Устройство водяного насоса для отопления: Access denied | ogon.guru used Cloudflare to restrict access

Содержание

Ремонт насоса отопления (циркуляционного): неисправности

Содержание   

  1. Основные неполадки
  2. Возможные причины неполадок и способы их устранения
    1. Насос гудит
    2. Не запускается двигатель
    3. Шум в процессе работы
    4. Вибрация
    5. Слабый напор или отключение насоса
    6. Нагрев оборудования
    7. Как сделать РЕМОНТ НАСОСА СВОИМИ РУКАМИ? (ВИДЕО)

Для отопления дома часто используют насос циркуляционный. Несмотря на множество моделей, принципы их функционирования одинаковы. Всякая его неисправность приводит к остановке всей системы. В этом нет ничего хорошего, ведь  в холодном доме неуютно.

Необходимо срочно прибегнуть к помощи профессионала в сервисный центр или же, имея инструменты и соответствующие навыки, выполнить ремонт самостоятельно. Также необходимо уметь разобрать его.

1 Основные неполадки

Перед устранением повреждений, необходимо проверить электропитание. Напряжение должно быть равно тому, которое указано в паспорте.

Рассмотрим неисправности оборудования, которые встречаются чаще всего:

  • шум насоса отопления;
  • отсутствие вращения оборудования и характерных звуков;
  • шум при включении;
  • не включается оборудование;
  • происходит включение насоса, а затем его отключение в течение нескольких минут;
  • большая вибрация;
  • малый напор;
  • нагрев.

Устройство циркуляционного насоса для отопления

к меню ↑

2 Возможные причины неполадок и способы их устранения

  1. Насос может шуметь по следующим причинам:  долгое простаивание и окисление вала или блокировка колеса посторонним предметом.
  2. Оборудование может не вращаться и не издавать характерных звуков из-за проблем с электропитанием и величины напряжения.
  3. Если насос шумит при включении, то это вызвано скоплением воздуха в трубопроводе.
  4. Проблема с включением оборудования вызывается неполадками с электропитанием.
  5. Отключение насоса через несколько минут после включение вызывается неправильным подсоединением проводов и окислением контактов.
  6. Сильная вибрация может быть вызвана амортизацией подшипника.
  7. Причинами малого напора являются вращение колеса и лопастей в неверном направлении и вязкость воды из-за засорения фильтра.
  8. Нагрев насоса отопления может быть вызван неправильным монтажом, засорённостью системы, инородным телом, недостатком смазки подшипников, пониженным напряжением в сети.

к меню ↑

2.1 Насос гудит

При гудении насоса, вызванном тем, что вал двигателя застопорён из-за простоя, необходимо разобрать насос после отключения электропитания оборудования. Затем удалить из насоса и трубопровода остатки теплоносителя, снять винты для фиксации корпуса и двигателя. Разобрать двигатель и ротор, и провернуть ротор рукой, опираясь о насечку. Также неработающая крыльчатка может прилипнуть к валу. Если колесо застопорилось из-за постороннего предмета, просто удалить его и система возобновит работу.
к меню ↑

2.2 Не запускается двигатель

Если двигатель не запускается, не слышны характерные звуки, то, прежде всего, необходимо проверить плавкий предохранитель при его наличии. При скачках напряжения, на которые реагирует такой предохранитель, он плавится и цепь размыкается. Замена предохранителя вернёт обоудование к работе. При целости предохранителя необходимо «прозвонить» питающий провод и электропроводку, выполнить проверку автоматического выключателя или предохранителя в распределительной коробке. Может, его или участок кабеля необходимо заменить.

Если нет проблем с проводкой, могла сгореть обмотка электродвигателя. Для проверки её состояния используют мультиметр для измерения сопротивления. Сопротивление рабочей обмотки должно составлять 10-15 Ом, пусковой -35-40 Ом. При отображении «бесконечности» на дисплее прибора, можно говорить о том, что обмотка перегорела. Нулевые показания свидетельствуют о замыкании между витками обмотки. Попытка включения насоса в этом случае приведёт к срабатыванию предохранителя. Также причиной неисправности может быть пробой неполярного конденсатора пусковой обмотки. Емкость конденсатора исправного насоса составляет 10 – 40 мкФ.

Правильная и неправильная установка циркуляционного насоса

При показаниях, отличающихся от нормы, необходима замена конденсатора. Электрическую часть можно ремонтировать самостоятельно только при наличии опыта. В противном случае лучше обратиться к помощи профессионала.
к меню ↑

2.3 Шум в процессе работы

При непривычном шуме оборудования при включении необходимо стравить воздух вручную, после чего насос прекратит шуметь. Рекомендуется установить автоматический воздухоотводчик, что позволит избежать такой проблемы.
к меню ↑

2.4 Вибрация

При сильной вибрации помпы необходимо выполнить проверку состояния подшипника. Вероятно, он подвергся износу и требует замены. Подшипники устанавливают на вал и в посадочное отверстие с натягом, то есть запрессовывают.

В мастерских и на предприятиях замену подшипников производят при помощи специального инструмента-съёмника.

Дома можно выбить подшипники, осторожно ударяя деревянным молотком или изготовив простой съёмник своими руками. Его делают из 2 пластин с отверстиями, в которые продевают 2 шпильки с гайками. Одна пластина упирается в торец вала, другая в подшипник (её одевают на вал, для этого в ней проделывают отверстие необходимого диаметра). После необходимо по очереди и очень медленно закручивать гайки. К вибрации может привести и чрезмерная кавитация. Чтобы решить такую проблему необходимо увеличить давление на входе в насос, увеличив уровень теплоносителя в системе.
к меню ↑

2.5 Слабый напор или отключение насоса

При недостаточном напоре или быстром отключении насоса после включения нужно искать проблему в неправильном подключении электрической части или ненадёжном соединении контактов.

Тестирование электрических узлов циркуляционного насоса

Если контакты перепутаны, возможно вращение крыльчатки в обратную сторону (в насосах с 3-хфазным двигателем), что приводит к снижению напора. Нужно внимательно изучить схему подключения в инструкции, найти ошибку и подключить насос правильно.
к меню ↑

2.6 Нагрев оборудования

Для устранения нагрева оборудования необходимо понять, чем это вызвано. На начальном этапе он греется из-за неправильного монтажа, что потребует помощи специалиста. Засорённость системы приводит к накоплению различных отложений, что вызывает сужение диаметра прохода для жидкости. Насос работает с повышенной нагрузкой, что приводит к перегреву двигателя. Необходимо провести внеплановое обслуживание системы отопления. Чтобы не допустить попадания инородного тела, необходимо вовремя разбирать и прочищать циркуляционный насос.

При недостаточной смазке подшипников лучше выполнить демонтаж насоса и отнести его в мастерскую. При пониженном напряжении происходит перегрев двигателя и быстрый его выход из строя. Если происходит перегрев, то необходимо измерить напряжение в сети, и убедиться, с чем связан перегрев

Покупая оборудование для отопления, лучше уточнить, можно ли отремонтировать насос собственными руками, можно ли будет приобрести запчасти. Иногда дешевле поставить новое оборудование, чем ремонтировать старое.
к меню ↑

2.7 Как сделать РЕМОНТ НАСОСА СВОИМИ РУКАМИ? (ВИДЕО)

 Главная страница » Насосы

Обслуживание и ремонт циркуляционного насоса

В системе отопления с принудительной циркуляцией сердцем является циркуляционный насос. От его стабильной работы зависит наличие обогрева и его качество. То же самое касается и закрытых систем горячего водоснабжения с постоянным током воды в трубах между котлом и аккумулирующей емкостью. В ходе эксплуатации неизбежно возникает вопрос, как выполнить обслуживание и ремонт циркуляционного насоса, чтобы он продолжал работать стабильно и безотказно.

Для нормального функционирования насоса обязательно должны проводиться следующие мероприятия:

  • Правильная эксплуатация с учетом всех правил, установленных производителем насосного оборудования.
  • Профилактика и обслуживание насоса.
  • Диагностика и ремонт в случае выхода насоса из строя.

Чем точнее соблюдаются правила эксплуатации и регулярнее выполняется профилактика насоса, тем реже придется думать о его ремонте или замене.

Содержание

  1. Правильная эксплуатация
  2. Конструкция
  3. Профилактика и обслуживание
  4. Диагностика неисправностей
  5. Ремонт

Правильная эксплуатация

Ряд простых требований относятся к любому циркуляционному насосу:

  • Нельзя допускать холостой ход насоса в отсутствии воды. Касается насоса и мокрого и сухого типа.
  • Нельзя допускать работу насоса с остановленным током воды, например, если перед или после насоса перекрыт вентиль.
  • Следует определить оптимальный режим работы с учетом максимальной и минимальной пропускной способности оборудования.
  • Важно соблюсти требования производителя по номинальному давлению воды в системе.
  • Температура теплоносителя не должна превышать 65оС. Потому циркуляционный насос устанавливается на обратной линии перед котлом, где течет уже остывшая вода. При превышении заданного порога многократно ускоряется процесс отложения солей жесткости на внутренних поверхностях насоса.
  • Нельзя допускать длительного простоя. Примерно раз в месяц или два желательно включать насос на 15 минут. Если этого не делать, то в процессе окисления повышается риск заклинивания вала.
  • Недопустимо использовать циркуляционный насос для перекачки грязной воды с включением плотных частиц во взвешенном состоянии. Обязательно устанавливается фильтр грубой очистки, или другими способами контролируется чистота воды или теплоносителя.

В рабочем режиме у насоса должен быть равномерный звук работающего привода и постоянное значение напора на выходе, что контролируется установленным манометром. При хорошем обращении даже самый простой циркуляционный насос способен проработать до 5 лет, пока не износятся основные его элементы.

Конструкция

Почти все циркуляционные насосы центробежного типа.

В них имеется крыльчатка, закрепленная на валу двигателя и помещенная в специальную камеру «ракушку». Вход в ракушку располагается в центре, тогда как выход представляет собой внешний край раковины с каналом, отходящим по окружности по направлению движения крыльчатки. Двигатель раскручивает крыльчатку, и вода под воздействием центростремительной силы устремляется от центра к краям раковины от входа к выходу.

Конструкционные элементы насоса:

  • насосная часть, раковина и крыльчатка, закрепленная на валу;
  • электродвигатель;
  • блок электронного управления.

Износу больше всего подвержена подвижная часть насоса – вал двигателя и крыльчатка, а также подшипники, на которых они закреплены.

Профилактика и обслуживание

Долгий срок службы и безотказная работа возможна лишь при соблюдении должных условий эксплуатации и регулярной профилактики насоса. Под обслуживанием подразумевается периодический осмотр и чистка насоса. Осмотр на предмет отклонений в работе следует осуществлять хотя бы раз в квартал, то есть два раза за отопительный сезон.

Чистку желательно выполнять раз в два-три года в зависимости от качества воды и условий, в которых функционирует насос.

В течение всего периода эксплуатации желательно периодически проверять работу насоса:

  • Места подсоединения проверяются на предмет протечки. При выявлении заменяются прокладки и уплотнители (пакля, ФУМ-лента и т.п.).
  • Визуально проверяется наличие и состояние заземления.
  • Звук работающего двигателя не должен сопровождаться лязгами или ударами, посторонними звуками.
  • Двигатель не должен сильно вибрировать.
  • Проверяется давление в линии и его соответствие номинальному.
  • Корпус должен быть чистым и сухим. Если это не так, то следует провести внешнюю чистку, проверку электронного блока на предмет залива и устранить причину, по которой насос оказался мокрым.

Примерно раз в два-три года желательно выполнить чистку насоса, включая все его элементы. Это касается только моделей с возможностью разборки. Есть насосы с запрессованным или цельным, сварным корпусом, не предполагающие ремонта или разборки. Такие агрегаты работают на отказ и после заменяются на новый в сборе. Желательно доверить эту работу сервисному центру. Однако при наличии навыков и инструмента можно выполнить все самостоятельно

Потребуется:

  • шестигранный ключ;
  • шлицевая отвертка (плоская) на 4 и 8 мм;
  • отвертка крестовая.

Перед разборкой насоса с системы сливается вода или дренируется отдельный участок, в котором задействован насос, демонтировать его и после уже приступать к разборке.

Порядок действий:

  1. Шестигранным ключом или крестовой отверткой откручиваются 4-6 болтов по периметру корпуса двигателя в месте соединения с ракушкой насосной части.
  2. Снимите ракушку, при этом крыльчатка останется на валу ротора вместе с двигателем.
  3. По периметру найдите четыре дренажных отверстия. С помощью узкой шлицевой отвертки понемногу по периметру поддевайте рубашку отсека двигателя под крыльчаткой. В результате вал с ротором и крыльчаткой выйдут из пазов и стакана статора. Помочь себе можно, если открутить защитную пробку с внешней стороны насоса, вставить в прорезь на торце вала отвертку и легкими ударами выбивать вал из опорного подшипника.

Разбор на этом завершен. Теперь следует очистить поверхность ротора, крыльчатки и внутреннюю поверхность ракушки от налета и накипи, если она есть, только не повредив поверхность деталей. Использовать грубый абразив не допустимо. Действовать лучше щеткой с полимерным жестким ворсом. Помочь могут чистящие средства, содержащие слабый раствор соляной кислоты. В крайнем случае, применяется самый мелкий наждак – «нулевка».

Для насосов с мокрым ротором, важно проверить чистоту канала внутри вала и дренажные отверстия, расположенные в защитной рубашке, разделяющей зону насосной части и двигателя. Жидкость к ротору поступает как раз через эти отверстия и после возвращается по внутреннему каналу, если они забиты – страдает охлаждение двигателя.

Для насосов с сухим ротором важна гидроизоляция опорного подшипника. Если обнаружена протечка от блока насоса в блок статора, то следует заменить полностью все прокладки и уплотнители внутри аппарата.

Проверяется состояние подшипников, на которых опирается вал. Если они уже порядком разбиты, потребуется их замена, что в домашних условиях сделать предельно сложно, придется обращаться в сервисный центр.

Все уплотнители и прокладки внутри насоса следует проверить на износ и при необходимости заменить новыми. Как только все элементы очищены и проверены, выполняется сборка в обратном порядке.

Необходима чистка циркуляционного насоса

Диагностика неисправностей

По тому, как работает насос, звук, вибрации или изменение в напоре, давлении на выходе, необходимо точно определить неисправность и устранить причину.

Признак неисправностиВероятная причинаРемонт
Насос после включения издает звуки, но вал не вращаетсяОкисление вала, вследствие длительного простояС торца вала на корпусе двигателя открутить защитный колпачок и с помощью шлицевой отвертки вручную прокрутить вал двигателя.
Блокирование посторонним предметомРазобрать блок насоса с крыльчаткой и очистить, проверить состояние фильтра грубой очистки установленного перед насосом
Проблемы электропитанияПроверить номинал напряжения в сети, при необходимости исправить проблему.
После подачи напряжения насос не запускается и не издает никаких звуковНет фактического напряжения в линии питания

 

Проверить линию питания и состояние защитных автоматов
Сработал плавкий предохранитель в блоке управленияЗаменить предохранитель
Насос отключается после непродолжительной работыИзвестковый налет в стакане статораВыполнить чистку стакана статора и ротора двигателя
Сильный посторонний шум при работе насосаСухой ход, наличие воздуха в трубахВоздух выпустить. Дренировать ракушку насоса и заполнить водой.
Кавитация
Увеличить давление в подающем трубопроводе.
Вибрация насосаИзнос опорных подшипниковЗамена подшипников
Снижение напора и подачи в сравнении с паспортными даннымиНарушение в электропитании насоса, смена фаз, вследствие чего снижается мощность насоса или меняется направление вращения крыльчаткиДля трехфазных двигателей проверяется качество всех фаз. Для однофазного питания проверить конденсатор, при необходимости заменить
Большое гидросопротивление циркуляционного контураПроверить фильтры, увеличить сечение труб, проверить состояние запорной арматуры.
Срабатывание внешней защиты на линии питания насосаПроблемы с электрической частью насосаПроверить состояние клемм на предмет короткого замыкания, проверить конденсатор и блок регулировки. Проверить обмотки статора. Их сопротивление не должно быть ниже паспортного.

Ремонт

Сломанный циркуляционный насос лучше всего отдать в специализированный сервисный центр, особенно если он еще на гарантии. Большая часть моделей, представленных сейчас на рынке, к сожалению, являются неразборными или частично разборными, так что при возникновении проблем с его внутренними запчастями замене подлежат целые блоки или насос в сборе. Если же гарантийный срок уже истек, а конструкция насоса позволяет разобрать его и добраться до всех основных узлов, то при наличии соответствующих навыков можно выполнить ремонт самостоятельно.

Определив из таблицы выше причину неисправности, достаточно разобрать насос, как указано в пункте о профилактике и обслуживании, и заменить неисправную деталь.

В блоке управления насосом основными элементами являются:

  • конденсатор на 1-5 микрофарад;
  • блок клемм для подключения;
  • регулятор скорости.

В виду малой емкости конденсатора, проверить его можно с помощью мультиметра, в котором имеется встроенный С-метр с ограничением до 20 мкФ. При сильном отклонении показаний от номинала, конденсатор следует заменить, при этом важно соблюсти полярность включения и обязательно его допуск по вольтажу. Для обычного однофазного двигателя используются конденсаторы с допуском до 450 В.

Регулятор скорости заменяется в сборе новым. Достаточно его отсоединить от клемм, запомнив положение каждого пина и подключить новый.

Блок клемм должен быть идеально чистым, сухим и без следов явного перегрева или обгорелости. Если вышеперечисленные проблемы имеются, то его следует заменить новым, такой же или схожий по количеству подключений.

Популярными являются модели циркуляционных насосов от производителей Wilo, Ggrundfos, Dab. Не в последнюю очередь за счет их надежности. Ожидать, что эти насосы сломаются в гарантийный срок, можно только при нарушении рекомендованных условий эксплуатации. Однако в пост гарантийный период у Wilo часто наблюдается проблема с опорными подшипниками. Помогает только их замена.

Ggrundfos и Dab могут «порадовать» зарастанием крыльчатки накипью для высокотемпературных систем отопления, а также заиливание стакана статора. Лучше предупредить эти проблемы установкой хорошего фильтра и подготовкой воды. В остальном поломки чаще аргументируются внешними проблемами.

Интеллектуальное управление рециркуляцией – Контроллеры насосов горячей воды

МЫ ПРЕДОСТАВЛЯЕМ ГОРЯЧУЮ ВОДУ ПО ЗАПРОСУ УМНЫМ ПУТЕМ

Мы предоставляем smart контроллеры циркуляционных насосов по запросу для новых и существующих систем рециркуляции горячей воды.

Наше ведущее в отрасли приложение для смартфонов и контроллеры обеспечивают подачу горячей воды по всему дому без необходимости прокладки проводов или установки кнопок и датчиков движения.

Контроллер по требованию находится в подсобном чулане и работает от любого сантехнического прибора. Владельцы контролируют настройки блоков Smart Recirculation Control через приложение для смартфона, чтобы обеспечить ваша система работает только тогда, когда вам это нужно .

Какой интеллектуальный контроллер вам нужен?

✓ Выделенный контур рециркуляции/разомкнутый контур
✓ Водонагреватель бака
✓ У вас установлен циркуляционный насос горячей воды

✓ Выделенный контур рециркуляции/разомкнутый контур
✓ Проточный водонагреватель
✓ У вас установлен циркуляционный насос горячей воды

✓ Нет специального контура рециркуляции
✓ Водонагреватель с баком или без бака
✓ Несколько тупиковых линий
✓ Включает насос, перепускные клапаны и интеллектуальное термостатическое управление 32

✓ Нет специального контура рециркуляции
✓ Резервуарный или безрезервуарный водонагреватель
✓ Несколько тупиковых линий
✓ Для использования с существующими термостатическими перепускными клапанами AquaMotion или аналогичными высокопроизводительными термостатическими перепускными клапанами

✓ Выделенный контур рециркуляции
✓ Проточный водонагреватель
✓ Соответствует требованиям LEED for Homes v4
✓ У вас установлен рециркуляционный насос горячей воды

✓ Нет специального контура рециркуляции
✓ Водонагреватель с баком или без бака
✓ Использование с термостатическими системами Watts – Grundfos – Taco
✓ Вам нужен только контроллер по требованию

Как работает интеллектуальное управление рециркуляцией по требованию

Простота в использовании, быстрая горячая вода Доставка

Наше семейство продуктов Smart Recirculation Control дает вам преимущества систем мгновенного нагрева воды без головной боли и затрат, связанных с ними.

Если вам нужна горячая вода, просто включите и выключите кран, подождите несколько секунд, и система направит горячую воду в ваш кран.

Это так просто.  

Наши программируемые контроллеры насосов:

  • Настраиваются с помощью приложения для смартфона с поддержкой Bluetooth
  • Позволяют вам видеть значения расхода и температуры в режиме реального времени с помощью Live Data™
  • Включает Smart Timers™, которые автоматически отключаются при отсутствии потока на 24 часа
  • С гордостью разработано и произведено в США*

Что делает интеллектуальную систему рециркуляции Leridian Dynamics лучшим выбором


для управления насосами горячей воды и рециркуляции горячей воды по требованию

  • Экономит деньги и ремонт: Когда горячая вода течет по водопроводу, она медленно разрушает трубы. Всегда в системах рециркуляции часто возникают течи труб из-за эрозии. Чем меньше ваш водонагреватель и трубы подвергаются использованию, тем дольше они прослужат.
  • Экономит ценные ресурсы: Ваш насос для горячей воды работает только тогда, когда вам это нужно, экономя газ или электроэнергию. Датчики Smart Recirculation Control определяют, когда горячая вода не используется, и отключают рециркуляционный насос до тех пор, пока он вам не понадобится.
  • Нет необходимости прокладывать дополнительную проводку: Наша система избавляет от необходимости прокладки проводки к каждому крану или к нескольким точкам по всему дому или зданию.
  • Приложение для программирования смартфона: Простое в использовании приложение для изменения настроек и мониторинга использования.
  • Датчики движения отсутствуют: Многие системы горячего водоснабжения по запросу используют датчики движения, чтобы определить, когда вы дома и вам может понадобиться горячая вода. Это означает, что ваша система работает все время, пока обнаруживает движение. Это тратит впустую энергию, деньги и износ вашего резервуара и труб.
  • Аккумуляторы не требуются: Системы по запросу, в которых используются кнопки или датчики движения, часто используют аккумуляторы, чтобы избежать жесткого подключения. Мы устраняем необходимость замены батарей, экономя время, деньги и неудобства.
  • Нет кнопок для установки или кнопок для нажатия: В большинстве систем по требованию требуется кнопка для включения рециркуляционного насоса горячей воды. Наши контроллеры активируют насос на кране.
  • Автоматический режим отпуска: Отключает все таймеры, если приложение обнаруживает, что горячая вода не используется до вашего возвращения.

ЗАЧЕМ ИСПОЛЬЗОВАТЬ РЕЦИРКУЛЯЦИОННЫЙ НАСОС ГОРЯЧЕЙ ВОДЫ ПО ЗАПРОСУ?

Системы рециркуляции по требованию могут помочь вам сэкономить деньги на счетах за электричество и воду, а также получить дополнительное преимущество, заключающееся в том, что вам не нужно ждать горячей воды.

У всех нас были моменты, когда мы пускали воду на 30 секунд, а иногда даже на несколько минут, прежде чем из крана полилась горячая вода. С системой рециркуляции горячей воды это больше не будет проблемой.

Когда вода находится в трубе, ее температура начинает падать из-за потери тепла, быстро достигая температуры труб. Поэтому типичные системы рециркуляции постоянно пропускают воду по трубам, чтобы поддерживать их нагрев. Когда вода циркулирует по системе, у нее нет возможности остыть, обеспечивая постоянный поток горячей воды. Однако в этом есть некоторые недостатки.

ЧТО НЕ ТАК С ПОСТОЯННО ВКЛЮЧЕННЫМИ РЕЦИРКУЛЯЦИОННЫМИ НАСОСАМИ?

Многие города предоставляют скидки и поощрения за установку циркуляционного насоса, потому что они экономят воду, однако ваша система рециркуляции горячей воды работает без остановок, что в конечном итоге увеличивает ваши счета за электроэнергию, поэтому это становится дорогостоящей роскошью.

Постоянно текущая горячая вода также может вызвать эрозию медных труб. Это может привести к протечкам в ваших трубах, которые затем потребуют замены, а также нанести ущерб вашему дому водой.

Здесь вступают в действие рециркуляционные насосы горячей воды.

КАК НАША ЛИНИЯ СИСТЕМ ПО ТРЕБОВАНИЮ ИЗМЕНЯЕТ ИГРУ

Циркуляционные насосы горячей воды по запросу работают с одним ключевым отличием: ваша вода не циркулирует постоянно. Вам не нужно беспокоиться о разрушении медных труб, и это не будет стоить вам руки и ноги.

Системы по требованию берут горячую воду только при необходимости; интеллектуальные рециркуляционные насосы обычно работают менее 30 минут в день.

Эти системы предназначены для изучения и записи ваших ежедневных привычек, корректируя их по мере необходимости. Благодаря сочетанию технологии «умного времени» вам больше никогда не придется беспокоиться о высоких счетах за воду или электроэнергию из вашей системы горячего водоснабжения.

Вы хотите рассчитать экономию средств за счет использования интеллектуального управления рециркуляцией по требованию для вашей системы горячего водоснабжения? →Загрузите нашу электронную таблицу, чтобы рассчитать экономию и воздействие на окружающую среду.

WHAT SOME OF OUR CUSTOMERS SAY ABOUT OUR SMART PUMP CONTROLLERS

Joseph V. 2020-09-18

5/5


VERIFIED PURCHASE


Практически спас мой кошелек! Счет за газ увеличился с более чем 100 долларов до 32 долларов в первый месяц. Больше не нужно беспокоиться о постоянно работающем насосе и возможном повреждении сантехники и приборов, не говоря уже о сумасшедшей трате энергии. Лучшая инвестиция, которую я сделал, и горячая вода по требованию. Любить это!

William R. 2022-07-12

5/5


ARIDED. Это революционизирует рынок горячей воды по требованию. Циркуляционные насосы были проданы в течение многих лет, хвастаясь мгновенной подачей горячей воды и небольшим расходом воды в ожидании горячей воды. Когда мы купили этот дом, в котором он был установлен, я был очень рад экономить воду и иметь мгновенную горячую воду. Так было до тех пор, пока я не провел некоторые исследования, которые показали, что я использую огромную энергию, работая насосом 24/7, и энергию, чтобы поддерживать эту воду горячей в линии.

Все эти талии для удобства иметь горячую воду несколько раз в день. Конечно, это сэкономило немного воды, но очень дорого обошлось мне и окружающей среде. Итак, я добавил к своему насосу таймер, чтобы включать его утром и вечером, когда я чаще использую горячую воду. Лучше, но все равно не так эффективно.

Я искал удаленные системы по требованию, которые я мог бы добавить, чтобы повысить эффективность, но у всех были проблемы, такие как сложность установки, трудно вспомнить, была ли она включена или выключена, проблемы с WIFI или Bluetooth, необходимость использования приложений или найти хорошее место (я) для контроля (ов).

Потом я наткнулся на этот продукт. Ты шутишь, что ли! Не нужно возиться с кнопками или приложениями — просто включите на секунду горячую воду, чтобы насос начал работать. Блестяще!! Накачивает только тогда, когда вы просите об этом и нуждаетесь в этом.

Это проверяет все поля окружающей среды. Абсолютно экономит воду. Используйте абсолютный минимум энергии для подачи горячей воды – ТОЛЬКО при необходимости. Интеллектуальное управление 32 должно быть обязательным для каждого проданного циркуляционного насоса.

Брюс К. 05.10.2021

5/5


Проверенная покупка


Это удивительный продукт, который помогает вам сэкономить воду и энергию, пока вы даете роскошную ставку. Дизайн элегантно прост и гениален. Я бы не рассматривал систему контура рециркуляции горячей воды без системы управления Leridian.

Кевин Х. 07.02.2022

5/5


ПОДТВЕРЖДЕННАЯ ПОКУПКА


Просто лучший контроль циркуляции, который мне удалось найти.

Barry P. 2020-08-30

5/5


. Верный. Удивительно. Я установил это устройство, чтобы заменить беспроводной пульт дистанционного управления. Иногда ловил сигнал, иногда нет. Теперь сомнений нет. Просто откройте любой кран горячей воды в доме, и насос запустится.

* разработан и собран в США с использованием американских и некоторых зарубежных полупроводников, еще не произведенных в США

** типичное использование для семьи из 4 человек (ссылка на реальный файл журнала)

Как работают водяные тепловые насосы

Большинство людей знакомы со стандартной бытовой сплит-системой кондиционирования воздуха. Он разделен, потому что внутренняя система подает охлажденный или нагретый воздух, а наружный блок издает много шума при работе. Эти две части оборудования соединены трубопроводом, по которому между ними проходит хладагент. Наружный блок состоит из компрессора, наружного змеевика и вентилятора. Во время охлаждения компрессор будет сжимать хладагент в перегретый газ, а затем нагнетать его через наружный змеевик. Вентилятор втягивает наружный воздух через змеевик, так что перегретый газ охлаждается. Хладагент поступает во внутренний блок, который быстро расширяет охлажденную жидкость под высоким давлением, создавая низкотемпературный газ низкого давления, который поступает во внутренний змеевик, а внутренний вентилятор прогоняет через него воздух для охлаждения помещения. После охлаждения воздуха подогретый газообразный хладагент низкого давления возвращается в компрессор, чтобы начать процесс заново.

Бытовой тепловой насос может переключать поток хладагента таким образом, чтобы перегретый сжатый газ поступал во внутренний блок для обогрева помещения. Водяной тепловой насос (WSHP) выполняет ту же операцию, он просто перемещает компрессор во внутренний блок и заменяет наружный змеевик теплообменником, который использует водяной контур здания вместо наружного воздуха.

В моей предыдущей статье, расположенной здесь, обсуждается цикл хладагента, используемый для обогрева или охлаждения помещения с помощью теплового насоса. В этой статье будут описаны компоненты теплового насоса и показано, как они выполняют цикл охлаждения.

Водяной тепловой насос состоит из следующих компонентов:

  • Компрессор
  • 4-ходовой реверсивный клапан
  • Теплообменник хладагент-вода
  • Устройство теплового расширения
  • Катушка
  • Вентилятор

Каждый из этих компонентов работает вместе, чтобы эффективно выполнять холодильный цикл и кондиционировать помещение.

Компрессор

Компрессор является сердцем WSHP. Он приводит в действие цикл охлаждения, нагнетая хладагент через тепловой насос, либо охлаждая, либо нагревая помещение в зависимости от сигнала от термостата. Для целей данной статьи это первая стадия холодильного цикла. Компрессор нагнетает газообразный хладагент средней температуры в перегретый газ высокого давления и высокой температуры. Это представлено на диаграмме энтальпии давления (PE), показанной ниже.

В большинстве используемых сегодня водяных тепловых насосов компрессоры имеют роторную или спиральную конструкцию. Для этого они просто используют две разные геометрии.

Ротационный компрессор

В большинстве представленных на рынке тепловых насосов с водяным охлаждением с холодопроизводительностью менее 2 тонн используется роторный компрессор. Роторный компрессор характеризуется электродвигателем, который вращает смещенное кольцо внутри цилиндра, который непрерывно всасывает хладагент, а затем сжимает его. Стадии сжатия показаны на рисунке ниже:

Частями ротационного компрессора являются цилиндр (статор), кольцо (ротор), скользящая перегородка, всасывающий патрубок (вход) и патрубок горячего газа (выход). На этапе 1 объем между цилиндром и кольцом полностью заполнен теплым хладагентом низкого давления. Когда кольцо начнет вращаться в направлении второй ступени, хладагент начнет сжиматься. В выпуске горячего газа есть клапан, который удерживает хладагент в компрессоре до тех пор, пока не будет достигнуто определенное давление. Газ низкого давления из линии всасывания начнет поступать в компрессор по мере вращения кольца. Скользящий барьер будет двигаться, сохраняя контакт с кольцом и разделяя газы высокого и низкого давления. При переходе от ступени 2 к ступени 3 хладагент продолжает сжиматься, в то время как в компрессор всасывается больше газа низкого давления. На этапе 4 газ достигает полного сжатия, и выпускной клапан открывается, позволяя ему двигаться в линию горячего газа цикла хладагента. Сразу после выпуска полностью сжатого газа компрессор возвращается в положение 1-й ступени, и процесс начинается снова.

Спиральные компрессоры

Спиральный компрессор работает так же, как и роторный, и его иногда называют ротационным спиральным. Разница заключается в форме ротора и статора. Кольцо и цилиндр заменены двумя спиральными узорами. И ротор, и статор представляют собой спиральные конструкции, в которых хладагент оказывается в ловушке между двумя спиральными конструкциями и постепенно сжимается по мере перемещения спирали ротора.

Для спирального компрессора первая ступень сжатия также является последней ступенью предыдущего цикла. Шнек предназначен для одновременного всасывания и сжатия двух разных объемов хладагента. В течение следующих трех стадий спираль ротора вращается, направляя хладагент во все меньшие пространства, пока объемы не сойдутся в центре спирали, полностью сжатые. Достигнув центра, хладагент полностью сжимается и выпускается в линию горячего газа цикла хладагента, поэтому нет необходимости в клапане для поддержания давления перед сжатием.

4-ходовой реверсивный клапан

4-ходовой реверсивный клапан — это часть системы, которая делает тепловой насос тепловым насосом, компонент, который отделяет тепловые насосы от кондиционеров. Клапан направляет поток горячего газа, выходящего из компрессора, в зависимости от того, требуется ли помещение для охлаждения или обогрева. Когда горячий газ выходит из компрессора, клапан направляет поток либо к теплообменнику для режима охлаждения, либо к змеевику для режима нагрева.

Внутри корпуса клапана находится ползунок, который перемещается вперед и назад в зависимости от потребности в охлаждении/нагреве. Как показано на графике выше, когда система требует охлаждения, ползунок перемещается влево, так что нагнетание компрессора поступает в теплообменник. Когда есть запрос на нагрев, ползунок перемещается вправо и направляет поток змеевика. Движение ползунка меняет направление потока хладагента в обратном направлении либо для отвода тепла из помещения, либо для добавления тепла в зависимости от потребности.

Хотя 4-ходовой реверсивный клапан оказывает огромное влияние на работу теплового насоса, он не влияет на цикл охлаждения, и его работа не будет отражаться на графике цикла охлаждения.

Теплообменник хладагент-вода

В цикле охлаждения хладагент выходит из 4-ходового смесительного клапана и поступает в теплообменник хладагент-вода. В рассмотренном выше жилом блоке вентилятор и змеевик на внешнем блоке предназначены для отвода тепла в наружный воздух. Водяной тепловой насос заменяет наружный вентилятор и змеевик теплообменником. Для работы этой системы в здании предусмотрена петля воды. Этот водяной контур включает в себя градирню и бойлер для поддержания подачи воды в блок и выхода из него для достижения оптимальной производительности.

Теплообменник представляет собой коаксиальную конструкцию, в которой хладагент проходит по трубке на внутреннем диаметре теплообменника, а вода контура здания проходит между трубкой хладагента и внешней трубой. Во время охлаждения вода с более низкой температурой отводит тепло от сжатого горячего газа хладагента. Вода выходит из теплообменника с более высокой температурой, а хладагент выходит в виде низкотемпературной жидкости под высоким давлением. Это показано второй строкой на графике PE ниже:

При нагреве хладагент поступает в теплообменник после выхода из дозирующего устройства в виде низкотемпературной смеси газа и жидкости низкого давления. Он забирает тепло из водяного контура здания и выходит в виде теплого газа низкого давления.

Чтобы разместить теплообменник на минимальном пространстве, они были свернуты, как показано выше. Цель этой системы состоит в том, чтобы отводить/вытягивать наибольшее количество тепла при наименьшей длине теплообменника.

Когда поступает запрос на охлаждение/обогрев, автоматический водяной клапан, расположенный на выходе теплообменника, открывается, позволяя воде здания проходить через теплообменник.

Устройство теплового расширения

Опять же, в цикле охлаждения жидкий хладагент под высоким давлением и низкой температурой покидает теплообменник и движется к устройству теплового расширения. Это регулирует поток хладагента в змеевик. Тепловое дозирующее устройство отделяет часть цикла низкого давления от части высокого давления, поступающей от компрессора. Когда хладагент перемещается в область низкого давления, он «испаряется» и очень быстро охлаждается. Это представлено в виде третьей строки на диаграмме PE для R410a, показанной ниже, хладагент переходит из жидкости средней температуры высокого давления в низкотемпературную смесь жидкости и газа низкого давления.

Простое разделение областей высокого и низкого давления может быть легко выполнено с помощью отверстия определенного размера, но устройство теплового расширения активно контролирует температуру хладагента, выходящего из змеевика, и регулирует его, чтобы обеспечить необходимое количество охлаждения через змеевик.

Датчик давления в баллоне силового элемента устанавливается напротив трубы хладагента, выходящей из змеевика, чтобы он мог измерять температуру. Затем трубка от колбы направляется к верхней части дозирующего устройства. Внутри колбы и трубки находится жидкость, которая либо расширяется, либо сжимается в зависимости от температуры хладагента, выходящего из змеевика. Когда температура хладагента, выходящего из змеевика, слишком высока, жидкость расширяется и воздействует на диафрагму, которая затем толкает клапан в устройстве еще больше, позволяя большему количеству хладагента попасть в змеевик. Если змеевик слишком холодный, жидкость будет сжиматься, закрывая клапан и выпуская меньше хладагента. В мире умных домов и подключенных устройств это отличная технология, которая полагается на материалы для управления, а не на электронный датчик и привод.

Когда цикл реверсируется для нагрева, устройство теплового измерения имеет встроенный обратный клапан, который позволяет низкотемпературному хладагенту под высоким давлением проходить в теплообменник в противоположном направлении. В старых версиях обратный клапан располагался на отдельном контуре, который шунтировал прибор учета тепла.

Катушка

Змеевик предназначен для облегчения передачи тепла от воздуха к хладагенту. Целью конструкции катушки является увеличение площади контакта между катушкой и воздухом. Катушка представляет собой ряд трубок, которые «скручены» вперед и назад. Между трубками есть ребра, в основном 14-15 ребер на дюйм, которые обеспечивают большую площадь поверхности для теплопередачи. Размер змеевика и количество контуров хладагента, проходящих через змеевик, рассчитаны на обеспечение надлежащего охлаждения/обогрева помещения. Во время охлаждения, когда воздух проходит через змеевик, он передает тепло от воздуха хладагенту. На графике PE это завершает цикл превращения низкотемпературной смеси газа и жидкости в газ средней температуры низкого давления, готовый к сжатию и повторному запуску цикла.

Вентилятор

Вторым по величине потребителем электроэнергии на БТЭ является вентилятор. Вентилятор разработан в сочетании со змеевиком для обеспечения необходимого объема кондиционирования помещения в зависимости от размера устройства. Сегодня в большинстве устройств используется вентилятор с электрокоммутируемым двигателем (ECM) для обеспечения максимальной эффективности. Линейка Engineered Comfort Serenity WSHP имеет охлаждение и обогрев CFM, а вентилятор настраивается в зависимости от потребности в кондиционировании.

Система

Хладагент следует по указанным ниже путям в зависимости от охлаждения или обогрева:

  • Охлаждение
    • Горячий газ высокого давления выходит из компрессора и поступает в 4-ходовой реверсивный клапан
    • .
    • 4-ходовой смесительный клапан направляет поток к теплообменнику
    • Теперь жидкость с более низкой температурой под высоким давлением выходит из теплообменника и поступает в устройство теплового расширения
    • .
    • После прохождения расширительного устройства и входа в змеевик испарителя хладагент становится газожидкостной смесью низкого давления с очень низкой температурой
    • Змеевик охлаждает воздух, проходящий через него, и хладагент становится газом средней температуры низкого давления и возвращается к компрессору
    • .

  • Обогрев
    • Горячий газ высокого давления выходит из компрессора и поступает в 4-ходовой реверсивный клапан
    • .
    • 4-ходовой реверсивный клапан направляет поток на змеевик
    • Горячий газ высокого давления нагревает воздух, проходящий над змеевиком, и становится жидкостью высокого давления с более низкой температурой, которая направляется к устройству теплового расширения 9.0072
    • Через расширительное устройство хладагент превращается в низкотемпературную газожидкостную смесь низкого давления и циклически направляется к теплообменнику
    • .

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *