Какие бывают батареи: Типы 11, 22, 33 и различия стальных радиаторов отопления

Содержание

Радиаторы (батареи) отопления: чугунные, алюминивые, стальные

Сортировать: По популярности С низкой цены

Батареи, или радиаторы отопления, неотъемлемая составляющая инженерной инфраструктуры любой квартиры или частного дома. Они устанавливаются не на один десяток лет. От правильного выбора радиаторов отопления напрямую зависит комфорт в вашем доме. Грамотно подобранные по типу и количеству батареи дают возможность оптимизировать расходы на жилищно-коммунальные услуги. Именно поэтому, к выбору радиаторов отопления следует подходить ответственно. Какие бывают радиаторы отопления.
На рынке представлено несколько наиболее распространенных видов батарей отопления:

  • Чугунные радиаторы;
  • Стальные радиаторы;
  • Алюминиевые радиаторы;
  • Биметаллические радиаторы.

Каждый из них имеет свои преимущества и недостатки, которые стоит рассмотреть более детально.

Чугунные радиаторы отопления

. Классический вариант, который, несмотря на простоту конструкции, обладает хорошими эксплуатационными показателями. Чугунные батареи характеризуются отличной теплоемкостью и долго поддерживают постоянную температуру даже при значительных колебаниях температуры теплоносителя. Чугун не подвержен коррозии, что определяет долгий срок службы радиаторов. Стоимость батареи из чугуна невелика и доступна всем. Из недостатков стоит отметить устаревший внешний вид, который не соответствует современным концепциям дизайна интерьеров и большую массу. Кроме того, чугун не способен выдержать высокое, до 15-20 атмосфер, давление, которое поддерживается в системе отопления высотных домов. Это ограничивает область их применения.

Стальные радиаторы отопления. Такие батареи представляют собой стальные пластины с дополнительным конвектором. За счет сложной формы последнего достигается большая площадь рассеивания и эффективность обогрева помещения.

Высокая теплопроводность стали сокращает время, необходимое для прогрева помещения до температуры комфорта. Единственным недостатком батарей отопления из стали можно считать рабочее давление до 10 атмосфер.

Алюминиевые радиаторы отопления. Отличаются высокой теплопроводностью, что позволяет быстро обогревать помещение, возможностью работать при подключении к магистралям с высоким давлением, небольшим весом и простотой подключения. Единственным недостатком таких батарей является их подверженность воздействию различных добавок, содержащихся в водопроводной воде. Они сокращают срок службы радиаторов.

Биметаллические радиаторы отопления. Идеальный вариант для эксплуатации в любых условиях. Такие батареи состоят из двух частей – внутренней, из нержавеющей стали, и внешней, которая изготавливается из алюминия или меди. В результате получается конструкция, не подверженная коррозии, с большим сроком службы, большой теплопроводностью и высокой эффективностью работы.

   

Правильный подбор батарей отопления обеспечит комфорт и уют в вашем доме, а также позволит снизить расходы на его содержание.

Предлагаем посетить следующий раздел: Терморегуляторы и программаторы

Какие бывают батареи для отопления |

Хорошие батареи для отопления — одно из условий эффективной работы системы отопления. Какие же бывают современные батареи для отопления и чем они отличаются.

Сначала рассмотрим какие бывают батареи по конструкции.

Колончатого типа: верхний и нижний коллекторы соединяются вертикальными трубами-колонками. Чаще всего такие радиаторы производятся из стали, алюминия или чугуна.

Секционные: в таких обогревателях тепло создается благодаря циркуляции теплого воздуха, нагреваемого от теплоносителя, т. е. конвекции. Такие батареи производятся из сплава нескольких металлов (биметаллические) или алюминия, чугуна, стали.

Панельные: стальные батареи, состоящие из одной или нескольких плоских панелей, соединенных ребристыми перемычками. Теплоноситель поступает в панели, нагревает их, а от них уже идет нагрев ребристых поверхностей. Панельные радиаторы благодаря своей конструкции отапливают помещение за счет излучения тепла и благодаря конвекции и поступления тепла от ребристых поверхностей. Поэтому такие радиаторы являются одними из самых эффективных.

Конвекторы: отапливают помещение благодаря циркуляции воздуха. Из конвектора выходит теплый воздух, поднимается вверх, а более холодный, остывший опускается вниз и опять попадает в конвектор для нагрева. Конвекторы производятся из чугуна, стали, алюминия или их сплавов.

По видам используемых материалов батареи делятся на следующие виды:

Чугунные: производятся отдельными секциями, что позволяет набрать необходимое количество секций или готовыми секциями по 7 штук. Чугунные батареи отлично держат тепло, долго его сохраняют и равномерно обогревают помещение. Такие батареи долговечны, устойчивы к коррозии. Если отопительные батареи необходимо установить в помещении с старой системой отопления, то лучше для этого использовать чугунные батареи, т. к. они устойчивы к примесям в теплоносителе. Недостаток чугунных батарей — не очень эстетичный внешний вид и необходимость периодической чистки, т. к. шероховатая поверхность приводит к накоплению накипи, отложений на их поверхности, что снижает теплоотдачу. Обычные чугунные радиаторы колончатого типа.

Стальные: радиаторы такого типа менее устойчивы к теплоносителю без дополнительной очистки и подготовки, поэтому рекомендуются для установки в системах отопления закрытого типа (в системах не централизованного отопления, а например в частных домах, зданиях с автономной системой отопления).

Алюминиевые: имеют эстетичный внешний вид, обладают высокой теплоотдачей, быстро нагревают помещение. Благодаря их способности быстро нагреваться и остывать, при установке терморегуляторов можно легко устанавливать необходимую температуру и создавать комфортные условия в помещении. Но такие батареи имеют более высокую стоимость чем остальные виды радиаторов и также, как и стальные лучше для применения в автономных системах отопления с очисткой теплоносителя.

Биметаллические: состоят из алюминиевого корпуса и стальной трубы, по которой движется теплоноситель. Такие радиаторы более прочные и устойчивые к перепадам температур в системе отопления, чем алюминиевые и имеют меньше требований к чистоте и качеству теплоносителя.

Это батареи для отопления, которые чаще всего используются в отопительных системах.

перейти в каталог >>>

Как работает батарея – Любопытно

Представьте себе мир без батареек. Все те портативные устройства, от которых мы так зависим, были бы такими ограниченными! Мы смогли бы донести наши ноутбуки и телефоны только до предела досягаемости их кабелей, что сделало бы это новое работающее приложение, которое вы только что загрузили на свой телефон, довольно бесполезным.

К счастью, у нас есть батарейки. Еще в 150 г. до н.э. в Месопотамии парфянская культура использовала устройство, известное как багдадская батарея, сделанное из медных и железных электродов с уксусом или лимонной кислотой.

Археологи считают, что на самом деле это не были батареи, а использовались в основном для религиозных церемоний.

Изобретение батареи в том виде, в каком мы ее знаем, приписывают итальянскому ученому Алессандро Вольта, который собрал первую батарею, чтобы доказать точку зрения другого итальянского ученого, Луиджи Гальвани. В 1780 году Гальвани показал, что лапки лягушек, подвешенных на железных или латунных крючках, будут дергаться при прикосновении к ним зондом из какого-либо другого металла. Он считал, что это было вызвано электричеством из тканей лягушек, и называл это «животным электричеством».

Луиджи Гальвани обнаружил, что лапки лягушек, подвешенных на латунных крючках, дергались, если их проткнуть зондом из другого металла. Он думал, что эта реакция была вызвана «животным электричеством» внутри лягушки. Источник изображения: Луиджи Гальвани / Wikimedia Commons.

Вольта, поначалу впечатленный открытиями Гальвани, пришел к выводу, что электрический ток исходит из двух разных типов металла (крючков, на которых висят лягушки, и другого металла зонда) и просто передается через них, а не через них.

из тканей лягушек. Он экспериментировал со стопками слоев серебра и цинка, перемежаемых слоями ткани или бумаги, пропитанными соленой водой, и обнаружил, что электрический ток действительно протекал по проводу, прикрепленному к обоим концам стопки.

Батарея Алессандро Вольта: груда цинковых и серебряных листов с вкраплениями ткани или бумаги, пропитанной соленой водой. Представьте, что вы используете это для питания вашего телефона. Источник изображения: Луиджи Кьеза / Wikimedia Commons.

Вольта также обнаружил, что, используя различные металлы в куче, можно увеличить величину напряжения. Он описал свои открытия в письме Джозефу Бэнксу, тогдашнему президенту Лондонского королевского общества, в 1800 году. ‘ (мера электрического потенциала) названа в его честь.

Я сам, если не считать шуток, поражаюсь тому, как мои старые и новые открытия… чистого и простого электричества, вызываемого контактом металлов, могли вызвать такой ажиотаж. Алессандро Вольта

Так что же именно происходило с этими слоями цинка и серебра и с дергающимися лягушачьими лапками?

Химия батареи

Батарея представляет собой устройство, которое накапливает химическую энергию и преобразует ее в электричество. Это известно как электрохимия, а система, которая лежит в основе батареи, называется электрохимической ячейкой. Батарея может состоять из одного или нескольких (как в исходной куче Вольты) электрохимических элементов. Каждая электрохимическая ячейка состоит из двух электродов, разделенных электролитом.

Так откуда электрохимический элемент получает электричество? Чтобы ответить на этот вопрос, нам нужно знать, что такое электричество. Проще говоря, электричество — это тип энергии, производимый потоком электронов. В электрохимической ячейке электроны образуются в результате химической реакции, которая происходит на одном электроде (подробнее об электродах ниже!), а затем перетекают на другой электрод, где они расходуются. Чтобы понять это правильно, нам нужно поближе взглянуть на компоненты клетки и на то, как они собираются вместе.

Электроды

Чтобы создать поток электронов, вам нужно куда-то, чтобы электроны текли из , и куда-то, чтобы электроны текли к . Это электроды клетки. Электроны текут от одного электрода, называемого анодом (или отрицательным электродом), к другому электроду, называемому катодом (положительный электрод). Как правило, это различные типы металлов или других химических соединений.

В батарее Вольта анодом был цинк, от которого электроны текли по проводу (при подключении) к серебру, которое было катодом батареи. Он сложил множество этих элементов вместе, чтобы сделать общую кучу и поднять напряжение.

Но откуда анод получает все эти электроны? И почему они так счастливы, что их весело отправляют на катод? Все сводится к химии, которая происходит внутри клетки.

Происходит несколько химических реакций, которые нам нужно понять. На аноде электрод вступает в реакцию с электролитом, в результате которой образуются электроны. Эти электроны накапливаются на аноде. Тем временем на катоде одновременно происходит другая химическая реакция, которая позволяет этому электроду принимать электроны.

Технический химический термин для реакции, включающей обмен электронами, представляет собой реакцию восстановления-окисления, чаще называемую окислительно-восстановительной реакцией. Всю реакцию можно разделить на две полуреакции, а в случае электрохимической ячейки одна полуреакция происходит на аноде, другая на катоде. Восстановление — это присоединение электронов, и это то, что происходит на катоде; мы говорим, что катод восстанавливается в ходе реакции. Окисление — это потеря электронов, поэтому мы говорим, что анод окисляется.

Каждая из этих реакций имеет определенный стандартный потенциал. Думайте об этой характеристике как о способности/эффективности реакции либо производить, либо поглощать электроны — ее сила в перетягивании каната электронами.

  • Стандартные потенциалы для полуреакций

    Ниже приведен список полуреакций, которые включают высвобождение электронов либо из чистого элемента, либо из химического соединения. Рядом с реакцией указано число (E 0 ), которое сравнивает силу электрохимического потенциала реакции с силой готовности водорода расстаться со своим электроном (если вы посмотрите вниз по списку, вы увидите, что водородная полуреакция имеет Е 0 нуля). E 0  измеряется в вольтах.

    Причина, по которой этот список настолько интересен, заключается в том, что если вы выберете две реакции из списка и объедините их для создания электрохимической ячейки, значения E 0 подскажут вам, каким образом будет протекать общая реакция: реакция с более отрицательное значение E 0 пожертвует свои электроны другой реакции, и это определяет анод и катод вашей ячейки. Разница между двумя значениями E 0 говорит вам об электрохимическом потенциале вашей ячейки, который в основном является напряжением ячейки.

    Итак, если вы возьмете литий и фтор и сумеете соединить их, чтобы сделать элемент батареи, вы получите максимальное напряжение, теоретически достижимое для гальванического элемента. Этот список также объясняет, почему в куче Вольта цинк был анодом, а серебро катодом: полуреакция цинка имеет более низкое (более отрицательное) значение E 0 (-0,7618), чем полуреакция серебра (0,7996). .

    Стандартные потенциалы полуреакций восстановления

    (по отношению к стандартному водородному электроду при 25°C)

    В° (В)
    Li + (водный) + e Li(s) –3,040
    Be 2+ (водн.) + 2e Be(s) –1,99
    Al 3+ (водн.) + 3e Al(s) –1,676
    Zn 2+ (водный) + 2e Zn(s) –0,7618
    Ag 2 S(s) + 2e 2Ag(s) + S 2− (водн.) –0,71
    Fe 2+ (водн.) + 2e Fe(s) –0,44
    Cr 3+ (водн.) + e Cr 2+ (водн.) –0,424
    Cd 2+ (водн.) + 2e Cd(s) –0,4030
    PbSO 4 (т) + 2e Pb(т) + SO 4 2− (водн. ) –0,356
    Ni 2+ (водн.) + 2e Ni(s) –0,257
    2SO 4 2− (водн.) + 4H + (водн.) + 2e S 2 O 6 0048 (водн.) + 2H 2 O(л) –0,25
    Sn 2+ (водн.) + 2e Sn(s) −0,14
    2H + (водн.) + 2e H 2 (г) 0
    Sn 4+ (водн.) + 2e Sn 2+ (водн.) 0,154
    Cu 2+ (водн.) + e Cu + (водный) 0,159
    AgCl(s) + e Ag(s) + Cl (водн.) 0,2223
    Cu 2+ (водн.) + 2e Cu(s) 0,3419
    O 2 (г) + 2H 2 O(ж) + 4e 4OH (водн. ) 0,401
    H 2 SO 3 (водн.) + 4H + (водн.) + 4e S(т) + 3H 2 O(л) 0,45
    I 2 (s) + 2e 2I (aq) 0,5355
    MnO 4 2− (водн.) + 2H 2 O(ж) + 2e MnO 2 (тв) + 4OH − 906 0,6
    O 2 (г) + 2H + (водн.) + 2e H 2 O 2 (водный) 0,695
    H 2 SeO 3 (водн.) + 4H + + 4e Se(s) + 3H 2 O(ж) 0,74
    Fe 3+ (водн.) + e Fe 2+ (водн.) 0,771
    Ag + (водный) + e Ag(s) 0,7996
    NO 3 (водн. ) + 3H + (водн.) + 2e HNO 2 (водн.) + H 2 O(l) 0,94
    Br 2 (водн.) + 2e 2Br (водн.) 1,087
    MnO 2 (т) + 4H + (водн.) + 2e Mn 2+ (водн.) + 2H 2 O(л) 1,23
    О 2 (г) + 4H + (водн.) + 4e 2H 2 O(л) 1,229
    CR 2 O 7 2- (AQ) + 14H + (AQ) + 6E 2CR 3+ (AQ) + 7H 2 2 333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333. 1,36
    Cl 2 (г) + 2e 2Cl (водн.) 1,396
    Се 4+ (водн.)+е Се 3+ (водный) 1,44
    PBO 2 (S) + HSO 4 (AQ) + 3H + (AQ) + 2E PBSO 4 (S) + 2H 3 2H1233 2H1233 2H12333 2H1233 2H1233 2H1233 2H1233 2H1233 2H1233 2H 2H1233 2H 2H12333 2H 3 2h
    33 2H 3 2H9233 2H – PBSO 4 .
    1,69
    H 2 O 2 (водн.) + 2H + (водн.) + 2e 2H 2 O(л) 1,763
    F 2 (г) + 2е 2F (водный) 2,87

    Источник: UC Davis ChemWiki

Любые два проводящих материала, вступающих в реакции с разными стандартными потенциалами, могут образовать электрохимическую ячейку, потому что более сильный сможет отбирать электроны у более слабого. Но идеальным выбором для анода был бы материал, который вызывает реакцию со значительно более низким (более отрицательным) стандартным потенциалом, чем материал, который вы выбрали для своего катода. В итоге мы получаем, что электроны притягиваются к катоду от анода (и анод не пытается сильно сопротивляться), и когда у нас есть легкий путь туда — проводящий провод — мы можем использовать их энергию для обеспечения электрического тока. питание на фонарик, телефон или что-то еще.

Разница в стандартном потенциале между электродами примерно равна силе, с которой электроны перемещаются между двумя электродами. Это известно как общий электрохимический потенциал ячейки, и он определяет напряжение ячейки. Чем больше разница, тем больше электрохимический потенциал и выше напряжение.

Чтобы увеличить напряжение батареи, у нас есть два варианта. Мы могли бы выбрать разные материалы для наших электродов, которые придадут клетке больший электрохимический потенциал. Или мы можем сложить несколько ячеек вместе. Когда элементы объединены определенным образом (последовательно), это оказывает аддитивное влияние на напряжение батареи. По сути, силу, с которой электроны движутся через батарею, можно рассматривать как общую силу, когда они движутся от анода первой ячейки через все ячейки, содержащиеся в батарее, к катоду последней ячейки.

Когда ячейки объединены другим способом (параллельно), это увеличивает возможный ток батареи, который можно рассматривать как общее количество электронов, протекающих через ячейки, но не как их напряжение.

Электролит

Но электроды – это только часть батареи. Помните бумажки Вольта, смоченные в соленой воде? Соленая вода была электролитом, еще одной важной частью картины. Электролит может быть жидкостью, гелем или твердым веществом, но он должен обеспечивать движение заряженных ионов.

Электроны имеют отрицательный заряд, и, поскольку мы посылаем поток отрицательных электронов по нашей цепи, нам нужен способ сбалансировать движение этого заряда. Электролит обеспечивает среду, через которую могут протекать положительные ионы, уравновешивающие заряд.

Поскольку химическая реакция на аноде приводит к образованию электронов, для поддержания баланса нейтрального заряда на электроде также производится соответствующее количество положительно заряженных ионов. Они не идут по внешнему проводу (это только для электронов!), а выбрасываются в электролит.

В то же время катод также должен уравновешивать отрицательный заряд электронов, которые он получает, поэтому происходящая здесь реакция должна втягивать положительно заряженные ионы из электролита (в качестве альтернативы она может также высвобождать отрицательно заряженные ионы из электрода в электролит).

Таким образом, в то время как внешний провод обеспечивает путь для потока отрицательно заряженных электронов, электролит обеспечивает путь для передачи положительно заряженных ионов, чтобы сбалансировать отрицательный поток. Этот поток положительно заряженных ионов столь же важен, как и электроны, обеспечивающие электрический ток во внешней цепи, которую мы используем для питания наших устройств. Роль балансировки заряда, которую они выполняют, необходима для поддержания всей реакции.

Теперь, если позволить всем ионам, выпущенным в электролит, полностью свободно перемещаться через электролит, они закончат тем, что покроют поверхности электродов и засорят всю систему. Таким образом, у клетки обычно есть какой-то барьер, чтобы предотвратить это.

Показывать метки во время анимации Начать анимацию

При использовании батареи возникает ситуация, при которой происходит непрерывный поток электронов (через внешнюю цепь) и положительно заряженных ионов (через электролит). Если этот непрерывный поток остановлен — если цепь разомкнута, например, когда ваш фонарик выключен — поток электронов остановится. Заряды будут накапливаться, и химические реакции, управляющие батареей, прекратятся.

По мере использования батареи и протекания реакций на обоих электродах производятся новые химические продукты. Эти продукты реакции могут создать своего рода сопротивление, которое может помешать протеканию реакции с той же эффективностью. Когда это сопротивление становится слишком большим, реакция замедляется. Электронное перетягивание каната между катодом и анодом также теряет свою силу, и поток электронов прекращается. Аккумулятор медленно садится.

Зарядка аккумулятора

Некоторые распространенные батареи предназначены только для одноразового использования (известные как первичные или одноразовые батареи). Путешествие электронов от анода к катоду является односторонним. Либо их электроды истощаются, когда они выделяют свои положительные или отрицательные ионы в электролит, либо накопление продуктов реакции на электродах препятствует продолжению реакции, и дело сделано и запылено. Аккумулятор попадает в мусорное ведро (или, надеюсь, на переработку, но это совсем другая тема Nova).

Но. Преимущество этого потока ионов и электронов в том, что он имеет место в некоторых типах батарей с соответствующими материалами электродов, заключается в том, что он также может двигаться в обратном направлении, возвращая нашу батарею в исходную точку и давая ей совершенно новую жизнь. . Точно так же, как батареи изменили то, как мы можем использовать различные электрические устройства, перезаряжаемые батареи еще больше изменили полезность и срок службы этих устройств.

Когда мы подключаем почти разряженную батарею к внешнему источнику электроэнергии и отправляем энергию обратно в батарею, она обращает вспять химическую реакцию, которая произошла во время разряда. Это отправляет положительные ионы, выпущенные из анода в электролит, обратно к аноду, а электроны, которые принял катод, также возвращаются к аноду. Возвращение как положительных ионов, так и электронов обратно в анод запускает систему, поэтому она снова готова к работе: ваша батарея перезаряжена.

Показывать метки во время анимации Начать анимацию

Однако процесс не идеален. Замена отрицательных и положительных ионов из электролита обратно на соответствующий электрод по мере перезарядки батареи происходит не так аккуратно и красиво, как электрод изначально. Каждый цикл зарядки ухудшает состояние электродов еще немного, а это означает, что батарея со временем теряет производительность, поэтому даже перезаряжаемые батареи не могут работать вечно.

В течение нескольких циклов зарядки и разрядки форма кристаллов батареи становится менее упорядоченной. Это усугубляется, когда батарея разряжается/перезаряжается с высокой скоростью, например, если вы едете на своем электромобиле большими рывками, а не постоянно. Циклирование с высокой скоростью приводит к тому, что кристаллическая структура становится более неупорядоченной, в результате чего батарея становится менее эффективной.

 

Эффект памяти и саморазряд

Почти полностью обратимые реакции разрядки и перезарядки также способствуют так называемому «эффекту памяти». Когда вы перезаряжаете некоторые типы перезаряжаемых батарей, предварительно не разрядив их в достаточной степени, они «вспоминают», на каком уровне они были в предыдущих циклах разрядки, и не заряжаются должным образом.

В некоторых элементах это вызвано тем, как металл и электролит реагируют с образованием соли (и тем, как соль затем снова растворяется, а металл заменяется на электродах при перезарядке). Мы хотим, чтобы наши клетки имели красивые, однородные маленькие кристаллы соли, покрывающие идеальную металлическую поверхность, но это не то, что мы получаем в реальном мире! Способ формирования некоторых кристаллов очень сложен, и способ осаждения некоторых металлов во время перезарядки также удивительно сложен, поэтому некоторые типы батарей имеют больший эффект памяти, чем другие. Несовершенства в основном зависят от состояния заряда батареи, температуры, зарядного напряжения и зарядного тока. Со временем недостатки в одном цикле зарядки могут вызвать то же самое в следующем цикле зарядки и т. д., и наша батарея накапливает некоторые плохие воспоминания. Эффект памяти силен для некоторых типов элементов, таких как батареи на основе никеля. Другие типы, такие как литий-ионные, не страдают от этой проблемы.

Еще один аспект перезаряжаемых батарей заключается в том, что химический состав, делающий их перезаряжаемыми, также означает, что они имеют более высокую склонность к саморазряду. Это когда внутри элемента батареи происходят внутренние реакции, даже когда электроды не подключены через внешнюю цепь. Это приводит к тому, что клетка со временем теряет часть своей химической энергии. Высокая скорость саморазряда серьезно ограничивает срок службы батареи и заставляет ее умирать при хранении.

Литий-ионные аккумуляторы в наших мобильных телефонах имеют довольно хорошую скорость саморазряда, около 2–3 % в месяц, и наши свинцово-кислотные автомобильные аккумуляторы также довольно разумны — они имеют тенденцию терять 4–6 %. в месяц. Аккумуляторы на основе никеля теряют около 10–15 процентов своего заряда в месяц, что не очень хорошо, если вы планируете хранить фонарь целый сезон, когда он вам не нужен! Неперезаряжаемая щелочная батарея теряет всего около 2–3 процентов своего заряда в год.

Напряжение, ток, мощность, мощность… в чем разница?

Все эти слова в основном описывают мощность батареи, верно? Ну вроде. Но все они немного разные.

Напряжение = сила, при которой реакция, приводящая в движение батарею, проталкивает электроны через ячейку. Это также известно как электрический потенциал и зависит от разности потенциалов между реакциями, происходящими на каждом из электродов, то есть от того, насколько сильно катод будет тянуть электроны (через цепь) от анода. Чем выше напряжение, тем большую работу может совершить одно и то же число электронов.

Ток = количество электронов, проходящих через любую точку цепи в данный момент времени. Чем больше сила тока, тем больше работы он может совершить при том же напряжении. Внутри ячейки вы также можете думать о токе как о количестве ионов, движущихся через электролит, умноженном на заряд этих ионов.

Мощность = напряжение x ток. Чем выше мощность, тем выше скорость, с которой батарея может работать — это соотношение показывает, насколько важны напряжение и ток для определения того, для чего подходит батарея.

Емкость = мощность батареи как функция времени, которая используется для описания периода времени, в течение которого батарея сможет питать устройство. Аккумулятор большой емкости сможет работать в течение более длительного периода, прежде чем разрядится или разрядится. У некоторых аккумуляторов есть небольшая грустная особенность: если вы попытаетесь извлечь из них слишком много слишком быстро, вовлеченные химические реакции не смогут продолжаться, и емкость уменьшится! Таким образом, мы всегда должны быть осторожны, когда говорим о емкости батареи и помнить, для чего она будет использоваться.

Другой популярный термин — «плотность энергии». Это количество энергии, которое устройство может удерживать на единицу объема, другими словами, какую отдачу вы получаете за свои деньги с точки зрения мощности и размера. С аккумулятором, как правило, чем выше плотность энергии, тем лучше, так как это означает, что аккумулятор может быть меньше и компактнее, что всегда является плюсом, когда он нужен для питания чего-то, что вы хотите держать в кармане. Для электромобилей это даже плюс — аккумулятор должен как-то влезать в машину!

Для некоторых приложений, таких как хранение электроэнергии на возобновляемой электростанции, такой как ветряная или солнечная электростанция, высокая плотность энергии не является большой проблемой, так как у них, скорее всего, будет достаточно места для хранения батарей. Основной целью такого использования было бы просто хранить как можно больше электроэнергии, как можно безопаснее и дешевле.

Видео: Как работают аккумуляторы? (TED-Ed/YouTube). Посмотреть подробности и расшифровку.

Почему так много типов?

Ряд материалов (раньше это были просто металлы) можно использовать в качестве электродов в батарее. За прошедшие годы было опробовано много-много различных комбинаций, но лишь немногие из них действительно прошли дистанцию. Но зачем вообще использовать разные комбинации металлов? Если у вас есть пара металлов, которые хорошо работают вместе в качестве электродов, зачем возиться с другими?

Различные материалы имеют разные электрохимические свойства, поэтому они дают разные результаты, когда вы кладете их вместе в элемент батареи. Например, некоторые комбинации будут создавать высокое напряжение очень быстро, но затем быстро падать, не в состоянии поддерживать это напряжение в течение длительного времени. Это хорошо, если вам нужно произвести, скажем, внезапную вспышку света, как вспышка фотокамеры.

Другие комбинации дадут лишь струйку тока, но они будут поддерживать эту струйку на века. Например, нам не нужно большое количество тока для питания детектора дыма, но мы хотим, чтобы наши детекторы дыма работали долгое время.

Еще одна причина для использования различных комбинаций металлов заключается в том, что часто для получения требуемого напряжения необходимо сложить два или более элемента батареи, и оказывается, что некоторые комбинации электродов складываются вместе гораздо лучше, чем другие комбинации. Например, литий-железо-фосфатные батареи (разновидность литий-ионных батарей), используемые в электромобилях, объединяются вместе для создания систем высокого напряжения (100 и даже более вольт), но вы никогда не сделаете этого с теми никель-кадмиевыми батареями Walkman, которые получают горячий!

Наши различные потребности со временем привели к разработке огромного количества типов батарей. Чтобы узнать больше о них и о том, что ждет аккумулятор в будущем, ознакомьтесь с другими нашими темами Nova.

Эта тема является частью нашей серии статей о батареях, состоящей из четырех частей. Для дальнейшего чтения см. Типы аккумуляторов, литий-ионные аккумуляторы и аккумуляторы будущего.

Что такое батарея? – SparkFun Узнать

Авторы: Шон Хаймел

Избранное Любимый 23

Введение

Батареи представляют собой набор из одной или нескольких ячеек, химические реакции которых создают поток электронов в цепи. Все батареи состоят из трех основных компонентов: анода (сторона «-»), катода (сторона «+») и электролита (вещество, которое химически реагирует с анодом и катодом).

Когда анод и катод батареи подключены к цепи, между анодом и электролитом происходит химическая реакция. Эта реакция заставляет электроны течь по цепи и возвращаться к катоду, где происходит другая химическая реакция. Когда материал в катоде или аноде расходуется или больше не может использоваться в реакции, батарея не может производить электричество. В этот момент ваша батарея «умерла».

Батарейки, которые необходимо выбрасывать после использования, называются первичными батареями . Батареи, которые можно перезаряжать, называются вторичными батареями .

Литий-полимерные батареи, например, можно перезаряжать

Без батарей ваш квадрокоптер должен быть привязан к стене, вам придется вручную заводить машину, а ваш контроллер Xbox должен быть подключен ко всем времени (как в старые добрые времена). Батареи предлагают способ хранения электрической потенциальной энергии в портативном контейнере.

Батарейки бывают разных форм, размеров и химического состава.

Изобретение современной батареи часто приписывают Алессандро Вольта. На самом деле все началось с удивительного происшествия, связанного с вскрытием лягушки.

Чему вы научитесь

В этом руководстве будут подробно рассмотрены следующие темы:

  • Как были изобретены батареи
  • Из каких частей состоит батарея
  • Как работает аккумулятор
  • Общие термины, используемые для описания батарей
  • Различные способы использования батарей в цепях

Рекомендуемая литература

Прежде чем приступить к чтению этого руководства, вам следует ознакомиться с некоторыми понятиями:

  • Что такое электричество
  • Напряжение, ток, сопротивление и закон Ома
  • Что такое цепь
  • Последовательные и параллельные цепи
  • Электроэнергия
  • Переменный ток (AC) и постоянный ток (DC)

Хотите познакомиться с различными батареями?

Мы вас прикроем!

Литий-ионный аккумулятор – 400 мАч

В наличии ПРТ-13851

10

Избранное Любимый 41

Список желаний

Батарейка типа «таблетка» — 20 мм (CR2032)

В наличии ПРТ-00338

Избранное Любимый 33

Список желаний

Литий-ионный аккумулятор – 18650 ячеек (2600 мАч)

В наличии ПРТ-12895

Избранное Любимый 20

Список желаний

Щелочная батарея 9В

В наличии ПРТ-10218

1

Избранное Любимый 6

Список желаний

Посмотреть все аккумуляторы


История

Термин «батарея»

Исторически слово «батарея» использовалось для описания «серии подобных объектов, сгруппированных вместе для выполнения определенной функции», как в артиллерийской батарее. В 1749 году Бенджамин Франклин впервые использовал этот термин для описания серии конденсаторов, которые он соединил вместе для своих экспериментов с электричеством. Позже этот термин будет использоваться для любых электрохимических элементов, соединенных вместе с целью обеспечения электроэнергии.

Батарея из лейденской банки «конденсаторы», соединенные вместе
(Изображение предоставлено Alvinrune из Wikimedia Commons)

Изобретение батареи

В один судьбоносный день в 1780 году итальянский физик, врач, биолог и философ Луиджи Гальвани препарировал лягушку, прикрепленную к латунному крючку. Когда он коснулся лягушачьей лапки железным скальпелем, та дернулась. Гальвани предположил, что энергия исходит от самой ноги, но его коллега-ученый Алессандро Вольта считал иначе.

Вольта предположил, что импульсы лапок лягушки на самом деле были вызваны различными металлами, пропитанными жидкостью. Он повторил эксперимент, используя ткань, смоченную в рассоле, вместо трупа лягушки, что привело к аналогичному напряжению. Вольта опубликовал свои выводы в 179 г.1, а затем в 1800 году создал первую батарею, вольтов столб.

вольтов столб состоял из стопки цинковых и медных пластин, разделенных тканью, пропитанной солевым раствором

столб Вольта страдал от двух основных проблем: вес стека вызвало вытекание электролита из ткани, а особые химические свойства компонентов привели к очень короткому сроку службы (около часа). Следующие двести лет уйдут на совершенствование конструкции Вольты и решение этих проблем.

Исправление гальванической батареи

Уильям Круикшенк из Шотландии решил проблему утечки, положив гальваническую батарею на бок, чтобы сформировать «желобную батарею».

Лотковая батарея решила проблему утечки гальванической батареи

Вторая проблема, короткий срок службы, была вызвана разложением цинка из-за примесей и накоплением пузырьков водорода на меди. В 1835 году Уильям Стерджен обнаружил, что обработка цинка ртутью предотвращает деградацию.

Британский химик Джон Фредерик Дэниелл использовал второй электролит, который реагировал с водородом, предотвращая отложения на медном катоде. Двухэлектролитная батарея Даниэля, известная как «ячейка Даниэля», станет очень популярным решением для обеспечения энергией зарождающихся телеграфных сетей.

Коллекция элементов Даниэля 1836 года

Первая перезаряжаемая батарея

В 1859 году французский физик Гастон Планте создал батарею из двух скрученных листов свинца, погруженных в серную кислоту. При реверсировании электрического тока через батарею химический состав вернется в исходное состояние, создав таким образом первую перезаряжаемую батарею.

Позже, в 1881 году, Камиль Альфонс Фор усовершенствовал конструкцию Планте, превратив свинцовые листы в пластины. Эта новая конструкция упростила производство аккумуляторов, и свинцово-кислотные аккумуляторы получили широкое распространение в автомобилях.

-> Дизайн обычного «автомобильного аккумулятора» существует уже более 100 лет
(Изображение предоставлено Эмилианом Робертом Виколом из Викисклада) 1800-х годов электролит в батареях находился в жидком состоянии. Это делало транспортировку батарей очень осторожным делом, и большинство батарей никогда не предназначалось для перемещения после подключения к цепи.

В 1866 году Жорж Лекланше создал батарею, используя цинковый анод, катод из диоксида марганца и раствор хлорида аммония в качестве электролита. В то время как электролит в элементе Лекланше все еще был жидким, химический состав батареи оказался важным шагом на пути к изобретению сухого элемента.

Карл Гасснер придумал, как создать электролитную пасту из хлорида аммония и гипса. Он запатентовал новую «сухую» батарею в 1886 году в Германии.

Эти новые сухие элементы, обычно называемые «цинково-угольными батареями», производились массово и пользовались огромной популярностью до конца 1950-х годов. Хотя углерод не используется в химической реакции, он выполняет важную роль электрического проводника в угольно-цинковой батарее.

-> 3-вольтовая угольно-цинковая батарея 1960-х годов
(Изображение предоставлено PhFabre из Викисклада) <-

известный как «Eveready», а затем «Energizer») заменил электролит хлорида аммония щелочным веществом на основе химии батареи, сформулированной Вальдемаром Юнгнером в 189 г. 9. Сухие щелочные батареи могут удерживать больше энергии, чем угольно-цинковые батареи того же размера, и имеют более длительный срок хранения.

Популярность щелочных батарей возросла в 1960-х годах, они обогнали угольно-цинковые батареи и с тех пор стали стандартными первичными элементами для потребительского использования.

-> Щелочные батареи бывают разных форм и размеров
(Изображение предоставлено Aney~commonswiki из Викисклада) <-

Перезаряжаемые батареи 20th Century

В 1970-х годах COMSAT разработал никель-водородную батарею для использования в спутниках связи. Эти батареи хранят водород в газообразной форме под давлением. Многие искусственные спутники, такие как Международная космическая станция, по-прежнему используют никель-водородные батареи.

Исследования нескольких компаний с конца 1960-х годов привели к созданию никель-металлогидридной (NiMH) батареи. NiMH аккумуляторы были выпущены на потребительский рынок в 1989 году и стали более дешевой альтернативой перезаряжаемым никель-водородным элементам.

Компания Asahi Chemical из Японии изготовила первую литий-ионную батарею в 1985 году, а Sony создала первую коммерческую литий-ионную батарею в 1991 году. «литий-полимерный» или «LiPo» аккумулятор.

Химические реакции в литий-полимерном аккумуляторе в основном такие же, как и в литий-ионном аккумуляторе

Очевидно, что было изобретено, произведено и устарело гораздо больше химических элементов аккумуляторов. Если вы хотите узнать больше о современных и популярных технологиях аккумуляторов, ознакомьтесь с нашим руководством по технологиям аккумуляторов.

Компоненты

Аккумуляторы состоят из трех основных компонентов: анода , катода и электролита . Сепаратор часто используется для предотвращения соприкосновения анода и катода, если электролита недостаточно. Для того, чтобы хранить эти компоненты, аккумуляторы обычно имеют какой-нибудь кожух типа .

Хорошо, большинство батарей на самом деле не разделены на три равные части, но вы поняли идею. Лучшее поперечное сечение щелочной ячейки можно найти в Википедии.

Анод и катод относятся к типам электродов . Электроды — это проводники, по которым электричество входит или выходит из компонента в цепи.

Анод

Электроны вытекают из анода в устройстве, подключенном к цепи. Это означает, что обычный «ток» течет в анод.

На батареях анод помечен как отрицательная (-) клемма

В батарее химическая реакция между анодом и электролитом вызывает накопление электронов на аноде. Эти электроны хотят двигаться к катоду, но не могут пройти через электролит или сепаратор.

Катод

Электроны текут в катод в устройстве, подключенном к цепи. Это означает, что обычный «ток» течет из катода.

На батареях катод отмечен как положительная (+) клемма

В батареях химическая реакция внутри или вокруг катода использует электроны, произведенные в аноде. Единственный способ для электронов добраться до катода — через цепь, внешнюю по отношению к батарее.

Электролит

Электролит – это вещество, часто жидкое или гелеобразное, способное переносить ионы между химическими реакциями, протекающими на аноде и катоде. Электролит также препятствует потоку электронов между анодом и катодом, так что электроны легче проходят через внешнюю цепь, а не через электролит.

-> Щелочные батареи могут вытекать из электролита, гидроксида калия, при воздействии сильного нагрева или обратного напряжения
(Изображение предоставлено Вильямом Дэвисом из Wikimedia Commons) <-

Электролит играет решающую роль в работе аккумулятора. Поскольку электроны не могут пройти через него, они вынуждены путешествовать по электрическим проводникам в виде цепи, соединяющей анод с катодом.

Сепаратор

Сепараторы представляют собой пористые материалы, препятствующие соприкосновению анода и катода, которое могло бы вызвать короткое замыкание в батарее. Сепараторы могут быть изготовлены из различных материалов, включая хлопок, нейлон, полиэстер, картон и синтетические полимерные пленки. Сепараторы химически не реагируют ни с анодом, ни с катодом, ни с электролитом.

В гальванической куче использовалась ткань или картон (сепаратор), пропитанные солевым раствором (электролитом), чтобы держать электроды друг от друга.

Ионы в электролите могут быть положительно заряжены, отрицательно заряжены и могут быть разных размеров. Могут быть изготовлены специальные сепараторы, которые пропускают одни ионы, но не пропускают другие.

Корпус

Большинству аккумуляторов требуется способ содержания их химических компонентов. Корпуса, также известные как «корпуса» или «оболочки», представляют собой просто механические конструкции, предназначенные для удержания внутренних частей батареи.

Этот свинцово-кислотный аккумулятор имеет пластиковый корпус

Корпуса аккумуляторов могут быть изготовлены практически из чего угодно: пластика, стали, пакетов из мягкого полимерного ламината и т. д. В некоторых батареях используется проводящий стальной корпус, электрически соединенный с одним из электродов. В случае обычного щелочного элемента АА стальной корпус соединен с катодом.

Эксплуатация

Для работы батарей обычно требуется несколько химических реакций. По крайней мере, одна реакция происходит на аноде или вокруг него, и одна или несколько реакций происходят на катоде или вокруг него. Во всех случаях реакция на аноде производит дополнительные электроны в процессе, называемом окисление , а реакция на катоде использует дополнительные электроны во время процесса, известного как восстановление .

Когда переключатель замкнут, цепь замыкается, и электроны могут течь от анода к катоду. Эти электроны обеспечивают химические реакции на аноде и катоде.

По сути, мы разделяем определенный вид химической реакции, реакцию восстановления-окисления или окислительно-восстановительную реакцию, на две отдельные части. Окислительно-восстановительные реакции происходят, когда электроны переносятся между химическими веществами. Мы можем использовать движение электронов в этой реакции, чтобы течь за пределы батареи, чтобы питать нашу цепь.

Окисление анода

Эта первая часть окислительно-восстановительной реакции, окисление, происходит между анодом и электролитом и производит электроны (обозначены как e ).

В некоторых реакциях окисления образуются ионы, например, в литий-ионном аккумуляторе. В других химических реакциях расходуются ионы, как в обычной щелочной батарее. В любом случае ионы могут свободно проходить через электролит, а электроны – нет.

Катодное восстановление

Другая половина окислительно-восстановительной реакции, восстановление, происходит на катоде или рядом с ним. Электроны, образующиеся в результате реакции окисления, расходуются при восстановлении.

В некоторых случаях, например, в литий-ионных батареях, положительно заряженные ионы лития, образующиеся в ходе реакции окисления, расходуются при восстановлении. В других случаях, например, в щелочных батареях, при восстановлении образуются отрицательно заряженные ионы.

Электронный поток

В большинстве батарей некоторые или все химические реакции могут происходить, даже если батарея не подключена к цепи. Эти реакции могут повлиять на срок годности батареи.

По большей части реакции будут происходить в полную силу только тогда, когда между анодом и катодом замкнута электропроводящая цепь. Чем меньше сопротивление между анодом и катодом, тем больше электронов может протекать и тем быстрее происходят химические реакции.

Создание короткого замыкания в аккумуляторе (в данном случае даже случайного) может быть опасным. Известно, что литий-ионные батареи перегреваются и даже дымят или загораются при наличии короткого замыкания.

Мы можем пропустить эти движущиеся электроны через различные электрические компоненты, известные как «нагрузка», чтобы сделать что-то полезное. На моушн-графике в начале этого раздела мы зажигаем виртуальную лампочку нашими движущимися электронами.

Разряженный аккумулятор

Химические вещества в аккумуляторе в конце концов достигнут состояния равновесия. В этом состоянии химические вещества больше не будут реагировать, и в результате батарея больше не будет генерировать электрический ток. В этот момент аккумулятор считается «разряженным».

Первичные элементы должны быть утилизированы, когда батарея разряжена. Вторичные элементы можно перезаряжать, и это достигается путем подачи обратного электрического тока через батарею. Перезарядка происходит, когда химические вещества выполняют еще одну серию реакций, чтобы вернуть их в исходное состояние.

Терминология

Люди часто используют общий набор терминов, когда говорят о напряжении батареи, емкости, возможности источника тока и так далее.

Ячейка

Ячейка относится к одному аноду и катоду, разделенным электролитом, используемым для получения напряжения и тока. Аккумулятор может состоять из одной или нескольких ячеек. Например, одна батарея типа АА представляет собой одну ячейку. Автомобильные аккумуляторы содержат шесть ячеек по 2,1 В каждая.

Обычная 9-вольтовая батарея состоит из шести щелочных элементов 1,5 В, установленных друг над другом

Первичные

Первичные клетки содержат химию, которую нельзя обратить. В результате батарея должна быть выброшена после того, как она мертва.

Вторичный

Вторичные элементы можно перезарядить, и их химический состав вернется в исходное состояние. Эти элементы, также известные как «перезаряжаемые батареи», можно использовать много раз.

Номинальное напряжение

Номинальное напряжение батареи — это напряжение, указанное производителем.

Например, щелочные батареи AA указаны как имеющие напряжение 1,5 В. В этой статье от Mad Scientist Hut показано, что их протестированные щелочные батареи начинаются с напряжения около 1,55 В, а затем постепенно теряют напряжение по мере разрядки. В этом примере номинальное напряжение «1,5 В» относится к максимальному или начальному напряжению батареи.

Этот аккумуляторный блок Storm для квадрокоптеров показывает кривую разрядки их LiPo элементов, начиная с 4,2 В и падая примерно до 2,8 В по мере разрядки. Номинальное напряжение, указанное для большинства литий-ионных и LiPo элементов, составляет 3,7 В. В этом случае номинальное напряжение «3,7 В» относится к среднему напряжению батареи в течение цикла ее разрядки.

Емкость

Емкость батареи — это мера количества электрического заряда, который она может отдать при определенном напряжении. Большинство аккумуляторов рассчитаны на ампер-часы (Ач) или миллиампер-часы (мАч).

Этот аккумулятор LiPo рассчитан на 1000 мАч, что означает, что он может обеспечить 1 ампер в течение 1 часа, прежде чем он будет считаться разряженным.

Большинство графиков разряда батареи показывают напряжение батареи как функцию емкости, например, эти тесты батареи AA, проведенные PowerStream. Чтобы выяснить, достаточно ли емкости аккумулятора для питания вашей схемы, найдите минимальное допустимое напряжение и найдите соответствующее значение в мАч или Ач.

C-Rate

Многие батареи, особенно мощные литий-ионные батареи, обозначают ток разряда как C-Rate, чтобы более четко определить атрибуты батареи. C-Rate — это скорость разряда относительно максимальной емкости аккумулятора.

1С — это величина тока, необходимая для разрядки аккумулятора за 1 час. Например, батарея емкостью 400 мАч, обеспечивающая ток 1С, будет обеспечивать 400 мА. 5C для той же батареи будет 2 А.

Большинство батарей теряют емкость при более высоком потреблении тока. Например, этот информационный график продукта от Chargery показывает, что их аккумулятор LiPo имеет меньшую емкость мАч при более высоких показателях C-Rate.

ПРИМЕЧАНИЕ: Общий совет гласит, что вы должны заряжать аккумуляторы LiPo при температуре 1С или меньше.


Массачусетский технологический институт (MIT) предлагает фантастическое руководство по спецификациям аккумуляторов и терминологии, которое идет гораздо дальше этого обзора.

Применение

Одноэлементный

Некоторые схемы могут питаться от одного элемента, но убедитесь, что батарея может обеспечивать достаточное напряжение и ток.

Этот Photon Battery Shield питается от одного элемента LiPo

Если напряжение слишком высокое или слишком низкое для вашей схемы, вам, вероятно, понадобится преобразователь постоянного тока в постоянный.

9Серия 0026

Чтобы увеличить напряжение между клеммами батареи, вы можете расположить элементы последовательно. Серия означает укладку элементов встык, соединяя анод одного с катодом следующего.

Соединяя аккумуляторы последовательно, вы увеличиваете общее напряжение. Добавьте напряжение всех ячеек, чтобы определить рабочее напряжение. Емкость остается прежней.

В этом примере последовательно соединены четыре элемента по 1,5 В. Напряжение на нагрузке составляет 6 В, а общий комплект аккумуляторов имеет емкость 2000 мАч.

В большинстве устройств бытовой электроники, в которых используются щелочные батареи, батареи устанавливаются последовательно. Например, этот держатель для двух батарей типа АА может повысить номинальное напряжение до 3 В для проекта.

ПРИМЕЧАНИЕ: Если вы заряжаете литий-ионные или LiPo аккумуляторы последовательно, вам необходимо обязательно использовать специальную схему, известную как «балансир», чтобы обеспечить постоянное напряжение между элементами. Некоторые зарядные устройства, такие как это, имеют балансиры для безопасной зарядки.

Параллельный

Если напряжения одного элемента достаточно для нагрузки, вы можете добавить батареи параллельно, чтобы увеличить емкость. Обратите внимание, что это также означает увеличение доступного тока (C-Rate).

Будьте осторожны при параллельном соединении батарей! Все элементы должны иметь одинаковое номинальное напряжение и одинаковый уровень заряда. Если есть какие-либо перепады напряжения, может произойти короткое замыкание, что приведет к перегреву и возгоранию.

В этом примере четыре элемента на 1,5 В соединены параллельно. Напряжение на нагрузке остается на уровне 1,5 В, но общая емкость увеличивается до 8000 мАч.

Серийные и параллельные батареи

Если вы хотите увеличить напряжение и емкость, вы можете комбинировать последовательные и параллельные батареи. Еще раз убедитесь, что уровень напряжения для батарей, включенных параллельно, одинаков, так как может произойти короткое замыкание.

В этом примере общее напряжение на нагрузке составляет 3 В, а общая емкость аккумуляторов составляет 4000 мАч.

В больших аккумуляторных блоках, особенно литий-ионных, вы часто видите конфигурацию, указанную с использованием букв «S» и «P» для последовательного и параллельного подключения. Конфигурация схемы выше — 2S2P. В качестве практического примера современные электромобили используют массивные батареи, соединенные последовательно и параллельно.

Ресурсы и дальнейшее развитие

К этому моменту вы уже должны понимать, как были изобретены батареи и как они работают. Батареи — это один из способов обеспечения электроэнергией вашего проекта, и они могут быть невероятно полезны, если вам нужен портативный источник питания.

Если вы хотите узнать больше об аккумуляторах, вот еще несколько руководств:

  • Технологии аккумуляторов
  • Как включить проект
  • Что такое цепь?

Хотите увидеть батареи в действии? Взгляните на эти проекты, в которых используются разные батареи в разных конфигурациях:

Беспроводная связь Саймона Сплозиона

Это туториал, демонстрирующий одну из многих техник “взлома” Саймона Говорит. Мы расскажем, как взять ваш Simon Says Wireless.

Избранное Любимый 3

Базовая дифференциальная платформа Actobotics

Начните работу с Actobotics с помощью этого простого транспортного средства. Затем расширьте и настройте его для своей собственной империи злых роботов.

Избранное Любимый 7

Всплывающая плата со светодиодной бабочкой

Создайте светящуюся всплывающую карту бабочки с медной лентой, двумя светодиодами и батареей.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *