Как рассчитать мощность радиатора отопления на комнату
Содержание
- Как расчитать мощность радиаторов отопления
- Расчет мощности радиатора отопления
- Что нужно для расчета мощности радиаторов отопления
- Формула расчета мощности радиатора отопления
- Как рассчитать количество секций радиаторов
- Расчет радиаторов отопления по площади
- Как посчитать секции радиатора по объему помещения
- Корректировка результатов
- Стены и кровля
- Климатические факторы
- Расчет разных типов радиаторов
- Корректировка в зависимости от режима отопительной системы
- Зависимость мощности радиаторов от подключения и места расположения
- Определение количества радиаторов для однотрубных систем
Как расчитать мощность радиаторов отопления
Отправляясь в магазин за радиаторами, можно всецело положиться на квалификацию продавца и приобрести их столько, сколько он скажет. Но, как Вы понимаете, зарплата этого человека напрямую зависит от количества проданных единиц товара. Поэтому ниже будет приведен расчет, который либо вообще избавит Вас от чужих советов, либо позволит перепроверить их в случае, если Вы засомневались.
Произведем расчет мощности радиаторов отопления на конкретных числах. Предположим, необходимо обогреть комнату в 14 квадратных метров и высотой 3 метра. Первым делом необходимо узнать объем помещения. Он рассчитывается следующим образом:
14 кв. м. х 3 м. = 42 куб. м.
Для дальнейших расчетов полезно знать следующее. Чтобы обогреть один кубический метр квартиры в строении стандартной постройки необходимо затратить 41 Ватт тепловой мощности. Это условие справедливо для климата европейской части России (в том числе, и для городов Москва и Нижний Новгород), а также Беларуси, Молдавии и Украины.
Значит, для определения необходимой мощности нужно перемножить объем помещения на этот норматив, т. е. на 41 Ватт: 42 х 41 Вт = 1722 Вт. Полученный показатель — количество тепла, которое должны отдать радиаторы, чтобы обогреть предполагаемое помещение.
В соответствии с проведенными вычислениями, владельца предполагаемого помещения вполне устроит отопительное устройство мощностью 1700 Вт (округление 1722 лучше производить в меньшую сторону).
Чтобы уже полностью быть уверенным, можно увеличить полученную мощность процентов на 20. На случай особо холодных зим, так сказать. Получим: 1700 х 1,2 = 2040. Округлим эту цифру в меньшую сторону. Таким образом, для гарантированного тепла в особо холодную зиму понадобится радиатор мощностью 2 кВт.
Далее нужно понять, сколько секций необходимо, чтобы обеспечить полученную величину мощности. Сделать это не менее просто. На упаковке (или во вкладыше) всякого радиатора имеется информация о его тепловой мощности. Под нею понимают то количество тепла, которое отдаст радиатор в процессе охлаждения с температуры нагрева до 20 градусов Цельсия (средняя комнатная температура). Зная, что одно ребро биметаллического или алюминиевого радиатора обладает мощностью порядка 150 Вт, рассчитаем необходимое количество ребер: 2000. 150 = 13,3 шт. Следовательно, радиатора с 13-тью ребрами будет достаточно.
Другие статьи по теме
Как увеличить теплоотдачу батарей отопления
Недостаточная теплоотдача квартирной системы отопления — это еще не повод, чтобы менять ее на новую или же модернизировать. Куда целесообразнее поработать над увеличением эффективности ее работы.
Как выбрать радиатор отопления в квартиру
Потихоньку уходят в прошлое предыдущие поколения отопительных приборов. Им на смену приходят другие источники тепла с большей теплоотдачей, более экономичные, с красивым современным дизайном. Остается только выбрать.
Как выбрать алюминиевый радиатор
Лучшего момента для смены отопительной системы в квартире, чем капитальный ремонт, трудно и представить. Несмотря на преимущества, которыми обладают радиаторы из чугуна, есть смысл заменить их на алюминиевые.
Расчет мощности радиатора отопления
- Что нужно для расчета мощности радиаторов отопления
- Формула расчета мощности радиатора отопления
- Влияние места расположения на расчет мощности батареи отопления
- Как нужно размещать приборы
Что нужно для расчета мощности радиаторов отопления
Тепло, которое передается радиаторами воздуху в помещении, должно обязательно компенсировать тепловые потери помещения. В упрощенном виде это соответствует тому, что на каждые 10 кв.м площади комнаты понадобится устанавливать биметаллические радиаторы с тепловой мощностью не меньше 1 кВт. На практике данный показатель следует увеличить на 15%, то есть полученная мощность радиатора умножается на 1,15. На сегодняшний день есть и более точные расчеты необходимой мощности стальных радиаторов, которые используют специалисты, однако для грубой оценки будет достаточно и предложенного метода. При данном методе расчета батареи могут оказаться немного большей мощности, чем это необходимо, однако возрастет качество системы отопления, при котором может быть возможной более точная настройка и низкотемпературный отопительный режим.
Схема радиаторов отопления.
При приобретении стальных радиаторов в паспорте прибора отопления указываются размеры устройства в миллиметрах. На сегодняшний день в продаже существуют радиаторы, которые имеют высоту 20, 30, 40, 50 и 60 см. Приборы имеющие высоту 20 и менее сантиметров, называются плинтусными. Высота в 60 см является традиционной высотой для старых чугунных батарей, в связи с чем новые радиаторы, которые имеют высоту 60 см, могут с легкостью их заменить.
Формула расчета мощности радиаторов отопления.
В данный момент в большинстве случаев используются радиаторы, которые имеют высоту 50 см, потому как в архитектуре все больше начинают использовать высокие окна и низкие подоконники, а при монтаже радиатора под окно понадобится выдержать нормативный зазор между радиатором и подоконной доской не меньше 5 см, при этом расстояние между полом и отопительным устройством должно составлять не менее 6 см. Низкие батареи выглядят компактнее, однако при одинаковой мощности будут длиннее. Следует знать, что размеры помещения не всегда дают возможность устанавливать более длинные радиаторы.
Говоря о том, как рассчитать мощность, следует отметить, что в паспорте устройства отопления рядом с мощностью, к примеру, 1905 Вт, будут указаны цифры расчетного перепада температуры, например, 70/55. Это значит, что в случае охлаждения с 70°С до 55°С радиаторы со своей поверхности отдадут 1905 Вт тепловой мощности. Многие продавцы указывают мощность радиаторов исключительно для перепада 90/70. В случае использования подобных устройств отопления для среднетемпературных систем с перепадом 70/55 мощность тепловой отдачи подобных радиаторов будет меньше, чем та, которая заявлена в паспорте. Именно поэтому при выборе батарей для низко- (55/45) и среднетемпературных отопительных систем их фактическую мощность понадобится пересчитывать.
Вернуться к оглавлению
Формула расчета мощности радиатора отопления
Варианты присоединения радиаторов.
Для того чтобы рассчитать мощность прибора отопления, существует следующая формула:
Q=k×A×dT, где k — коэффициент тепловой отдачи прибора отопления (Вт/кв.м°С), А — площадь поверхности прибора отопления, которая передает тепло (кв.м), dT — температурный напор (°С).
Из паспортных данных радиаторов становится известна мощность радиатора (Q) и температурный напор (dT), который соответствует данной мощности. Подставляя данные значения в формулу, следует рассчитать произведение k×A. Таким образом, станут известны все составляющие формулы. Если подставить значение dT, которое равняется 50°С или 30°С (в зависимости от средне- и низкотемпературных систем отопления), будет возможность найти мощность имеющихся радиаторов для данных систем. Кроме того, мощность подобных устройств можно пересчитать на свой температурный напор (dT) в случае, если по каким-либо причинам хозяина квартиры не устраивают нормативные величины 30°С и 50°С. Для этого понадобится использовать ту же самую формулу.
Теплоотдача радиаторов в зависимости от способа установки.
К примеру, необходимо выбрать отопительные радиаторы для комнаты, которая имеет площадь 16 кв.м. Для того чтобы отопить данную площадь, понадобятся батареи, которые имеют мощность 1,6 кВт. Данное число умножается на коэффициент 1,15, и получается 1,84 кВт. Далее останется только прийти в магазин и выбрать батареи, которые подходят по мощности и размеру.
Например, был найден прибор, в паспортных данных которого обозначается мощность 1905 Вт (1,9 кВт). Понадобится изучить паспортные данные и найти информацию по поводу того, что данную мощность устройство может выдать исключительно при температурном напоре в 60°С (90/70). Однако заранее известно, что имеющаяся система отопления будет выполнена с качественной регулировкой температуры теплового носителя — с использованием трехходовых смесителей. Она будет работать в низкотемпературном режиме (55/45) с напором температуры dT = 30°C. Соответственно, необходимо пересчитать мощность радиатора, который предлагается. По формуле либо паспортным данным надо найти величину произведения k×A=31,75 Вт/°С и вставить обновленные данные в формулу, которая необходима для расчета мощности.
Q=k×A×dT=31,75×30=956 Вт, что составит приблизительно 50% от необходимой мощности.
Далее можно поступить несколькими способами:
- приобрести вместо одного устройства два;
- произвести расчет мощности одной секции батареи и на основании данного расчета подобрать отопительный прибор с необходимым количеством секций;
- выполнить поиск других приборов, которые будут удовлетворять необходимым требованиям.
Следует добавить, что при приобретении батарей для низкотемпературных систем отопления (dT=30°C), в паспортных данных которых указывается температурный напор в 60°С, результат во всех случаях остается один — количество секций устройства понадобится удвоить. В других случаях, когда в паспорте указываются другие температурные напоры либо к расчетному напору температуры существуют собственные требования, мощность батарей необходимо пересчитать.
Как рассчитать количество секций радиаторов
Для расчета количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.
Методы расчета есть разные. Самые простые дают приблизительные результаты. Тем не менее, их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т. п.). Есть более сложный расчет по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.
Есть еще один метод. Он определяет фактические потери. Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем еще хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т.д. Так что заодно можно выправить положение.
Расчет радиаторов зависит от потерь тепла помещением и номинальной тепловой мощности секций
Расчет радиаторов отопления по площади
Самый простой способ. Посчитать требуемое на обогрев количество тепла, исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:
- для средней климатической полосы на отопление 1м 2 жилого помещения требуется 60-100Вт;
- для областей выше 60 о требуется 150-200Вт.
Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находятся в средней климатической полосе, для отопления площади 16м 2. потребуется 1600Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60Вт.
Расчет радиаторов отопления можно сделать по нормам СНиП
Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключен к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?»
Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определенное количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.
Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1600Вт. Пусть мощность одной секции 170Вт. Получается 1600/170=9,411шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.
Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и еще целый ряд факторов не учитывается. Так что расчет количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.
Как посчитать секции радиатора по объему помещения
При таком расчете учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объем помещения, а затем по нормам узнаем, сколько нужно тепла на его обогрев:
- в панельном доме на обогрев кубометра воздуха требуется 41Вт;
- в кирпичном доме на м 3 — 34Вт.
Обогревать нужно весь объем воздуха в помещении потому правильнее считать количество радиаторов по объему
Рассчитаем все для того же помещения площадью 16м 2 и сравним результаты. Пусть высота потолков 2,7м. Объем: 16*2,7=43,2м 3 .
Дальше посчитаем для вариантов в панельном и кирпичном доме:
- В панельном доме. Требуемое на отопление тепло 43,2м 3 *41В=1771,2Вт. Если брать все те же секции мощностью 170Вт, получаем: 1771Вт/170Вт=10,418шт (11шт).
- В кирпичном доме. Тепла нужно 43,2м 3 *34Вт=1468,8Вт. Считаем радиаторы: 1468,8Вт/170Вт=8,64шт (9шт).
Как видно, разница получается довольно большая: 11шт и 9шт. Причем при расчете по площади получили среднее значение (если округлять в ту же сторону) — 10шт.
Корректировка результатов
Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.
Количество радиаторов зависит от величины потерь тепла
На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:
- соотношение площади окна к площади пола:
- 10% — 0,8
- 20% — 0,9
- 30% — 1,0
- 40% — 1,1
- 50% — 1,2
- остекление:
- трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
- обычный двухкамерный стеклопакет — 1,0
- обычные двойные рамы — 1,27.
Стены и кровля
Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.
- кирпичные стены толщиной в два кирпича считаются нормой — 1,0
- недостаточная (отсутствует) — 1,27
- хорошая — 0,8
Наличие наружных стен:
- внутреннее помещение — без потерь, коэффициент 1,0
- одна — 1,1
- две — 1,2
- три — 1,3
На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).
Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора
Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.
Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.
Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.
Климатические факторы
Можно внести корректировки в зависимости от средних температур зимой:
Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.
Расчет разных типов радиаторов
Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчетом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1л/мин примерно равен мощности в 1кВт (1000Вт).
Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя
Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.
Осевое расстояние определяют между центрами отверстий для теплоносителя
Но если просто пока прикидываете возможные варианты, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчета количества секций биметаллических радиаторов от расчета алюминиевых, стальных или чугунных ничем не отличается. Разной может быть только тепловая мощность одной секции.
Чтобы считать было проще, есть усредненные данные, по которым можно ориентироваться. Для одной секции радиатора с осевым расстоянием 50см приняты такие значения мощностей:
- алюминиевые — 190Вт
- биметаллические — 185Вт
- чугунные — 145Вт.
Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведем самый простой расчет секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.
При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50см) принимается, что одна секция может обогреть 1,8м 2 площади. Тогда на помещение 16м 2 нужно: 16м 2 /1,8м 2 =8,88шт. Округляем — нужны 9 секций.
Аналогично считаем для чугунные или стальные баратери. Нужны только нормы:
- биметаллический радиатор — 1,8м 2
- алюминиевый — 1,9-2,0м 2
- чугунный — 1,4-1,5м 2 .
Это данные для секций с межосевым расстоянием 50см. Сегодня же в продаже есть модели с самой разной высоты: от 60см до 20см и даже еще ниже. Модели 20см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придется вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.
Расчет чугунных радиаторов отопления. Считать может по площади или объему помещения
Для наглядности сделаем расчет алюминиевых радиаторов по площади. Помещение то же: 16м 2. Считаем количество секций стандартного размера: 16м 2 /2м 2 =8шт. Но использовать хотим маломерные секции высотой 40см. Находим отношение радиаторов выбранного размера к стандартным: 50см/40см=1,25. И теперь корректируем количество: 8шт*1,25=10шт.
Корректировка в зависимости от режима отопительной системы
Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90 о С, в обратке — 70 о С (обозначается 90/70) в помещении при этом должно быть 20 о С. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчет откорректировать.
Для учета режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.
Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора
Чтобы было понятнее произведем расчет чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50см). Помещение то же: 16м 2. Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5м 2. Потому нам потребуется 16м 2 /1,5м 2 =10,6шт. Округляем — 11шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдем температурный напор для каждой из систем:
- высокотемпературная 90/70/20- (90+70)/2-20=60 о С;
- низкотемпературный 55/45/20 — (55+45)/2-20=30 о С.
То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16м 2 требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.
При таком расчете можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20 о С а, например, 25 о С просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчет все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55 о С. Теперь находим соотношение 60 о С/55 о С=1,1. Чтобы обеспечить температуру в 25 о С нужно 11шт*1,1=12,1шт.
Зависимость мощности радиаторов от подключения и места расположения
Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.
Потери тепла на радиаторах в зависимости от подключения
Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.
Количество тепла зависит и от установки
Количество тепла зависит и от места установки
Определение количества радиаторов для однотрубных систем
Есть еще один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления. когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.
В однотрубной системе вода на каждый радиатор поступает все более холодная
Поясним на примере. На схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остается по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15кВт-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8шт, будет на 20% больше — 9 или 10шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую. Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую.
В однотрубных системах нужно в расположенных дальше по ветке радиаторах добавлять секции
Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.
Приблизительный расчет количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.
Источники: http://termosyst.ru/radiatory-otopleniya/raschet-moschnosti-radiatorov.php, http://1poteply.ru/radiatory/moshhnosti-radiatora-otopleniya.html, http://teplowood.ru/raschet-radiatorov-otopleniya.html
Как вам статья?
Параметры зарядки и разрядки аккумуляторной батареи
Основная функция аккумуляторной батареи в фотоэлектрической системе заключается в обеспечении питания, когда другие источники энергии недоступны, и, следовательно, батареи в фотоэлектрических системах будут испытывать непрерывные циклы зарядки и разрядки. На все параметры батареи влияет цикл зарядки и перезарядки батареи.
Состояние заряда батареи (BSOC)
Ключевым параметром батареи, используемой в фотоэлектрической системе, является состояние заряда батареи (BSOC). BSOC определяется как доля общей энергии или емкости батареи, которая была использована, по сравнению с общей суммой, доступной от батареи.
Состояние заряда батареи (BSOC или SOC) показывает отношение количества энергии, запасенной в данный момент в батарее, к номинальной номинальной емкости. Например, для батареи с 80% SOC и емкостью 500 Ач энергия, запасенная в батарее, составляет 400 Ач. Распространенным способом измерения BSOC является измерение напряжения батареи и сравнение его с напряжением полностью заряженной батареи. Однако, поскольку напряжение батареи зависит от температуры, а также от уровня заряда батареи, это измерение дает лишь приблизительное представление о степени заряда батареи.
Глубина разрядки
Во многих типах аккумуляторов полная энергия, хранящаяся в аккумуляторе, не может быть изъята (другими словами, аккумулятор не может быть полностью разряжен) без серьезного и часто непоправимого повреждения аккумулятора. Глубина разряда (DOD) батареи определяет долю мощности, которая может быть изъята из батареи. Например, если DOD батареи указан производителем как 25%, то нагрузка может использовать только 25% емкости батареи.
Почти все батареи, особенно для возобновляемых источников энергии, оцениваются по емкости. Однако фактическая энергия, которую можно извлечь из батареи, часто (особенно для свинцово-кислотных батарей) значительно меньше номинальной емкости. Это происходит потому, что, особенно для свинцово-кислотных аккумуляторов, извлечение из аккумулятора полной емкости резко сокращает срок службы аккумулятора. Глубина разряда (DOD) — это часть емкости батареи, которую можно использовать от батареи, и она указывается производителем. Например, батарея 500 Ач с глубиной разряда 20% может обеспечить только 500 Ач x 0,2 = 100 Ач.
Ежедневная глубина разрядки
Помимо указания общей глубины разрядки, производитель батареи также обычно указывает дневную глубину разрядки. Ежедневная глубина разряда определяет максимальное количество энергии, которое может быть извлечено из батареи в течение 24 часов. Как правило, в крупномасштабной фотоэлектрической системе (например, в удаленном доме) банк батарей по своей природе имеет такой размер, что ежедневная глубина разряда не является дополнительным ограничением. Тем не менее, в небольших системах, которые имеют относительно небольшое количество дней хранения, может потребоваться расчет дневной глубины разряда.
Скорость заряда и разряда
Обычный способ определения емкости аккумулятора заключается в предоставлении емкости аккумулятора как функции времени, необходимого для полной разрядки аккумулятора (обратите внимание, что на практике аккумулятор часто не может быть полностью разряжен). Обозначение для указания емкости батареи таким образом записывается как Cx, где x — это время в часах, необходимое для разрядки батареи. C10 = Z (также пишется как C10 = xxx) означает, что емкость батареи равна Z, когда батарея разряжается за 10 часов. При уменьшении вдвое скорости разрядки (и увеличении времени разрядки батареи вдвое до 20 часов) емкость батареи возрастает до Y. Скорость разряда при разрядке батареи за 10 часов находят путем деления емкости на время. Следовательно, C/10 — это скорость заряда. Это также может быть записано как 0,1C. Следовательно, характеристика C20/10 (также обозначается как 0,1C20) представляет собой скорость заряда, полученную, когда емкость батареи (измеряемая при разрядке батареи за 20 часов) разряжается за 10 часов. Такие относительно сложные обозначения могут возникать, когда в течение коротких периодов времени используются более высокие или более низкие тарифные ставки.
Скорость зарядки в амперах выражается в количестве заряда, добавляемого батареей в единицу времени (т. е. в кулонах/сек, что является единицей измерения ампер). Скорость заряда/разряда можно указать напрямую, указав силу тока – например, аккумулятор можно заряжать/разряжать при токе 10 А. Однако чаще скорость зарядки/разрядки задают, определяя время, необходимое для полностью разрядить батарею. В этом случае скорость разряда определяется емкостью батареи (в Ач), деленной на количество часов, необходимых для зарядки/разрядки батареи. Например, батарея емкостью 500 Ач, которая теоретически разряжается до напряжения отключения за 20 часов, будет иметь скорость разряда 500 Ач/20 ч = 25 А. Кроме того, если батарея представляет собой батарею 12 В, то мощность подается на нагрузку 25А x 12В = 300Вт. Обратите внимание, что аккумулятор только «теоретически» разряжается до максимального уровня, поскольку большинство практических аккумуляторов не могут быть полностью разряжены без повреждения аккумулятора или сокращения срока его службы.
Режимы зарядки и разрядки
Каждый тип батареи имеет определенный набор ограничений и условий, связанных с ее режимом зарядки и разрядки, и многие типы батарей требуют определенных режимов зарядки или контроллеров заряда. Например, никель-кадмиевые аккумуляторы перед зарядкой следует почти полностью разряжать, а свинцово-кислотные аккумуляторы никогда не следует полностью разряжать. Кроме того, напряжение и ток во время цикла зарядки будут разными для каждого типа батареи. Как правило, зарядное устройство или контроллер заряда, предназначенные для одного типа аккумуляторов, нельзя использовать с другим типом.
Как рассчитать характеристики солнечной панели, батареи и инвертора – ShopSolarKits.
comСодержание
- Как рассчитать характеристики солнечной панели, батареи и инвертора – выбор подходящего солнечного оборудования для вашей солнечной энергосистемы
- Оценка необходимой мощности
- Определение требований к солнечным панелям:
- Солнечные батареи глубокого цикла:
- Оценка технических характеристик контроллера заряда для вашей системы
- Приобретение полного комплекта солнечной энергии
- Заключительные слова
Как рассчитать технические характеристики солнечной панели, батареи и инвертора. Выбор подходящего солнечного оборудования для вашей системы солнечной энергии
Расчет ваших потребностей в солнечной энергии и выбор необходимого солнечного оборудования является строительство любого типа солнечной электростанции.
В то время как некоторые люди считают, что единственный расчет, который вам нужно сделать, это купить солнечные панели с номинальной мощностью, которая в сумме соответствует желаемому количеству электроэнергии, есть и другие важные расчеты, которые вы должны сделать. Во-первых, так же важно, чтобы ваши батареи, инвертор мощности и контроллер заряда также работали вместе. Если все не совпадает и не совместимо, ваша свежесобранная солнечная энергетическая система не будет работать эффективно или вообще не будет работать.
Вот почему мы здесь, чтобы помочь вам выбрать правильное солнечное оборудование для ваших конкретных потребностей в энергии. Мы объясним, как можно быстро рассчитать, сколько солнечных панелей вам понадобится и какого типа они должны быть. Оттуда мы объясним, как рассчитать ампер-часы солнечной батареи и выбрать подходящий контроллер заряда и инвертор мощности.
Как только вы узнаете, какое оборудование вам понадобится, вы сможете собрать эффективную систему солнечной энергии, которая действительно удовлетворит ваши потребности в электроэнергии.
Оценка того, сколько энергии вам потребуетсяПервый шаг, который вам необходимо сделать, прежде чем покупать какое-либо солнечное оборудование, — это рассчитать, сколько энергии вам действительно понадобится. В большинстве случаев это включает в себя оценку мощности нагрузки.
Ваша нагрузка — это общее количество электроэнергии, необходимое для питания устройств или приборов, которые вы планируете использовать с помощью солнечной энергии. Правильный расчет потребления нагрузки является важным шагом в правильном определении размеров каждого компонента вашей солнечной энергетической системы.
Вам нужно будет приобрести солнечные панели, которые могут удовлетворить эти требования к нагрузке, контроллер заряда, который может правильно регулировать это количество электроэнергии, инвертор мощности, совместимый с требованиями системы, и солнечные батареи глубокого цикла, которые действительно способны накапливать такое количество энергии.
Мощность нагрузки:Для простоты предположим, что вы ищете питание для устройства, потребляющего 100 Вт в течение 10 часов в день. Затем вы должны выполнить простой расчет, чтобы получить ватт-часы или Втч для этой конкретной нагрузки. В этом случае уравнение будет таким: 100 ватт x 10 часов = 1000 ватт-часов.
Если бы это было все, что вы планировали обеспечить энергией с помощью вашей солнечной энергосистемы, вам бы понадобилось достаточное количество солнечных панелей для выработки 1000 Втч в день.
Для получения более подробной информации о том, как сложить ваши потребности в ватт-часах солнечной энергии, взгляните на наш Ultimate Off-Grid Solar ватт-час калькулятор.
Определение требований к солнечным панелям:После того, как вы рассчитаете свою нагрузку в ватт-часах, вам нужно будет определить тип и количество солнечных панелей, которые вам потребуются для удовлетворения предполагаемой потребности в нагрузке.
Солнечным панелям присваивается номинальная мощность в ваттах в соответствии с количеством электричества, которое они могут произвести за один час прямого солнечного света. Итак, если вы подсчитали, что вам нужно 1000 Втч для удовлетворения ваших требований к нагрузке, 100-ваттная солнечная панель, которая подвергалась воздействию прямых солнечных лучей в течение 10 часов, будет работать. (1000 Втч / 10 часов = 100-ваттная солнечная панель)
Однако необходимо учитывать реальное количество солнечного света, которое ваши солнечные панели получают в день. Все, от облаков в небе до конкретного времени года, когда используется солнечная панель, будет влиять на количество солнечного света, которое солнечная панель может поглощать каждый день.
При расчете количества солнечного света, получаемого вашими солнечными панелями в день, всегда будьте осторожны, чтобы не переоценить его. Предположим, что будут пасмурные дни, и учтите, где вы живете, и разное количество солнечного света, которое ваше местоположение получает в течение года.
После того, как вы рассчитаете свою потребность в нагрузке и получите разумную оценку среднего дневного солнечного света, получаемого в вашем регионе, вы можете начать покупать солнечные панели. Просмотрите нашу полную коллекцию солнечных панелей, и вы найдете широкий выбор высококачественных солнечных панелей с различной номинальной мощностью.
Рассчитайте потребности в аккумуляторахПосле того, как вы рассчитаете свои потребности в электроэнергии и узнаете количество и тип солнечных панелей, которые вам понадобятся, вы должны рассчитать свои потребности в хранении.
Чтобы правильно выбрать солнечные батареи, вам необходимо рассчитать номинальную мощность в ампер-часах/Ач, которая необходима вашим батареям в соответствии с вашими условиями нагрузки. Для этого вы рассчитаете это число, разделив ватт-часы на вольты.
Предполагая, что вы планируете использовать 12-вольтовые солнечные панели и 12-вольтовые аккумуляторы, вы должны разделить 1000 Втч на 12 В, чтобы получить в общей сложности 83 Ач. Таким образом, в этом примере солнечная батарея глубокого цикла емкостью 100 Ач 12 В сможет удовлетворить ваши требования к хранению.
Солнечные батареи глубокого цикла:Солнечные батареи глубокого цикла специально разработаны для того, чтобы выдерживать повторяющиеся циклы зарядки и разрядки, возникающие при работе с солнечной энергией. Вы можете соединить несколько солнечных батарей вместе либо последовательно, либо параллельно, чтобы получить разное напряжение и суммарную емкость.
Для получения дополнительной информации о солнечных батареях, а также полного списка опций, которые мы предлагаем, просмотрите нашу полную коллекцию солнечных батарей глубокого цикла. Мы предлагаем широкий ассортимент высококачественных солнечных батарей от лучших производителей солнечной энергетики.
Тем, кто ищет прочную и надежную литий-ионную солнечную батарею по доступной цене, мы всегда рекомендуем аккумулятор глубокого цикла BattleBorn 100 Ач 12 В. Он не только предлагает встроенную систему управления батареями, но и имеет 10-летнюю гарантию.
Оценка характеристик контроллера заряда для вашей системыНа этом этапе стоит подчеркнуть, что количество энергии, которую могут генерировать ваши солнечные панели, будет как резко расти, так и падать. Вот почему вам понадобится контроллер заряда с соответствующими характеристиками для вашей солнечной панели и аккумуляторной батареи.
Контроллеры заряда предотвращают перезарядку, которая может необратимо повредить батареи в вашей системе. Лучшие контроллеры заряда также предотвращают обратный поток тока от батарей к солнечным батареям, что может происходить ночью, когда солнечные панели не производят электричество.
Чтобы выбрать правильный контроллер заряда для ваших солнечных панелей и аккумуляторных батарей, вам необходимо оценить характеристики тока или силы тока ваших солнечных панелей. Вы можете рассчитать это, разделив номинальную мощность ваших солнечных панелей на напряжение.
Например, солнечная панель мощностью 100 Вт / 12 В = 8,3 Ампер.
При выборе контроллера заряда всегда можно немного округлить; однако вы не хотите оставлять слишком много места, иначе вы рискуете перезарядить аккумуляторы. В нашем текущем примере контроллер заряда на 10 А справился бы с задачей.
Если вы ищете контроллер заряда, мы рекомендуем вам просмотреть нашу коллекцию контроллеров заряда. У нас есть широкий выбор контроллеров заряда MPPT и PWM, и мы предлагаем все, от контроллеров 8A до блоков 80A.
Оценка требуемых технических характеристик инвертора мощности для вашей системыПоследний элемент оборудования, для которого необходимо рассчитать технические характеристики, — это инвертор мощности. Проще говоря, инвертор мощности преобразует мощность постоянного тока, генерируемую солнечными панелями, в более практичную мощность переменного тока, что требуется большинству электронных устройств и приборов.
Поскольку к этому моменту вы уже знаете максимальную мощность нагрузки, вам следует выбрать инвертор, способный комфортно работать с этой мощностью.
В нашем примере максимальная мощность нагрузки составляет 100 Вт, а это означает, что вам просто нужно выбрать инвертор мощности, рассчитанный на 100 Вт или чуть выше, так как бывают пики.
Вы также должны учитывать номинальное напряжение выбранного вами инвертора мощности, так как важно, чтобы номинальное напряжение вашего инвертора мощности соответствовало напряжению вашей аккумуляторной батареи. Таким образом, если вы использовали аккумуляторную батарею на 12 В как часть вашей солнечной энергосистемы, вам нужно будет купить инвертор на 12 В постоянного тока, так как это позволит вашему инвертору преобразовывать эту мощность постоянного тока 12 В в мощность переменного тока 12 В.
Правильный выбор инвертора мощности:Для получения дополнительной информации о инверторах мощности, а также полного списка всех предлагаемых нами опций, не стесняйтесь просматривать нашу полную коллекцию инверторов солнечной энергии.
Приобретение полного комплекта солнечной энергииЕсли вы хотите избавить себя от головной боли, связанной с совместимостью всех ваших солнечных компонентов и их эффективной совместной работой, вы всегда можете приобрести полный комплект солнечной энергии.
Солнечные комплекты не только являются отличной идеей для начинающих, но и тот факт, что оборудование идет в комплекте, означает, что они могут быть предложены по сниженным ценам.