Схема контура заземления частного дома: назначение, требования и актуальные схемы

Содержание

Заземление в частном доме – как сделать контур своими руками

Основная функция заземления – защита человека от поражения электрическим током. Кроме того, благодаря наличию контура заземления уменьшается уровень магнитных помех, исходящих от электрической техники, и исчезают помехи в самой электрической сети. Также никто не отменял статическое напряжение, которое появляется на металлических корпусах, но которое может исчезнуть, если корпус надёжно заземлён.

Раньше заземление в основном применялось в промышленных электроустановках, однако сегодня даже бытовая электрическая сеть не должна обходиться без заземления. В быту корпусы электрической бытовой техники заземляются через обычную вилку европейского стандарта со специальным контактом для заземления. К этому контакту обязательно должен быть подключён защитный PE-проводник («земля»).

В случае электрического пробоя изоляции фазного провода на металлический корпус и случайном прикосновении человека к этому корпусу, движение электрического тока будет направлено в землю, минуя организм человека.

Таким образом работает защита от прямого прикосновения. Кроме этого, при замыкании фазы на заземлённый корпус, появляется ток короткого замыкания (ток к.з.), который в доли секунды резко увеличивает своё значение. На ток к.з. реагирует защитный автомат, который срабатывает и полностью отключает подачу напряжения на то место, где произошло к.з.

Контур заземления своими руками – пошаговая инструкция

В настоящий момент очень популярно строительство частных домов. Кроме стандартных строительных работ, выполняются работы и по электрификации дома. Вследствие этого появляется необходимость в выполнении контура защитного заземления. Контур заземления может выполняться не только для вновь возводимых строений, но также и для домов, у которых контура не было изначально ещё при строительстве. Если на производстве контур защитного заземления выполняется электромонтажной организацией по готовому проекту, то в быту можно сделать заземление своими руками.

Для монтажа заземляющего контура необходимы следующие материалы:

● металлические электроды;

● металлическая (стальная) полоса;

● несколько болтов.

Стоит отметить, что в продаже уже давно имеются специальные комплекты для самостоятельного выполнения заземления частного дома.

Для выполнения монтажных работ понадобятся:

● лопата штыковая;

● большой молоток или кувалда;

● бытовой сварочный инвертор;

● сварочные электроды;

● болгарка.

Для частного дома контур заземления должен состоять из трёх заземляющих электродов, вкопанных или забитых в землю и соединённых между собой металлической полосой. В качестве электродов может использоваться стальной уголок 50х50х5мм. Длина уголка должна быть в пределах двух-трёх метров. Если изначальная длина уголка больше двух-трёх метров, то болгаркой отрезаются куски необходимой длины. В качестве полосы используется сталь 40х4мм.

Ни в коем случае нельзя в качестве заземлителей использовать металлическую арматуру, т.к. у неё калёная поверхность, следовательно, процесс растекания тока нарушается. Кроме того, арматура быстрее окисляется и ржавеет, что абсолютно недопустимо. Короче говоря, металл для контура заземления по истечении определённого времени не должен окисляться и ржаветь.

Отвод от контура также выполняется металлической полосой.

Монтаж контура защитного заземления для частного дома выполняется в несколько этапов.

Выбор места расположения контура

Для определения места под контур, необходимо учитывать свойства грунта. Для выполнения контура заземления больше всего подходит чернозём, менее пригодны для этих целей песок и глина. Контур заземления должен находиться рядом с домом на расстоянии около метра.

Разметка

Так как контур для частного дома выполняется в виде равностороннего треугольника, то и разметка на грунте должна быть соответствующей. Расстояние между сторонами размеченного треугольника должно быть таким, чтобы электроды можно было забивать в грунт на расстоянии друг от друга не меньше длины электрода.

Траншея под контур

После того, как выполнена треугольная разметка, выкапывается траншея по периметру разметки. Глубина траншеи должна учитывать глубину промерзания грунта в сильный мороз. Ширина должна быть достаточной для того, чтобы удобно было обваривать контур по периметру, например 0,7м.

Монтаж контура

Работы по монтажу контура начинаются непосредственно с забивания электродов. Электроды забиваются молотком или кувалдой по углам треугольной траншеи на 2-3 метра вглубь. Забивать необходимо не полностью. На поверхности траншеи должно оставаться 0,2-0,3м от длины электрода.

Затем забитые электроды соединяются между собой горизонтально расположенной металлической полосой при помощи сварки. Так образуется треугольный контур. Отсюда и название – контур заземления.

Нельзя вместо сварочного соединения использовать болтовое соединение или какое-либо другое. Причина – быстрое окисление и ржавление.

Следующим этапом будет выполнение металлического отвода от контура. Как и было сказано, отвод выполняется также металлической полосой. Полоса с одной стороны приваривается к самому контуру, а другая сторона полосы ведётся в дом через отверстие в стене. В доме полосу рекомендуется провести по внутренней стене на небольшой высоте от пола. На этой части полосы заземления привариваются болты на не слишком большом расстоянии друг от друга. К одному из таких болтов прикручивается медный поводок, которым заземляется вводной щиток дома.

После того, как полностью выполнены монтажные работы, необходимо сделать замер сопротивления растеканию тока контура заземления. Замер обычно выполняют специальным прибором. Величина сопротивления должна быть не более 4 Ом.

После замера контур заземления засыпается грунтом, после чего заземление можно уже эксплуатировать.

Правильно выполненный контур заземления собственноручно – залог безопасности и правильной работы бытовых потребителей.

Заземление в частном доме: устройство контура, видео

Уже не первое столетие наша жизнь неотъемлемо связана с электричеством. Оно необходимо нам и для упрощения бытовой жизни, и для досуга, и для работы. Но электричество не только дарит нам удобство и комфорт, оно влечёт за собой риски связанные с электрошоком. В связи с этим без защитных приспособлений не обойтись. Фундаментальным из них является заземление. Если в многоэтажках инженеры сразу прорабатывают все схемы водоснабжения, электропередачи и прочие коммунальные тонкости, то в частных домах все эти проблемы приходится решать самостоятельно. Можно обратиться в энергослужбу, но проще и дешевле сделать заземление в частном доме своими руками.

Первое, что Вам потребуется – смоделировать схему. Схема заземления поможет просчитать количество необходимых материалов, даст возможность посмотреть на весь проект в целом, а в последующем – убережет от ненамеренного повреждения (чаще всего, в случае ремонта или перепланировки). В схеме Вы должны прописать и разместить абсолютно все части контура заземления:

Пример схемы заземления в частном доме

  1. Заземлители – электропроводники, находящиеся ниже уровня почвы (вбитые в землю).
    Не менее 50см заземлителя должно находиться ниже максимального уровня промерзания почвы, так же он не должен находиться на расстоянии ближе двух метров от водо- и газопроводов. Советуем устанавливать не один, а несколько заземлителей, так как земля не является линейным проводником, а её проводимость зависит от площади контакта и силы напряжения. Если же установить 2-3 заземлителя на расстоянии метра друг от друга, то между ними образуется потенциальная поверхность, которая увеличит площадь контакта с землей. Размещать заземлители следует на расстоянии более полутора метра от края отмостки.
  2. Металлосвязь – металлическая конструкция, являющаяся связующим звеном между заземлителем и заземляемым объектом. Заводится в дом в виде шин заземления.
  3. Главная шина заземления, заземляющая вводный щит или вводное распределительное устройство.

Совокупность вышеперечисленных деталей называют контуром заземления. Контур заземления в частном доме отличается от квартирного количеством расходного материала.

Строители многоэтажек стараются свести к минимуму затраты на металл, мотивируя это снижением нагрузки на фундамент. В одноэтажных домах эта проблема не стоит, но стоит помнить, что не следует перегружать контур лишними деталями.

Есть два вида заземления – защитное и рабочее. Защитное заземление предусмотрено для предотвращения сгорания электроприборов и травм людей. Рабочее, или постоянное заземление помимо защиты, обеспечивает нормальную работу электрооборудования при различных перепадах или утечке тока. Устройство заземления в частном доме чаще всего состоит только из защитного заземления, но мы рекомендуем провести рабочее заземление в стиральную машинку, электродуховку и микроволновую печь, персональный компьютер. В виду высокой собственной электрической ёмкости и жестких условий эксплуатации, этот вид заземления будет более уместным.

Покупая все необходимые для последующей работы материалы, стоит учесть следующие факторы:

  1. Расцветка оболочки заземлительных клемм должна быть желтой с продольной зелёной полоской.
  2. Сечение клемм должно быть выше 4 мм2.
  3. Для металлосвязи, по причине быстрого ржавения, нельзя использовать оцинковку.

Монтаж заземления принципиально не отличается от монтажа любой другой электроцепи. Стоит помнить, что провода должны проходить строго горизонтально и вертикально, соединяться под углом 90 градусов. В противном случае электрики с радостью Вас оштрафуют.

Проверка готового контура заземления – самый сложный из процессов. Во-первых, Вам потребуются специальные приборы для измерения сопротивления тока. Бытовым индикатором проверить эти цифры нельзя, поэтому Вам нужно будет взять напрокат электроиндукционный ручной мегомметр или электронный измеритель. Но идеальным вариантом я вижу вызов бригады энергетиков. Они не только профессионально проверят все составляющие схемы заземления, но и смогут выдать Вам акт ввода в эксплуатацию.

Заземление в частном доме крайне необходимо для безопасности как техники, так и людей. Сделать его самостоятельно, или вызвать мастеров – дело Ваше. Лично мы придерживаемся мнения, что каждый из нас в состоянии сделать это без посторонней помощи. Попробуйте, у Вас всё получится! А что бы было более понятно, посмотрите видео, как это делают специалисты.

Заземление дома своими руками | Строительный портал

Еще совсем недавно защитное заземление оборудовалось только на промышленных предприятиях и других объектах, где используют мощные электроустановки. Чтобы защитить своих работников от случайного пробоя на корпус, в обязательном порядке каждая установка и прибор заземлялись. Но время не стоит на месте. Сегодня наши дома напичканы мощной бытовой техникой: холодильники, морозильные камеры, микроволновые печи, индукционные плиты, системы «теплый пол» и многое другое. А ведь все это является источником повышенной опасности. В случае нарушения их изоляции «тесное общение» с мощными приборами может стать фатальным. Именно поэтому, чтобы обезопасить всех обитателей жилища, в загородных домах обязательно необходимо оборудовать электрическое заземление. Его обустройство можно доверить профессионалам, а можно выполнить самостоятельно.

  1. Для чего необходимо защитное заземление
  2. Что собой представляет контур заземления
  3. Как произвести расчет заземления
  4. Как сделать заземление в частном доме своими руками

 

Для чего необходимо защитное заземление

 

В профессиональной литературе указано, что защитное заземление – это соединение нетоковедущих частей электроустановок с землей (грунтом), которое выполняют преднамеренно. При этом в нормальном состоянии данные части электроприборов и установок не находятся под напряжением. Но если вдруг произойдет частичное разрушение изоляционного слоя, металлический корпус прибора может оказаться под напряжением.

Если объяснять более доступным языком, то придется вспомнить школьный курс физики. Как нам известно из оного, ток имеет свойство течь в ту сторону, где наименьшее сопротивление. Когда на токоведущих частях электроприборов нарушается изоляция, ток начинает искать место, где сопротивление самое низкое. Так он доходит до корпуса прибора, в результате чего корпус оказывается под напряжением. Эту ситуацию называют «пробоем на корпус». Помимо того, что ток на корпусе может нанести вред самому прибору или нарушить его функциональность, если в такой момент человек или животное дотронутся до корпуса прибора, они получат удар током. Это может повлечь печальные последствия.

Защитное заземление выполняется для того, чтобы отвести ток в землю (грунт). При этом крайне важно сделать контур заземления с таким низким сопротивлением, чтобы ток, который распределяется в обратно пропорциональной зависимости между человеком и заземляющим устройством, прошел через человека в предельно допустимых нормах, а большая часть была перенаправлена в землю.

 

Что собой представляет контур заземления

Самый распространенный вариант контура заземления – заглубленные в грунт электроды, соединенные между собой в какой-либо контур, который может представлять собой любую геометрическую фигуру – треугольник, квадрат или другую, но также соединение может производиться в один ряд. Вариант обустройства зависит от того, насколько он удобен для монтажа, и от размеров территории, которую можно использовать под контур. Иногда контур заземления выполняют по периметру здания. Полученная конструкция присоединяется к щитку, для чего используется кабель заземления.

Расстояние от заземляющего контура до дома не должно быть слишком большим, оптимальным считается 4 – 6 м. Нельзя располагать контур ближе 1 м к дому, нежелательно дальше 10 м.

Важно! Контур заземления в обязательном порядке обустраивается ниже уровня промерзания грунта, т.е. на глубине не менее 0,8 м.

Глубина, на которую необходимо заглублять электроды, зависит от структуры грунта и насыщенности его водой и может составлять от 1,5 м до 3 м и более. Если грунтовые воды находятся близко к поверхности почвы, грунт насыщен водой, то глубина будет небольшой. В противном случае придется забивать стержни глубоко в грунт либо обустраивать другой вариант системы заземления.

 

Контур заземления из черного металлопроката

В качестве заземляющих электродов можно использовать любые стержни из черного металла. Это может быть стальной уголок (чаще всего используется), труба, двутавр, арматура с гладкой структурой. Принцип выбора прост – удобство забивания в грунт. Т.е. можно выбрать любую форму, главное, чтобы сечение металла было не менее 1,5 см2.

Количество стержней – электродов можно определить опытным путем или произвести расчеты, но самым распространенным является треугольный контур заземления с электродами в вершинах треугольника. Между собой стержни соединены металлическими полосами, такая же полоса ведет и к распределительному щитку.

Расстояние между стержнями может быть от 1,2 м до 3 м и более. Это зависит от сопротивления грунта.

Важно! Перед тем как делать заземление в своем доме, посоветуйтесь с обычными электриками в вашем районе. Спросите у них, какие чаще всего конструкции, и с какими характеристиками обустраивают в вашем регионе. На какую глубину ставить электроды, как далеко выносить от дома, какое расстояние между стержнями делать. Это значительно облегчит вашу задачу.

 

Модульные системы заземления

Помимо того, что можно оборудовать контур заземления из подручного материала, на рынке появились готовые модульные системы заземления.

В комплект входят стержни из высококачественной стали, сверху они покрыты медью. Диаметр стержней около 14 мм, длина до 1,5 м. С обеих сторон на стержне есть нарезка омедненной резьбы. Элементы соединяются между собой с помощью латунных муфт. Для заглубления стержней в грунт есть наконечники, которые навинчиваются на резьбовое соединение. Таких наконечников несколько видов для разных грунтов. Еще в комплекте есть зажимы для соединения вертикальных (стержней) и горизонтальных (полос) элементов. Для защиты конструкции от коррозии используется специальная паста, которой обрабатываются все элементы системы.

У готовых модульных систем заземления есть несколько существенных преимуществ:

  • Путем соединения вертикальных элементов можно осуществить заглубление на 50 м;
  • Стержни не сильно поддаются коррозии благодаря медному напылению и нержавеющей стали;
  • Не требуются сварочные работы;
  • Обустройство может сэкономить площадь, т.к. всю систему можно оборудовать на 1 м2;
  • Для монтажа не требуется специальное оборудование;
  • Долговечные.

Выбор системы заземления, самодельная или готовая модульная, зависит только от финансового бюджета и личных предпочтений. Но в любом случае перед обустройством необходимо произвести расчеты заземления.

 

Как произвести расчет заземления

 

Для тех, кто не любит лишних сложностей, существует вариант выполнения заземления опытным путем. Можно обустроить треугольный контур на оптимальном расстоянии от дома, использовать металлические стержни длиной 3 м, расстояние между стержнями сделать от 1,5 до 2 м, соединить их между собой и произвести замер сопротивления контура. Требования к заземлению таковы: сопротивление заземляющего контура должно быть в диапазоне от 4 до 10 Ом. А общее правило – чем меньше значение сопротивления, тем лучше. Если результат замеров нашего контура не удовлетворяет требованиям, то добавляем еще электроды и соединяем с уже установленными. Снова производим замеры. И так повторяем до тех пор, пока наш контур не будет иметь сопротивление 4 Ом.

Более правильным решением будет все же произвести все необходимые расчеты до начала монтажа контура. Самое главное – определить количество требуемых электродов и длину горизонтального заземлителя (полосы). Все это напрямую зависит от свойств грунта, а точнее его сопротивления.

Первым делом определяем сопротивление одного стержня.

Значение удельного сопротивления грунта для расчетов можно брать из таблицы.

Если же грунт неоднородный, тогда его сопротивление рассчитывается по формуле:

Значение сезонного климатического коэффициента можно брать из таблицы:

Если не брать в расчет сопротивление горизонтального заземлителя (полосы), то количество электродов можно найти по формуле:

Находим сопротивление растекания горизонт. заземлителя:

Длину заземлителя находим по таким формулам:

Теперь можно рассчитать сопротивление электродов:

Окончательное количество электродов:

Коэффициент спроса можно узнать из таблицы:

Показатель коэффициента использования обозначает влияние токов друг на друга, которое зависит от расположения вертикальных заземлителей. При параллельном соединении электродов токи, проходящие по ним, влияют друг на друга. Чем меньше делается расстояние между вертикальными электродами, тем больше сопротивление всего контура. Именно поэтому иногда советуют разносить стержни друг от друга на расстояние, равное их длине, например, 3м.

Полученное в ходе расчетов значение количества электродов округляется до целого числа в большую сторону. Расчеты готовы, можно приступать к монтажу.

 

Как сделать заземление в частном доме своими руками

 

Монтаж заземления рекомендуется начинать в теплое время года. Во-первых, так легче производить земляные работы. Во-вторых, более точным и максимальным будет значение сопротивления грунта. Для качественного заземления это очень важно. А то можно сделать заземление, когда грунт временно насыщен водой, и его сопротивление будет 4 Ом, а потом наступит засуха и его сопротивление увеличится до 20 Ом. Лучше сразу учесть максимальное значение.

Мы будем рассматривать обустройство контура заземления из металлопроката в виде треугольника:

  • Первым делом выбираем удобное место. Копаем траншею в виде треугольника. Оптимальная глубина от 0,7 до 1 м, ширина 0,5 – 0,7 м. Длина каждой линии такая, как мы определили в ходе расчетов (длина горизонтального заземлителя).
  • От одного из углов (любого) копаем траншею, ведущую к силовому щитку возле дома.
  • Вертикальные заземлители – электроды вбиваем в вершины треугольника. Можно использовать стальной уголок 50*50 или любой другой стержневой металлопрокат. Для удобства забивания в грунт  конец стержня заостряем болгаркой. Если грунт слишком твердый, чтобы забивать в него электроды, тогда бурим скважины.
  • Стержни заглубляем так, чтобы их верхушка торчала из земли. Если нам пришлось бурить скважины, то вставляя в них электроды, засыпаем их грунтом вперемешку с солью.
  • Стальную полосу (минимум 40*5 мм) привариваем к стержням таким образом, чтобы образовался треугольник. Одну полосу ведем по траншее к силовому шкафу.
  • В частный дом заземление заводим через щиток. Для этого полосу присоединяем к проводу заземления или непосредственно силовому щитку  болтом 10 мм. Болт в обязательном порядке привариваем к полосе.

  • Следующий этап – проверка заземления. Для этого потребуется прибор «Омметр», стоит он немало. Ради того, чтобы раз – два за всю жизнь проверить сопротивление, покупать его накладно. Поэтому приглашаем для проверки сопротивления контура специалистов из энергоуправления. Помимо того, что они произведут замеры, также заполнят паспорт контура заземления. Если показатели сопротивления соответствуют норме, тогда можно закапывать контур. Если же нет – тогда вбиваем дополнительные электроды.
  • Засыпаем траншею. Используем для этого однородный грунт без примесей щебня или строительного мусора.

Важно! В засушливую погоду контур заземления рекомендуют поливать водой со шланга, так его сопротивление уменьшается.

Для более качественного срабатывания автомата отключения выполняют еще и заземление нейтрали. На входе в здание нейтраль соединяют с повторным заземлением. Дело в том, что в частные дома электричество приходит по воздуху. Для опор ЛЭП 6 – 10 кВт выполняется повторное заземление нейтрали, а вот для ЛЭП 0,4 кВт – практически никогда энергокомпании этого не делают. Чтобы нагрузка распределилась правильно, необходимо повторно заземлить опору возле дома (желательно, чтобы все соседские тоже были заземлены). И это заземление не объединять с контуром.

Если Вы не уверены, что все сделаете правильно, можете обратиться в специализированные организации, которые выполнят и все необходимые расчеты, и монтаж со знанием дела. Если же Вы ярый хозяйственник, который привык все делать собственноручно, что ж, дерзайте. Только помните – Ваше творение призвано защищать всю семью.

Проблемы контура заземления и как от них избавиться

Автор: Томи Энгдал, 1997-2013 гг.

ЗАМЕТКА: Информация, представленная здесь, считается правильной и доступна здесь автором. Автор этого документа не несет ответственности за какой-либо эффект, который может иметь эта информация или любое ее использование.

Документы использовались и рекомендовались многими людьми и считаются точными. Настолько точны, что их также называли GB AUDIO Ground loops DATA SHEET на своих веб-страницах (с моего разрешения).

Основы

Дилемма состоит в том, что решение «шумовых» проблем – это само по себе искусство. Поскольку это происходит не каждый день, у всех нас ограниченный практический опыт. Это породило индустрию для тех, кто теперь специализируется на решении проблем с шумом.

Хорошая система распределения электроэнергии важна для правильной работы аудиосистемы. Профессиональные аудиосистемы просто не работают хорошо с обычными удлинителями, идущими на сотни футов до сцены. Помимо питания, необходимо хорошее заземление всей системы. существенный.

Контур заземления – это состояние, при котором происходит непреднамеренное соединение с землей. через мешающий электрический проводник. Обычно подключение контура заземления существует, когда электрическая система подключена более чем через один путь к электрическому заземлению.

Когда два или более устройства подключены к общему заземление по разным путям, возникает контур заземления. Токи текут по этим многочисленным путям и развиваются. напряжения, которые могут вызвать повреждение, шум или 50 Гц / 60 Гц гул в аудио- или видеоаппаратуре.Чтобы предотвратить землю петли, все сигнальные земли должны идти в одну общую точку а когда невозможно избежать двух точек заземления, одна сторона должна изолировать сигнал и заземление от другой.

Суть в том, что идеальной «тихой» земли не существует. Основы всех проблем с шумом в системе заземления сводятся к тому, что такое нежелательный ток. За исключением больничных систем, определение в лучшем случае расплывчато. Стандартная система электрического заземления во всем здании не предназначена для постоянного протекания через нее тока – и, тем не менее, это так, вы не можете остановить это.Причина, по которой заземление не будет и никогда не будет полностью свободным от шума, заключается в том, что провод заземляющего электрода представляет собой не что иное, как длинный провод от точки A до точки B. И чем длиннее провод, тем больше шума он будет воспринимать.

Звуковые и видео люди имеют в виду тип шумной земли с термином, подобным контурам заземления: ток, протекающий по заземляющему проводнику оборудования, металл в здании и провод заземляющего электрода. Использование любой из сегодняшних стандартных однофазных систем переменного тока на 120 или 230 вольт создает потенциальные проблемы для аудиооборудования.У компьютерщиков такая же проблема в работе и так далее.

Обычно контуры заземления возникают постфактум, когда конечный пользователь винит установщика, установщик винит производителя и на самом деле никто не виноват. Ни производитель, ни установщик обычно не могут предсказать, где возникнет петля. Только после того, как система будет установлена, можно определить если проблема будет.

Проблемы контура заземления можно исправить и избежать. Это важно, чтобы продавец, заказчик и конечный пользователь знали что эта проблема может возникнуть.Спроектировать систему – хорошая идея. чтобы избежать наиболее очевидного источника таких проблем, а затем готов все же столкнуться с некоторыми проблемами при запуске системы. Проблема с контуром заземления может возникнуть в нескольких точках системы, и каждое возникновение проблемы необходимо устранять индивидуально.

Почему заземление так важно?

Заземление электрических систем требуется по ряду причин, главным образом для обеспечения безопасности людей, находящихся рядом с системой, и для предотвращения повреждения самой системы в случае неисправности.Функция защитного проводника или заземления состоит в том, чтобы обеспечить путь с низким сопротивлением для тока короткого замыкания, чтобы устройства защиты цепи сработали быстро и отключили питание.

Национальный электротехнический кодекс NEC определяет заземление как «проводящее соединение, независимо от того, намеренно или случайно между электрической цепью или оборудованием и землей, или с некоторыми проводящее тело, которое служит вместо земли ». Когда мы говорим о заземлении, на самом деле это два разные предметы, заземление и заземление оборудования.Заземление – преднамеренное соединение проводника цепи, как правило, нейтрали с заземляющим электродом, помещенным в землю. Заземление оборудования предназначено для обеспечения правильной работы оборудования внутри конструкции. заземлен. Эти две системы заземления необходимо держать отдельно, за исключением соединения. между двумя системами, чтобы предотвратить разницу в потенциале из-за возможного пробоя из-за удар молнии. Назначение заземления помимо защиты людей, растений и оборудования – обеспечить безопасный путь для рассеивания токов короткого замыкания, ударов молний, ​​статических разрядов, EMI и RFI сигналы и помехи.

Неправильное заземление может создать смертельную опасность. Правильное заземление необходимо для правильной работы и безопасности. электрооборудования. Заземление может решить многие проблемы, но это также может вызвать новые. Одна из наиболее частых проблем – это называется «контур заземления».

Что вызывает гудение в аудиосистемах?

Аудио- и видеосистемы нуждаются в ориентире для их напряжений. Обычно называется общим или заземленным, хотя может и не быть фактически связанный с землей, эта ссылка остается на “нуле” вольт », в то время как другие сигнальные напряжения« качаются »положительным (вверху) и отрицательным (под этим.Физически общим может быть провод, след на печатная плата, металлическое шасси, практически все, что проводит электричество. В идеале это должен быть идеальный дирижер, но в любой практической системе это не так. По мере увеличения сложности и размера системы несовершенные проводимость общего (заземляющего) проводника неизбежно вызывает проблемы.

Гул и гудение (50 Гц / 60 Гц и его гармоники) возникают в несимметричных системах, когда токи протекают в соединениях экрана кабеля между различными частями оборудования.Гул и гудение также могут возникать в сбалансированных системах, даже если они, как правило, более

Токи экрана кабеля и разность напряжений заземления вызываются несколькими механизмами. Второй наиболее распространенный источник шума и гудения – это разница напряжений между двумя защитными заземлениями, разделенными большим расстоянием, или разница напряжений между защитным заземлением и заземлением. (например, заземленная спутниковая антенна или источник кабельного телевидения). Эта проблема обычно называется «контур заземления». Это наиболее часто встречающийся при тяжелых проблемы с гудением.

Гул и гудение могут также индуцироваться магнитным или емкостным образом непосредственно в сигнальных кабелях. Или ток шума может просачиваться из сети через емкость между первичной и вторичной обмотками силового трансформатора переменного тока. обмотки, что приводит к тому, что часть линейного напряжения переменного тока будет ВСЕГДА иметь емкостную связь непосредственно с землей аудиосхемы. Этот сигнал линии электропередачи с емкостной связью обычно содержит значимые гармоники до 1 МГц и более. Эти сигналы вызывают протекание токов в экранах кабелей, таким образом добавляя этот шум непосредственно к звуковому сигналу.

Почему заземление без проблем сделать сложно?

Практически все проекты строительства передачи данных и вещания выполняются. в проблемы заземления. Эти проблемы возникают в первую очередь потому что существует конфликт между вопросами безопасности (земля- ing для предотвращения поражения электрическим током) и электронного шумоподавления (используя «землю» в качестве электронной «свалки» для шумов и помех. ference.) Эти два использования часто несовместимы и могут иногда находятся в прямом конфликте друг с другом. Конечная цель хорошей схемы заземления – сохранение и соблюдение аспектов безопасности при получении возможно максимальное снижение шума.Обычно это нелегкая задача.

Почему контур заземления является проблемой?

Контуры заземления являются загадкой для многих людей. Даже инженеры-электронщики, получившие образование в колледже, могут не знать, что такое контуры заземления на самом деле. Инженеры сконцентрировались либо на распределении энергии (для электроэнергетической компании), либо на оборудовании, которое подключается к системе распределения электроэнергии. Не так много внимания уделялось распределению энергии и оборудованию как единому объекту, в котором возникают контуры заземления.

Контуры заземления являются наиболее частой причиной шума частоты сети переменного тока в звуковых системах. Контуры заземления обычно можно определить по низкому гудению (60 Гц в США, 50 Гц в Европе) через звуковую систему. Контур заземления в силовом или видеосигнале возникает, когда некоторые компоненты в одна и та же система получает питание от другого заземления, чем другие компонентов, или потенциал земли между двумя частями оборудования не идентичный.

Контур заземления – распространенная проблема при подключении нескольких аудиовизуальных компоненты системы вместе, есть хорошее изменение, чтобы сделать неприятный контуры заземления.Контуры заземления обычно вызывают жужжание аудиосигналов и интерференционные полосы к изображению. Контур заземления делает систему чувствительной улавливать помехи от сетевой проводки, которые могут привести к неустойчивой эксплуатация оборудования или даже его повреждение. В некоторых статьях утверждается, что проблемы с проводкой и заземлением являются причиной до 80 процентов всех проблем, связанных с качеством электроэнергии, связанных с чувствительное электронное оборудование, такое как аудио / видео системы.

Аудио / видео и электроэнергетика разработали свои системы. и оборудование самостоятельно.В результате есть степень несовместимость. Обычно достаточно мощности. чувство безопасности распространения и эксплуатации недостаточно хорошее для AV-систем. Следствием этого является проблема помех контура заземления.

Всегда при работе с проблемами заземления помните, что не существует абсолютного основания . Есть определенное количество сопротивление электрическому току между всеми точками заземления. Этот сопротивление может меняться в зависимости от влажности, температуры, подключенного оборудования и многие другие переменные.Каким бы маленьким ни был сопротивление всегда может позволить электрическому напряжению существовать на нем когда между этими точками заземления протекает ток (и почти всегда есть ток).

Проблемы с заземлением звуковой частоты обычно находятся в диапазоне низких милливольт, поэтому не должно быть большого вмешательства в систему заземления, чтобы вызвать проблемы в аудиосистемах.

Помните, что абсолютных оснований нет. Между всеми точками заземления существует определенное сопротивление электрическому току.Это сопротивление может изменяться в зависимости от влажности, температуры, подключенного оборудования и многих других переменных. Независимо от того, насколько мало, сопротивление всегда может позволить электрическому напряжению существовать на нем. Заземляющие провода между розетками и трансформаторами энергокомпании не являются идеальными проводниками, как и экран вашего коаксиального видеокабеля. Если бы это было так, контуры заземления не были бы проблемой. Эффекты контура заземления на видеоизображениях представлены в виде черной теневой полосы. по экрану или как разрыв в верхнем углу картинки.Это вызвано разными потенциалами земли в системе.

Общие темы

Бытовые аудио- и видеосистемы

Профессиональные аудиосистемы

Профессиональные видеосистемы

Сети передачи данных

Лабораторная среда

Советы по дизайну

Другая сопутствующая информация

НОВАЯ ФУНКЦИЯ: Обсуждение контура заземления

Дискуссионный форум проблем контура заземления на ePanorama.net Система дискуссионных форумов создана для обсуждения всех тем, связанных с контурами заземления, и проблем, которые, по вашему мнению, могут быть вызваны контуром заземления.

Полезные ссылки на другие сайты и статьи

    Общие руководства
    Проблемы с заземлением электропроводки
    Установки аудио и видео систем
    Решение проблем
    Конструкция оборудования
    Полезные сайты

Откуда взялась вся эта информация?

Большая часть информации получена из моих личных знаний в этой области. У меня был опыт проектирования, создания, использования, обслуживания и поиск неисправностей во многих аудио-, видео- и компьютерных сетевых системах.Я также разработал электронные устройства для аудио, видео и телекоммуникационные приложения.

Когда я обнаружил проблемы со стойкостью на те системы, которые я попытался провести хорошее расследование, в чем причина проблемы и каковы разумные способы ее решения. Различные книги, журнальные статьи и техническая документация со многих веб-сайтов также был очень полезен, когда я собрал этот веб-документ.


Если у вас есть комментарии на этой странице, пришлите их мне по адресу [адрес электронной почты защищен] или оставьте комментарии по адресу Форум обсуждения проблем контура заземления.


Томи Энгдал <[email protected]>

Как избавиться от гула, гудения и других шумов в вашей аудиосистеме

Примечание редактора, 16 июля 2017 г. Мы обновили эту историю, добавив новые иллюстрации и новые советы и рекомендации.

Итак, вы только что распаковали свое новое развлекательное оборудование, все подключили, и вы слышите гудение, вой, шипение, болтовню или любое количество других раздражающих шумов, которые, как известно, изводят звуковое оборудование.Вы даже можете увидеть на телевизоре полосы или волны. Итак, вы приносите все это обратно в магазин только для того, чтобы посмотреть, как продавец подключает его, и все работает идеально. Что за…?

Я хотел бы сказать вам, что вы не сделали ничего плохого, но вы могли это сделать, по крайней мере, случайно. Опять же, это может быть плохая проводка, неисправное оборудование или просто шумная электронная среда. Независимо от типа шума, который вы слышите, и от его причины, вот как от него избавиться.

Примечание. Некоторым присущим шумам, например шипению ленты или шипению, когда вы увеличиваете усиление на входе.Это часть оборудования, и обычно единственное лекарство … Лучшее оборудование.

Контуры заземления
Упомянутые в этой статье

Причиной номер один необычного звукового шума и странного видео является контур заземления просто потому, что его чертовски легко создать. Наиболее частые проявления – это громкое жужжание или гудение, исходящее из динамиков, или полосы прокрутки на экране телевизора. Это также может быть гораздо более тихий, но не менее раздражающий гул или гул, который вы слышите только тогда, когда в комнате тишина.

Заземляющий контур обычно возникает, когда одна или несколько частей вашей развлекательной системы подключаются к сети переменного тока (переменного тока) в разных местах, а затем соединяются вместе электрическими (а не оптическими) сигнальными кабелями – RCA, HDMI, композитный, компонентный, – чьи экран подключен к земле. Проще говоря, это создает одноконтурную антенну, которая просто любит поглощать различные типы шума посредством электромагнитной индукции. Вы можете увидеть, как создается цикл, на диаграмме ниже.

Роб Шульц Один из способов создания контура заземления – это питание взаимосвязанного оборудования от разных розеток переменного тока: земля проходит через экранирование сигнальных кабелей.

Все, что разрывает петлю, устраняет шум, и самый простой способ сделать это – подключить все к одной розетке переменного тока. Как показано ниже, просто подключите все свое оборудование к одному удлинителю, сетевому фильтру или силовому центру и подключите его к стене. Задача решена. Большинство мультимедийных установок легко управляются одной схемой на 10 ампер, и большинство бытовых схем могут справиться хотя бы с этим.

Роб Шульц Питание подключенного оборудования от одной и той же розетки переменного тока устраняет большинство контуров заземления. Если гул по-прежнему слышен, проверьте, есть ли у вашей антенны или кабельного провода собственное заземление.

Могут быть случаи, когда вы просто не можете добраться до той же розетки с оборудованием. На ум приходят динамики и сабвуферы с автономным питанием. Вы можете просто «потянуть за землю», используя переходник с трех контактов на два, но это представляет потенциальную опасность поражения электрическим током. Посмотрите на Ли Харви и Stone the Crows экстремальный пример того, что может случиться с мощным оборудованием.

Если использование удлинителя нецелесообразно, вы можете купить глушитель, например Hum X от Ebtech. Но это стоит 70 долларов. Есть и другие продукты, которые делают примерно то же самое, некоторые из которых прерывают петлю в сигнальных кабелях, но все они также дороги. Если у вас есть навыки, вы можете построить свой собственный гудок примерно за 10-15 долларов. В Интернете вы найдете много информации, которая покажет вам, как это сделать, но для выполнения этой задачи требуется умеренное владение паяльником и аналогичными инструментами.

Ebtech Hum X

Ebtech надежно устраняет шум контура заземления. Есть также онлайн-решения для самостоятельного изготовления, которые дешевле, если у вас есть навыки.

Если эти методы ничего не исправят, проблема может заключаться в беспроводной антенне (OTA) или в коаксиальном кабеле кабельного телевидения, у которого есть собственный путь к земле. При обращении с разветвителями коаксиального сигнала я получил довольно неприятные удары. Обычно – из-за изоляции кабельных модемов, кабельных коробок и подобного оборудования – это происходит только в том случае, если вы подключаетесь напрямую к телевизору или видеомагнитофону.

Если вы обнаружили, что проблема связана с сигнальным кабелем телевизора, который подключен к кабельному модему или аналогичному устройству (отсоедините его и посмотрите, исчезнет ли проблема), замените это оборудование – с ним что-то не так. Если вы подключаетесь напрямую к телевизору, есть изоляторы контура заземления по цене от 20 до 30 долларов.

Viewsonics

Изолятор контура заземления для коаксиальных (антенных и кабельных ТВ) кабелей.

Шум в линии переменного тока

Контуры заземления – далеко не единственное, что вызывает электрические помехи; Практически любое устройство с двигателем (например, фены и блендеры), а также диммеры и неисправные люминесцентные светильники будут создавать такие помехи.Он может быть слышен через ваше аудиооборудование или отображаться на экране телевизора, а может и нет. Очевидное решение проблемы шума такого типа – не использовать такие устройства во время просмотра телевизора или прослушивания музыки. Возможно, у вас получится сделать это, если вы живете один. Если под одной крышей есть другие люди, возможно, нет.

Если вы готовы расстаться с несколькими Benjamins, вы можете убедиться в чистоте переменного тока без шума контура заземления, используя онлайн-ИБП (источник бесперебойного питания) или изолирующий трансформатор.Онлайн-ИБП – это система с резервным питанием от батареи, батарея которой всегда подключена (онлайн) между входным и выходным переменным током. Для этого требуется, чтобы электрическая мощность была преобразована в постоянный ток (постоянный ток), а затем обратно в переменный, что устранит все помехи. Это также известно как двойное преобразование.

Трипплайт

Tripplite SU1000XLCD стоит 630 долларов, но он лучше справляется с регулированием мощности, чем так называемые аудиофильские устройства, которые стоят в 10 раз дороже. Если вас не беспокоят контуры заземления, вы можете найти ИБП, который устранит шум переменного тока (обратите внимание на синусоидальный выход) за чуть больше 100 долларов.

Настоящий онлайн-ИБП стоит дорого. Например, ИБП SU1000XLCD, который Tripplite отправил мне для наведения порядка в очень грязном кондиционере в моей квартире, стоит около 630 долларов. Он также тяжелый, размером с небольшой осушитель воздуха, и у него есть некоторые функции (например, мониторинг USB, чтобы он мог корректно выключить подключенный компьютер в случае сбоя питания), которые не имеют отношения к устранению шума. Но черт возьми, если он не на 100 процентов эффективен, а также обеспечивает удобную защиту от скачков напряжения и отключений.

Упоминается в статье
Разделительный трансформатор Tripp Lite IS1000HG

К тому же он намного дешевле, чем один из тех высококачественных стабилизаторов мощности, которые продаются доверчивым аудиофилам. Если вы не беспокоитесь об устранении шума контура заземления, вы можете обойтись не намного дороже 100 долларов с ИБП, который рекламирует синусоидальный выходной сигнал.

Изолирующий трансформатор, который немного дешевле, чем онлайн-ИБП, но абсолютно эффективен против всех видов помех в сети. Tripplite также прислал мне один из них: превосходный IS1000HG на 1000 ватт (больничного класса) с четырьмя розетками.Это около 500 долларов, но вы можете легко обойтись моделью с меньшей мощностью (500 или 250) менее чем за 250 долларов. Обратите внимание, что я видел намного дешевле на Amazon, но не от известного поставщика, поэтому я не могу за них поручиться.

Изолирующий трансформатор – один из тех продуктов, название которого описывает его как тройник. В нем используется специальный экранированный трансформатор, который преобразует грязный переменный ток в чистый переменный ток с помощью электромагнитной индукции – да, то же самое, что вызывает шум контура заземления.

Изолирующие трансформаторы предназначены для использования с тонким диагностическим оборудованием, где даже минимально шумный переменный ток может вызвать ложные показания.Это означает, что их более чем достаточно для мультимедийных установок.

Трипплайт

Задняя часть изолирующего трансформатора IS1000HG, который предназначен для устранения всех шумов переменного тока, которые могут повлиять на чувствительное испытательное оборудование. Это также работает для развлекательных систем.

Провода

На самом деле существует только одно или два жестких правила для кабелей и шума. Во-первых, никогда не прокладывайте силовой кабель через кабели аудио или видеосигнала, включая антенные провода, или рядом с ними.Современные сигнальные кабели хорошо экранированы, но если вы слышите гудение и это не контур заземления, это вполне может быть причиной. Обратите внимание, что кабели, идущие к динамикам с автономным питанием (без Wi-Fi), представляют собой кабели аудиосигнала, а не выходные кабели.

Также обратите внимание, что трехпроводные симметричные сигнальные кабели (отправляются два сигнала, один с обратной полярностью – как и знаменитый звукосниматель хамбакер) гораздо менее восприимчивы к гудению силового кабеля и другим шумам, чем двухпроводные кабели. Если ваше оборудование позволяет использовать балансные выходы или входы, XLR или TRS (наконечник / кольцо / гильза), сделайте это.

Кабели громкоговорителей не должны подвергаться звуковому воздействию, поскольку по ним проходит гораздо более сильный сигнал. Но на всякий случай постарайтесь изолировать шнуры переменного тока.

Ямаха

Обведены красным балансные входы для этой колонки Yamaha HS7. Многие высококачественные ЦАП и аудиоинтерфейсы имеют соответствующие выходы. Сбалансированные соединения устраняют любой шум, наведенный на сигнал, проходящий по кабелю.

Другое правило для проводов – это не петляющие антенные сигнальные кабели (двухжильные), которые имеют тенденцию вызывать такой же шум, делая их самими антеннами.Электромагнитная индукция; это благословение, это проклятие. (Если вы об этом не знаете)

Что касается качества кабелей: плохо сделанный кабель может вызвать проблемы с шумом, но нет никакого реального преимущества в том, чтобы тратить на него целое состояние. Распространенное заблуждение – чем дороже металл, тем лучше кабель. Неправильный. Золото используется в соединителях, потому что оно не окисляется, а не потому, что это лучший проводник электричества. Он неплохой, лучше, чем никель и хром, но на самом деле немного хуже, чем серебро и медь.Забудьте о платине – она ​​звучит сексуально, но ее значение в списке проводимости составляет примерно 20 или .

Упоминается в статье
Изолятор контура заземления для кабельного телевидения VSIS-EU

Медный провод с золотыми разъемами – лучшее сочетание; но опять же, не слушайте пропаганду продаж аудио в бутиках. Есть много кабелей в диапазоне от 10 до 20 долларов или даже ниже, которые также подойдут.

Одна вещь, которую вы могли бы проверить, хотя в основном проблема в приложениях с высоким импедансом (более высокое усиление / напряжение, также называемых Hi-Z), таких как гитарные кабели, заключается в том, что они не являются микрофонными.Плохое или слабое экранирование и другие факторы могут фактически превратить физические удары в звуковой сигнал. Я не шучу. Я испытал это только один раз в жизни с кабелями для подключения компонентов, и это было для проигрывателя виниловых пластинок. Но если вы замечаете странные шумы, которые, кажется, совпадают с басами или вибрациями, сильно постучите пальцем по сигнальным кабелям (при включенном оборудовании), чтобы проверить, не является ли это проблемой.

Еще одна проблема с проводом: размер. Хотя провод большего сечения может помочь усилителю работать немного легче и холоднее при подключении динамиков за счет снижения импеданса (удельного сопротивления) кабеля, влияние на сигнальные кабели незначительно.То есть, это не слышно для тех, кто не много заплатил за толстый провод и хочет услышать разницу.

Радиопомехи

Вы когда-нибудь задумывались, почему стенки вашего стереоресивера и других электронных устройств металлические, когда кажется, что все остальное в мире сделано из пластика? Это не для прочности на разрыв, а для блокировки входящих и исходящих RFI (радиопомех). Любой проводящий материал имеет тенденцию блокировать радиочастотные сигналы и отводить их заряд на свою поверхность.Действительно, экранирование кабелей работает как клетки Фарадея.

Но практические реализации (например, отказ от облицовки телевизионной комнаты медной оболочкой) клеток Фарадея могут сделать не так много, поэтому вам может потребоваться уменьшить мощность сигналов, с которыми они должны иметь дело. Я говорю о портативных телефонах, сотовых телефонах, оборудовании Wi-Fi и даже компьютерах.

Неизвестно

Если клетка Фарадея может блокировать это, у нее не должно быть проблем с РЧ, окружающим ваше мультимедийное оборудование.

Компьютеры могут генерировать много радиоволн, поэтому я избегаю причудливых прозрачных пластиковых сторон, которые позволяют им выходить и входить.Я также слышал, что беспроводные периферийные устройства, например мыши, могут вызывать помехи. Это неисправность или плохая конструкция, и единственное решение – заменить их.

Возвращаясь к сути: не беспокойтесь об этом, но неплохо было бы держать ваше РЧ-излучающее оборудование как можно дальше от мультимедийной системы. И если это устройство, которое должно находиться рядом с вашей установкой, убедитесь, что оно достаточно защищено.

Шум кабеля USB / HDMI
Упомянуто в этой статье
ИБП Tripp Lite TRIPP LITE SU1000XLCD

Я использую внешние аудиоинтерфейсы USB и Thunderbolt, потому что они звучат намного лучше, чем все, что вы найдете на материнской плате.Поверьте, если мои старые уши слышат разницу – она ​​есть. Но когда я впервые начал его использовать, я иногда слышал очень слабые статические помехи. По довольно сложным причинам ток может протекать через экран USB-кабеля, что влияет на сигнал. Это раздражало.

Есть три метода устранения помех кабеля USB (и HDMI). Один из них – использовать кабель с ферритовой гильзой для шумоподавления (это большая круглая заглушка на одном конце. Вы также можете купить пристегивающийся ферритовый шумоподавитель). Иногда их называют ферритовыми шариками.

Неизвестно

Кабель HDMI с ферритовым фильтром помех для блокировки паразитного тока, проходящего через экран.

Второй метод – это проложить провод с меньшим сопротивлением, чем экранирование кабеля USB / HDMI, от корпуса аудиоинтерфейса USB или аудиокомпонента, подключенного через HDMI, к корпусу вашего компьютера. Провод динамика работает нормально. Электричество всегда следует по пути наименьшего сопротивления, поэтому паразитный ток проходит по заземляющему проводу, а не по экрану кабеля.Это также известно как заземляющий шунт или просто шунт.

Третий метод – установить фильтр шумов USB (я никогда не видел его для HDMI, но адаптер HDMI может работать), который на самом деле представляет собой ретранслятор USB, который разделяет соединение экрана. Они стоят около 50 долларов и, как говорят, действительно устраняют шум. Я никогда не использовал один, потому что первый и второй методы намного дешевле и никогда меня не подводили.

Аудиошум ПК

Другая причина, по которой я использую внешние интерфейсы USB и Thunderbolt, заключается в том, что они просто не подвержены такому количеству радиопомех.Внутренние аудиорешения, особенно те, которые находятся на материнской плате, подвержены всевозможным линейным помехам и электромагнитным помехам, которые невозможно устранить. Как вы могли заметить, я только что дал вам решение – используйте внешний USB или Thunderbolt. Тем не менее, существуют карты PCI и PCIe, которые также могут устранить проблему, а также предоставить больше выходов для игр и объемного звучания.

Однажды вы это услышали, а теперь нет

Используя вышеуказанные методики, вы сможете устранить все шумы, которые не присущи вашей аудиосистеме, а также те, которые, как вы могли подумать, были присущи . .Но если вы страдаете от шума, который я не покрыл, или у вас есть исправление для домашнего приготовления, которое работает, поделитесь им с нами, оставив комментарий на нашей странице в Facebook и / или отправив мне электронное письмо на jjacobi @ pcworld. com.

Примечание. Когда вы покупаете что-то после перехода по ссылкам в наших статьях, мы можем получить небольшую комиссию.Прочтите нашу политику в отношении партнерских ссылок для получения более подробной информации.

Что делать с гудением контура заземления в арендованном доме?

Привет всем,

Я заметил очень громкое гудение 60 Гц в моей настройке записи. Я понимаю, что это часто происходит из-за замыкания на землю. Я понимаю основы этого, но не очень хорошо разбираюсь в области электротехники, поэтому я подумал, что спрошу здесь.

Некоторые подробности:

> Я использую интерфейс Apogee Duet. Я слышал, что у некоторых людей здесь и в других местах возникают проблемы с гудением и шумом из-за этих вещей.

> Я слышу только действительно заметное жужжание при использовании этого интерфейса. Подключение инструментального кабеля (подключенного к гитаре или синтезатору, я думаю, даже только к кабелю) к интерфейсу запускает гудение. Я не слышу гула (по крайней мере, не так сильно) при записи на другие носители, отдельно от ноутбука / интерфейса (например, магнитофон).

> Гул слышен как через мониторы, так и через наушники.

> Отключение моих мониторов значительно снижает шум, а отключение ноутбука также снижает его, но он все еще там, даже если все это отключено (очевидно, мониторинг через наушники).

> Пробовал разные кабели и источники звука без изменений.

> Я также пробовал ту же установку в другом доме, и там не было шума.

Похоже, в моем доме есть проблемы с заземлением. (Я не знаю, почему это может возникнуть только при записи через Duet, но я слышал, что люди предполагают, что, возможно, Duet просто хорош для улавливания и усиления такого рода шума.)

Я понимаю, что есть некоторые способы справиться с этим, но, к сожалению, я не могу внести какие-либо серьезные изменения в электрическую / проводку, так как я снимаю.Там живет несколько человек со всякой бытовой техникой, телевизором, светом с диммерами в некоторых комнатах и ​​т. Д. И еще больше людей в отдельной квартире в том же доме внизу.

Итак, я понимаю, что это не идеальная ситуация для записи, и, очевидно, многое находится вне моего контроля. Но что я могу сделать, чтобы устранить или хотя бы уменьшить этот гул? Спасибо за любой совет.

Варианты геотермальных петель | MNGHPA: MNGHPA

Геотермальные тепловые насосы в Миннесоте обычно разрабатываются для более строгих требований северного отопления с холодным климатом – с дополнительным высокоэффективным летним охлаждением.Геотермальный контур заземления или грунтовый теплообменник (GHEX) является сердцем и душой системы геотермального теплового насоса (GHP). Это место, где тепло извлекается из земли для обеспечения геотермального отопления зимой и где тепло отбрасывается для обеспечения охлаждения летом с использованием подземной системы трубопроводов, которая обычно состоит из полиэтилена высокой плотности (HDPE) определенного размера и количества. змеевики труб, заполненные водным раствором антифриза, который циркулирует между GHEX и тепловым насосом, где происходит обмен теплом.

Даже в разгар зимы температура на глубине 6-8 футов под землей в Миннесоте остается стабильной 46-52 градуса. F. Это движущий принцип экономической выгоды от геотермальной энергии. Однако, вопреки распространенному мнению, температура грунта непосредственно вокруг захороненного GHEX обычно не остается постоянной. Поскольку тепло отбирается зимой и отводится летом, сезонные колебания температуры грунта в пределах поля непосредственной петли обычно составляют от 32 (мороз) до 75 градусов.F. по дизайну. Это одна из причин, почему внутри системы используется антифриз, обычно метаноловый спирт или пропиленгликоль.

Система с разомкнутым контуром, в которой не используются заглубленные «замкнутые» трубопроводы, а, скорее, прокачивается обычная скважинная вода через GHP, а затем сбрасывается обратно в элементы после использования тепла от нее, на самом деле выигрывает от большего постоянная температура грунта круглый год, в частности, температура воды в колодце.

Ни один конкретный тип контура не обязательно лучше другого: Тип, размер и конструкция GHEX определяются большим количеством факторов, включая размер собственности, деревья, ландшафтный дизайн, геологию участка, фактические требования к отоплению и охлаждению, а также относительные затраты на установку. .Ниже приведены некоторые примеры.

ПРИМЕЧАНИЕ. Вопросы, касающиеся ухудшения состояния собственности, зонирования и ограничений водно-болотных угодий для геотермальных грунтовых теплообменников, всегда следует направлять в конкретный регулирующий орган, имеющий юрисдикцию.

ЗАМКНУТЫЕ КОНТУРНЫЕ СИСТЕМЫ

ГОРИЗОНТАЛЬНО-РАЗЪЕМНЫЕ КОНТУРА ЗАЗЕМЛЕНИЯ:

Системы теплообмена грунта с горизонтальной выемкой или траншеей требуют наибольшей площади поверхности для подземных замкнутых систем GHEX, но они обычно являются наиболее экономичным вариантом с минимальными затратами по сравнению с системами с вертикальным или горизонтальным бурением.Из-за того, что обычно требуются обширные раскопки, доступное пространство обычно является ограничивающим фактором. Мелкая скала также может быть сложной задачей.

«Оригинальный» горизонтальный GHEX состоял из одной петли трубы, заглубленной внутри длинной узкой траншеи на некоторой глубине под землей. По этой трубе вода циркулировала к тепловому насосу и от него, извлекая или отводя тепло геотермально, как это требовалось во время работы теплового насоса. Добавление антифриза в воду внутри этого замкнутого контура расширило диапазон низких рабочих температур системы ниже точки замерзания и защитило водяной змеевик теплового насоса от обледенения или растрескивания во время зимней эксплуатации.Это также позволило разработать более короткий контур, что потенциально снизило затраты на установку.

Вскоре было обнаружено, что укладка более длинной одиночной трубы туда-сюда на разной глубине внутри еще более короткой траншеи еще больше снижает требования к пространству и стоимости без обязательного ущерба для геотермальных мощностей. Путем объединения нескольких контуров труб параллельно на едином консолидированном трубопроводном коллекторе можно также реально получить системы с большей пропускной способностью.

Эти развивающиеся подходы были в первую очередь нацелены на максимизацию производительности системы при минимальных затратах на пространство и установку, и они заложили практическую основу для подхода к проектированию и установке GHEX с горизонтальной выемкой и по сей день – с широким диапазоном вариаций.

Миннесота Соображения: В Миннесоте обычно нецелесообразно использовать траншеекопатель для рытья горизонтальных петель. В климате, где глубина мороза достигает 4-7 футов, горизонтальные трубопроводные системы GHEX лучше укладывать на дно более широкой траншеи, вырытой машинами, или открытого карьера, вырытого как минимум на два фута ниже самого глубокого ежегодного мороза. Раскопки карьеров часто выбираются в почвах, где может произойти обрушение внутри более узкой траншеи (например, шириной ковша), что может серьезно затруднить работу.Чтобы свести к минимуму затраты на выемку грунта и сэкономить пространство с ограниченным ущербом для производительности системы, в горизонтальных конструкциях GHEX обычно используются трубы большей длины, скрученные в более плотные массивы, на меньшей площади, занимаемой выемкой грунта, чем обычно требуется для одной прямой трубы.

Как правило, количество отдельных бухт труб, используемых в узле GHEX, будет таким же, как и номинальная тонна мощности GHP, то есть 6-тонный тепловой насос будет использовать 6 змеевиков одинаковой длины в GHEX.Одна катушка на траншею – это практическое правило. Катушки соединены между собой параллельно на общем коллекторе подачи / возврата (коллекторе). В более крупных системах не более 10 катушек обычно используют один и тот же заголовок перед разделением общего количества катушек между двумя – за некоторыми исключениями. Диаметр трубы HDPE, используемой для змеевиков, обычно составляет 3/4 дюйма или 1 дюйм, причем больший диаметр используется для коллекторов.

Траншеи обычно вырывают от 6 до 8 футов глубиной и до 150 футов в длину (обычно 100 футов) с общей траншеей коллектора, общей для всех.Катушки с трубами длиной от 500 до 800 футов каждая, в зависимости от конструкции, используются для каждого бухты траншеи. Иногда их раскатывают взад-вперед по всей длине траншеи несколько раз линейно, равномерно распределяя «беговую дорожку»… или раскладывают, как колода карт, от одного конца траншеи до другого радиально. «Обтягивающая» мода. В любом случае оба конца трубы змеевика наматываются на одном конце траншеи для установки коллектора. Расстояние между змеевиками и количество прогонов определяется конструкцией.

В открытых карьерах площадь выемки грунта и размещение рулонов имеют тенденцию быть более консолидированными, чем с разнесенными траншеями. Глубина остается примерно такой же, но открытые раскопки часто обеспечивают большую гибкость в соответствии с нестандартными формами и размерами участков. Площадь выемки грунта составляет примерно 400-500 кв. Футов на тонну в Миннесоте, в зависимости от требований к площади и почвенных условий.

Для оптимальной теплопередачи насыщенные или даже влажные почвы, которые часто встречаются в более низких областях, предпочтительнее сухих.В более сухих почвах увеличение проектной длины контура и / или расстояния часто может компенсировать более низкую скорость теплопередачи. То же самое можно сделать и с установкой водяной системы трубопроводов, расположенной непосредственно над змеевиками GHEX, куда периодически могут отводиться дождевые или поверхностные воды. Такие соображения обычно относятся к конкретным условиям, имеющимся на каждом участке.

СИСТЕМЫ С ВЕРТИКАЛИЧЕСКИМ ОТВЕРСТИЕМ :

Для подземных систем теплообмена с вертикальным бурением требуется наименьшая площадь поверхности для подземных систем GHEX с замкнутым контуром.Как правило, они являются самыми дорогими из всех вариантов с обратной связью, но иногда являются единственно возможными в зависимости от доступного пространства, геологии площадки и требований к конструкции системы. Хотя вертикальные конструкции GHEX могут широко варьироваться, общее практическое правило заключается в использовании одной скважины на номинальную тонну GHP, пробуренной на глубину от 150 до 250 футов, с расстоянием между скважинами от 15 до 25 футов. Возможна большая глубина бурения для уменьшения количества (или расстояния) скважин… а более короткие в большем количестве могут использоваться, если этого требуют более мелкие условия бурения.

Чаще всего одиночная петля трубы с U-образным изгибом на конце размещается по длине каждой скважины, которая затем заполняется снизу вверх специальным раствором для повышения проводимости и защиты от эрозии водоносного горизонта. Также возможно использование нескольких U-образных изгибов на одно отверстие, если требуется дополнительная теплоемкость из-за определенных ограничений площадки. Каждая вертикальная труба затем соединяется с горизонтальной системой трубопроводов коллектора, которая заглублена на глубине от 6 до 8 футов под землей с подводящими и обратными трубами к и от GHP.

В Миннесоте правильные размеры, дизайн и установка имеют решающее значение для вертикальной производительности GHEX и сезонного восстановления поля в контуре… особенно в северных приложениях с гидроэнергетикой GHP «только для тепла», где исключение летнего геотермального охлаждения – часто по дизайну – не позволяет отвод тепла обратно в контурное поле между отопительными сезонами. Кроме того, при бурении скальных пород закон Миннесоты требует, чтобы к каждой скважине вдоль любой «рыхлой» покрывающей породы (грунта) между коренной породой и поверхностью применялась постоянная обсадная труба.В то время как обсадная колонна не требуется в неконсолидированных пластах , а только в формациях , глубина до коренной породы часто может стать причиной или нарушить проект с вертикальным бурением из-за стоимости.

ГОРИЗОНТАЛЬНО-СВЕРЛЕННЫЕ СИСТЕМЫ :

Горизонтально направленное бурение (ГНБ) становится все более распространенным методом размещения геотермальных грунтовых теплообменников. Системы с горизонтальным отверстием имитируют установку с вертикальным отверстием почти во всех аспектах (включая нанесение раствора), за исключением того, что они являются горизонтальными.Этот метод часто просто описывают как «вертикальная система, установленная на боку» … что также означает, что для него обычно требуется гораздо больший размер участка, чем для системы с вертикальным бурением или даже с горизонтальной траншеей, поскольку все должно располагаться горизонтально под недвижимость.

Требуемая минимальная длина составляет примерно 225 футов U-образной петли на номинальную мощность теплового насоса при минимальной глубине и расстоянии 15 футов… хотя на меньшем участке можно просверлить два или три более коротких отверстия и объединить их в одно – или даже складывать их вертикально (например,г., на горизонтальной глубине 15, 30 и 45 футов). На более крупных объектах, где можно пробурить гораздо более длинные скважины с ГНБ, можно использовать меньшее количество скважин для достижения достаточной геотермальной мощности.

Одним из преимуществ систем с горизонтальным сверлением по сравнению с другими методами является то, что они могут быть установлены под конструкциями, газонами и садовыми препятствиями, игровыми полями и т. Д., Не нарушая существующие конструкции. Это часто обеспечивает доступ к участкам теплообмена грунта, которые иначе были бы недоступны.Системы с горизонтальным бурением также могут быть установлены с меньшими затратами в областях, где глубина до скальной породы небольшая, а экономичность бурения в скале или бурения неглубоких скважин, чтобы оставаться над скалой, делает систему с вертикальным стволом более непомерно затратной.

ПРУД И ОЗЕРО ПЕТЛИ:

Многим может показаться нелогичным, что скромный пруд на заднем дворе, покрытый толстым слоем зимнего льда, может служить адекватным источником геотермального тепла в течение всего отопительного сезона в Миннесоте, но эту возможность стоит изучить на участках, где есть такие доступный ресурс.Подобно подземной системе с замкнутым контуром, контур водоема использует «затопленную» замкнутую систему трубопроводов, по которой циркулирует водный раствор антифриза для осуществления теплообмена между теплообменником геотермального пруда (PHEX) и тепловым насосом.

Петля пруда может быть спроектирована и построена по-разному, но основной принцип остается неизменным для всех: вода в ее «самом тяжелом» состоянии составляет 39 градусов. F. и имеет тенденцию отдыхать в собственном изолированном температурном слое внизу в течение всего года.Здесь идеально расположен PHEX. Зимой, так как отводится тепло от 39 град. вода вокруг витков петли, вода охлаждается и поднимается вверх за счет собственного конвективного потока вверх к поверхности. Это привлекает «свежую» окружающую среду на 39 град. вода из термоклина непосредственно вокруг PHEX. Точно так же летом, когда тепло отводится, нагретая вода также мигрирует вверх от PHEX, поскольку более холодная окружающая вода втягивается обратно вокруг него.

Чаще всего для систем прудов используются те же материалы, что и трубы HDPE, которые используются для контуров заземления; однако требования к длине трубы на номинальную тонну, как правило, значительно короче, и змеевики обычно могут быть сконфигурированы более компактно, чем в подземных системах.В некоторых случаях заводские мотки труб просто снабжены промежуточными прокладками между слоями труб, чтобы обеспечить конвективный поток воды между ними. Иногда катушки свободно разложены внутри какой-то изолирующей оболочки или «клетки», построенной из материала оцинкованной проволочной сетки… или они просто разложены на плоской поверхности в виде консолидированного узкого массива. В каждом случае PHEX обычно строится на берегу, каким-то образом слегка утяжелен (воздух внутри змеевиков труб должен поддерживать их умеренную плавучесть), плавает в пруду и опускается во время заполнения системы.Затем трубопроводы подачи и возврата закапываются в траншею под слоем льда от пруда до здания.

Варианты конструкции PHEX включают использование медных трубок (вместо HDPE) и модульного типа «пластинчатого» теплообменника из нержавеющей стали, который изготавливается специально. В Стране 10 000 озер также можно подать заявление на получение специального разрешения через Миннесотский региональный округ для строительства и размещения геотермального «теплообменника озерной энергии»… но только в том случае, если на участке нет других вариантов геотермальной петли.

Правильная конструкция контура, а также требования к размеру и глубине водоема зависят от каждого случая применения; Следует проконсультироваться только с квалифицированным и опытным проектировщиком или подрядчиком геотермальной энергии, начиная с вопроса о том, достаточно ли подходит пруд для работы в качестве источника геотермального тепла. Правильно спроектированная и установленная система водоема обычно может снизить затраты на установку с обратной связью, повысить производительность системы и предложить привлекательный эстетический компонент, который не может обеспечить контур заземления.Но неадекватная конструкция контура пруда может привести к массовой деградации температуры и термостойкому налипанию льда вокруг змеевиков PHEX, что потенциально может сделать систему полностью неработоспособной в течение всего периода зимы.

СИСТЕМЫ ОТКРЫТОГО КОНТУРА

В системах с открытым контуром

, обычно называемых насосно-отвалочными, в качестве источника тепла для системы геотермального теплового насоса (GHP) используется обычная вода из колодцев. Подземный теплообменник с замкнутым контуром заземления (GHEX) фактически не используется. Установка часто бывает такой же простой, как установка тройника непосредственно в имеющуюся водопроводную трубу в подвале и водопровод к GHP … затем прокладка сливной трубы оттуда в какое-либо место на участке, где «использованная» геотермальная вода может быть сброшена напрямую. в дренажную канаву, плитку или пруд.Более крупные жилые или коммерческие системы могут быть немного более сложными, но принцип остается неизменным для всех: тепло извлекается (или отводится) непосредственно в (или из) скважинную воду во время работы GHP.

За счет исключения затрат на материалы и установку GHEX, системы с разомкнутым контуром обычно имеют значительное преимущество по первоначальной стоимости по сравнению с системами с замкнутым контуром. Они также имеют тенденцию работать с более высокой эффективностью, чем замкнутые контуры в Миннесоте, из-за более высоких температур воды на входе во время работы GHP зимой и более низких температур летом.Мощность скважины, коэффициент извлечения, температура и качество, а также возможности сброса воды на площадке являются общими ограничивающими факторами. Для удаления минеральных отложений также может потребоваться периодическая промывка внутреннего водяного змеевика GHP с обратной промывкой.

Соображения Миннесоты: Департамент здравоохранения Миннесоты (DOH) и Департамент природных ресурсов (DNR) должны консультироваться по всем вопросам, касающимся колодезной воды и водопользования, связанных с системами с открытым контуром. Ниже приведены некоторые основные соображения:

Из-за относительно высоких объемов водопотребления во время пиковой сезонной работы системы разомкнутого контура, в некоторых районах может возникнуть озабоченность в связи с опусканием местного водоносного горизонта; это может вызывать меньшее беспокойство в других странах, где водоносный горизонт может быть более жизнеспособным или где сбросная вода может быстро возвращаться в него.Местные подрядчики по бурению скважин и официальные лица Министерства здравоохранения обычно очень помогают в определении этого.

Системы меньшего размера для жилых домов в Миннесоте обычно соответствуют установленным в настоящее время лимитам водопользования в 10 000 галлонов. в день и 1 000 000 галлонов. в год без разрешения. Любая система, превышающая эти пределы, требует подачи заявления в DNR для получения специального разрешения на водопользование. Также не допускается сброс грунтовых вод непосредственно в общественные поверхностные воды; но разрешен сброс непосредственно на поверхность земли – как в случае с дождевальными системами лужайки – или сброс в частный водоем, подземную дренажную плитку или пласт для выщелачивания (не глубже 15 футов).).

Разновидностью системы откачки и откачки, которая также разрешена в Миннесоте, является система, которая перекачивает воду непосредственно из озера или большого пруда, а затем сбрасывает ее обратно во время операции нагрева и охлаждения GHP. Однако качество воды в озере и, в частности, холодная зимняя температура воды накладывают некоторые ограничения на такие применения в северном климате.

Скважины обратной закачки: Хотя это потребует дополнительных затрат на установку, можно получить отклонение для отдельной скважины, которая будет пробурена с целью обратной закачки воды обратно в тот же водоносный горизонт, из которого она была первоначально забрана.Это может быть единственный вариант, доступный на участках, где нет других возможностей выписки.

Скважины с постоянной колонной: В Миннесоте (хотя и с неоднозначными результатами) в некоторой степени используется скважина обратной закачки с постоянной колонной, в которой используется коаксиальная система теплообмена внутри одной скважины с бытовой водой. Вода забирается со дна скважины через «стоячую» термостойкую трубу и повторно закачивается обратно в кольцевое пространство между трубой и поверхностью скважины, где может происходить теплообмен, поскольку вода возвращается обратно на забой. во время работы GHP.Этот тип системы ограничен в основном твердыми горными породами и требует точной инженерии. Это может быть единственный вариант в некоторых обстоятельствах, когда доступное пространство и возможности поверхностного сброса полностью ограничены, и иногда это рассматривается как последнее средство.

__________

Некоторые материалы заимствованы из Руководства по проектированию и установке наземного теплового насоса для жилых и легких коммерческих помещений IGSHPA ; Remund, et. др., Государственный университет Оклахомы, Стиллуотер, 2009.

Геотермальное отопление и охлаждение | Зеленый пассивный журнал Solar

Как работает геотермальное отопление и охлаждение?

Геотермальная энергия использует относительно стабильную температуру земли, которая находится под землей и хранится в нескольких футах от ее поверхности. Геотермальная энергия потенциально может быть использована в переднем или заднем дворе вашего дома.

Геотермальная петля, один из аспектов геотермальной энергии, устанавливается в земле.Предоставлено DOE – NREL

Геотермальная энергия берется из земли.

Один из трех основных аспектов геотермальной системы – это ряд труб, закопанных в землю. Эти трубы хранят и передают относительно постоянную температуру под поверхностью земли.

Независимо от времени года или степени наружной температуры, температура земли на глубине нескольких футов под землей остается постоянной. Где я живу в Западном Колорадо, эта температура составляет 56 градусов по Фаренгейту.Это может отличаться в зависимости от широты и климата вашего конкретного местоположения.

Со временем можно добиться значительной экономии энергии, используя геотермальную энергию для обогрева и охлаждения здания. Это связано с тем, что энергия не используется или не сжигается для получения тепла , вместо этого энергия используется для передачи тепла через систему.

По сравнению со стоимостью отопления и охлаждения жилого дома с помощью пропана, использование геотермального отопления и охлаждения может сократить до 2/3 стоимости.

Схема геотермальной петли, расположенной под землей – Предоставлено tva.gov

Как крупные учреждения, так и небольшие частные дома могут получить выгоду от использования геотермальной энергии в качестве источника энергии для отопления и охлаждения.

(Примечание: геотермальная энергия является расширенным бенефициаром пассивного солнечного элемента способности Земли накапливать и поглощать солнечное тепло в ее большой планетарной массе. Таким образом, теоретически ее можно обсуждать как расширение пассивного солнечного нагрева и охлаждения.)

Есть 3 основных компонента геотермальной системы:

1. Петля
Петля расположена вне здания, обычно закапывается в землю. В петле находится жидкость, которая поглощает энергию стабильной температуры, существующей под землей. Жидкость, обычно вода или вода, смешанная с хладагентом (раствор антифриза на основе гликоля), непрерывно проходит по всей длине контура. Геотермальный контур можно установить в вертикальном или горизонтальном положении (см. Ниже).Обычно он состоит из полиэтиленовой трубы высокой плотности.

Тепловой насос для жилых помещений – Предоставлено DOE-NREL, кредит: Уоррен Гретц

2. Геотермальный тепловой насос
Также называется геотермальным тепловым насосом (GSHP), он расположен внутри здания и передает или использует тепловую энергию от более теплой или более низкой температуры жидкого раствора, поступающего из контура в тепло. или охладите дом. Поскольку он передает энергию от стабильной температуры (58 градусов) зимой, когда воздух снаружи дома холодный, тепловой насос использует более теплую температуру, полученную от земли, и использует ее для обогрева здания.(Это возможно, потому что все температуры выше -200 градусов по Фаренгейту переносят тепло. Хотя -200 градусов по Фаренгейту звучит для меня очень холодно, тепло все еще можно извлечь из температур выше этого значения. К счастью, температура почвы, используемой для геотермальной энергии, хорошая выше этого порога.)

Летом, когда наружный воздух горячий, контур обеспечивает отвод более теплой температуры. К тому времени, когда раствор проходит по всей длине контура, он охлаждается и возвращается для охлаждения внутренней температуры птичника.

Геотермальный тепловой насос работает так же, как печь, например, он передает нагретый или охлажденный воздух из контура в воздуховод здания. Его фильтр тоже нужно периодически менять.

3. Распределительная система
Это воздуховод внутри здания, который распределяет нагретый или охлажденный воздух по всему зданию. В отличие от системы принудительной подачи воздуха, которая периодически рассеивает потоки воздуха, геотермальная система отопления или охлаждения постоянно перекачивает воздух.

Возможность добавления в систему – Водонагреватель

Пароохладитель может быть добавлен в геотермальную систему для нагрева горячей воды. Летом, когда тепло отбирается из дома, тепло сначала может быть отведено в водонагревателе для бытового потребления, прежде чем оно в противном случае будет рассеиваться в контуре заземления.

Отмеченная наградами жилая геотермальная система в Оклахома-Сити. Предоставлено DOE-NREL

Хотя геотермальное отопление и охлаждение более энергоэффективно, чем традиционная система с принудительной подачей воздуха, установка геотермальной системы может стоить значительно дороже.Однако дополнительные затраты, потраченные вперед, могут быть возвращены в последующие годы.

«Даже если цена установки геотермальной системы может быть в несколько раз выше, чем стоимость установки системы источника воздуха той же мощности нагрева и охлаждения, дополнительные затраты окупятся за счет экономии энергии через 5–10 лет. Срок службы системы оценивается в 25 лет для внутренних компонентов и более 50 лет для контура заземления. Ежегодно в США устанавливается около 50 000 геотермальных тепловых насосов.”

– Энергоэффективность и возобновляемые источники энергии, Министерство энергетики США, energysavers.gov

Начальная школа Чоптанка в Кембридже, Мэриленд, предоставлено DOE – NREL

«В 1997 году начальная школа Choptank в Кембридже, штат Мэриленд, начала использовать систему GeoExchange для эффективного обогрева и охлаждения 45 000 квадратных футов.

Ожидается, что в течение следующих 20 лет компания сэкономит 400 000 долларов на расходах на электроэнергию и техническое обслуживание. Начальная школа Чоптанка была первой школой в Мэриленде, которая использовала систему GeoExchange.

В школу входит 41 потолочный модуль GeoExchange, расположенный над классными комнатами и потолками в коридорах. Три других блока обслуживают спортзал, кафетерий и небольшие конференц-залы. Контур заземления закопан под школьной игровой площадкой. Он состоит из труб диаметром 1 дюйм, погруженных в 100 вертикальных скважин глубиной 275 футов каждая. Мощность системы обогрева / охлаждения составляет 157 тонн ».

– Предоставлено DOE – NREL, Lingo предоставлено Консорциумом геотермальных тепловых насосов

Геотермальную петлевую систему часто устанавливают вертикально или горизонтально.Решение использовать вертикальную или горизонтальную петлю зависит от участка земли, на котором можно заключить петлю. Говорят, что для установки горизонтальной петли необходимо наличие не менее 1 акра земли. Для установки вертикальной петли требуется меньшая площадь земли. Вертикальная петля может иметь трубы, проложенные на глубине 3, 4 и 5 футов под землей.

Вот основная диаграмма горизонтального контура, диаграмма любезно предоставлена ​​DOE

Большинство установленных геотермальных систем являются замкнутыми.Т

означает, что вода – раствор антифриза находится в замкнутой системе контура.

Система с замкнутым контуром также может быть установлена ​​в воде или рядом с водой, потому что большой водоем также будет иметь постоянную и стабильную температуру.

Воду также можно использовать в качестве источника энергии со стабильной температурой, диаграмма предоставлена ​​DOE

Геотермальные системы с открытым контуром могут использовать воду из внешнего источника. В этих типах систем также должен быть установлен дополнительный слой фильтров, и они не рекомендуются для жилых помещений.Если используется вода, она должна находиться в зоне, где нижний слой жидкости не замерзает.

После установки геотермальной системы в доме обычно отключают пропан или другое отопление.

Для вертикальной петли требуется меньше земли, диаграмма любезно предоставлена ​​Министерством энергетики США

Электричество все еще необходимо для работы теплового насоса. Общее потребление электроэнергии и, следовательно, затраты, связанные с электричеством, обычно будут расти, но, как правило, будут меньше первоначальных затрат, уплаченных предыдущему коммунальному предприятию.

Одно из первых крупномасштабных геотермальных приложений в Технологическом институте Орегона. Предоставлено DOE-NREL, кредит: Мэри Смотерс

Вот еще один пример применения геотермального отопления и охлаждения в кампусе

Орегонского технологического института.

«Технологический институт Орегона использует геотермальную систему централизованного теплоснабжения с 1964 года, что делает ее первой современной системой. Сегодня эта система отапливает 11 зданий (600 000 квадратных футов), обеспечивает горячую воду, тает снег на 2300 квадратных футов тротуара и даже охлаждает пять зданий (277 300 квадратных футов) в течение лета.Система централизованного теплоснабжения ежегодно экономит около 225 000 долларов на отоплении по сравнению с предыдущей системой котлов на жидком топливе ».

– Предоставлено DOE-NREL

Другие примечательные отрывки по геотермальной энергии

Терминология геотермальной энергии может сбивать с толку, поскольку она использовалась для обозначения любого типа энергии, получаемой из-под поверхности Земли, таким образом, геотермальная энергия может относиться к горячим источникам, которые периодически расположены по всему миру, или может относиться к использованию и использование постоянной относительной температуры земли для обогрева и охлаждения зданий.Информация в этой статье касается использования стабильной температуры земли для получения геотермальной энергии.

Перед установкой геотермальной энергии рекомендуется убедиться, что здание должным образом утеплено.

Общий размер контура зависит от среднего потребления энергии зданием в киловатт-часах (кВт · ч).

Геотермальная энергия не создает излишков энергии для подключения к сети, в то время как активная солнечная энергия может генерировать излишки энергии.

Геотермальная энергия использует электричество для питания теплового насоса.Если произойдет сбой в электроснабжении, если не будет установлен резервный источник электроэнергии, геотермальная система отопления и охлаждения перестанет работать.

Затраты на установку геотермальной энергии значительны из-за количества трубопроводов для петли, которые должны быть проложены в земле. Затраты на содержание геотермальной системы минимальны, однако существует вероятность того, что утечка может произойти в петле. Однако геотермальная энергия – это возобновляемый и устойчивый источник энергии, который зависит от постоянной температуры земли.

Спасибо кооперативу Delta-Montrose Electric Cooperative за ответы на мои вопросы о геотермальной энергии. У DMEA есть программа под названием GeoExchange, которая помогает с установкой геотермальных систем тепловых и охлаждающих насосов для своих членов.

Геотермальная энергия, наряду с пассивной и активной солнечной энергией, ветром, океанскими волнами, гидроэнергетикой и биомассой, представляют собой различные типы потенциальных источников энергии, которые можно использовать в качестве более устойчивых и возобновляемых источников энергии.

Заземление кабелей и проводов | Контуры заземления

Цепи низкого уровня часто соединяются между собой с помощью экранированных кабелей, в основном для защиты от внешнего шума.Помимо эффективности самих экранов, еще более важной является целостность соединения с землей. Плохая почва может быть хуже, чем ее отсутствие.

Путь возврата сигнала

Используемый как обратный путь сигнала, типичный для коаксиальных кабелей, экран служит вторичной цели – экранировать центральный проводник от внешних полей. Эта двойная роль может существовать и в некоаксиальных кабелях.

Сопротивление плетеного экрана обычно намного ниже, чем у других проводников.Это может быть желательно в обратной цепи, но особенно важно при наличии низкого импеданса по отношению к внешней индукции. По этой причине необходимо аккуратно выполнить заделку, иначе экран будет бесполезен в качестве шумового барьера. Фактически, поскольку экран представляет собой прямой «провод», а его площадь намного больше, чем площадь проводника (ов) внутри, может возникнуть значительный дисбаланс индуцированного тока, вызывающий шум. Неэкранированная витая пара, вероятно, будет более устойчивой к шумам.

Простое экранирование

Как чистый барьер для электромагнитных помех, заземленный экран действует как токопроводящий канал для проводников внутри.«Закрепленный» на потенциале земли, который не позволяет ему парить в воздухе, куда бы его ни подводила магнитная или электрическая среда, экран служит не столько средством защиты от шума, сколько просто разделяет раздражающее электрическое поле и отправляет его часть в земля.

Важно знать, что никакой экран не может защитить от магнитных полей так эффективно, как простое физическое пространство между источником шума и затронутыми проводниками. Всего лишь 0,5 дюйма может снизить магнитную связь более чем на 30 дБ, улучшившись примерно до 70 дБ при расстоянии 4 дюйма.Это, вероятно, лучшее средство от шума, возникающего в сильноточной проводке.

Контуры заземления

Контуры заземления создают намного больше шума, чем требуется, учитывая, насколько легко их устранить с помощью продуманной установки. Шум контура заземления легко изобразить: каждый проводник, включая сам планер, имеет некоторое сопротивление, и любой ток, проходящий через него, вызывает падение напряжения между его источником и его нагрузкой. См. Рисунок 1 .Проблема контура заземления возникает, когда несколько цепей используют один и тот же обратный проводник, часто экран, предназначенный для заземления, поэтому падение напряжения на одном пути тока просто проявляется на другом, добавляя «чужой шум» к другому – чистый сигнал.

Кроме того, если несколько систем подключены к земле «гирляндной цепочкой», любая из них может действовать как слабое звено и отражать колебания тока через них в виде шума. Общие земли лучше всего использовать в звездообразной конфигурации.

Заземление рамы

Обратный путь никогда не должен быть заземлением корпуса.Хотя он может быть металлическим и проводящим, он не предназначен для использования в качестве активного проводника. Идеальный возврат для любой схемы должен быть исключительным для этой схемы, хотя нередко используются общие обратные пути, где ток каждого сигнала очень низкий. Тем не менее, хорошая практика предлагает не более пяти сигнальных проводов на землю. Использование рамки для возврата сигнала или передачи тока «lo» – это плохая экономия и открытое приглашение к проблемам. Лучше всего зарезервировать каркас для его структурной роли; однако подключение его к заземлению аккумулятора в одной точке позволит добиться эффекта универсального электростатического экрана для всего самолета.

Улучшенный универсальный подход к использованию заземления состоит в том, чтобы использовать его только в качестве заземления, ограничивая сигналы и линии электропередач до выделенных проводников. Примером может служить сбалансированная экранированная витая пара.

Настоящая земля, пожалуйста, опознает себя?

Существует более одного «реального» заземления? да.

  1. Для тракта прохождения сигнала «реальная» земля – ​​это системная земля, истинный пункт назначения для обратного сигнала. Никакая другая точка отсчета не может быть лучше. Хорошая практика подключения экрана, предназначенного только для защиты, требует оконечной нагрузки на системную землю.Это предохраняет его от плавания с «чужеродными» источниками сигнала и превращения его в источник шума для самой цепи, которую он должен защищать. Это можно сравнить с расширением корпуса самой системы.
  2. Какое заземление вы используете между системами? Дело в том, что они обязательно могут иметь общую землю, как в случае передачи сигнала между ними по коаксиальному кабелю. Если это так, требуются тщательные процедуры заземления на каждом конце. В противном случае плохое соединение может вызвать серьезный шум практически в любом месте, и непрерывность обратного тракта может быть важна.В идеале возвратные сигналы должны быть изолированы от земли, а все экраны должны заканчиваться только на одном конце. См. Рис. 2. В некоторых случаях изолированный внешний экран triax и quadrax обеспечивает желаемое экранирование и изоляцию. Это позволяет при необходимости установить внутреннее экранирование в качестве заземления сигнала и обратного пути.
  3. «Универсальная» земля, планер, является оболочкой, в которой размещены все остальные системы. Но это всего лишь оболочка, и она лучше всех выполняет свою строго пассивную роль по отношению ко всем другим системам, таким как блок авионики, который заслуживает отдельного признания.Это верно и для любой другой бортовой системы. Каждый из них, от стартеров двигателей до развлекательных систем в салоне и TCAS, будет работать более эффективно и с меньшими помехами, используя свой собственный путь заземления.

Ценность «универсального» экрана сомнительна для самолетов с конструкцией из композитных материалов, что приводит к другим опасениям по поводу эффектов HIRF – излучаемых полей высокой интенсивности.

Витая пара

Не название рок-группы.

Экранирование наилучшим образом блокирует поля электростатических шумов и помогает шунтировать некоторые электрические магнитные помехи, но не так эффективно в устранении электромагнитных помех, как скрученные пары сигнальных проводников. Это было популярным средством для подавления шума с первых дней существования телефонов.

Каждый проводник, находящийся в изменяющемся магнитном поле, действует как вторичная обмотка трансформатора – вырабатывая ток, повторяющий форму волны «первичной обмотки» или источника поля.(Изменения поля могут быть вызваны переменным током или любым изменяющимся током в проводнике (ах) источника поля или даже физическим движением проводника постоянного тока, например вибрацией.) Фактически, трансформаторы предназначены для использования этого факта.

Учитывая, что каждая схема является схемой (двусторонний путь для движения электронов или сигнала), ток будет течь по обоим проводам: по паре. Внешние поля, к счастью, индуцируют ток в этих проводниках, совершенно не заботясь о том, загрязнит ли это сигнал в цепи.

Un Витые пары неизменно располагают один проводник ближе к источнику поля, и хотя они могут получать почти одинаковую индукцию (таким образом, имея «сбалансированный» шум в обоих), на самом деле она никогда не бывает одинаковой. В результате всегда будет индуцироваться по крайней мере некоторый нежелательный дифференциальный ток.

Скручивая сигнальную пару, проводники чередуются в непосредственной близости от шумового поля в течение каждого цикла скручивания, эффективно нейтрализуя эффект загрязняющего поля.Фактически, хотя шум присутствует в обоих проводах, скрутка помогает гарантировать, что он будет одинаковым в каждом проводе, и в результате получается почти идеальная балансировка.

Лучший способ минимизировать «обмены» нежелательными сигналами – просто увеличить пространство между кабелями, но часто это сложно или непрактично. В таких случаях может очень помочь триаксиальное соединение, скручивание и / или разумное заземление.

Схема причинно-следственной связи – обзор

4.3 Схема причинно-следственной связи

На рис. 3 показана CLD исследуемой системы.Структура CLD создана на основе соответствующей литературы и включает все важные отзывы, концепции и правила принятия решений реальной системы. Стрелки между переменными (причинные связи) обозначают причинные влияния. Полярность «+» или «-» каждой причинной связи указывает на положительную или отрицательную связь между переменными. Положительная полярность указывает на то, что две переменные изменяются в одном направлении, то есть, если независимая (причина) увеличивается (или уменьшается), зависимая (следствие) переменная также увеличивается (или уменьшается).Отрицательная полярность указывает на то, что связанные переменные изменяются в противоположных направлениях. Причинные петли бывают либо положительными (усиливающими), либо отрицательными (уравновешивающими). Отрицательный (балансирующий) цикл существует, когда небольшое увеличение (или уменьшение) любой переменной в цикле приводит к уменьшению (или увеличению) той же переменной. В положительных (усиливающих) циклах небольшое увеличение (или уменьшение) любой переменной в цикле приводит к увеличению (или уменьшению) той же переменной. Ниже приводится краткое описание основных контуров обратной связи.CLD состоит из шести уравновешивающих петель (петли 1, 4, 7, 8, 10 и 11) и пяти усиливающих петель обратной связи (петли 2, 3, 5, 6 и 9). В оставшейся части этого документа имена переменных пишутся курсивом с использованием подчеркивания.

Рис. 3. Основные петли обратной связи при разработке национальных программ ГЧП.

В цикле 1, PPP_Supply управляется PPP_Development_Rate . По мере роста PPP_Supply , PPP_Supply_to_Demand_Balance также растет, удовлетворяя потребности инфраструктуры.По мере роста PPP_Supply_to_Demand_Balance , PPP_Development_Rate уменьшается.

Петля 2 представляет положительное влияние Население на PPP_Supply : по мере роста ГЧП экономическая активность за счет строительства и эксплуатации услуг создает возможности трудоустройства, которые привлекают больше людей для миграции в страну. В результате рост населения порождает необходимость в большем количестве инфраструктурных услуг [48] и, таким образом, активизирует закупку новых сделок ГЧП.

В цикле 3, PPP_Supply увеличивает Regional_Experience правительства и потенциал знаний в практике ГЧП. Опыт оказался важным предиктором успешных будущих соглашений о ГЧП [39] и, следовательно, привлекает больше инвестиций в новые проекты. Более того, Regional_Experience отражает репутацию правительства в его способности соблюдать соглашения с частным сектором, поскольку положительные результаты предыдущих ГЧП связаны с положительными результатами будущих ГЧП в этой стране [38].Реализация успешных проектов ГЧП требует значительных административных возможностей, которые могут быть обеспечены только за счет надлежащей институциональной и правовой базы и длительного опыта в реализации проектов ГЧП. Институциональный потенциал для создания, управления и оценки ГЧП важен для обеспечения того, чтобы они стали эффективным инструментом предоставления важных услуг, таких как инфраструктура [48]. Следовательно, институциональный и Operational_Capacity делает возможным дальнейшее развитие ГЧП.

Цикл 4 представляет влияние роста Население на Actual_Public_Revenue . По мере роста населения доход на душу населения уменьшается, потому что, на упрощенном уровне, средний доход на душу населения равен общему доходу ( ВВП, ), деленному на численность населения. Следовательно, Actual_Public_Revenue , возникающие в результате наложенного налога на прибыль для ГЧП, также увеличиваются. Actual_Public_Revenue увеличить финансовые возможности государственного сектора ( Public_Financial_Capacity ) и его намерения, т.е.е., решение ( Public_Affordability ) о закупке дополнительных ГЧП.

Петля 5 представляет вклад ГЧП в экономический рост. Экономический выпуск от строительства и эксплуатации готовой продукции в секторе ГЧП добавляет ВВП региона к . ВВП , как мера благосостояния, по определению увеличивает средний доход на душу населения и, следовательно, собираемые государственные доходы. Как и в цикле 4, Actual_Public_Revenue улучшает развитие ГЧП.

Петля 6 учитывает создание рабочих мест, полученное в результате деятельности ГЧП. По мере того, как уровень безработицы снижается из-за проектирования, строительства и эксплуатации проектов, общественное доверие растет, и, следовательно, снижается риск спроса на ГЧП. Риск спроса может быть трудным для определения и часто подвергается различным интерпретациям. Для этого исследования наше рабочее определение риска спроса – это разница между ожидаемым и ожидаемым уровнями объема использования (Shaoul et al., 2007).По мере увеличения Demand_Risk , Actual_Public_Revenue , полученный государственными органами, увеличивается, что позволяет дальнейшее развитие ГЧП.

Петля 7 показывает отрицательное влияние создания рабочих мест на государственный бюджет. Поскольку государственный сектор предоставляет услуги ГЧП, соответствующая заработная плата увеличивается Public_Expenses . В результате, Public_Affordability будет препятствовать дальнейшему развитию проектов ГЧП.

Петля 8 описывает негативное влияние Unitary_Charges на государственный бюджет: по мере роста обязательств государственного сектора, Public_Expenses растут, в результате чего Public_Financial_Capacity и Public_Affordability уменьшаются.

Петля 9 показывает положительный эффект, который Unitary_Charges оказывает на привлечение инвесторов к новым сделкам ГЧП. По определению, Unitary_Charges включают начальные капитальные и текущие затраты на обслуживание и эксплуатацию проекта ГЧП. В качестве выгоды для частного сектора это увеличивает фактическую прибыльность, а также ожидаемую доходность будущих проектов ГЧП.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *