Пусковой ток греющего кабеля: расчет и особенности
Пусковой (стартовый) ток – это максимальный ток, возникающий в момент подачи питания на систему. Этот параметр необходимо учитывать при проектировании, а точнее – при расчете максимальной длины отрезков кабеля.
От чего зависит стартовый ток
- Температуры включения. Чем ниже температура окружающей среды, при которой происходит включение системы обогрева, тем выше пусковой ток и тем больше стартовая мощность.
- Длины нагревательного кабеля. Чем больше длина секции, тем больше СТ системы. Для резистивного кабеля он определяется внутренним удельным сопротивлением Ом/м нагревательной жилы и рассчитывается, и контролируется при изготовлении секции на заводе. Саморегулируемый нагревательный кабель можно условно представить как множество параллельных резистеров (сопротивлений), подключенных к одному источнику питания. Сопротивление будет уменьшаться при увеличении длины линии, и, соответственно, увеличится пусковой ток.
От чего зависит величина стартового тока
Мощности греющего кабеля. Чем больше удельная мощность кабеля (Вт/м), тем больше СТ.
Особенности конструкции нагревательного кабеля. Резистивный греющий кабель из-за особенности конструкции имеет небольшой СТ, который на несколько процентов превышает рабочее значение тока.
Саморегулируемый кабель имеет достаточно большой СТ, который может увеличиваться в 1.5 -5 и более раз от своего рабочего значения. Причина – использование в конструкции проводящей матрицы с PTC-коэффициентом, меняющей свое электрическое сопротивление в зависимости от температуры окружающей среды.
В «холодном» состоянии кабель имеет небольшое сопротивление, которое к тому же зависит от температуры окружающей среды. При подаче питания на кабель, он начинает разогреваться, его сопротивление начинает расти, ток в цепи питания уменьшается. Коэффициент стартового тока зависит от компонентного состава и применяемых технологий при производстве матрицы кабеля.
У каждой марки нагревательного кабеля своя величина стартового тока. Производители редко указывают эту информацию в технических характеристиках. Этот параметр является условной величиной и при различных условиях один и тот же кабель может иметь разное значение СТ. Аналогично производители саморегулирующегося кабеля не нормируют его удельное сопротивление Ом/м.
График зависимости СТ кабеля Samreg-40-2CR* от температуры окружающей среды
*график построен на основе испытаний
Пиковая нагрузка приходится на первые 3-30 секунд после включения, в этот момент СТ может превышать номинальное значение в 2-5 раз. Примерно через 5-10 минут происходит полная стабилизация и выход греющего кабеля на номинальную мощность.
Расчет пускового тока греющего кабеля
Грубо рассчитать максимальный пусковой ток нагревательной секции можно исходя из общей длины греющего кабеля в системе и его удельной мощности.
Пример расчета максимального стартового тока греющего кабеля
Имеется секция саморегулирующегося кабеля удельной мощностью 30 Вт/м и длиной 50 м. Номинальная мощность секции при температуре +10°С составляет Pном=30Вт/м*50м=1500Вт. Это мощность уже разогретой секции. Если на кабель в «холодном» состоянии подать питание, то его мощность будет в несколько раз выше номинального значения. Для расчетов мы принимаем коэффициент стартового тока равный 2.5-3 для кабелей марки Samreg и Alphatrace. Коэффициент определен в ходе экспериментов с кабелем данных марок, а также изучения их физических и электротехнических свойств. У греющих кабелей иных производителей данный коэффициент может отличаться как в большую, так и меньшую сторону.
Тогда, стартовая (пусковая) мощность в нашем примере равна Pпуск=3хPном=4500Вт, пусковой ток Iпуск=4500/220=20,45 А.
По найденному значению СТ осуществляется выбор автоматических и дифференциальных выключателей для защиты нагревательной секции, а также тип и сечение силового питающего кабеля. Для секции, приведенной в примере, необходим дифференциальный автомат на номинальный ток Iном=25А с дифференциальным током Iут=30мА
Способы уменьшения стартового тока
Большая величина СТ является нежелательной для питающей сети, так как приходится использовать автоматы с большим номинальным током. Кроме того, подбирается силовой кабель увеличенного сечения.
Существует несколько способов снижения СТ системы:
Последовательное подключение
Последовательное подключение к питающей сети нагревательных секций, которое обеспечивается с помощью установки реле выдержки времени. Это устройство применимо в системе, состоящей из нескольких линий (нагревательных секций). Оно позволяет включать каждую линию с определенным временным интервалом (обычно около 5 минут). При данном способе подключения ток в нагревательной секции уменьшится до рабочего (номинального значения) через 5 минут после подачи питания. После этого можно осуществлять включение следующей линии. Таким образом, суммарный СТ всей системы обогрева равен:
Iсумм.пуск=Iном1+Iном2+…+Iпуск.n,
где Iном1, Iном2… – номинальные токи нагревательных секций соответственно 1ой, 2ой и т.д.
Iпуск.n – СТ секции, которая включается в сеть последней.
Чем больше секций включается по такой схеме (т.е. чем больше ступеней включения), тем больше пусковой ток будет стремиться к номинальному току для данной системы. Так, если по такой схеме включить хотя бы 3 группы (одна группа включается напрямую, 2 другие через реле времени через 5 и 10 минут соответственно) при условии равномерного распределения мощностей по группам, то пусковой ток можно снизить почти на 50%.
Пример принципиальной схемы шкафа управления с реле времени
Видео применения реле времени для последовательного включения линий обогрева
Устройство плавного пуска
Устройство в течение всего времени холодного запуска системы (порядка 10-12 минут) поддерживает значение тока на уровне не выше номинального. В этом случае можно использовать силовые и дифавтоматы, рассчитанные на номинальный ток секции. Кроме того, не придется применять питающий кабель с увеличенным сечением. Принцип работы устройства подробно описан в паспорте.
Паспорт устройства плавного спуска ICEFREE-PP.pdf
Согласно максимальной стартовой мощности подбирается также силовой кабель подходящего сечения.
Подбор сечения силового кабеля для системы обогрева
Таблица выбора сечения кабеля по току и мощности с медными жилами
Таблица выбора сечения кабеля по току и мощности с алюминиевыми жилами
Неправильный расчет СТ приводит к выходу из строя системы защиты и управления, что может стать причиной аварийных ситуаций на обогреваемом объекте.
Проблемы из-за неправильного расчета пускового тока
Наиболее частые проблемы, возникающие по причине неправильного расчета пускового тока и в соответствии с этим неправильного выбора оборудования:
Срабатывания автоматов защиты и иных защитных устройств
Срабатывания автоматов защиты и иных защитных устройств при включении системы обогрева из «холодного» состояния. Фактически автоматы защиты нагревательных секций выключатся в первые 10-100 секунд после подачи на них питания. Автомат отключается по перегрузке, срабатывает его тепловой расцепитель. Автомат может работать некоторое время в режиме перегрузки, но ввиду затяжного характера процесса снижения СТ, его запаса не хватает. Для устранения этой проблемы приходится выбирать автомат на большее значение номинального тока.
Данная проблема может быть не выявлена на этапе тестирования или запуска системы, так как максимальный пусковой ток увеличивается при понижении температуры окружающей среды. Если систему тестировали до наступления минимальных температур ошибка возникнет только при включении системы в холодное время года (например, в мороз).
Перегрев силового кабеля
Перегрев силового кабеля возникает по причине неправильного подбора его сечения. Из-за большой длительности пускового процесса греющего кабеля высокое значение СТ нагревает жилы силового кабеля. При этом кабель может расплавиться, возникнуть короткое замыкание и даже пожар на объекте обогрева.
Внимание!
При расчетах системы обогрева необходимо помнить, что в первую очередь максимальный стартовый ток зависит от длины секции кабеля.
Превышение допустимой длины приводит не только к увеличению СТ, но и к преждевременному износу системы.
Проверил: Евгений Щипунов
Главный инженер ООО «СКО Альфа-проджект»
Примеры электрообогрева
Греющий кабель Samreg
Саморегулирующийся кабель SAMREG 16-2
95 р. / м
Саморегулирующийся кабель SAMREG 24-2CR
280 р. / м
Саморегулирующийся кабель SAMREG 40-2CR
290 р. / м
В раздел
Другие статьи на тему
Видео про шкафы управления
Комментарии
Комментарии для сайта Cackle
Пром-А Урал
Назначение:
Системы обогрева на основе греющего провода или кабеля постоянной мощности (последовательного сопротивления) применяется для предотвращения замерзания, поддержания температуры и разогрева жидких и газообразных сред в трубопроводах длиной до 5 км, крупнотоннажных парках, основаниях резервуаров. Поскольку первичное применение подобных систем – это электрообогрев протяженных трубопроводов, системы получили дополнительное наименование – «Long-Pipe» системы.
Греющий кабель (или провод постоянной мощности) преобразует электрическую энергию в тепловую, но, в силу отсутствия в его конструкции греющей матрицы, он не обладает свойствами саморегулирования и самоограничения. Провод постоянной мощности выделяет фиксированное кол-во тепла на участке обогрева при помощи жилы провода (см. Рис. 1)
Теплоспутник постоянной мощности представляет собой одножильный провод или трехжильный кабель сечением жилы от 1мм2 и выше (см. Рис.2-4) круглого или прямоугольного сечения. Жила выполняется многопроволочной, в качестве материала жилы используется медь, никель, нихром или константан. Для высокотемпературного провода (см. рис.2) жила выполняется однопроволочной. В результате теплового расчета в зависимости от начальных условий задачи подбирается тип теплоспутника (одножильный провод либо трехжильный кабель), материал жилы и ее удельное сопротивление, материал изоляции жил и материал наружной оболочки. В качестве материала для изоляции жил используется политетрофторэтилен (фторопласт-4) либо оксид магния MgO. Оксид магния MgO применяется в качестве изоляции только для высокотемпературного греющего провода. Экран кабеля образует луженая медная оплетка. Наружная оболочка традиционно выбирается исходя из требований дальнейшей эксплуатации теплоспутника (например, возможность повышенных механических нагрузок или случайных механических повреждений, воздействие водных сред, пропарка, случайное воздействие органических растворителей) и может быть выполнена из ПВХ-пластиката, фторопласта либо кремнийорганической резины. Для высокотемпературного греющего провода наружная оболочка может быть изготовлена из нержавеющей стали, сплава CuNi либо из жаропрочного и жаростойкого никелехромового сплава (Incoloy).
Линейная мощность теплоспутников находится в диапазоне от 5 до 230Вт/м, напряжение питания от ~220В до ~660В в зависимости от типа теплоспутника и схемы включения, минимальная температура хранения и монтажа теплоспутников до -20С, а максимальное внешнее температурное воздействие на теплоспутник составляет 650С.
Рис.1
Греющие провода и кабели могут быть изготовлены как общепромышленного, так и взрывозащищенного Exe типа.
Ниже представлен пример конструкции провода и кабеля постоянной мощности:
Рис.2
Рис.3
Рис.4
Примеры схем включения греющего провода представлены на рисунках 5-7
Рис.5
Рис.6
Рис.7
Из схем включения видно, что одножильный провод требует подачи напряжения питания с двух концов, тогда как трехжильный кабель только с одного конца.
Преимущества системы электрообогрева «LongPipe»:
- Технологичность. Кабель и провод высокого качества позволяющий решать задачи обогрева протяженных трубопроводных сетей (до 5 км), крупнотоннажного резервуарного парка и насосных полов, где применение иных типов греющих кабелей является нецелесообразным.
- Экономичность. Стоимость капитальных вложений в 1 метр провода постоянной мощности в 3-5 раз ниже, чем для саморегулирующегося греющего кабеля. Дополнительная экономия денежных средств достигается за счет возможности обогревать протяженные участки трубопроводов и большие поверхности меньшим количеством точек питания кабеля или провода, что приводит к снижению затрат на строительство сопроводительной сети питания.
- Безопасность. Безопасность эксплуатации систем постоянной мощности достигается за счет системы управления включением и системы слежения за температурой внешней оболочки греющих секций.
Необходимость использования системы слежения за температурой внешней оболочки греющих секций (контроль псевдогорячей точки) определяет отсутствие у теплоспутника свойств саморегулирования и самоограничения, что требует отдельного контроля за нагревом секций и отключения системы в случае их перегрева. Также отсутствией этих свойств не позволяет укладку теплоспутника внахлест.
ООО «Пром-А Урал» разрабатывает и внедряет решения только на проверенном оборудовании заводов-изготовителей, партнерами которых является. Оборудование сертифицировано на применение во взрывоопасных зонах (ТР ТС), а также имеет сертификаты соответствия в области пожарной безопасности и сертификаты Российского морского регистра судоходства. Линейка оборудования представлена как Российским, так и зарубежным заводом-изготовителем.
В основной состав системы электрообогрева «LongPipe» входит:
- Греющий кабель либо провод;
- Вводные муфты и крепежные элементы для теплоспутника;
- Коробки питания и управления;
- Термостаты или датчики температуры;
- Шкафы и щиты управления системой обогрева.
Внутрищитовое оборудование включает в себя оборудование для распределения и защиты линий питания (автоматические выключатели и УЗО), оборудование коммутации цепей (контакторы) и оборудование регулирования (регулятор температуры, контроллер).
В дополнительный состав системы входит сопроводительная сеть питания, монтажные короба или лотки, тепловая изоляция с наружным защитным слоем.
Состав системы кабельного электрообогрева условно показан на рисунке 8.
Рис.8
Специалисты ООО «Пром-А Урал» всегда готовы проконсультировать Вас по вопросам применения систем электрообогрева «LongPipe», а также оказать услуги по расчету, проектированию и внедрению систем на базе оборудования представленных заводов-изготовителей.
Как рассчитать систему обогрева
1 Что такое калькулятор теплотрасс?
2 Переменные, необходимые для проектирования обогревателя
2.1 Расчеты теплообогрева – формула тепловых потерь
2.2 Как выбрать электрообогрев?
Система электрообогрева представляет собой набор обогреваемых кабелей, аксессуаров и контроллеров, предназначенных для поддержания определенной температуры. Заводы и процессы с трубопроводами и резервуарами часто рассчитывают на электрообогрев и соответствующую изоляцию для поддержания работы своих предприятий.
Для проектирования системы электрообогрева, которая будет эффективно обеспечивать непрерывность всех частей технологического процесса, необходимы правильный кабель, набор принадлежностей и контроллер. Также крайне важно выполнить правильные проектные расчеты для обеспечения точного проектирования. Использование калькулятора теплотрасс, сертифицированного IEEE 515, — лучший способ обеспечить правильность конструкции.
Калькулятор электрообогрева — это сертифицированное программное обеспечение, которое учитывает детали вашего приложения и рассчитывает то, что вам нужно, например длину и тип требуемого кабеля. Калькулятор позволяет пользователям вводить множество переменных и предлагает конкретные решения для заказа правильных компонентов обогревателя.
Переменные, необходимые для проектирования обогревателяДоступны кабели с различной мощностью, напряжением и материалами оболочки. Трасса проходит вдоль трубопровода горизонтально. Трасса обогрева будет установлена в положении на 5 или 7 часов (с верхним центром на 12 часов) на расстоянии 1 фут кабеля на 1 фут трубы. Более тяжелые клапаны, фланцы, насосы, опоры для труб и другие компоненты являются теплоотводами, которые требуют дополнительного кабеля для компенсации дальнейших потерь тепла.
Калькулятору теплотрассы потребуются следующие входные данные для решения всего проекта:
- Температура — Существует семь температурных факторов: поддерживаемая температура, минимальная и максимальная температура окружающей среды, запуск, максимальное воздействие, максимальная рабочая температура. , и максимально допустимое.
- Окружающая среда — Внутри или снаружи, химическое воздействие, скорость ветра, классификация опасных зон (класс, категория, газ, пыль и т. д.)
- Трубопровод — Тип (металл или пластик), состав, диаметр трубы, длина трубы
- Радиаторы – Добавьте количество и тип каждого клапана, количество опор и фланцев
- Изоляция – Тип и толщина
- Система управления – Контроль температуры (локальные термостаты или датчики и панели управления)
- Электрооборудование – Доступное напряжение и типоразмер выключателя
- Торцевое уплотнение, тип — выбор выше или ниже изоляции, с подсветкой или без подсветки
Калькулятор учтет всю информацию и предоставит необходимую длину кабеля.
Ниже приведен пример вывода нашего программного обеспечения.
Расчеты теплообогрева – Формула тепловых потерь
Для расчета тепловых потерь без калькулятора обогрева используйте следующую формулу:
Q = | кА ΔT |
т |
Определения:
Q = Потеря тепла
K = Изоляционная теплопроводность
A = область
ΔT = Tpipe – Tambient
T = Толщина изоляции
. переменные технологического оборудования, чтобы обеспечить полное решение.
Как выбрать электрообогрев?
Калькулятор электрообогрева упрощает определение правильного семейства кабелей и желаемого контроля температуры для вашей системы в соответствии с условиями процесса.Учитывайте следующие факторы при выборе кабеля электрообогрева для вашего применения:
- Температура обслуживания — при какой температуре необходимо поддерживать ваш продукт?
- Максимальная температура воздействия. Какова максимальная температура поверхности, к которой присоединяется тепловой след?
- Материал кожуха – если присутствуют высококоррозионные органические или неорганические пары – что это такое?
Обратитесь к производителю системы обогрева для выбора подходящего устройства управления термостатом.
Не позволяйте холоду остановить ваш бизнес. Кабель электрообогрева Powertrace обеспечит бесперебойную работу при любых низких температурах.
Узнайте больше о системах обогрева
Расчет необходимой длины нагревательного кабеля
Расчет необходимой длины нагревательного кабеля | нвентОпределение общей длины нагревательного кабеля, необходимого для проекта, может оказаться непростой задачей. С учетом многих факторов, таких как размер и доступное пространство, задача может показаться сложной, особенно для крупных проектов с большим количеством инфраструктуры.
Однако расчеты довольно просты, если помнить о некоторых вещах. Чтобы определить общую длину необходимого нагревательного кабеля, сложите длины, необходимые для каждого компонента во всей системе трубопроводов. Давайте рассмотрим несколько полезных советов, как это сделать.
Для трубопровода
Рассчитайте количество нагревательного кабеля, необходимого для длины трубы. В случае прямой прокладки нагревательного кабеля она равна общей длине трубопровода.
- Ввод в распределительную коробку и торцевое уплотнение: добавить не менее 1 м / 3 фута
- Компенсация изгибов, фланцев, колен: добавьте 5 – 10 % к общей длине
Для каждого клапана
Добавьте следующие длины нагревательного кабеля: