Расчет секций радиаторов по объему помещения калькулятор: Расчёт секций батарей и радиаторов онлайн.

Содержание

Расчет количества секций радиаторов отопления

Главная » Отопление » Расчет количества секций радиаторов отопления


Калькулятор расчета количества секций радиаторов отопления и необходимые пояснения

В подавляющем числе случаев основными приборами конечного теплообмена в системах отопления остаются радиаторы. Значит, важно не только правильно заранее рассчитать требуемую тепловую мощность котла отопления, но и правильно расставить приборы теплообмена в помещениях дома или квартиры, чтобы обеспечить комфортный микроклимат в каждом из них.

Калькулятор расчета количества секций радиаторов отопления

В этом вопросе поможет калькулятор расчета количества секций радиаторов отопления, который размещен ниже. Он также позволяет определить необходимую суммарную тепловую мощность радиатора, если тот является неразборной моделью.

Если в ходе расчетов будут возникать вопросы, то ниже калькулятора размещены основные пояснения по его структуре и правилам применения.

Калькулятор расчета количества секций радиаторов отопления
Некоторые разъяснения по работе с калькулятором

Часто можно встретить утверждение, что для расчета требуемой тепловой отдачи радиаторов достаточно принять соотношение 100 Вт на 1 м² площади комнаты. Однако, согласитесь, что такой подход совершенно не учитывает ни климатических условий региона проживания, ни специфики дома и конкретного помещения, ни особенностей установки самих радиаторов. А ведь все это имеет определенное значение.

В данном алгоритме за основу также взято соотношение 100 Вт/м², однако, введены поправочные коэффициенты, которые и внесут необходимые коррективы, учитывающие различные нюансы.

  • Площадь помещения – хозяевам известна.
  • Количество внешних стен – чем их больше, тем выше теплопотери, которые необходимо компенсировать дополнительной мощностью радиаторов. В угловых квартирах часто комнаты имеют по две внешних стены, а в частных домах встречаются помещения и с тремя такими стенами.
    В то же время бывают и внутренние помещения, в которых теплопотери через стены практически отсутствуют.
  • Направление внешних стен по сторонам света. Южная или юго-западная сторона будет получать какой-никакой солнечный «заряд», а вот стены с севера и северо-востока Солнца не видят никогда.
  • Зимняя «роза ветров» – стены с наветренной стороны, естественно, выхолаживаются намного быстрее. Если хозяевам этот параметр неизвестен, то можно оставить без заполнения – калькулятор рассчитает для самых неблагоприятных условий.
  • Уровень минимальных температур – скажет о климатических особенностях региона. Сюда должны вноситься не аномальные значения, а средние, характерные для данной местности в самую холодную декаду года.
  • Степень степенности стен. По большому счету, стены без утепления – вообще не должны рассматриваться. Средний уровень утепления будет соответствовать, примерно, стене в 2 кирпича из пустотного керамического кирпича. Полноценное утепление – выполненное в полном объеме на основании теплотехнических расчетов.
  • Немалые теплопотери происходят через перекрытия – полы и потолки. Поэтому важное значение имеет соседство помещения сверху и снизу – по вертикали.
  • Количество, размер и тип окон – связь с теплотехническими характеристиками помещения очевидна.
  • Количество входных дверей (на улицу, в подъезд или на неотапливаемый балкон) – любое открытие будет сопровождаться «порцией» поступающего холодного воздуха, и это необходимо каким-то образом компенсировать.
  • Имеет значение схема врезки радиаторов в контур – теплоотдача от этого существенно изменяется. Кроме того, эффективность теплообмена зависит и от степени закрытости батареи на стене.
  • Наконец, последним пунктом будет предложено ввести удельную тепловую мощность одной секции батареи отопления. В результате будет получено требуемое количество секций для размещения в данном помещении. Если расчет проводится для неразборной модели, то этот пункт оставляют незаполненным, а результирующее значение берут из второй строки расчета – она покажет необходимую мощность радиатора в кВт.

В расчетное значение уже заложен необходимый эксплуатационный резерв.

Что необходимо еще знать про радиаторы отопления?

При выборе этих приборов теплообмена следует учитывать ряд важных нюансов. Подробнее об этом можно узнать в публикациях нашего портала, посвящённых стальным, алюминиевым и биметаллическим радиаторам отопления.

stroyday.ru

Методика расчета секций радиаторов отопления

При установке и замене радиаторов отопления обычно встает вопрос: как правильно рассчитать количество секций радиаторов отопления, чтобы в квартире было уютно и тепло даже в самое холодное время года? Сделать расчет самостоятельно совсем несложно, нужно лишь знать параметры помещения и мощность батарей выбранного типа. Для угловых комнат и помещений, имеющих потолки выше 3 метров или панорамные окна, расчет несколько отличается. Рассмотрим все методики расчета.

Расчет количества секций радиаторов отопления

Помещения со стандартной высотой потолков

Расчет числа секций радиаторов отопления для типового дома ведется исходя из площади комнат. Площадь комнаты в доме типовой застройки вычисляют, умножив длину комнаты на ее ширину. Для обогрева 1 квадратного метра требуется 100 Вт мощности отопительного прибора, и чтобы вычислить общую мощность, необходимо умножить полученную площадь на 100 Вт. Полученное значение означает общую мощность отопительного прибора. В документации на радиатор обычно указана тепловая мощность одной секции. Чтобы определить количество секций, нужно разделить общую мощность на это значение и округлить результат в большую сторону.

Пример расчета:

Комната с шириной 3,5 метра и длиной 4 метра, с обычной высотой потолков. Мощность одной секции радиатора – 160 Вт. Необходимо найти количество секций.

  1. Определяем площадь комнаты, умножив ее длину на ширину: 3,5·4 = 14 м2.
  2. Находим общую мощность отопительных приборов 14·100 = 1400 Вт.
  3. Находим количество секций: 1400/160 = 8,75. Округляем в сторону большего значения и получаем 9 секций.

Также можно воспользоваться таблицей:

Таблица для расчета количества радиаторов на М2

Для комнат, расположенных с торца здания, расчетное количество радиаторов необходимо увеличить на 20%. .

Помещения с высотой потолков более 3 метров

Расчет количества секций отопительных приборов для комнат с высотой потолков более трех метров ведется от объема помещения. Объем – это площадь, умноженная на высоту потолков. Для обогрева 1 кубического метра помещения требуется 40 Вт тепловой мощности отопительного прибора, и общую его мощность вычисляют, умножая объем комнаты на 40 Вт. Для определения количества секций это значение необходимо разделить на мощность одной секции по паспорту.

Пример расчета:

Комната с шириной 3,5 метра и длиной 4 метра, с высотой потолков 3,5 м. Мощность одной секции радиатора – 160 Вт. Необходимо найти количество секций радиаторов отопления.

  1. Находим площадь комнаты, умножив ее длину на ширину: 3,5·4 = 14 м2.
  2. Находим объем комнаты, умножив площадь на высоту потолков: 14·3,5 = 49 м3.
  3. Находим общую мощность радиатора отопления: 49·40 = 1960 Вт.
  4. Находим количество секций: 1960/160 = 12,25. Округляем в большую сторону и получаем 13 секций.

Также можно воспользоваться таблицей:

Как и в предыдущем случае, для угловой комнаты этот показатель нужно умножить на 1,2. Также необходимо увеличить количество секций в случае, если помещение имеет один из следующих факторов:

  • Находится в панельном или плохо утепленном доме;
  • Находится на первом или последнем этаже;
  • Имеет больше одного окна;
  • Расположена рядом с неотапливаемыми помещениями.

В этом случае полученное значение необходимо умножить на коэффициент 1,1 за каждый из факторов.

Пример расчета:

Угловая комната с шириной 3,5 метра и длиной 4 метра, с высотой потолков 3,5 м. Расположена в панельном доме, на первом этаже, имеет два окна. Мощность одной секции радиатора – 160 Вт. Необходимо найти количество секций радиаторов отопления.

  1. Находим площадь комнаты, умножив ее длину на ширину: 3,5·4 = 14 м2.
  2. Находим объем комнаты, умножив площадь на высоту потолков: 14·3,5 = 49 м3.
  3. Находим общую мощность радиатора отопления: 49·40 = 1960 Вт.
  4. Находим количество секций: 1960/160 = 12,25. Округляем в большую сторону и получаем 13 секций.
  5. Умножаем полученное количество на коэффициенты:

Угловая комната – коэффициент 1,2;

Панельный дом – коэффициент 1,1;

Два окна – коэффициент 1,1;

Первый этаж – коэффициент 1,1.

Таким образом, получаем: 13·1,2·1,1·1,1·1,1 = 20,76 секций. Округляем их до большего целого числа – 21 секция радиаторов отопления.

При расчетах следует иметь в виду, что различные типы радиаторов отопления имеют разную тепловую мощность. При выборе количества секций радиатора отопления необходимо использовать именно те значения, которые соответствуют выбранному типу батарей.

Радиатор отопления

Для того чтобы теплоотдача от радиаторов была максимальной, необходимо устанавливать их в соответствии с рекомендациями  производителя, соблюдая все оговоренные в паспорте расстояния. Это способствует лучшему распределению конвективных потоков и уменьшает потери тепла.

stroyvopros.net

калькулятор расчета количества секций радиатора отопления по площади помещения

При расчете необходимого количества тепла учитываются площадь отапливаемого помещения из расчета из расчета требуемого потребления 100 ватт на квадратный метр. Кроме того учитывается ряд факторов, влияющих на суммарные теплопотери помещения, каждый из этих факторов вносит свой коэффициент в общий результат расчета.

Такая методика расчета включает практически все нюансы и базируется на формуле довольно точного определения потребности помещения в тепловой энергии. Остается полученный результат разделить на значение теплоотдачи одной секции алюминиевого, стального или биметаллического радиатора и полученный результат округлить в большую сторону.

параметры отаплваемого помещения
Площадь комнаты м2
Высота потолка до 2,6 м — 1.0 более 2,6 м — 1.1
Количество наружных стен комнаты 1 (обычно) — 1. 1 2 (угловая комната) — 1.2
Коэффициент теплоизоляции стен низкая степень теплоизоляции — 1,27 средняя теплоизоляция (кладка в два кирпича или слой утеплителя) — 1,0 высокая степень теплоизоляции — 0,85
Учет типа помещения, расположенного этажом выше обогреваемое помещение — 0,8 теплый чердак — 0,9 холодный чердак — 1,0
Количество окон 1 окно 2 окна 3 окна
Коэффициент, учитывающий остекление оконных проемов обычное двойное остекление — 1,27 двойной стеклопакет — 1,0 тройной стеклопакет — 0,85
Средняя температура на улице зимой -10°C — 0.7 -20°C — 1.1 -30°C — 1.5

необходимое количества тепла: Вт

количество секций радиатора, выбранного типа:

тип радиатора

теплоотдача 1 секциирабочее давлениедавление опресовкивместительность 1 секциимасса 1 секции
алюминевые, с межосевым расстоянием 500 мм183 Вт20 Бар30 Бар0,27 л1,45 кг
алюминевые, с межосевым расстоянием 350 мм139 Вт20 Бар30 Бар0,19 л1,2 кг
биметалические, с межосевым расстоянием 500 мм204 Вт20 Бар30 Бар0,2 л1,92 кг
биметалические, с межосевым расстоянием 350 мм136 Вт20 Бар30 Бар0,18 л1,36 кг
чугунные, с межосевым расстоянием 500 мм160 Вт9 Бар15 Бар1,45 л7,12 кг
чугунные, с межосевым расстоянием 300 мм140 Вт9 Бар15 Бар1,1 л5,4 кг
  • 810
  • 606
  • 1044
  • 1180
  • 280
  • 641
  • 3784
  • 1747
  • 217

rem-mastera. ru

Расчет количества секций радиаторов отопления по площади помещения и объему: точный и упрощенный варианты подсчетов

Любой хозяин понимает, как важно произвести точный расчёт количества секций радиаторов отопления: если секций мало, прибор будет плохо отапливать квартиру; если же много, отопление будет неэффективным, и лишние джоули нужно будет выпускать в форточку.

Существует несколько вариантов расчётов батарей отопления частного дома. Если вы живёте в хорошо утеплённой стандартной квартире – воспользуйтесь быстрыми расчётами. Итак, как как рассчитать количество радиаторов?

Расчет батарей отопления на площадь

Расчет радиаторов отопления по площади помещения — это не самый точный вариант, но подходит, если квартира с высотой потолков 2,6 – 2,7 м.

Порядок действий:

  1. Узнаём общую площадь отапливаемого пространства (данные берутся в документации). Например, это 50 м2.
  2. Умножаем это число на 100 (Вт). Пример: 50 х 100 = 5000 Вт. (Или 5 кВт) – это общее количество тепла необходимое для данной квартиры.
  3. Смотрим в документах к радиатору, сколько тепла может выделить одна секция (см. ниже Таблицу 1). Например, биметаллический L 500 = 180 Вт.
  4. Теперь общее тепло делим на тепло из одной секции. 5000 Вт : 180 Вт = 27,77. Округляем до 28. Результат: для обогрева квартиры 50 м2 нужно 28 секции радиаторов.

Секции радиаторов отопления

Нужно будет произвести такие же расчёты батареи отопления для каждой комнаты отдельно.

Если батареи планируется монтировать в нише или скрыть за экраном, то нужно добавить 15%. Например, мы получили для спальни в 14 м2, радиатор в 8 секций. Но т.к. батареи будут «прятаться», поэтому 8 + 1,2 (15% от 8) = 9,2 т.е. 9 секций.

Для кухни округлять число радиаторов можно в меньшую сторону. А для угловой комнаты и комнаты с балконной дверью – в большую.

Расчет по объему

Если высота потолков в квартире нестандартная, это нужно учитывать при расчётах и вычислять не площадь, а объём.

Порядок действий:

  1. Считаем объём комнаты. Для этого умножаем площадь на высоту потолков. Пример: комната 12 м2. Потолки – 3,1 м. 12 х3,1 = 37,2 м3.
  2. Расчет тепловой энергии на отопление. Узнаём из СНИП, сколько тепловой мощности нужно на обогрев 1 м3 в нашем доме (см. ниже таблицу 2). Например, у нас кирпичный дом, значит показатель =34 Вт.
  3. Перемножаем два получившихся значения. Пример: 37,2 х 34 = 1264,8
  4. Смотрим в документах к радиатору, какова теплоотдача 1 секции. Например, для алюминиевого радиатора А350, это 138 Вт.
  5. Делим итог из пункта 3 на теплоотдачу. Пример: 1264,8 : 138 = 9 секций.

Упрощенный вариант расчётов основан на принятие за стандарт нескольких показателей:

В помещении с обычными потолками 1 секция батареи обогреет 1,8 м2. Например, если комната 14 м2. 14 : 1,8 = 7,7. Округляем = 8 секций.

Или так:

В комнате с 1 окном и 1 внешней стеной, 1 кВт мощности радиатора может обогреть 10 м2. Пример: комната 14 м2. 14 : 10 = 1,4. То есть для такой комнаты нужен обогреватель мощностью 1,4 кВт.

Такие методы можно использовать для примерных расчётов, но они чреваты серьёзными погрешностями.

Если результатами вычислений стал длинный радиатор более 10 секций, то имеет смысл разделить его на два отдельных радиатора.

Производители стараются указывать в документах к батареям максимальные показатели теплоотдачи. Они возможны только если температура воды в отоплении будет на уровне 90 0С (в паспорте тепловой напор указан 60 0С).

В реальности такие значения достигаются теплосетями далеко не всегда. Это значит, что мощность секции будет ниже, а секций нужно больше. Теплоотдача одной секции может быть 50-60 против заявленных 180 Вт!

Боковое подключение радиаторов отопления

Если в сопроводительном документе к радиатору указано минимальное значение теплоотдачи, опираться в расчётах теплоотдачи радиатора батарей отопления лучше на этот показатель.

Ещё одно обстоятельство, которое влияет на мощность радиатора – схема его подключения. Если, например, длинный радиатор из 12 секций подключить боковым методом, дальние секции всегда будут намного холоднее, чем первые. А значит, и расчёты мощности были напрасными!

Длинные радиаторы нужно подключать по диагональной схеме, коротким батареям подойдёт любой вариант.

Самый точный расчёт

Чтобы наиболее точно рассчитать количество секций нужно принимать во внимание больше условий, чем объём и теплоотдача.

100 Вт х S(площадь помещения) х А х Б х В х Г х Д х Е х Ж

Буквы в этой формуле означают:

А – вид остекления. Если у вас:

  • обычные стёкла = 1,26;
  • двойной стеклопакет = 1;
  • тройной стеклопакет = 0,85.

Б – теплоизоляция стен.

  • современная, качественная = 0,85;
  • в два кирпича или утепление = 1;
  • некачественная изоляция = 1,26.

В – сколько занимают площади окна по сравнению с площадью пола.

  • 10% = 0,8;
  • 20% = 0,9;
  • 30% = 1;
  • 40% = 1,1;
  • 50% = 1,2.

Г – минимальная tна улице.

  • -10 0С = 0,7;
  • -20 0С = 1,1;
  • -30 0С = 1,4;
  • -40 0С = 1,7.

Д – количество наружных стен.

  • 1 = 1,1;
  • 2 (угол) = 1,2;
  • 3 = 1,3;.
  • 4 = 1,4

Е – что над квартирой?

  • другая квартира = 0,8;
  • тёплое чердачное помещение = 0,9;
  • холодный чердак = 1.

Ж — Высота потолков.

  • до 2,9 = 1;
  • 3-3,5 = 1,1;
  • 3,6 – 4,5 = 1,2.

Рассмотрим пример. Комната 14 м2 в стареньком доме. Радиаторы будут алюминиевые с теплоотдачей 205. По обычным формулам (для идеальных условий) получается, что нужно 7 радиаторов.

Теперь попробуем учесть все факторы.

  • В окнах обычное остекление (А=1,26).
  • Теплоизоляция оставляет желать лучшего (Б=1,26).
  • Окна занимают 29% площади пола (В = 1).
  • На улице бывает до 35 0С (Г = 1,5).
  • Наружная стена одна (Д = 1,1).
  • Предпоследний этаж. Сверху другая квартира (Е = 0,8).
  • Потолки 3,2м (Ж = 1,1).

Подставляем данные в формулу:

100 х 14 (м2) х 1,26 х 1,26 х 1 х 1,5 х 1,1 х 0,8 х 1,1 = 3227

Теперь если разделить 3227 на теплоотдачу 205 Вт, получим 16 (!) секций радиаторов!

Но и это ещё не всё! Указанная теплоотдача будет действительно такой при 70 0С в трубах. Но если t меньше, нужно вносить поправки и в эти данные.

Если t теплоносителя ниже стандартной (70 0С), на каждые 10 градусов нужно добавить +15%.

В нашем примере t в трубах около 60 0С. Значит к полученным 17 секциям нужно прибавить 2,4 (округляем до 2) секции. Итог – 19 секций. Большая разница с примерными расчётами!

Полезная информация

Показатели теплоотдачи для 1 секции некоторых видов радиаторов (Вт):

  • Алюминиевый А 350 – 138.
  • Алюминиевый А 500 – 185.
  • Алюминиевый S500 – 205.
  • Биметаллический L350 – 130.
  • Биметаллический L500 – 180.
  • Чугунные – 160.

Чугунные батареи

Рекомендации СНИП по тепловой мощности для:

  • Для кирпичного дома – 34 Вт
  • Для панельного дома – 41 Вт.
  • Новостройка, сделанная по всем стандартам. – 20 Вт.

Итак. Приблизительные расчёты подходят для новых добротных домов с пластиковыми окнами. Если же квартира угловая и/или с большими стеклянными окнами, на последнем этаже, с высокими потолками – это всё поводы пересчитать более основательно. Разница может быть немалой!

Для тех, кто далёк от математики, существуют онлайн–калькуляторы. Необходимо знать запрашиваемые показатели, ввести их и ответ будет тут же готов. Калькуляторы можно найти на сайтах изготовителей радиаторов.

Видео на тему

Поделиться:

Нет комментариев

microklimat.pro


Смотрите также

  • Какую выбрать систему отопления для частного дома
  • Включат ли отопление сегодня
  • Внутрипольные радиаторы отопления
  • Батареи отопления тонкие
  • Полипропиленовые трубы для отопления и фитинги
  • Гидроаккумулятор для систем отопления устройство и принцип работы
  • Двухтрубная и однотрубная система отопления
  • Схемы систем отопления
  • Дровяная печь с водяным контуром для отопления дома
  • Какие полипропиленовые трубы лучше для отопления в частном доме
  • Подмес воды в системе отопления

Как рассчитать количество секций биметаллического радиатора?

С помощью данного калькулятора вы можете произвести расчет радиаторов отопления и узнать количество секций для комфортного обогрева указанной площади. Для выполнения подсчета, введите кубатуру комнаты, теплоотдачу одной секции радиатора по паспорту (или см. таблицу ниже), укажите вид подключения и норму обогрева на 1 м3 помещения (приблизительно для кирпичных домов – 37 Вт/м3, для панельных – 41 Вт/м3). При расчете через тепловые потери помещения – необходимо заранее воспользоваться калькулятором теплопотерь. Запас мощности рекомендуется оставлять в районе 10-15%, поскольку в СНиП нет подробного описания методики расчета.

Смежные нормативные документы:

  • СП 50.13330.2010 «Тепловая защита зданий»
  • СП 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха»
  • СНиП 2.04.07-86* «Тепловые сети»
  • ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях»
  • ГОСТ 22270-76 «Оборудование для кондиционирования воздуха, вентиляции и отопления»
  • ГОСТ 31311-2005 «Приборы отопительные»

Принцип и особенности работы биметаллического радиатора

Главное достоинство и причина популярности этих радиаторов в том, что они по прочности не уступают стальным трубам. Благодаря алюминиевому покрытию, они имеют:

  • Отличный коэффициент теплопередачи;
  • Долгий срок использования;
  • Стильный внешний вид;
  • Легкий вес;
  • Наличие ниппелей для соединения секций, позволяет легко нарастить — уменьшить длину батарей, соответственно теплотехническим расчетам.

Как рассчитываются стальные радиаторы

Стальные батареи панельного типа считаются новинкой в сфере отопительных бытовых приборов. Их особенностью являются более компактные габариты. Теплоотдача стальных радиаторов по сравнению с обычными секционными радиаторами батареями на порядок выше. В состав конструкции может входить несколько гофрированных металлических панелей(1,2 или 3 шт.). Под панелями понимаются пластины, сквозь которые теплоноситель поступает в систему. Перед тем, как рассчитать панельные радиаторы по мощности, нужно вооружиться информацией об основных разновидностях этих приборов.

Данные из таблицы мощности стальных радиаторов отопления:

  1. Трехпанельные. Массивность приборов объясняется наличием 3-х панелей, оснащенных оребрением. Маркируются 33.
  2. Двухпанельные. Число пластин сокращено до двух. Маркировка — 22.
  3. Двухпанельные плюс одна пластина (21).
  4. Однопанельные с одной пластиной. Отличаются небольшой мощностью, легким весом и компактными размерами (11).
  5. Только панель без оребрения (10).

Расчет мощности подобных приборов также проводится по площади, только отталкиваются не от квадратного метра, а от кубического.

Требования СНиП:

  • В домах из кирпича на 1 м3 требуется 34 Ватт.
  • В панельных зданиях на 1 м3 необходим 41 Ватт.

Держа во внимании эти нормы, можно произвести расчет любого помещения. Знание высоты потолков обязательно.

Пример расчета:

Панельное здание имеет габариты 3,2 на 3,5 метров, при высоте потолка 3 м. Для определения объема нужно перемножить 3,2, 3,5 и 3: в результате получается 33,6 м3. Эта цифра умножается на коэффициент для панельного дома (41). Итог — 1378 Вт. Чтобы получить максимально точное значение, применяют таблицу расчета стальных радиаторов отопления. В ней отображена информация по каждой климатической зоне и характеристикам объекта.

Методы расчета

Наиболее популярные способы расчета производятся с использованием фактической площади и объема отапливаемой комнаты.

По площади

Расчет по площади наиболее прост, но позволяет определить количество секций, только в квартирах с высотой около 2,5 м. СНиП предусматривает нагрузку на метр в 100 Вт. Это норматив для средней полосы. На севере за 60 широтой, она может быть значительно выше.

Умножая площадь на 100, мы получаем мощность нормативного потребления тепла. Разделив ее на паспортную теплоотдачу ребра, получим число ребер для обогрева.

По объему

Расчет по объему используется там, где потолки выше 2,6 м. Согласно нормативам, для отопления м.куб. в зависимости от типа здания требуется:

  • для панельного 41 Вт,
  • для кирпичного 34 Вт.

Умножая площадь на высоту комнаты получаем расчетный объем в кубах.

Умножая количество кубов на норматив теплопотребления вашего дома, получаем мощность нормативного потребления тепла, которую используем аналогично п. 2.1.

Теплоотдача одной секции

Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.

Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500) . Еще более ощутимые отличия могут быть у разных производителей.

Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу

Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средние значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):

  • Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
  • Алюминиевый — 190 Вт (0,19 кВт).
  • Чугунные — 120 Вт (0,120 кВт).

Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.

Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше

Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м²:

  • биметаллическая секция обогреет 1,8 м²;
  • алюминиевая — 1,9-2,0 м²;
  • чугунная — 1,4-1,5 м²;

Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м², для ее отопления примерно понадобится:

  • биметаллических 16 м² / 1,8 м² = 8,88 шт, округляем — 9 шт.
  • алюминиевых 16 м² / 2 м² = 8 шт.
  • чугунных 16 м² / 1,4 м² = 11,4 шт, округляем — 12 шт.

Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.

Сколько секций биметаллического радиатора нужно на 1 м2

Еще один метод расчета. Он хоть и приближенный, но его с успехом используют слесаря сантехники, в случаях, когда расчет касается приборов большой суммарной мощности.

Практики утверждают, что в квартире со стандартной высотой, одна биметаллическая секция средней мощности обеспечивает теплом 1,8 метров площади. В этом случае достаточно знать только площадь комнаты. Поделив ее на 1,8, получаем необходимое количества ребер.

Расчет секций радиаторов в зависимости от реальных условий

Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.

Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе +60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.

Формула расчета температурного напора системы отопления

Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.

Таблица коэффициентов для систем отопления с разной дельтой температур

При пересчете действуем в следующем порядке. Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.

Параметры, которые нужно учитывать при подсчете

Приблизительные расчеты привлекают своей простотой, но не дают достоверной информации. В результате хозяин квартиры может замерзнуть, или переплатить за установку дорогостоящих радиаторов.

Точный расчет должен учитывать множество поправочных параметров:

  • Состояние остекление;
  • Количество наружных стен;
  • Их теплоизоляцию;
  • Тепловой режим верхнего помещения;
  • Климатические характеристики региона и другие параметры.

Поправочные коэффициенты

Окончательная формула теплопотребления выглядит как произведение нормативного значения тепла — 100 вт/м.кв, на поправочные коэффициенты, учитывающие особенности теплопотребления комнаты:

  • К1 учитывает конструкцию остекления. Принимается для спаренных деревянных переплетов 1,27. Окна с двойным стеклопакетом позволяют применять коэффициент 1,0. Значение для стеклопакета с тремя камерами — 0,85;
  • К2 учитывает качество утепления стен и принимается для стен в два кирпича за единицу. При худшей степени изоляции принимается коэффициент 1,27. Дополнительная изоляция позволяет применять понижающий коэффициент 0,85;
  • К3 отражает отношение площади окон к полу. Если процент остекления поставить в числителе, в знаменателе смотрите коэффициент теплопотребления 50/0,8, 40/0,9, 30/1,0, 20/1,1 и 10/1,2;
  • К4 учитывает среднюю температуру наиболее холодной недели года. При -35 градусах это 1,5, при — 25 градусах — 1,3, при — 20 градусах — 1,1, при — 15 градусах — 0,9, а при — 10 градусах — 0,7.
  • К5 дает поправку на количество наружных стен. При одной наружной стене в комнате он равен 1,1, а каждая следующая стена увеличивает его на 0,1;
  • К6 позволяет учесть влияние теплового режима верхнего помещения. За единицу принимается холодный чердак, отапливаемый — 0,9. Если сверху находится жилой этаж — 0,8;
  • К7 выражает зависимость от высоты комнаты. Стандартная — 2,5 м, принимается за единицу. Повышение высоты на пол-метра дает основание увеличить его на 0,05; при трех метрах — 1,05, три с половиной — 1,1, четыре метра — 1,15, четыре с половиной — 1,2.

Приблизительный расчет для стандартных помещений

Очень простой вариант расчета. Основывается он на том, что размер отопительных батарей серийного производства практически не отличается. Если высота комнаты составляет 250 см (стандартное значение для большинства жилых помещений), то одна секция радиатора сможет обогреть 1,8 м2 пространства.

Площадь комнаты составляет 14 м2. Для расчета достаточно разделить значение площади на упоминавшиеся ранее 1,8 м2. В результате получается 7,8. Округляем до 8.

Таким образом, чтобы прогреть 14-метровую комнату с 2,5-метровым потолком нужно купить батарею на 8 секций.

Важно! Не используйте этот метод при расчете маломощного агрегата (до 60 Вт). Погрешность будет слишком большой.


Подбор радиаторов отопления по тепловой мощности

Расчет мощности батарей отопления по площади

Содержание

  1. Расчет количества секций радиаторов отопления: разбор 3-х различных подходов + примеры
  2. Расчет по площади помещения
  3. Расчеты в зависимости от объема помещения
  4. Что делать если нужен очень точный расчет?
  5. Как рассчитать количество секций радиаторов
  6. Расчет радиаторов отопления по площади
  7. Как посчитать секции радиатора по объему помещения
  8. Корректировка результатов
  9. Стены и кровля
  10. Климатические факторы
  11. Расчет разных типов радиаторов
  12. Корректировка в зависимости от режима отопительной системы
  13. Зависимость мощности радиаторов от подключения и места расположения
  14. Определение количества радиаторов для однотрубных систем
  15. Расчет батарей отопления на площадь
  16. Кратко о существующих типах радиаторов отопления
  17. Стальные радиаторы
  18. Чугунные радиаторы
  19. Алюминиевые радиаторы
  20. Биметаллические радиаторы отопления
  21. Как рассчитать нужное количество секций радиатора отопления
  22. Самые простые способы расчета
  23. Подробный расчет с учетом особенностей помещения
  24. Калькулятор для точного расчета радиаторов отопления

Расчет количества секций радиаторов отопления: разбор 3-х различных подходов + примеры

Правильный расчет радиаторов отопления — довольно важная задача для каждого домовладельца. Если будет использовано недостаточное количество секций, помещение не прогреется во время зимних холодов, а приобретение и эксплуатация слишком больших радиаторов повлечет неоправданно высокие расходы на отопление. Поэтому при замене старой отопительной системы или монтаже новой необходимо знать как рассчитать радиаторы отопления. Для стандартных помещений можно воспользоваться самыми простыми расчетами, однако иногда возникает необходимость учесть различные нюансы, чтобы получить максимально точный результат.

Расчет по площади помещения

Предварительный расчет можно сделать, ориентируясь на площадь помещения, для которого покупаются радиаторы. Это очень простое вычисление, которое подходит для комнат с низкими потолками (2,40-2,60 м). Согласно строительным нормам для обогрева понадобится 100 Вт тепловой мощности на каждый квадратный метр помещения.

Вычисляем количество тепла, которое понадобится для всей комнаты. Для этого площадь умножаем на 100 Вт, т. е. для комнаты в 20 кв. м. расчетная тепловая мощность составит 2000 Вт (20 кв.м Х 100 Вт) или 2 кВт.

Правильный расчет радиаторов отопления необходим, чтобы гарантировать достаточное количество тепла в доме

Этот результат нужно разделить на теплоотдачу одной секции, указанную производителем. Например, если она равна 170 Вт, то в нашем случае необходимое количество секций радиатора будет составлять:

2000 Вт / 170 Вт = 11,76, т. е. 12, поскольку результат следует округлить до целого числа. Округление обычно осуществляется в сторону увеличения, однако для помещений, в которых теплопотери ниже среднего, например, для кухни, можно округлять в меньшую сторону.

Обязательно следует учесть возможные теплопотери в зависимости от конкретной ситуации. Разумеется, комната с балконом или расположенная в углу здания теряет тепло быстрее. В этом случае следует увеличить значение расчетной тепловой мощности для комнаты на 20%. Примерно на 15-20% стоит повысить расчеты, если планируется скрыть радиаторы за экраном или монтировать их в нишу.

А чтобы вам было удобнее считать, мы сделали для вас этот калькулятор:

Расчеты в зависимости от объема помещения

Более точные данные можно получить, если сделать расчет секций радиаторов отопления с учетом высоты потолка, т. е. по объему помещения. Принцип здесь примерно такой же, как и в предыдущем случае. Сначала вычисляется общая потребность в тепле, затем рассчитывают количество секций радиаторов.

Если радиатор будет скрыт экраном, нужно увеличить потребность помещения в тепловой энергии на 15-20%

Согласно рекомендациям СНИП на обогрев каждого кубического метра жилого помещения в панельном доме необходим 41 Вт тепловой мощности. Умножив площадь комнаты на высоту потолка, получаем общий объем, который умножаем на это нормативное значение. Для квартир с современными стеклопакетами и наружным утеплением понадобится меньше тепла, всего 34 Вт на кубический метр.

Например, рассчитаем необходимое количество тепла для комнаты площадью 20 кв.м. с потолком высотой 3 метра. Объем помещения составит 60 куб.м (20 кв.м. Х 3 м.). Расчетная тепловая мощность в этом случае будет равна 2460 Вт (60 куб.м. Х 41 Вт).

А как рассчитать количество радиаторов отопления? Для этого нужно разделить полученные данные на указанную производителем теплоотдачу одной секции. Если взять, как и в предыдущем примере, 170 Вт, то для комнаты будет нужно: 2460 Вт / 170 Вт = 14,47, т. е. 15 секций радиатора.

Производители стремятся указывать завышенные показатели теплоотдачи своей продукции, предполагая, что температура теплоносителя в системе будет максимальной. В реальных условиях это требование соблюдается редко, поэтому следует ориентироваться на минимальные показатели теплоотдачи одной секции, которые отражены в паспорте изделия. Это сделает расчеты более реалистичными и точными.

Что делать если нужен очень точный расчет?

К сожалению, далеко не каждая квартира может считаться стандартной. Еще в большей степени это относится к частным жилым домам. Возникает вопрос: как рассчитать количество радиаторов отопления с учетом индивидуальных условий их эксплуатации? Для это понадобится учесть множество различных факторов.

При расчете количества секций отопления нужно учесть высоту потолка, количество и размеры окон, наличие утепления стен и т.п.

Особенность этого метода состоит в том, что при вычислении необходимого количества тепла используется ряд коэффициентов, учитывающих особенности конкретного помещения, способные повлиять на его способность сохранять или отдавать тепловую энергию. Формула для расчетов выглядит так:

КТ = 100Вт/кв.м. * П * К1 * К2 * К3 * К4 * К5 * К6 * К7. где

КТ — количество тепла, необходимого для конкретного помещения;
П — площадь комнаты, кв.м.;
К1 — коэффициент, учитывающий остекление оконных проемов:

  • для окон с обычным двойным остеклением — 1,27;
  • для окон с двойным стеклопакетом — 1,0;
  • для окон с тройным стеклопакетом — 0,85.

К2 — коэффициент теплоизоляции стен:

  • низкая степень теплоизоляции — 1,27;
  • хорошая теплоизоляция (кладка в два кирпича или слой утеплителя) — 1,0;
  • высокая степень теплоизоляции — 0,85.

К3 — соотношение площади окон и пола в помещении:

К4 — коэффициент, позволяющий учесть среднюю температуру воздуха в самую холодную неделю года:

  • для -35 градусов — 1,5;
  • для -25 градусов — 1,3;
  • для -20 градусов — 1,1;
  • для -15 градусов — 0,9;
  • для -10 градусов — 0,7.

К5 — корректирует потребность в тепле с учетом количества наружных стен:

К6 — учет типа помещения, которое расположено выше:

  • холодный чердак — 1,0;
  • отапливаемый чердак — 0,9;
  • отапливаемое жилое помещение — 0,8

К7 — коэффициент, учитывающий высоту потолков:

Такой расчет количества радиаторов отопления включает практически все нюансы и базируется на довольно точном определении потребности помещения в тепловой энергии.

Остается полученный результат разделить на значение теплоотдачи одной секции радиатора и полученный результат округлить до целого числа.

Некоторые производители предлагают более простой способ получить ответ. На их сайтах можно найти удобный калькулятор, специально предназначенный для того, чтобы сделать данные вычисления. Чтобы воспользоваться программой, нужно ввести необходимые значения в соответствующие поля, после чего будет выдан точный результат. Или же можно воспользоваться специальным софтом.

Когда получали квартиру не задумывались о том, какие у нас радиаторы и подходят ли они к нашему дому. Но со временем потребовалась замена и тут уже стали подходить с научной точки зрения. Так как мощности старых радиаторов явно не хватало. После всех вычислений пришли к выводу, что 12 достаточно. Но нужно еще учесть вот какой момент — если ТЕЦ плохо выполняет свою работу и батареи чуть теплые, то тут уже никакое количество вас не спасет.

Последняя формула для более точного расчета понравилась, но не понятен коэффициент К2. Как определить степень теплоизоляции стен? Например, стена толщиной 375мм из пеноблока “ГРАС”, это низкая или средняя степень? А если добавить снаружи стены 100мм плотного строительного пенопласта, это будет высокая, или все еще средняя?

Ок, последняя формула добротная вроде бы, окна учитываются, но а если в помещении еще и дверь есть наружная? А если это гараж в котором 3 окна 800*600 + дверь 205*85 + гаражные секционные ворота толщиной 45мм размерами 3000*2400?

Если делать для себя — я бы увеличил кол-во секций и поставил бы регулятор. И вуаля — мы уже значительно в меньшей степени зависим от прихотей ТЭЦ.

Как рассчитать количество секций радиаторов

Для расчета количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.

Методы расчета есть разные. Самые простые дают приблизительные результаты. Тем не менее, их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т.п.). Есть более сложный расчет по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.

Есть еще один метод. Он определяет фактические потери. Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем еще хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т.д. Так что заодно можно выправить положение.

Расчет радиаторов зависит от потерь тепла помещением и номинальной тепловой мощности секций

Расчет радиаторов отопления по площади

Самый простой способ. Посчитать требуемое на обогрев количество тепла, исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:

  • для средней климатической полосы на отопление 1м 2 жилого помещения требуется 60-100Вт;
  • для областей выше 60 о требуется 150-200Вт.

Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находятся в средней климатической полосе, для отопления площади 16м 2. потребуется 1600Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60Вт.

Расчет радиаторов отопления можно сделать по нормам СНиП

Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключен к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?»

Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определенное количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.

Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1600Вт. Пусть мощность одной секции 170Вт. Получается 1600/170=9,411шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.

Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и еще целый ряд факторов не учитывается. Так что расчет количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.

Как посчитать секции радиатора по объему помещения

При таком расчете учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объем помещения, а затем по нормам узнаем, сколько нужно тепла на его обогрев:

  • в панельном доме на обогрев кубометра воздуха требуется 41Вт;
  • в кирпичном доме на м 3 — 34Вт.

Обогревать нужно весь объем воздуха в помещении потому правильнее считать количество радиаторов по объему

Рассчитаем все для того же помещения площадью 16м 2 и сравним результаты. Пусть высота потолков 2,7м. Объем: 16*2,7=43,2м 3 .

Дальше посчитаем для вариантов в панельном и кирпичном доме:

  • В панельном доме. Требуемое на отопление тепло 43,2м 3 *41В=1771,2Вт. Если брать все те же секции мощностью 170Вт, получаем: 1771Вт/170Вт=10,418шт (11шт).
  • В кирпичном доме. Тепла нужно 43,2м 3 *34Вт=1468,8Вт. Считаем радиаторы: 1468,8Вт/170Вт=8,64шт (9шт).

Как видно, разница получается довольно большая: 11шт и 9шт. Причем при расчете по площади получили среднее значение (если округлять в ту же сторону) — 10шт.

Корректировка результатов

Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т. п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.

Количество радиаторов зависит от величины потерь тепла

На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:

  • соотношение площади окна к площади пола:
    • 10% — 0,8
    • 20% — 0,9
    • 30% — 1,0
    • 40% — 1,1
    • 50% — 1,2
  • остекление:
    • трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
    • обычный двухкамерный стеклопакет — 1,0
    • обычные двойные рамы — 1,27.

Стены и кровля

Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.

  • кирпичные стены толщиной в два кирпича считаются нормой — 1,0
  • недостаточная (отсутствует) — 1,27
  • хорошая — 0,8

Наличие наружных стен:

  • внутреннее помещение — без потерь, коэффициент 1,0
  • одна — 1,1
  • две — 1,2
  • три — 1,3

На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).

Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора

Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.

Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.

Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.

Климатические факторы

Можно внести корректировки в зависимости от средних температур зимой:

Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.

Расчет разных типов радиаторов

Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчетом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1л/мин примерно равен мощности в 1кВт (1000Вт).

Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя

Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.

Осевое расстояние определяют между центрами отверстий для теплоносителя

Но если просто пока прикидываете возможные варианты, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчета количества секций биметаллических радиаторов от расчета алюминиевых, стальных или чугунных ничем не отличается. Разной может быть только тепловая мощность одной секции.

Чтобы считать было проще, есть усредненные данные, по которым можно ориентироваться. Для одной секции радиатора с осевым расстоянием 50см приняты такие значения мощностей:

  • алюминиевые — 190Вт
  • биметаллические — 185Вт
  • чугунные — 145Вт.

Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведем самый простой расчет секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.

При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50см) принимается, что одна секция может обогреть 1,8м 2 площади. Тогда на помещение 16м 2 нужно: 16м 2 /1,8м 2 =8,88шт. Округляем — нужны 9 секций.

Аналогично считаем для чугунные или стальные баратери. Нужны только нормы:

  • биметаллический радиатор — 1,8м 2
  • алюминиевый — 1,9-2,0м 2
  • чугунный — 1,4-1,5м 2 .

Это данные для секций с межосевым расстоянием 50см. Сегодня же в продаже есть модели с самой разной высоты: от 60см до 20см и даже еще ниже. Модели 20см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придется вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.

Расчет чугунных радиаторов отопления. Считать может по площади или объему помещения

Для наглядности сделаем расчет алюминиевых радиаторов по площади. Помещение то же: 16м 2. Считаем количество секций стандартного размера: 16м 2 /2м 2 =8шт. Но использовать хотим маломерные секции высотой 40см. Находим отношение радиаторов выбранного размера к стандартным: 50см/40см=1,25. И теперь корректируем количество: 8шт*1,25=10шт.

Корректировка в зависимости от режима отопительной системы

Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90 о С, в обратке — 70 о С (обозначается 90/70) в помещении при этом должно быть 20 о С. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчет откорректировать.

Для учета режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.

Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора

Чтобы было понятнее произведем расчет чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50см). Помещение то же: 16м 2. Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5м 2. Потому нам потребуется 16м 2 /1,5м 2 =10,6шт. Округляем — 11шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдем температурный напор для каждой из систем:

  • высокотемпературная 90/70/20- (90+70)/2-20=60 о С;
  • низкотемпературный 55/45/20 — (55+45)/2-20=30 о С.

То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16м 2 требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.

При таком расчете можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20 о С а, например, 25 о С просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчет все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55 о С. Теперь находим соотношение 60 о С/55 о С=1,1. Чтобы обеспечить температуру в 25 о С нужно 11шт*1,1=12,1шт.

Зависимость мощности радиаторов от подключения и места расположения

Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.

Потери тепла на радиаторах в зависимости от подключения

Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.

Количество тепла зависит и от установки

Количество тепла зависит и от места установки

Определение количества радиаторов для однотрубных систем

Есть еще один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления. когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.

В однотрубной системе вода на каждый радиатор поступает все более холодная

Поясним на примере. На схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остается по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15кВт-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8шт, будет на 20% больше — 9 или 10шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую. Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую.

В однотрубных системах нужно в расположенных дальше по ветке радиаторах добавлять секции

Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.

Приблизительный расчет количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.

Расчет батарей отопления на площадь

Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная. правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.

Несмотря на современное разнообразие систем отопления различных типов, лидером по по пулярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто. батареи стоят под окнами и обеспечиваю т т ребуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты. основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее. можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.

Расчет батарей отопления на площадь

Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов .

Кратко о существующих типах радиаторов отопления

Современный ассортимент радиаторов, представленных в продаже, включает следующие их виды:

  • Стальные радиаторы панельной или трубчатой конструкции.
  • Чугунные батареи.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.
Стальные радиаторы

Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.

Стальные радиаторы отопления имеют немало недостатков

Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь. Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.

В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать. исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.

Чугунные радиаторы

Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно .

Знакомый всем с детских лет чугунный радиатор МС-140-500

Возможно, такие батареи МС -140 — 500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.

Современные чугунные батареи отопления

В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.

При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:

  • Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
  • Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
  • Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу. Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.

Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.

Алюминиевые радиаторы

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.

При выборе алюминиевых радиаторов нужно учитывать некоторые важные нюансы

Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя ( емкость – не более 500 мл).

Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.

Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.

Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.

Биметаллические радиаторы отопления

Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.

Строение биметаллического радиатора отопления

Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз. 2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.

Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.

Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.

Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.

Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.

Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:

  • ТС – трубчатые стальные ;
  • Чг – чугунные ;
  • Ал – алюминиевые обычные ;
  • АА – алюминиевые анодированные ;
  • БМ – биметаллические.

Как рассчитать нужное количество секций радиатора отопления

Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.

Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.

Самые простые способы расчета

Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный ме тр пл ощади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.

Q – требуемая теплоотдача от радиаторов отопления.

S – площадь обогреваемого помещения.

Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет :

N – рассчитываемое количество секций.

Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.

Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.

Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2, 7 м ) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи. исходя из объема помещения. Для этого применяется усредненный показатель – 41 В т т епловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.

где h – высота потолка над уровнем пола.

Дальнейший расчет – ничем не отличается от представленного выше.

Подробный расчет с учетом особенностей помещения

А теперь перейдем к более серьезным расчетам. Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем. подобные нюансы могут иметь весьма важное значение.

Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:

Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по по рядку:

А – количество внешних стен в помещении.

Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А :

В – ориентация помещения по сторонам света.

Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».

Прогреваемость помещений во многом зависит от их расположения относительно сторон света

Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.

Отсюда – значения коэффициента В.

  • Комната выходит на север или восток – В = 1, 1
  • Южная или западная комнаты – В = 1, то есть, может не учитываться.

С – коэффициент, учитывающий степень утепленности стен.

Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:

  • Средний уровень — стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1, 0
  • Внешние стены не утеплены – С = 1, 27
  • Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.

D – особенности климатических условий региона.

Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку » — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.

Е – коэффициент высоты потолков помещения.

Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е :

F – коэффициент, учитывающий тип помещения, расположенного выше

Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:

  • холодный чердак или неотапливаемое помещение – F= 1, 0
  • утепленный чердак (в том числе – и утепленная кровля) – F= 0, 9
  • отапливаемое помещение – F= 0, 8

G – коэффициент учета типа установленных окон.

Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G :

  • обычные деревянные рамы с двойным остеклением – G= 1, 27
  • окна оснащены однокамерным стеклопакетом (2 стекла) – G= 1, 0
  • однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0, 85

Н – коэффицие нт пл ощади остекления помещения.

Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н :

I – коэффициент, учитывающий схему подключения радиаторов.

От того, как подключены радиаторы к трубам подачи и обратки. зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:

Схемы врезки радиаторов в контур отопления

  • а – диагональное подключение, подача сверху, обратка снизу – I = 1, 0
  • б – одностороннее подключение, подача сверху, обратка снизу – I = 1, 03
  • в – двустороннее подключение, и подача, и обратка снизу – I = 1, 13
  • г – диагональное подключение, подача снизу, обратка сверху – I = 1, 25
  • д – одностороннее подключение, подача снизу, обратка сверху – I = 1, 28
  • е – одностороннее нижнее подключение обратки и подачи – I = 1, 28

J – коэффициент, учитывающий степень открытости установленных радиаторов.

Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J :

На теплоотдачу батарей влияет место и способ их установки в помещении

а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0, 9

б – радиатор прикрыт сверху подоконником или полкой – J= 1, 0

в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1, 07

г – радиатор сверху прикрыт подоконником, а с фронтальной стороны — части чно прикрыт декоративным кожухом – J= 1, 12

д – радиатор полностью прикрыт декоративным кожухом – J= 1, 2

⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰

Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.

После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.

Наверняка. многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.

Калькулятор для точного расчета радиаторов отопления

Автор публикации, и он же – составитель калькулятора, надеется, что посетитель нашего портала получил полноценную информацию и хорошее подспорье для самостоятельного расчета .

Источники: http://aqua-rmnt.com/otoplenie/raschety/raschet-radiatorov-otopleniya.html, http://teplowood.ru/raschet-radiatorov-otopleniya.html, http://otoplenie-expert.com/radiatory-otopleniya/raschet-batarej-otopleniya-na-ploshhad.html

 

 

Как вам статья?

Расчет двухтрубной установки с прямой обраткой

Расчет двухтрубной установки с прямой обраткой

При установке дома на рисунке радиаторы размещены в соответствии с требуемой мощностью в каждой из комнат отапливаемых и присоединение их к сети трубопроводов производится, перечисляя участки через самый удаленный радиатор, как показано на плоскости рисунка ниже.

Как упоминалось ранее, для расчетных условий максимальная скорость воды 1 м/с и перепад давления на метр 30 мм вод.ст. установлены.

Рассчитываются расходы секций и назначаются соответствующие диаметры, при этом проверяется соответствие скорости воды и перепада давления R принятым расчетным условиям. Так, например, для участка 1-3, передающего 883 Ккал/ч, читаем, что для Многослойной трубы АИС 16*2 мм перепад давления 2,02 мм.в. и скорость 0,11 м/с, параметры вполне приемлемые.

Таблица 6.1.2.3.1.1. Показывает распределение теплотворной способности, необходимой в каждой секции. Так как это установка с прямой обраткой, размеры подающей и обратной труб по сечениям идентичны, так как потоки в обеих совпадают. При проектировании установки с обратной обраткой необходимо составить две таблицы сечений, одну для нагнетания, а другую для обратки, так как потоки в этом случае будут обратными.

Рисунок 6.1.2.3.1.1. Распределение двухтрубное с прямой обраткой

Для получения этих значений скорости и потери нагрузки достаточно посмотреть соответствующие таблицы теплового скачка и средней температуры воды, теплового скачка 20ºС и среднего температура воды 70ºC, с которой работает установка, и подобрать скорость циркулирующего потока и выбранный диаметр (см. таблицы потерь давления в многослойных трубах АИС, прилагаемые в приложениях к техническому руководству АИС).

Таблица 6.1.2.3.1.1. Выбор диаметров многотрубных труб AIS

Умножая единичную потерю напора или потерю напора на метр (R) на длину (L) секции, получают потери напора (ΔP CT), соответствующие трубе в этой секции.

Потери напора из-за принадлежностей рассчитываются любым из вышеуказанных методов. В этом случае используется присвоение 20% процента к падению давления из-за трубы. Суммируя перепад давления трубы ΔP CT и перепада давления фитинга ΔPCAC, получаем общее падение давления ΔPC секции.

Для получения наиболее неблагоприятного контура в сети трубопроводов начинаем от каждого радиатора и прибавляем перепад давления участков, которые ведут нас к котлу или производственному оборудованию. Этот перепад давления называется ΔP ORG (мм.с.а)

Потери давления умножаются на два, так как при прямой двухтрубной установке подающая и обратная трубы имеют одинаковый расход и одинаковые потери давления, так что диаметры того и другого абсолютно одинаковы.

Прокомментированная разработка расчета вместе с выбранными диаметрами в каждой из секций установки подробно представлена ​​в таблице 6.1.2.3.1.2.

Как показано в нем, наиболее неблагоприятным контуром является тот, который идет от котла к радиатору в спальне 3.

Зная мощность и общий расход установки, можно рассчитать циркуляционный насос, если он не заложен в самом котле. Этот насос должен быть способен подавать поток на всю установку и преодолевать перепады давления самого неблагоприятного контура. Потери напора наиболее неблагоприятного контура будут суммой потерь в арматуре, радиаторах, котлах и т. п., помимо потерь, присущих трубопроводной распределительной сети.

Таблица 6.1.2.3.1.2. Определение потерь давления в установке

Отсюда следует, что потери напора на трение в напорной и обратной трубах котлорадиаторного контура (спальня 3) вместе с потерями на арматуре этого контура составляют:

ΔP ORG = 2 x (ΔP C15-16 + ΔP C13-15 + ΔP C11-13 + ΔP C9-11 + ΔP C8-9 + ΔP C6-8) = 2 x 278,6 = 557,2 мм. кв.

Перепад давления, который должен преодолеть насос, составит:

ΔP PUMP = ΔP ORG + ΔP CAL, где ΔP CAL определяется производителем насоса. Итак,

ΔP PUMP = 557,2 мм ус. (без учета ΔP CAL).

Наконец, нам нужно знать расход, который должен обеспечить насос. Зная мощность установленного котла, необходимый для установки расход можно рассчитать по следующему выражению:

Q = P CAL / 3600 x ΔT КОНТУР

где:

Q: расход (л/с).

P CAL: мощность котла (Ккал/ч).

ΔT КОНТУР: тепловой скачок отопительного контура (ºC).

Для котла с мощностью, необходимой для удовлетворения общей потребности в тепле для отопления дома (5665 ккал/ч), и с учетом на 12-15% больше (приблизительно 800 ккал/ч), для компенсации тепловых потерь, которые могут находиться в трубопроводной распределительной сети, если учитывается тепловой скачок контура 20ºC, он должен быть:

Q = P CAL / 3600 x ΔT КОНТУР = (5665+ 800) / 3600×20 = 0,09 л/с

Требуемый насос должен иметь описанные характеристики и обеспечивать расход 0,09литров в секунду при избыточном давлении 0,56 метра водяного столба.

На следующих страницах различные материалы подробно описаны для различных многотрубных систем, необходимых для проектирования и выполнения установки.

Детали разбивки с многослойной системой ММ (мультимордаза) из латуни или ППСУ:

а) Многослойная труба PERT/AL/PERT с предизоляцией: 16*2,00мм и 20*2,25мм.

б) 20*2,25-3/4” подвижный многокулачковый фитинг.

c) Кривая соединения радиатора 16 * 2,00 или колено соединения радиатора 16 * 2,00.

г) Тройник многокулачковый редукционный из латуни или ППСУ 20*2,25-16*2,00-16*2,00.

д) Тройник равнобедренный многокулачковый из латуни или ППСУ 16*2,00.

f) Центральное отопление/охлаждение 6 зон, 230 В.

g) Комнатный термостат отопления, 230 В.

Как и в случае с сантехническими установками, если установщика заботит скорость сборки, можно использовать систему PROtec Multitube, которая является самой быстрой и безопасной в сочетании с многослойными трубами Multitube, не требует инструментов, а также прекрасно утопленный из-за его очень компактной конструкции.

Список материалов для установки прямого обратного отопления с многотрубной системой PROtec (аксессуары с латунным корпусом или PPSU):

а) многослойная труба PERT / AL / PERT с предварительно 20*2,25 мм.

б) Штуцер передвижной 20*2,25-3/4”.

c) Кривая соединения радиатора 16 * 2,00 или колено соединения радиатора 16 * 2,00.

г) Тройник редукционный из латуни или ППСУ 20*2,25-16*2,00-16*2,00.

д) Тройник равнополочный из латуни или ППСУ 16*2,00.

f) Центральное отопление/охлаждение 6 зон, 230 В.

g) Комнатный термостат отопления, 230 В.

 

 

Как рассчитать количество секций радиатора. Как рассчитать количество секций радиатора на комнату

Каждый владелец дома с системой отопления сталкивается с важными вопросами. Какой радиатор выбрать? Как рассчитать количество секций радиатора? Если дом для вас строят профессиональные сотрудники, они помогут правильно выполнить расчеты, чтобы размещение отопительных батарей в здании было рациональным. Однако эту процедуру можно провести самостоятельно. Необходимые для этого формулы находятся в статье ниже.

Типы радиаторов

На сегодняшний день существуют такие виды батарей для отопления: биметаллические, стальные, алюминиевые и чугунные. Также радиаторы делятся на панельные, секционные, конвекторные, трубчатые, а также дизайнерские радиаторы. Их выбор зависит от теплоносителя, технических возможностей системы отопления и финансовых возможностей владельца дома. Как рассчитать количество секций радиатора на комнату? Это не зависит от типа батареи отопления. При этом учитывается только один показатель: мощность радиатора.

Методика расчета

Чтобы система отопления в помещении работала эффективно, а зимой было тепло и комфортно, необходимо тщательно рассчитать количество секций радиатора. Для этого используются следующие методики расчета:

  • Стандарт – исходит из СНиП, согласно которому на отопление 1м 2 потребуется мощность 100 Вт. Расчет ведется по формуле: S x 100/P, где P – мощность разделения, S – площадь выбранного помещения.
  • Ориентировочно – для отопления 1,8 м 2 квартир с потолками высотой 2,5 м нужна одна радиаторная секция.
  • Объемный метод – тепловая мощность 41 Вт принимается на 1 м 3 . Учитываются ширина, высота и длина помещения.

Сколько радиаторов потребуется на весь дом?

Как рассчитать количество секций радиатора на квартиру или дом? Расчет производится для каждого помещения отдельно. По нормативу тепловая мощность на 1м 3 Объем помещения, имеющего одну дверь, окно и наружную стену, считается равным 41 ватту.

Если дом или квартира «холодные», с тонкими стенами, имеют много окон, чердак в доме не утеплен, а квартира находится на первом или последнем этаже, то для их обогрева необходимо 47 Вт на 1 м 3 , а не 41 Вт. Для дома, построенного из современных материалов с использованием различных утеплителей для стен, полов, потолков, в котором установлены металлопластиковые окна. можно взять 30 ватт.

Для замены чугунных радиаторов есть самый простой способ расчета: нужно их количество умножить на 150 Вт, полученное число – мощность новых приборов. Покупая алюминиевые или биметаллические батареи на замену, расчет ведется в соотношении: одна грань чугуна на одну алюминиевую.

Правила расчета количества ответвлений

Как рассчитать количество секций радиаторов на комнату? Для этого необходимо соблюдать следующие правила:

  • Увеличение мощности радиатора происходит: если помещение фронтальное и имеет одно окно – на 20%; с двумя окнами – на 30%; окна, выходящие на север, также требуют увеличения на 10%; установка батареи под окном – 5%; закрытие отопительного прибора декоративным экраном – на 15%.
  • Мощность, необходимая для обогрева, может быть рассчитана путем умножения площади помещения (в м 2 ) на 100 Вт.

Насадки для установки радиаторов

В паспорте на продукцию производитель указывает удельную мощность, что дает возможность рассчитать должное количество секций. Не забывайте, что на теплоотдачу влияет мощность отдельной секции, а не размер радиатора. Поэтому размещение и установка в комнате нескольких небольших устройств эффективнее, чем установка одного большого. Поступающее тепло с разных сторон будет прогревать его равномерно.

Расчет количества ветвей биметаллических батарей

Как достоверно рассчитать количество секций биметаллических радиаторов на комнату? Для этого потребуются следующие исходные данные:

  • Размеры помещения и количество окон в нем.
  • Расположение определенной комнаты.
  • Наличие незакрытых проемов, арок и дверей.
  • Тепловая мощность каждой секции, указанная производителем в паспорте.

Этапы расчета

Как рассчитать количество секций радиатора, если все необходимые данные записаны? Для этого определяют площадь, рассчитав в метрах ширину и высоту помещения. По формуле S = L × W рассчитайте площади стыков смежных помещений, если в них есть незакрытые проемы или арки.

Далее рассчитайте общую тепловую мощность батарей (P = S × 100), применяя мощность 100 Вт для обогрева одного м 2 . Затем вычисляют правильное количество секций (n=P/Pc) путем деления общей теплоотдачи на теплоотдачу одной секции, указанную в паспорте.

В зависимости от расположения помещения расчет необходимого количества ветвей биметаллического устройства производится с учетом поправочных коэффициентов: 1,3 – для угловых; использовать коэффициент 1,1 – для первого и последнего этажей; 1,2 – используется для двух окон; 1,5 – три и более окна.

Пример:

Расчет батарейных секций в торцевом помещении, расположенном на первом этаже дома и имеющем 2 окна. Размеры комнаты 5 х 5 м. Теплоотдача одной секции 190 Вт.

  • Рассчитаем площадь помещения: S = 5 х 5 = 25 м 2 .
  • Рассчитываем тепловую мощность в общем виде: P = 25 х 100 = 2500 Вт.
  • Рассчитываем необходимые сечения: n = 2500/190 = 13,6. Округляем, получаем 14. Учитываем поправочные коэффициенты n = 14 х 1,3 х 1,2 х 1,1 = 24,024.
  • Секции разбивают на две батареи и устанавливают их под окнами.

Надеемся, что информация, изложенная в статье, подскажет, как рассчитать количество секций радиатора на дом. Для этого воспользуйтесь формулами и произведите относительно точный расчет. Важно правильно подобрать мощность секции, подходящую для вашей системы отопления.

Если самостоятельно рассчитать необходимое количество батарей для жилья вам не по карману, лучше всего обратиться за помощью к специалистам. Они произведут грамотный расчет с учетом всех факторов, влияющих на эффективность установленных обогревателей, что обеспечит тепло в доме в холодный период.

Обогрейте свой дом с помощью механической ветряной мельницы

Это веб-сайт, работающий на солнечной энергии, что означает, что он иногда отключается. Солнечная энергия

При правильных условиях механический ветряк с увеличенной тормозной системой представляет собой дешевую, эффективную и устойчивую систему отопления .

Изображение: Иллюстрация Роны Бинай для журнала Low-tech.

Производство возобновляемой энергии почти полностью направлено на производство электроэнергии. Однако мы используем больше энергии в виде тепла, которое солнечные батареи и ветряные турбины могут производить только косвенно и относительно неэффективно. Солнечный тепловой коллектор пропускает преобразование в электричество и напрямую и более эффективно поставляет возобновляемую тепловую энергию.

Гораздо менее известно, что механический ветряк может делать то же самое в ветреную погоду — за счет слишком большой тормозной системы ветряк может генерировать много прямого тепла за счет трения. Механический ветряк также можно подключить к механическому тепловому насосу, что может быть дешевле, чем использование газового котла или электрического теплового насоса, приводимого в действие ветряной турбиной.

Тепло по сравнению с электричеством

В глобальном масштабе спрос на тепловую энергию соответствует одной трети предложения первичной энергии, а спрос на электроэнергию составляет только одну пятую. 1 В умеренном или холодном климате доля тепловой энергии еще выше. Например, в Великобритании тепло составляет почти половину общего потребления энергии. 2 Если рассматривать только домохозяйства, то тепловая энергия для отопления помещений и нагрева воды в умеренном и холодном климате может составлять 60-80% от общего бытового спроса на энергию. 3

Несмотря на это, возобновляемые источники энергии играют незначительную роль в производстве тепла. Основным исключением является традиционное использование биомассы для приготовления пищи и отопления, но в «развитом» мире даже биомасса часто используется для производства электроэнергии вместо тепла. Использование прямого солнечного тепла и геотермального тепла обеспечивает менее 1% и 0,2% мирового спроса на тепло соответственно 4 5 . В то время как на возобновляемые источники энергии приходится более 20% мирового спроса на электроэнергию (в основном гидроэнергетика), на них приходится только 10% глобального спроса на тепло (в основном биомасса). 5 6

Прямое и непрямое производство тепла

Электричество, производимое возобновляемыми источниками энергии, может быть преобразовано и преобразуется в тепло косвенным путем. Например, ветряная турбина преобразует энергию вращения в электричество с помощью своего электрического генератора, а затем это электричество можно преобразовать в тепло с помощью электрического нагревателя, электрического котла или электрического теплового насоса. В результате получается тепло, вырабатываемое энергией ветра.

В частности, многие правительства и организации продвигают электрический тепловой насос как устойчивое решение для производства тепла из возобновляемых источников. Однако солнечную и ветровую энергию можно использовать и напрямую, без предварительного преобразования их в электричество, и, конечно же, то же самое относится и к биомассе. Прямое производство тепла дешевле, может быть более энергоэффективным и более устойчивым, чем косвенное производство тепла.

Изображение: прототипы ветряков, производящих тепло, построенные Эсрой Л. Соренсен в 1974. Фото Клауса Нюбро. Источник: 13

Прямая альтернатива солнечной фотоэлектрической энергии – солнечная тепловая энергия, технология, появившаяся в девятнадцатом веке вслед за более дешевыми технологиями производства стекла и зеркал. Солнечную тепловую энергию можно использовать для нагрева воды, отопления помещений или промышленных процессов, и это в 2-3 раза более энергоэффективно по сравнению с непрямым путем, включающим преобразование электроэнергии.

Почти никто не знает, что ветряк может производить тепло напрямую

Прямая альтернатива ветряной энергии, известная всем, — это старомодный ветряк, которому не менее 2000 лет. Он передавал энергию вращения от своего ветряного ротора непосредственно на ось машины, например, для распиловки дерева или измельчения зерна. Этот старомодный подход остается актуальным, в том числе в сочетании с новыми технологиями, потому что он был бы более энергоэффективным по сравнению с преобразованием энергии сначала в электричество, а затем обратно в энергию вращения.

Однако старомодный ветряк может производить не только механическую, но и тепловую энергию. Проблема в том, что об этом почти никто не знает. Даже Международное энергетическое агентство не упоминает прямое преобразование ветра в тепло, когда представляет все возможные варианты производства возобновляемого тепла.

1

Ветряная мельница с водяным тормозом

Ветряная мельница оригинального типа преобразует энергию вращения непосредственно в тепло путем создания трения в воде с использованием так называемого «водяного тормоза» или «машины Джоуля». Теплогенератор, основанный на этом принципе, представляет собой ветряной смеситель или крыльчатку, установленную в изолированном баке, наполненном водой. Благодаря трению между молекулами воды механическая энергия преобразуется в тепловую. Нагретую воду можно закачивать в здание для обогрева или стирки, и та же концепция может быть применена к производственным процессам на заводе, требующим относительно низких температур. 7 8 9

Изображение; система отопления на основе водяного тормозного ветряка. Источник: 8

Изначально машина Джоуля задумывалась как измерительный прибор. Джеймс Джоуль построил его в 1840-х годах для своего знаменитого измерения механического эквивалента тепла: одна калория равна количеству энергии, необходимой для повышения температуры 1 кубического сантиметра воды на 1 градус Цельсия. 10

Теплогенератор, основанный на этом принципе, представляет собой ветряной смеситель или крыльчатку, установленную в изолированном баке, наполненном водой.

Самое захватывающее в водяных тормозных мельницах то, что гипотетически они могли быть построены сотни или даже тысячи лет назад. Для них требуются простые материалы: дерево и/или металл. Но хотя мы не можем исключить их использование в доиндустриальные времена, первое упоминание о ветряных мельницах, производящих тепло, относится к 1970-м годам, когда датчане начали их строить после первого нефтяного кризиса.

Изображение: теплогенератор теплового ветряка. Источник:

8

В то время Дания почти полностью зависела от импорта нефти для отопления, что оставило многие домохозяйства в холоде, когда подача нефти была нарушена. Поскольку у датчан уже была сильная культура изготовления небольших ветряных турбин, вырабатывающих электроэнергию на фермах, они начали строить ветряные мельницы для обогрева своих домов. Некоторые избрали непрямой путь, преобразуя электроэнергию, вырабатываемую ветром, в тепло с помощью электронагревательных приборов. Другие, однако, разработали механические ветряные мельницы, которые напрямую производили тепло.

Дешевле построить

Прямой подход к производству тепла значительно дешевле и устойчивее, чем преобразование энергии ветра или солнца в тепло с помощью электрических нагревательных устройств. На это есть две причины.

Во-первых, и это самое главное, механические ветряные мельницы менее сложны, что делает их более доступными и менее ресурсоемкими в изготовлении, а также увеличивает срок их службы.

В ветряной мельнице с водяным тормозом можно исключить электрический генератор, силовые преобразователи, трансформатор и редуктор, а из-за экономии веса ветряная мельница должна быть менее прочной. Машина Джоуля имеет меньший вес, меньшие размеры и более низкую стоимость, чем электрический генератор. 11 Немаловажно и то, что стоимость аккумулирования тепла на 60-70% ниже по сравнению с аккумуляторными батареями или использованием резервных тепловых электростанций. 2

Ветряная мельница с водяным тормозом, построенная в Институте сельскохозяйственной техники в 1974 году. Фото Рикарда Матцена. Источник: 13

Во-вторых, преобразование энергии ветра или солнца непосредственно в тепло (или механическую энергию) может быть более энергоэффективным, чем при преобразовании электричества. Это означает, что для подачи определенного количества тепла требуется меньше преобразователей солнечной и ветровой энергии и, следовательно, меньше места и ресурсов. Короче говоря, ветряная мельница, вырабатывающая тепло, устраняет основные недостатки энергии ветра: ее низкая удельная мощность и ее прерывистость.

Механические ветряные мельницы менее сложны, что делает их более доступными и менее ресурсоемкими в строительстве, а также увеличивает срок их службы

Кроме того, прямое производство тепла значительно повышает экономичность и надежность небольших типов ветряных мельниц. Испытания показали, что небольшие ветряные турбины, производящие электроэнергию, очень неэффективны и не всегда производят столько энергии, сколько необходимо для их производства. 12 Однако использование аналогичных моделей для производства тепла снижает потребление энергии и затраты, увеличивает срок службы и повышает эффективность.

Сколько тепла может производить ветряная мельница?

Датская ветряная мельница с водяным тормозом 1970-х годов была относительно небольшой машиной с диаметром ротора около 6 метров и высотой около 12 метров. Более крупные ветряные электростанции, производящие тепло, были построены в 1980-х годах. Чаще всего используются простые деревянные лопасти. Всего задокументировано не менее дюжины различных моделей, как самодельных, так и коммерческих. 7 Многие из них были построены из использованных автомобильных деталей и других выброшенных материалов. 13

Изображение: ветряк Calorius, производящий до 4 кВт тепла. Изображение предоставлено Nordic Folkecenter в Дании.

Один из первых датских тепловых ветряков меньшего размера прошел официальные испытания. Calorius type 37 с ротором диаметром 5 метров и высотой 9 метров производил 3,5 киловатта тепла при скорости ветра 11 м/с (сильный ветер, 6 баллов по шкале Бофорта). Это сравнимо с тепловой мощностью самых маленьких электрических котлов для отопления помещений. с 19С 93 по 2000 год датская фирма Westrup построила в общей сложности 34 водяных тормозных ветряка на основе этой конструкции, а к 2012 году в эксплуатации оставалось еще 17. 7

Более крупный ветряк с водяным тормозом (диаметр ротора 7,5 м, башня 17 м) был построен в 1982 году братьями Сванеборг и отапливал дом одного из них (другой брат выбрал ветряк и электрическое отопление). система). Ветряк, имевший три лопасти из стеклопластика, по неофициальным замерам производил до 8 киловатт тепла — сравнимо с тепловой мощностью электрического котла для скромного дома. 7

В конце 1980-х годов Кнуд Берту построил самую сложную на сегодняшний день ветряную электростанцию: LO-FA. В других моделях выделение тепла происходило в нижней части башни — от вершины ветряка к низу шла шахта, где устанавливался водяной тормоз. Однако в ветряной мельнице LO-FA все механические части для преобразования энергии были перемещены на вершину башни. Нижние 10 метров 20-метровой башни были заполнены 15 тоннами воды в изолированном резервуаре. Следовательно, горячую воду можно было буквально выкачивать из ветряной мельницы. 7

Башня ветряной мельницы LO-FA была заполнена 15 тоннами воды в изолированном баке: горячую воду можно было буквально откачивать из ветряной мельницы.

LO-FA также был самым большим из теплогенерирующих ветряков с диаметром ротора 12 метров. Его тепловая мощность оценивалась в 90 киловатт при скорости ветра 14 м/с (по шкале Бофорта 7). Этот результат кажется чрезмерным по сравнению с другими ветряками, производящими тепло, но выход энергии ветряной мельницы увеличивается более чем пропорционально диаметру ротора и скорости ветра. Кроме того, фрикционной жидкостью в водяном тормозе была не вода, а гидравлическое масло, которое можно нагревать до гораздо более высоких температур. Затем масло передало свое тепло резервуару для воды в градирне. 7

Возобновление интереса

Интерес к ветряным мельницам, вырабатывающим тепло, вновь проявился несколько лет назад, хотя на данный момент он касается лишь нескольких научных исследований. В статье 2011 года немецкие и британские ученые пишут, что «небольшие и отдаленные домохозяйства в северных регионах нуждаются в тепловой энергии, а не в электроэнергии, и поэтому в таких местах следует строить ветряные турбины для выработки тепловой энергии». 8

Исследователи объясняют и иллюстрируют работу ветряной мельницы с водяным тормозом и рассчитывают оптимальную производительность технологии. Было обнаружено, что характеристики крутящего момента ветрового ротора и крыльчатки должны быть тщательно согласованы для достижения максимальной эффективности. Например, для очень маленького ветряка Савониуса, который ученые использовали в качестве модели (диаметр ротора 0,5 м, башня 2 м), было рассчитано, что диаметр крыльчатки должен составлять 0,388 м.

Затем исследователи провели моделирование в течение пятидесяти часов, чтобы рассчитать тепловую мощность ветряной мельницы. Хотя Савониус — тихоходный ветряк, плохо приспособленный для выработки электроэнергии, он оказался отличным производителем тепла: небольшой ветряк производил до 1 кВт тепловой мощности (при скорости ветра 15 м/с). 8 Исследование, проведенное в 2013 году с использованием прототипа, дало аналогичные результаты и рассчитало, что эффективность системы составляет 91%. 9 Это сравнимо с эффективностью ветряной турбины, нагревающей воду с помощью электричества.

Исследование, проведенное в 2013 году с использованием прототипа, показало, что эффективность системы составляет 91 %

Очевидно, не всегда штормовая погода, а значит, средняя скорость ветра не менее важна. В исследовании 2015 года исследуются возможности использования ветряных электростанций для выработки тепла в Литве, прибалтийской стране с холодным климатом, зависящей от импорта дорогого топлива. 14 Исследователи подсчитали, что при средней скорости ветра в стране (4 м/с по шкале Бофорта 3) для выработки одного киловатта тепла требуется ветряк с диаметром ротора 8,2 метра.

Теплогенерирующий ветряк с водяным тормозом, размещенный внутри нижней части башни. Мельница была построена Йоргеном Андерсеном в 1975 году и стояла в Серритслеве. Фото Клауса Нибро. Источник: 13

Они сравнивают это с потребностью в тепловой энергии энергоэффективного нового здания площадью 120 м2, отапливаемого по современным стандартам комфорта, и приходят к выводу, что тепловая ветряная установка может покрыть от 40 до 75% годовой потребности в отоплении ( в зависимости от класса энергоэффективности сооружения). 14

Аккумулятор тепла

Средняя скорость ветра также не гарантируется, а это означает, что ветряк, производящий тепло, требует аккумулирования тепла, иначе он будет обеспечивать обогрев только при ветре. Один кубический метр нагретой воды (1 тонна, 1000 литров) может удерживать до 90 кВтч тепла, что составляет примерно один-два дня подачи для семьи из четырех человек.

Та же ветряная мельница, что и на фото выше, вид снизу. Источник: 7

Таким образом, чтобы обеспечить достаточное хранилище для моста в течение недели без ветра, требуется до 7 тонн воды, что соответствует объему 7 кубических метров плюс изоляция. Однако следует также учитывать потери энергии (саморазряд), и это объясняет, почему датские ветряки, производящие тепло, обычно имели накопительный бак, вмещающий от десяти до двадцати тысяч литров воды. 13

Ветряная мельница, производящая тепло, также может быть объединена с солнечным котлом, так что и солнце, и ветер могут давать прямую тепловую энергию, используя меньший резервуар для воды.

Тепловой ветряк также можно комбинировать с солнечным котлом, чтобы и солнце, и ветер могли давать прямую тепловую энергию, используя один и тот же резервуар для хранения тепла. В этом случае появляется возможность построить довольно надежную систему отопления с меньшим баком-аккумулятором тепла, ведь сочетание двух – часто дополняющих друг друга – источников энергии увеличивает шансы прямого теплоснабжения. Особенно в менее солнечном климате ветряные мельницы, производящие тепло, являются отличным дополнением к солнечной тепловой системе, поскольку последняя производит относительно меньше тепла зимой, когда потребность в тепле максимальна.

Замедлители и механические тепловые насосы

Самые последние и обширные исследования на сегодняшний день относятся к 2016 и 2018 годам и сравнивают различные типы ветряков, производящих тепло, с различными типами косвенного производства тепла. 1 15 В этом втором типе теплового ветряка тепло вырабатывается механическими тепловыми насосами или гидродинамическими замедлителями, а не водяным тормозом.

Механический тепловой насос — это просто тепловой насос без электродвигателя. Вместо этого ветряной ротор напрямую соединен с компрессором (компрессорами) теплового насоса. Это включает в себя одно преобразование энергии меньше, что делает комбинацию как минимум на 10% более энергоэффективной, чем электрический тепловой насос, приводимый в действие ветряной турбиной.

Гидродинамический замедлитель хорошо известен как тормозная система большегрузных автомобилей. Подобно джоулевой машине, он преобразует энергию вращения в тепло без участия электричества. Ретардеры и механические тепловые насосы имеют те же преимущества, что и машины Джоуля, в том смысле, что они намного меньше, легче и дешевле, чем электрические генераторы. Однако в этом случае для достижения оптимальной эффективности требуется редуктор.

Сравнение различных типов прямого и непрямого нагрева. Источник: 15

В исследовании сравниваются теплогенерирующие ветряки на основе замедлителей и механических тепловых насосов с непрямым производством тепла с использованием электрических котлов и электрических тепловых насосов. В нем сравниваются эти четыре технологии для трех размеров систем: небольшой ветряк, предназначенный для обогрева автономного дома, большой ветряк, предназначенный для обеспечения теплом деревни, и ветряная электростанция, производящая тепло для 20 000 жителей. Четыре концепции отопления ранжированы на основе их ежегодных капитальных и эксплуатационных расходов, исходя из срока службы 20 лет. 1 15

Прямое подключение механического ветряка к механическому тепловому насосу дешевле, чем использование газового котла или сочетание ветряной турбины и электрического теплового насоса.

Для автономной системы прямое подключение механического ветряка к механическому тепловому насосу является самым дешевым вариантом, тогда как сочетание ветряной турбины и электрического котла обходится в два-три раза дороже. Все остальные технологии находятся между ними. Принимая во внимание как инвестиционные, так и эксплуатационные затраты, небольшие ветряные генераторы тепла с механическими тепловыми насосами одинаково дороги или дешевле, чем обычные газовые котлы, если исходить из типичной производительности небольшого ветряка (который производит – в течение одного года – 12% до 22% от его максимальной выходной энергии).

Изображение: Ветряк с водяным тормозом, разработанный О. Хельгасоном (слева), водяной тормоз с системой переменной нагрузки (справа). Изображения из «Испытания при очень высокой скорости ветра ветряной мельницы, управляемой водяным тормозом», О. Хельгасон и А.С. Сигурдсон, Научный институт Исландского университета. Источник: 7

С другой стороны, комбинация небольшой ветряной турбины и электрического теплового насоса требует, чтобы ветряная мельница с «коэффициентом мощности» не менее 30 % стала конкурентоспособной по стоимости с газовым отоплением, но такая высокая исполнение очень необычное. Более крупные системы имеют те же рейтинги — комбинация механических ветряков и механических тепловых насосов является самым дешевым вариантом, — но они имеют до трех раз более низкие капитальные затраты из-за эффекта масштаба. Более крупные ветряные мельницы имеют более высокие коэффициенты мощности (16–40%), что приводит к еще большей экономии средств.

Из-за больших потерь энергии на транспортировку тепла ветряк лучше всего подходит в качестве децентрализованного источника энергии, обеспечивая теплом автономное домашнее хозяйство или, в оптимальном случае, небольшой город.

Однако более крупные системы также обнаруживают проблему при масштабировании технологии: хранение тепла может быть дешевле и эффективнее, чем хранение электроэнергии, но для транспорта верно обратное: потери энергии при транспортировке тепла намного больше, чем потери энергии при транспортировке. передача электроэнергии. Ученые подсчитали, что максимальное расстояние, достижимое с точки зрения затрат при оптимальных ветровых условиях, составляет 50 км. 15

Следовательно, тепловая ветряная электростанция лучше всего подходит в качестве децентрализованного источника энергии, обеспечивая теплом автономное домашнее хозяйство или, в оптимальном случае, относительно небольшой город или промышленную зону. Для еще более крупных систем энергию необходимо транспортировать в виде электричества, и в этом случае прямое производство тепла со всеми его преимуществами становится непривлекательным.

Ослепленные электричеством

Ветряные мельницы, вырабатывающие тепло, также исследуются для производства возобновляемой электроэнергии, главным образом потому, что они предлагают лучшее решение для хранения энергии по сравнению с батареями или другими распространенными технологиями. 16 В этих системах вырабатываемое тепло преобразуется в электричество с помощью паровой турбины. Система хранения аналогична системе концентрированной солнечной электростанции (CSP), а солнечные концентраторы заменены ветряными мельницами, производящими тепло.

«Вихретоковый нагреватель». Источник: 9

Поскольку для эффективного производства электроэнергии с помощью паровой турбины необходимы высокие температуры, эти системы не могут использовать джоулевые машины или гидродинамические замедлители, а вместо этого полагаются на тип замедлителя, называемый «вихретоковым нагревателем». (или «индукционный нагреватель»). Они состоят из магнита, установленного на вращающемся валу, и могут достигать температуры до 600 градусов по Цельсию. Используя вихретоковые нагреватели, ветряные мельницы могут обеспечивать прямой нагрев при более высоких температурах, что еще больше расширяет их потенциальное использование в промышленности.

Однако использование аккумулированного тепла для производства электроэнергии значительно дороже и менее экологично по сравнению с использованием тепловых ветряков для прямого производства тепла. Преобразование накопленного тепла в электричество имеет эффективность не более 30%, а это означает, что две трети энергии ветра теряются из-за ненужных преобразований энергии — и то же самое верно, когда солнечная тепловая энергия используется для производства электроэнергии. 15

Таким образом, прямое производство тепла дает возможность сократить в три раза больше выбросов парниковых газов и ископаемого топлива, используя то же количество ветряных мельниц, которые также дешевле и экологичнее в строительстве. Будем надеяться, что прямому производству тепла будет отдан тот приоритет, которого оно заслуживает. Несмотря на потепление климата, спрос на тепловую энергию как никогда высок.

Крис Де Декер

  • Читайте журнал Low-tech Magazine в автономном режиме.
  • Подпишитесь на нашу рассылку новостей
  • Поддержите журнал Low-tech через Paypal или Patreon.

Комментарии

Чтобы оставить комментарий, отправьте электронное письмо на адрес solar (at) lowtechmagazine (dot) com.


  1. Нитто, дипломированный инженер Алехандро Николас, Карстен Агерт и Ивонн Шольц. «ВЕТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ ТЕПЛОВОЙ ЭНЕРГИИ (WTES)». ↩↩↩↩

  2. Интеграция хранилища тепловой энергии в энергетическую сеть, Шарьяр Ахмед, 2017 ↩↩

  3. Светлое будущее заводов, работающих на солнечной энергии, Крис Де Декер, журнал Low-tech Magazine, 2011 ↩

    .
  4. Solar Heat Worldwide, издание 2018 г., Международное энергетическое агентство (МЭА). ↩

  5. Renewables 2018, Heat, Международное энергетическое агентство (МЭА). ↩↩

  6. Всемирный банк: производство электроэнергии из возобновляемых источников. ↩

  7. Расцвет современной энергии ветра: энергия ветра для всего мира. Pan Stanford Publishing, 2013. См. главу 13 («Ветряные мельницы с водяным тормозом», Йорген Крогсгаард) и главу 16 («Обреченные на забвение», Пребен Мегаард). Кажется, это единственные документы на английском языке о датских ветряных мельницах с водяным тормозом. ↩↩↩↩↩↩↩↩

  8. Чакиров, Рустьам и Юрий Вагапов. «Прямое преобразование энергии ветра в тепло с помощью джоулевой машины». Четвертая международная конференция по экологии и компьютерным наукам (ICECS 2011), Сингапур, сентябрь 2011 г. ↩↩↩↩↩

  9. МАЛАЯ ВЕТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА С ВИХРЕТОЧНЫМ НАГРЕВАТЕЛЕМ НА ПОСТОЯННЫХ МАГНИТАХ, ИОН СОБОР, ВАСИЛЬ РАШЬЕ, АНДРЕЙ ШИЧУК и РОДИОН ЧЮПЕРЦЭ. BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI. Publicat de Universitatea Tehnică «Georghe Asachi» din Iaşi Tomul LIX (LXIII), Fasc. 4 2013 ↩↩↩ 

  10. Эксперимент Джоуля: историко-критический подход, советник Маркоса Поу Галло. ↩

  11. Окадзаки, Тору, Ясуюки Шираи и Такетсуне Накамура. «Концептуальное исследование ветроэнергетики с использованием прямого преобразования тепловой энергии и аккумулирования тепловой энергии». Возобновляемая энергия 83 (2015): 332-338. ↩

  12. Реальные испытания малых ветряных турбин в Нидерландах и Великобритании, Крис Де Декер, The Oil Drum, 2010.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *