженного напряжения (менее 170 В, для УЗМ-51 154-198 В)
  • Фиксированная задержка срабатывания — 0,2с при превышении напряжения
  • Номинальный ток 63А.
  • Купить реле УЗМ 51
  • Реле напряжения РН-106 Новатек Электро (аналог УЗМ51)
  • Защита отходящих линий от повышенного/пониженного напряжения (в диапазоне 160-280В) и обрыва нейтрали
  • Номинальный ток — 63А
  • Мощность подключаемых электроприборов — до 14 квт
  • Купить реле РН-106
  • 3. Переключатель фаз ПЭФ 3
  • используется для повышения бесперебойности питания однофазных нагрузок от трехфазной сети. 
  • При изменении напряжения в питающей «фазе» реле переключит питание на другую фазу, в которой напряжение соответвуется зданным значениям.
  • Купить переключатель фаз  ПЭФ 301.

УЗМ-50, 40 (Защита квартиры от перенапряжения)

Как защитить домашнюю электротехнику от «плохого» электричества?

Данная статья отражает только мнение автора и не претендует на роль последней инстанции.

Что такое «плохое» электричество? – Это когда в розетке оказывается, какое угодно напряжение, только не то что предусмотрено по ГОСТ 13109-87 «Электрическая энергия. Требования к качеству электрической энергии в сетях общего назначения».

В нем, кроме фразы «Несоблюдение стандарта преследуется по закону», перечислены показатели качества электроэнергии; — 95% времени каждых суток значения показателей качества электроэнергии не должны выходить за пределы нормальных значений. — нормальными считаются значения, когда напряжение отклоняется на 5% от номинального, т.е. от 209 до 233 В.

  • — значение напряжения в послеаварийном режиме не должно превышать колебания в пределах 10% от номинального на срок переходного периода — несколько секунд.
  • Происходит это по разным причинам, и в этом не всегда виноваты энергетики.
  • Электромагнитный импульс, сопровождающий разряд молнии вызывает появление в воздушной линии электропередач, на расстоянии несколько километров, импульсов напряжения амплитудой от сотен до нескольких тысяч Вольт, длительностью от единиц до тысяч микросекунд….
  • Одной из причин частого перегорания в доме экономичных электрических лампочек, срок службы которых по паспорту 6000-8000 часов, являются скачки напряжения импульсного характера вызванные ….

Перепады сетевого напряжения существовали всегда. Причины разные. Это и включение выключение мощных нагрузок (особенно в однофазных сетях), работа неподалёку сварочного аппарата, междуфазное замыкание (обычно на воздушных ЛЭП), обрыв нулевого провода (как правило в старых многоэтажках и «хрущёвках» и не только) и пр.

  1. Как бороться со всем этим?
  2. Воевать с энергопоставщиками за поставку «качественной» электроэнергии конечно же можно, но результат не гарантирован.
  3. На сегодняшний день самый эффективный и дешёвый способ сохранить домашние электроприборы – давить и отключать: — Давить импульсные всплески напряжения до безопасной величины.
  4. — Отключать всё электрооборудование квартиры при выходе напряжения за допустимые значения.
  5. Эти меры позволят практически полностью исключить повреждение электроприборов из-за «плохого» электричества.
  6. Чем давить и отключать?

1. На входе устройства контроля напряжения надо установить мощный варистор на соответствующее напряжение, с энергией поглощения минимум 200 Дж и допустимым импульсным током поглощения не менее 4000А. 2.

Для защиты квартирного электрооборудования от повышенного или пониженного напряжения во входном квартирном щитке (сразу после счётчика) надо установить устройство контроля напряжения с порогом срабатывания по перенапряжению 250…270В и порогом на снижения напряжения – 160…170В, с временем срабатывания не более 0,5с и с автоматическим возвратом при восстановлении напряжения с задержкой 1..3 минуты. Допустимый ток контактов устройства должен быть не менее максимального тока потребления современной квартиры – 25…40А (5,5…8,8 кВт).

На вопрос как защитить квартиру? Мы предлагаем установить реле контроля напряжения РКН-1-1-15 и контактор (на 25 ампер и выше), но в некоторых случаях это вызывает неудобство, учитывая пожелания наших заказчиков мы подготовили и начали выпуск изделие УЗМ-30, УЗМ-40.

На вопрос как защитить от перенапряжений, обрыва нуля, перепутывания фаз и нуля дачу, в случае питания трехфазным напряжением? Мы рекомендуем реле контроля напряжения РКН-3-14-08 и соответствующий контактор.

Устройство защиты многофункциональное УЗМ-50,51,16 (УЗМ-30, УЗМ — 40, УЗМ-31, УЗМ — 41)

 

Устройство защиты УЗМ изготавливается в пластмассовом корпусе с креплением на рейку ДИН, в котором смонтировано электронное реле напряжения с фиксированными нерегулируемыми порогами (УЗМ-51 с регулируемыми порогами) выполненное на базе микроконтроллера, имеющее на выходе поляризованное электромагнитное реле с мощными контактами.

!!! Не заменяет другие аппараты защиты (автоматические выключатели, УЗО и пр.).

  • Основные параметры:
  • Защита нагрузки от импульсных скачков сетевого напряжения Макс. ток шунтирования импульсов варистором — 8000 А Обеспечивает подавление импульсов с энергией до 200 Дж Защита нагрузки от повышенного напряжения (более 270 В, для УЗМ-51 242-286 В) Защита нагрузки от пониженного напряжения (менее 170 В, для УЗМ-51 154-198 В) Фиксированная задержка срабатывания — 0,2с при превышении напряжения                                                           10с при понижении напряжения Верхний порог ускоренного отключения (300В Нижний порог ускоренного отключения ( 100мс) при понижении напряжения

Как уберечь технику от скачков напряжения. Статьи компании «ООО “Витокс”»

Задумываясь о том, как защитить технику от внезапных скачков напряжения, стоит изучить разные варианты и с помощью наших советов подобрать правильное решение.

Современный дом максимально насыщен различной цифровой техникой, дорогостоящим оборудованием, гаджетами и устройствами, зависящими от электрического питания. Все это оказывает значительную нагрузку на электросеть и требует непрерывной бесперебойной подачи электроэнергии.

При этом система ее подачи в нашей стране достаточно устаревшая и непредвиденная. В любой момент может случиться падение или повышение напряжения, которое выводит из строя дорогостоящее оборудование.

От перепадов напряжения в электрической сети очень часто сгорают кондиционеры, холодильники, котлы отопления, бойлеры, компьютеры, телевизоры и другие приборы.

Защита от перепадов напряжения в частном доме

Современные производители электротехнических приборов позаботились о защите техники от перепадов напряжения в частном доме или коттедже.

Специально для этой цели созданы реле перенапряжения – устройства, позволяющие контролировать подачу электричества и автоматически  отсекать высокое и низкое напряжение.

Во время непредвиденных скачков и кратковременных перепадов напряжения прибор в автоматическом режиме отключает все приборы от электрической сети, сохраняя их работоспособность.

Конструктивно реле перенапряжения представляет собой небольшой прибор модульного типа с интерфейсами для подключения фаз входа/выхода и нуля, светодиодным цифровым дисплеем и псевдо-сенсорными кнопками управления. Стационарная модель реле контроля  монтируется в главном электрическом щите объекта, после вводного автоматического выключателя и средств учета электроэнергии.

Также реле контроля напряжения бывают встроенными в электрические удлинители, совмещая функции переноски и разветвителя и переносными (подключаемыми в обычную электрическую розетку).

Как правило, используются в местах, где нет возможности установить стационарную модель прибора (а также во время командировок, путешествий, на даче) для защиты персональных компьютеров, планшетов смартфонов, прочих гаджетов и техники.

 

Как защитить квартиру от перепадов напряжения

Защита электроприборов в квартире осуществляется аналогичным способом. Блок реле контроля монтируется в вводной щиток, который размещен непосредственно внутри жилого помещения, защищая всю технику, которая находится  в квартире.

 

Чем хорош прибор защиты от перенапряжения в виде реле контроля:
  • Время отклика при отклонении от установленных параметров составляет примерно 0.05 секунды при превышении напряжения, и 1.2 секунды при понижении соответственно.
  • Дополнительным плюсом реле перенапряжения является возможность настройки диапазона допустимого напряжения от 120 до 280В и времени задержки включения от 3 до 600 секунд. Например, холодильнику нежелательны кратковременные интервалы времени с момента отключения и до момента включения, а требуется некоторое время (порядка 30 или более секунд) для предотвращения преждевременного выхода из строя компрессора.
  • Реле имеет систему автоматического контроля, отключающую нагрузку при перегрузке или нарушения целостности контактов, клеммных соединений устройства.
  • Есть встроенная защита от перегрева.
  • Доступна корректировка  индикации напряжения.

Как защитить компьютер от перепадов напряжения

Решив защитить компьютер от перебоев электроэнергии, стоит задуматься о покупке ИПБ (бесперебойнника). Реле контроля будет полезным для защиты процессора от скачков, но не позаботится о сохранении данных.

Спасет ли сетевой фильтр от скачков напряжения?

На этот вопрос ответ однозначный – нет. Сетевой фильтр предназначен для сглаживания небольших, кратковременных, импульсных помех. Некоторые модели фильтров оснащены дополнительно защитой от короткого замыкания, но не более того.

В удлинителях, снабженных сетевым фильтром, отсутствует микро-процессор контроля, индикации напряжения и управления коммутационным блоком. Если бы сетевой фильтр мог выполнять функцию защиты от перепадов напряжения, то не возникло бы необходимости производить отдельные приборы для защиты от перепадов напряжения.

Следует отметить, что производитель  ZUBR специально выпускает удлинители со встроенной индикацией и защитой от скачков напряжения.

Как обезопасить телевизор от скачков напряжения

Современные телевизоры рассчитаны на колебательный диапазон напряжения 200-250В и колебательный порог частоты 50-60Гц.

Даже если в телевизоре предусмотрена встроенная защита от колебаний, она не всегда способна справиться с большими и резкими скачками. При повышенном пороге сгорает блок питания и центральная плата прибора, также могут выгорать пиксели экрана.

Ремонт данных деталей очень дорогой и не всегда возможен. Реле защиты предотвратят проблему с минимальными затратами.

Защита от перепадов напряжения для холодильника и кондиционера

Компрессорное оборудование особенно восприимчиво к колебаниям напряжения сети. Повышенный ток нежелателен в любом случае. Решение проблемы – отсекатель  отключает холодильник, пока напряжение не нормализуется до допустимых границ. Дополнительный плюс — на реле контроля настраивается задержка повторного пуска, что убережет компрессор от поломки.

 

Стабилизаторы напряжения

С целью стабилизации напряжения реле контроля перенапряжения не подходят. Для этих целей используются более серьезные устройства – стабилизаторы напряжения, которые стоят в разы дороже. Если основная задача —  уберечь домашнюю технику от скачков напряжения, то компактные и сравнительно недорогие реле защиты от перенапряжения вполне справятся с этим без значительных затрат.

На сайте Vitox можно купить лучшие модели автоматического реле контроля и защиты от перепадов напряжения ZUBR. Это проверенный временем украинский производитель, который производит качественный товар и дает гарантию работы 5 лет.  Можно выбрать необходимые опции приборов, ручное или сенсорное управление, переносной или стационарный вариант корпуса.

Мы можем гарантировать своим покупателям качество и надежность представленной группы товаров. Если у вас возникают сомнения при выборе модели – всегда готовы помочь советом.

        ZUBR R116y                         ZUBR SR red                          ZUBR SR                              ZUBR D25t

Защита от скачков напряжения

Защита от скачков напряжения

Плохое (нестабильное) электроснабжение домов — нередкое явление, особенно в загородных поселках, в домах старой постройки и в новостройках. Рано или поздно это может привести к возникновению аварийных ситуаций. Если напряжение резко становится выше номинального, то подключенные к сети электроприборы могут выйти из строя. Такие ситуации возникают, например, при обрыве нейтрали или замыкании фазы и нейтрали — фазное напряжение (220 В) достигает линейного (380 В). При резком падении напряжения ниже нормы возможно возгорание мотора-компрессора холодильника и, как следствие, в доме произойдет пожар.

Как правильно защититься от скачков напряжения в сети 220 В дома или на даче?

Защитить свои электроприборы (холодильник, телевизор и все что есть в доме) можно поставив в цепь электроснабжения специальный защитный прибор в дополнение к стандартным автоматическим выключателям.

Обратите внимание, такой прибор не заменяет собой УЗО и УЗИП, которые обычно устанавливаются в щиток. В свою очередь УЗО и УЗИП не решают задачу комплексной защиты от скачков напряжения.

Принцип работы устройства защиты от скачков напряжения — это отключение оборудования в доли секунды в случае выхода напряжения за установленные рамки и последующее автоматическое включение при стабилизации напряжения.

При этом, проблема защиты от перепадов напряжения хотя и может быть решена покупкой дорогого стабилизатора, но при резком скачке напряжения есть вероятность выхода его из строя или, если установлен дешевый стабилизатор, он просто не успеет сработать. Устройства защиты же более надежны (автоматичны) в работе, поэтому их устанавливают, даже если стабилизатор уже есть.

Приведенные ниже устройства являются в прямом смысле многофункциональными, так как они не только отключают напряжении при скачке, но и полноценно адаптированы  для решения этой задачи в бытовых условиях для стандартной сети 220 В, в частности, автоматически включают подачу электроэнергии  через заданный пользователем промежуток времени, в некоторых из них используется профессиональная опция – двухпороговая защита от скачков напряжения, многие продаются уже со встроенным вольтметром и защитой от импульсных скачков напряжения. Подробную информацию об использовании, подключении, настройках, технических характеристиках легко найти на сайтах производителей.

МЕАНДР

НОВАТЕК-ЭЛЕКТРО

DS-Electronics

При покупке устройства защиты от скачков напряжения  следует в первую очередь обращать внимание на номинальный ток нагрузки. Устройства с номинальным током 63 А (14 кВт) являются самой «хищной» защитой, то есть защитят электрооборудование в самом «жестком» случае. Устройства с меньшим номинальным током обеспечивают лишь частичную защиту. Подробно в блоге профессионального электрика.  Покупая рекомендуемые ниже приборы вы выбираете проверенную временем защиту от скачков напряжения,  в частности, устройство УЗМ-51М является несомненным лидером продаж на протяжении многих лет!  И на протяжении всего времени использовании профессиональные электрики проводили испытания этих приборов, процесс и результаты испытаний также легко увидеть  в интернете.

С конкретным приборы работы устройства защиты от скачков напряжения (на примере УЗМ-51М) можно ознакомиться в блоге профессионального электрика.

Также, обратите внимание, что устройство (реле) защиты устанавливается на каждую из фаз (то есть на 3 фазы понадобятся 3 прибора), а трехфазный прибор, хоть и есть в продаже, не рекомендуется к установке для бытовой защиты, так как при скачке в одной из фаз он полностью отключит все три фазы.

УЗМ-51М на протяжении вот уже многих лет остается бесспорным лидером покупательских предпочтений.

Преимущества

1. Максимально возможные параметры защиты — номинальный ток нагрузки 63А (14 кДж), максимальный 80А. Время срабатывания всего 0,02 сек.
2. Функциональность — при отключении напряжения в случае скачка, через определенное время (при стабилизации параметров в сети) автоматически включает напряжение. Возможность выбора порогов отключении напряжения и времени повторного включения.
3. Исключительная надежность — производитель реле постоянно вносил изменения по результатам отзывов потребителей, что позволило сегодня устранить практически все «слабые» места этого устройства. Стандартный срок службы 10 лет.
4. Компактность, крепление на DIN рейку, размеры всего 2 стандартных модуля — не займет много места.
5. Для начала работы не требуется покупки никаких дополнительных устройств.
6. Дополнительная варисторная защита от импульсных (мощных кратковременных) скачков перенапряжения.

Недостатки

Нет цифровой индикации параметров сети на панели, что, впрочем, никак не влияет на выполняемые устройством функции. Индикаторы состояния — вольтметры/амперметры можно приобрести при желании отдельно.

Ток нагрузки 63А на каждую из фаз. Производитель МЕАНДР (РОССИЯ). Гарантия 24 мес.

Ток нагрузки 63А. Производитель НОВАТЕК-ЭЛЕКТРО (РОССИЯ). Гарантия 60 мес.

Преимущества

1. Встроенный вольтметр.
2. Дополнительная функция снижения высокочастотных помех.
3. Защита от внутреннего перегрева из-за длительного превышения номинального тока нагрузки или плохого контакта в клеммном соединении.

Ток нагрузки 63А. Производитель DS Electronics (УКРАИНА). Гарантия 60 мес.

Преимущества

1. Мощные клеммы корпуса.
2. Фиксация аварийного напряжения, которое привело к отключению нагрузки.
3. Корпус изготовлен из самозатухающего поликарбоната. Помимо негорючести, он обладает большой стойкостью к механическим воздействиям..

Самый простой и удобный вариант защиты отдельных бытовых приборов.

Ток нагрузки 16А. Производитель DS Electronics (УКРАИНА). Гарантия 60 мес.

Ток нагрузки 40А. Производитель НОВАТЕК-ЭЛЕКТРО (РОССИЯ). Гарантия 60 мес.

Ток нагрузки 40А. Производитель DS Electronics (УКРАИНА). Гарантия 60 мес.

Преимущества

1. Мощные клеммы корпуса.
2. Фиксация аварийного напряжения, которое привело к отключению нагрузки.
3. Корпус изготовлен из самозатухающего поликарбоната. Помимо негорючести, он обладает большой стойкостью к механическим воздействиям..

Ток нагрузки 16А. Производитель МЕАНДР (РОССИЯ). Гарантия 24 мес.

Купить устройства защиты от скачков напряжения в нашей компании можно в Москве, Санкт-Петербурге, Волгограде, Воронеже, Нижнем Новгороде, Казани, Екатеринбурге, Новосибирске, Красноярске, Челябинске, Омске, Самаре,Ростове-на-Дону, Уфе, Перми и во многих других городах. Всего более 1000 пунктов выдачи заказов по всей России, используя которые можно купить защиту от скачков напряжения.

Подробные технические характеристики на приведенные выше устройства защиты можно найти по ссылкам на сайты производителей:

Многофункциональное устройство защиты УЗМ-51М

Многофункциональное устройство защиты РН-106

Многофункциональное устройство защиты РН-104

Многофункциональное устройство защиты РН-113

Многофункциональное устройство защиты D63T

Многофункциональное устройство защиты D40T

Многофункциональное устройство защиты R116y

Многофункциональное устройство защиты УЗМ-16


Понимание плюсов и минусов защиты от перенапряжения

При тестировании ваших устройств может стать очевидным, что устройство нуждается в защите от условий перенапряжения. В большинстве источников питания предусмотрены схемы защиты от перенапряжения (OVP) в той или иной форме. Целью схемы OVP является обнаружение, а затем быстрое отключение состояния перенапряжения, чтобы предотвратить повреждение вашего тестируемого устройства (DUT). Тем не менее, важно понимать, как работает OVP вашего источника питания, чтобы максимально использовать его преимущества.

Что вызывает перенапряжение?

Источником перенапряжения может быть сам источник питания. Сбой внутри источника питания может вызвать неожиданное и неконтролируемое высокое напряжение на ИУ. Также возможно, что перенапряжение возникает не из-за сбоя источника питания, а из-за какой-то ошибки пользователя, когда пользователь программирует источник питания с более высокой мощностью, чем может выдержать тестируемое устройство.

Состояние перенапряжения может исходить извне от источника питания. ИУ может быть подвержено перенапряжению из-за короткого замыкания проводов внутри разъема или жгута проводов, что создает высокое напряжение на ИУ.Или матрица переключения может выйти из строя или быть неправильно запрограммирована, что приведет к подаче высокого напряжения на тестируемое устройство. В этих случаях на помощь придет схема OVP блока питания. Если датчик обнаруживает напряжение выше установленного порога OVP, срабатывает OVP, и источник питания пытается снять перенапряжение с DUT.

Как работает OVP?

Цепи

OVP могут быть фиксированными или отслеживающими, локальными или удаленными. Фиксированный OVP позволяет установить фиксированный порог напряжения вручную или дистанционно.Это фиксированное значение, так что, когда выходное напряжение источника питания превышает это значение, цепь OVP отключается, и источник питания пытается снизить перенапряжение на своем выходе. Выходное напряжение источника питания может быть изменено, а порог OVP остается прежним.

OVP слежения позволяет вам установить пороговое значение, которое зависит от выходного напряжения. Например, отслеживающий OVP может быть установлен на 0,5 В или 10% от запрограммированного выходного напряжения. Таким образом, OVP всегда выше и отслеживает настройку вывода.Хотя это звучит хорошо, возникает проблема: если вы запрограммируете неправильное значение для источника питания, OVP также будет запрограммирован неправильно. Если вы намеревались запрограммировать 2,5 В и случайно запрограммировали 25 В, то OVP будет установлено выше 25 В и не защитит от этого состояния перенапряжения, вызванного пользователем.

Локальный OVP контролирует состояние перенапряжения на выходных клеммах источника питания. Удаленный OVP контролирует состояние перенапряжения в удаленной точке источника питания.(Для получения дополнительной информации о дистанционном зондировании см. «Дистанционное зондирование улучшает подачу напряжения при сильном токе».)

Ложные срабатывания по сравнению с необнаруженными условиями реального перенапряжения

Желательно иметь защиту от перенапряжения, но если OVP может ошибочно сработать, это быстро станет помехой. С другой стороны, если OVP может пропустить реальное состояние перенапряжения, это становится опасным. Давайте посмотрим, как каждый тип OVP относится к ложным срабатываниям или необнаруженным событиям перенапряжения.

1. Фиксированное локальное OVP может сработать по ложному срабатыванию при больших падениях напряжения в выводах.

Фиксированный локальный OVP (рис. 1): Это наиболее распространенная реализация OVP. Представьте, что у вас есть длинные провода, идущие к DUT, что означает большое падение напряжения в проводах. Если вы хотите, чтобы на тестируемом устройстве было напряжение 5 В, но падение напряжения на проводах составляло 1 В, блок питания должен вырабатывать 6 В для подачи напряжения 5 В на тестируемое устройство. Так что вы устанавливаете пороговый уровень OVP? Если вам нужна защита от перенапряжения при 5,5 В, OVP сработает ложно, потому что локальный OVP будет видеть 6 В, когда DUT находится на 5 В.Решением может быть установка OVP на более высокий уровень, чтобы предотвратить ложное срабатывание, но это обеспечивает меньшую защиту. Другим решением было бы обнаружение перенапряжения удаленно на ИУ (т. Е. В удаленной точке считывания), а не локальное обнаружение на выходе источника питания.

2. Локальный отслеживающий OVP может ошибочно сработать, когда конденсатор в ИУ остается на мгновение заряженным до того, как источник питания сможет снизить напряжение на конденсаторе ИУ.

Локальное отслеживание OVP (рис. 2): Представьте, что у вас есть большой конденсатор в DUT, а локальный отслеживающий OVP установлен на 0.На 5 В выше запрограммированного напряжения. Вы получаете 5 В на DUT, поэтому локальный OVP слежения установлен на 5,5 В. Теперь вы хотите перепрограммировать вниз до 1 В, поэтому вы устанавливаете источник питания на 1 В, а локальный OVP слежения переходит на 1,5 В. Но на большом конденсаторе в ИУ все еще есть 5 В, поскольку требуется время, чтобы напряжение на конденсаторе упало. Однако схема OVP обнаруживает более 1,5 В и ложно срабатывает из-за кратковременного (и ожидаемого) перенапряжения. Решением в этом случае может быть установка некоторой задержки, позволяющей конденсатору разрядиться, но эта задержка означает, что есть промежуток времени, когда ИУ не защищено.

3. OVP с удаленным отслеживанием полагается на удаленные сенсорные линии; однако обрыв линии дистанционного считывания может вызвать состояние OVP и неспособность обнаружить перенапряжение, в результате чего ИУ остается незащищенным.

Отслеживающий удаленный OVP (рис. 3): Таким образом, отслеживающий OVP (с задержкой) учитывает ваши изменения напряжения во время теста, а удаленный – о потерях свинца. Таким образом, OVP с дистанционным отслеживанием (с задержкой) звучит как лучшее из обоих миров. Однако теперь вы полагаетесь на то, что сенсорные линии работают должным образом и защищают ИУ.Это хорошая идея?

Дистанционные сенсорные линии часто ломаются в тестовой системе. Без измерительных проводов выходное напряжение обычно возрастает на источнике питания (нет обратной связи по измерительным линиям, потому что измерительные линии разорваны). Повышение напряжения вызывает состояние перенапряжения. Но поскольку сенсорные линии разорваны, схема OVP не обнаруживает состояние перенапряжения и, следовательно, не отключает OVP. Хотя дистанционное отслеживание OVP кажется решением для ложных срабатываний, оно создает возможность необнаруженного состояния реального перенапряжения, когда происходит обрыв в линиях дистанционного считывания.

Сводка

Защита DUT всегда предполагает компромисс между наивысшим уровнем защиты и ложными срабатываниями цепи OVP. Понимание того, как работает OVP и когда он может ложно сработать или пропустить перенапряжение, помогает точно определить правильный метод OVP для защиты вашего DUT на основе того, что может произойти в тестовой среде.

Проектирование простой схемы защиты от перенапряжения с использованием стабилитронов

Каждая конструкция схемы работает на разных уровнях напряжения, наиболее распространенными уровнями напряжения для цифровой схемы являются 3.3В, 5В и 12В. Но каждая конструкция уникальна, и для схемы также характерно иметь более одного рабочего напряжения. Типичная компьютерная система SMPS, например, может работать на шести различных уровнях напряжения, а именно: ± 3,3 В, ± 5 В и ± 12 В. Для питания различных типов компонентов будут использоваться разные уровни напряжения, в этих случаях, если компонент с низким энергопотреблением запитан высоким напряжением, компонент будет безвозвратно поврежден. Следовательно, разработчик всегда должен концентрироваться на реализации схемы защиты от перенапряжения в своих проектах, чтобы предотвратить повреждение от перенапряжения.

Любой компонент или цепь будет иметь три различных номинальных напряжения, а именно минимальное рабочее напряжение, рекомендуемое или стандартное рабочее напряжение и максимальное рабочее напряжение. Любое значение выше максимального рабочего напряжения может быть фатальным для любых цепей или компонентов. Очень распространенным и экономичным решением является использование схемы защиты от перенапряжения стабилитрона .

Стабилитроны – основы Стабилитроны

в большинстве случаев являются первым выбором для защиты схемы от состояния перенапряжения .Стабилитрон работает по тому же принципу, что и диод, который блокирует ток в обратном направлении. Но существует ограничение, заключающееся в том, что стабилитрон блокирует ток в обратном направлении только для ограниченного напряжения, указанного в номинальном напряжении стабилитрона . Чтобы быть конкретным, стабилитрон на 5,1 В блокирует протекание тока в обратном направлении до 5,1 В. Если напряжение на стабилитроне больше 5,1 В, он позволяет току проходить через него. Эта особенность стабилитрона делает его отличным компонентом для защиты от перенапряжения .

Как защитить схемы от перенапряжения?

Рассмотрим изображение ниже, где нам нужна защита от перенапряжения для микроконтроллера . Микроконтроллер может быть любым, что имеет максимальное напряжение 5 В на выводах ввода-вывода. Следовательно, напряжение более 5 В может повредить микроконтроллер.

Стабилитрон, используемый в приведенной выше схеме, представляет собой стабилитрон с напряжением 5,1 В. Он будет работать нормально при перенапряжении. Если напряжение больше 5.1 В, стабилитрон будет пропускать ток и регулировать напряжение до 5,1 В. Но менее 5,1 В стабилитрон будет действовать как обычный диод и блокировать

.

Изображение ниже представляет собой моделирование схемы стабилитрона Protection на Spice. Вы можете посмотреть видео внизу этой страницы для полного объяснения симуляции.

На приведенной выше схеме имеется входное напряжение V1. R1 и D2 – это два компонента, защищающие выход от защиты от перенапряжения.В данном случае D2, 1N4099 представляет собой стабилитрон на 6,8 В. Выход будет защищен, если напряжение V1 превысит 6,8 В. В связи с опорным напряжением 6,8 В на 1N4099, выход будет оставаться максимум 6,8 В.

Давайте посмотрим, как вышеуказанная схема действует как схема защиты входа стабилитрона и защищает выход от напряжения более 6,8 В.

Вышеупомянутая схема моделируется с использованием cadence pspice . Во время входного напряжения 6 В на V1 выходное напряжение остается постоянным на уровне 5.999 В (что составляет 6,0 В).

В приведенном выше моделировании входное напряжение составляет 6,8 В. Таким образом, выходное напряжение составляет 6,785 В, что близко к 6,8 В. Давайте дальше увеличим входное напряжение и создадим ситуацию перенапряжения.

Теперь входное напряжение составляет 7,5 В, что больше, чем 6,8 В. Теперь на выходе все еще 6,883 В. Таким образом, стабилитрон эффективен для спасения подключенной цепи от ситуации перенапряжения, даже когда напряжение возвращается ниже 6.8 В, схема снова будет работать нормально, как показано на предыдущем шаге. Это означает, что, в отличие от предохранителя, стабилитрон не повреждается даже при перенапряжении.

Любые другие стабилитроны с другими значениями, такими как 3,3 В, 5,1 В, 9,1 В, 10,2 В, могут использоваться для выбора различных пределов перенапряжения в приведенной выше схеме.

Как выбрать стабилитрон для защиты от перенапряжения?

Следующей важной частью является выбор номинала стабилитрона.Приведенные ниже пункты помогут вам выбрать правильное значение и номер детали для стабилитрона.

1. Сначала выберите напряжение стабилитрона . Это значение напряжения, при котором стабилитрон будет действовать как замыкающая цепь и защищать нагрузку от перенапряжения. Для приведенного выше примера в Pspice напряжение стабилитрона составляет 6,8 В.

В некоторых случаях заданное напряжение на стабилитроне может быть недоступно. В таких случаях можно выбрать близкое значение стабилитрона.Например, для защиты от перенапряжения до 7 В стабилитрон 6,8 В является близким значением.

2. Рассчитайте ток нагрузки , подключенный к цепи защиты от перенапряжения. Для нашего примера, описанного выше, это 50 мА. Помимо тока нагрузки, стабилитроны нуждаются в токе смещения . Следовательно, полный ток должен быть равен току нагрузки плюс ток смещения стабилитрона. В рассмотренном выше примере это может быть

.
Общий ток = 50 мА + 10 мА = 60 мА 

3.Стабилитроны имеют номинальную мощность . Таким образом, для правильного отвода тепла требуется стабилитрон с соответствующей номинальной мощностью. Номинальная мощность может быть рассчитана на основе расчетного полного тока на шаге 2, который составляет 60 мА.
Следовательно, номинальная мощность стабилитрона будет равна напряжению стабилитрона, что связывает полный ток, который будет протекать через диод.

В нашем примере

номинальная мощность = 6,8 В x 0,060 = 0,408 Вт. 

Следовательно, стабилитрона мощностью 500 мВт будет достаточно.

4. Рассчитайте значение резистора , дифференцируя напряжение источника и общее напряжение. Напряжение источника будет максимальным, которое можно приложить к цепи.

Например, максимальное перенапряжение, которое может произойти или может быть применено в качестве напряжения питания, может составлять 13 В.

Таким образом, падение напряжения на резисторе будет = 13 В – 6,8 В = 6,2 В

По закону Ома номинал резистора будет = 6,2 В / 0,060 А = 103R

Можно выбрать резистор стандартного номинала 100R.

Популярные стабилитроны

Напряжение стабилитрона

Стабилитрон Номер детали

3,3 В

1N5226

5,1 В

1N5231

6.8В

1N5235

9,1 В

1N5239

11,0 В

1N5241

13,0 В

1N5243

15.0В

1N5245

Схема защиты стабилитрона от перенапряжения – плюсы и минусы Защита от перенапряжения

с использованием стабилитронов – самый простой и легкий способ защиты устройств от перенапряжения. В этом методе напряжение остается регулируемым, а стоимость этой схемы намного ниже по сравнению с другими методами.

Но, конечно, у этой схемы есть недостатки.Основным недостатком схемы этого типа является рассеиваемая мощность . Благодаря подключенному последовательно резистору он всегда рассеивает тепло и приводит к потере энергии.

Что такое защита от перенапряжения?

Что такое защита от перенапряжения?

Защита от перенапряжения – это функция источника питания, которая отключает источник питания или ограничивает выход, когда напряжение превышает заданный уровень.

В большинстве источников питания используется схема защиты от перенапряжения для предотвращения повреждения электронных компонентов.Воздействие условий перенапряжения варьируется от одной цепи к другой и варьируется от повреждения компонентов до их ухудшения и возникновения неисправностей в цепях или возгорания.

Состояние перенапряжения может возникнуть в источнике питания из-за неисправностей внутри источника или из-за внешних причин, например, в распределительных линиях.

Величина и продолжительность перенапряжения являются одними из основных факторов, которые необходимо учитывать при разработке эффективной защиты. Защита включает установку порогового напряжения, выше которого схема управления отключает питание или перенаправляет дополнительное напряжение на другие части схемы, такие как конденсатор.

Идеальные характеристики схемы защиты от перенапряжения

  1. Не допускайте приложения избыточного напряжения к компонентам.
  2. Схема защиты не должна мешать нормальному функционированию системы или цепи. Схема защиты не должна нагружать источник питания и вызывать связанные с этим падения напряжения.
  3. Схема защиты должна различать нормальные колебания напряжения и опасные перенапряжения.
  4. Быть достаточно быстрым, чтобы реагировать на переходные события, которые могут повредить источник питания и компоненты, расположенные ниже по потоку.
  5. Метод OVP не должен иметь ложных срабатываний или необнаруженных условий реального перенапряжения. Это может быть неудобно в случае ложных срабатываний, а также опасно, если невозможно увидеть реальные условия перенапряжения.

Схема защиты от перенапряжения может быть сконструирована с использованием дискретных компонентов, интегральных схем, механических устройств, таких как реле и т. Д. Они могут подключаться либо внутри, либо снаружи, в зависимости от задействованных схем.

Существуют различные конструкции схем защиты, каждая со своими достоинствами, режимом работы, чувствительностью, возможностями и надежностью.Защита может либо отсечь перенапряжение, либо полностью отключить источник питания.

Схема защиты от перенапряжения лома

Схема с ломом обеспечивает один из самых простых, дешевых и эффективных методов защиты от перенапряжения. Обычно он подключается между регулируемым выходом и защищаемой цепью или нагрузкой. Последовательный регулирующий транзистор контролирует выходной ток и напряжение, а ломик защищает нагрузку, когда напряжение превышает заданное значение.Базовая схема состоит из:

  • Кремниевый управляемый выпрямитель (SCR)
  • Стабилитрон
  • Резистор
  • Конденсатор

Схема лома защиты от перенапряжения

При нормальной работе стабилитрон имеет обратное смещение и не проводит, весь ток через последовательный транзистор появляется на выходе. Как только напряжение возрастает и выходит за пределы напряжения пробоя стабилитрона, диод выходит из строя и начинает проводить.Ток развивает напряжение на резисторе, которое затем запускает SCR. Это приводит к короткому замыканию на выходе, и весь ток уходит в землю. Это привело к размыканию предохранителя и снятию напряжения с последовательного транзистора и защищаемой цепи.

Выбранный стабилитрон должен быть немного выше выходного напряжения. Конденсатор предотвращает срабатывание SCR короткими всплесками.

Простая схема широко используется благодаря своей эффективности; однако он имеет некоторые ограничения, такие как стабилитрон, который нельзя регулировать, в то время как наилучший допуск для диода составляет 5%.

Напряжение срабатывания тринистора также должно быть спроектировано так, чтобы оно было намного выше выходного напряжения источника питания, чтобы предотвратить ошибочное срабатывание из-за коротких всплесков, например, возникающих при питании ВЧ цепей.

NCP346 – IC защиты от перенапряжения

% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj > эндобдж 2 0 obj > эндобдж 3 0 obj > транслировать Acrobat Distiller 7.0 (Windows) BroadVision, Inc.2020-09-21T10: 13: 25 + 02: 002006-09-13T09: 01: 40-07: 002020-09-21T10: 13: 25 + 02: 00application / pdf

  • NCP346 – IC
  • защиты от перенапряжения
  • ON Semiconductor
  • uuid: 773d444e-a5c9-4e18-adc6-cee9aadac775uuid: 17f2c5e8-7e39-4463-b149-b3dd7ee7d464 конечный поток эндобдж 4 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > транслировать HWr6QwHvl

    Системы защиты от перенапряжения

    Защита от перенапряжения

    Защита от перенапряжения

    Raycap – ведущий разработчик и производитель устройств и систем защиты от электрического перенапряжения для использования на промышленных объектах.В системах защиты, разработанных Raycap, используются компоненты промышленного класса, такие как запатентованная технология Strikesorb SPD, которая обеспечивает непревзойденный уровень защиты критически важного и чувствительного оборудования на промышленной площадке. Это уязвимое оборудование, такое как компьютеры, микропроцессоры и другие устройства, питаемые через электрическую сеть, может быть повреждено ударами молнии и другими событиями перенапряжения, которые вызывают скачки напряжения, исходящие из электрической сети или внутри самого промышленного объекта.Технология защиты внутри продуктов Raycap предотвращает повреждения, возникающие из-за различных причин перенапряжения и перенапряжения, и предназначена для предотвращения контакта любых электрических перенапряжений с оборудованием.

    Перенапряжения на промышленных объектах встречаются чаще, чем удары молнии. Само перенапряжение определяется как ток электричества к конкретному компоненту, превышающий критический, определенный порог, который, как известно, потенциально может повредить компоненты в присоединенной системе.Устройства защиты от перенапряжения (OVP) постоянно контролируют уровень потока электроэнергии и активируются при превышении этого уровня. Превосходная защита OVP, предлагаемая Strikesorb, имеет высокий номинальный ток короткого замыкания, что обеспечивает гибкость установки и интеграции. Технология обеспечивает низкое сквозное напряжение и оптимальный уровень защиты, обеспечивающий безопасность чувствительного оборудования. Установка этого локализованного OVP или удаленного OVP обеспечивает лучшую защиту от повреждения цепи и потери данных.

    Причины перенапряжения многочисленны. Сбои в источнике питания могут вызвать кратковременные и опасные всплески тока. Эти всплески должны распознаваться мгновенно и опускаться или отклоняться от оборудования, чтобы избежать пожаров, потери оборудования и сбоев данных. Другие формы электрических событий включают переходные процессы и отказы источника питания, такие как ошибки пользователя, вызванные неправильным программированием, короткими замыканиями и ошибками переключения. Во всех этих случаях кратковременное повышение электрических уровней выше порога безопасности вызвано искажениями синусоидальной волны, которая меняет свою форму, вызывая проблемы с оборудованием.Этот тип электрического перенапряжения может оказывать долгосрочное негативное влияние на надежность электроники, вызывая отказ критически важного оборудования, включая ИБП и другие системы резервного питания. Поэтому подавление переходных перенапряжений (TVSS) следует рассматривать как часть полного решения по защите от перенапряжения .

    События перенапряжения, вызванные ударами молнии, являются наиболее серьезными, и их трудно предотвратить, поскольку этот тип удара необходимо предотвращать с помощью различных систем.Перенапряжение в результате скачков напряжения, связанных с прямыми ударами молнии по линиям электропередач или связанное с ударом в конструкцию, вызовет серьезные скачки напряжения, которые могут быть обнаружены и отведены от оборудования с помощью устройств, установленных между линиями и самим оборудованием. . Защита от прямого удара по оборудованию осуществляется путем установки накладных экранов, устанавливаемых между молнией и оборудованием, чтобы предотвратить удар по самому оборудованию, который может вызвать необратимые повреждения и потенциально возгорание.

    Системы защиты от перенапряжения, предлагаемые Raycap, являются одними из самых сложных решений в области электрической защиты в мире и обеспечат промышленные установки наилучшей доступной электрической защитой. Для получения дополнительной информации о продуктах и ​​решениях Raycap OVP свяжитесь с нашими представителями.

    Защита от перенапряжения (OVP) в источниках питания

    Страна или регион * –Выберите – United StatesUnited KingdomCanadaIndiaNetherlandsAustraliaSouth AfricaFranceGermanySingaporeSwedenBrazilAfghanistanÅland IslandsAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и HerzegovinaBotswanaBouvet IslandBrit / Индийский океан Terr.Бруней-ДаруссаламБолгарияБуркина-ФасоБурундиКамбоджаКамерунКанарские островаКапо-ВердеКаймановы островаЦентральноафриканская РеспубликаЧадЧилиКитайОстров РождестваКокос (Килинг) островаКолумбияКоморские островаКонгоКонго, The Dem. Республика OfCook IslandsCosta RicaCôte d’IvoireCroatiaCubaCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFrench GuianaFrench PolynesiaFrench Южный Terr.GabonGambiaGeorgiaGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuineaGuinea-BissauGuyanaHaitiHeard / McDonald ISL,.HondurasHong Kong, ChinaHungaryIcelandIndonesiaIranIraqIrelandIsraelItalyJamaicaJapanJordanKazakhstanKenyaKiribatiKorea (Северная) Корея (Южная) KuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacauMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontserratMoroccoMozambiqueMyanmarN. Марьяна Isls.NamibiaNauruNepalNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalauPalestinian край, OccupiedPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarReunionRomaniaRussian FederationRwandaSaint Киттс и NevisSaint LuciaSamoaSan MarinoSao Фолиант / PrincipeSaudi ArabiaSenegalSerbia и MontenegroSerbiaMontenegroSeychellesSierra LeoneSlovak RepublicSloveniaSolomon IslandsSomaliaSpainSri LankaSt.Елена Пьер и Микелон Винсент и GrenadinesSudanSurinameSvalbard / Ян Майен Isls.SwazilandSwitzerlandSyriaTaiwan, ChinaTajikistanTanzaniaThailandTimor-LesteTogoTokelauTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTurks / Кайкос Isls.TuvaluUgandaUkraineUnited Arab EmiratesUS Экваторияльная Is.UruguayUzbekistanVanuatuVatican CityVenezuelaViet NamVirgin острова (Британские) Виргинские острова поле (США) Уоллис / Футуна Isls.Western SaharaYemenZambiaZimbabweRequired

    Страница не найдена | Analog Devices

    Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности.Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

    Принять и продолжить Принять и продолжить

    Файлы cookie, которые мы используем, можно разделить на следующие категории:

    Строго необходимые файлы cookie:
    Это файлы cookie, которые необходимы для работы аналога.com или предлагаемые конкретные функции. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
    Аналитические / рабочие файлы cookie:
    Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
    Функциональные файлы cookie:
    Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
    Целевые / профилирующие файлы cookie:
    Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили.Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. С этой целью мы также можем передавать эту информацию третьим лицам.

    Вам может понравится

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *