Температурно деформационный шов: Температурный шов

Содержание

Температурный шов

13 Марта 2013
Posted in Новостной раздел – Новости

 

При строительстве подавляющего большинства зданий и сооружений из кирпича, блочных материалов, каменной кладки, а также при строительстве монолитных бетонных зданий, обязательно предусматривается устройство деформационных швов, которые обеспечивают защиту от появления трещин и разрушения конструктивных элементов. В зависимости от типа деформаций, которым могут подвергаться здания, различают несколько разновидностей швов. Некоторые из них используются редко, другие – гораздо чаще. К последней категории, в том числе, относятся температурные швы, которые предусматриваются практически для каждого здания и сооружения.


Особенности температурных деформаций

Температурная деформация

представляют собой изменение размеров физического тела под воздействием изменения температуры окружающей среды. Как известно, при повышении температуры любое тело расширяется, а при охлаждении – сжимается. В полной мере это относится и к зданиям. Само здание, а также его отдельные элементы могут рассматриваться в качестве отдельных физических тел, полностью подверженных температурным деформациям.

Изменение формы конструктивных элементов строительных конструкций в результате температурных факторов имеет достаточно сложную природу. Это необходимо обязательно учитывать, выполняя устройство температурных швов. В частности следует учитывать, что температурные деформации могут создавать в теле ограждающих конструкций избыточные напряжения как в продольном так и в поперечном направлении.

 

Напряжения в продольном направлении представляют собой результат наиболее простых по своей природе деформаций, связанных с изменением размеров внешних конструкций здания (наружных стен и кровли). Впрочем, эта простота совсем не значит незначительность таких деформаций. Для наглядного представления достаточно привести практический пример.

Кирпичное здание, которое при температуре +20 градусов имеет длину 20 метров, зимой, при снижении температуры воздуха до -20 градусов, теряет в длине порядка 10 миллиметров.

 

Разумеется, визуально такое изменение будет совершено незаметным. Однако при этом в теле монолитной плиты, в качестве которой может рассматриваться каждая отдельная стена здания или плоская кровля, возникают значительные деформационные нагрузки. Кроме этого, необходимо понимать, что здание состоит сразу из нескольких таких плит. Поэтому существенные напряжения возникают и в местах их сопряжения. При этом также следует учитывать циклический характер воздействия деформационных нагрузок, вызванных температурным фактором. Таким образом, каждое существенное изменение температуры воздуха обуславливает возникновение внутренних напряжений в стенах, что, в конечном итоге, может приводить к образованию трещин.

Кроме этого, при устройстве температурных швов следует учитывать и деформации ограждающих конструкций по сечению. Если рассмотреть разрез стены или кровельной плиты, то становится очевидным, что ее температурная деформация происходит неравномерно. Так сторона стены, обращенная к внутреннему помещению, как правило, практически не подвержена воздействию наружной температуры и обычно совсем не деформируется. Совсем по-другому обстоит дело с внешней частью стены, которая воспринимает на себя основную долю температурной деформации. В результате такого неравномерного распределения нагрузок по сечению стены возникают дополнительные напряжения, которые только усиливают негативное влияние деформации на прочностные характеристики элементов здания.

Температурный шов должен обеспечивать надежную защиту конструкции от комплексного воздействия обоих этих типов нагрузки. Только в этом случае они будут качественно исполнять свою функцию. Данная особенность обязательно учитывается при проектировании и исполнении деформационных швов здания.

Особенности устройства температурных швов зданий и сооружений

Прежде всего, необходимо разобраться с понятием температурного шва и выполняемой им функции. Так температурный шов представляет собой сквозную прорезь в стене здания или его кровельной плите. Для каждого здания выполняется несколько таких прорезей, в результате чего оно разделяется на несколько независимых блоков. В результате каждый из этих блоков может свободно деформироваться, что не приводит к образованию трещин в плитах. Дело в том, что деформационные швы и представляют собой своего рода искусственные трещины, которые оформлены таким образом, чтобы не создавать каких-либо проблем при эксплуатации здания. Ширина деформационного шва определяет величину, в пределах которой возможно изменение линейных размеров каждого из блоков. Точнее будет сказать наоборот, ширина температурного шва должна выбираться, исходя из возможной величины деформаций.

 

Проектирование температурных швов является одной из важнейших стадий строительства здания. При этом необходимо, в первую очередь, определить длину каждого из блоков, на которые стены разбиваются деформационными швами, а также ширину швов. Любые деформационные швы, в том числе и температурные, устраиваются в тех зонах, где концентрируются напряжения, вызываемые соответствующими деформациями. При этом длина блоков должна быть такой, чтобы каждый из них мог подвергаться температурным деформациям без потери конструктивной жесткости и без разрушения. Поэтому для определения данного параметра учитывается целый ряд факторов, к числу которых относятся тип стенового материала, конструктивные особенности, средние температуры в летний и зимний период, характерные для региона строительства.

 

Важной особенностью температурных швов является то, что они устраиваются только на высоту надземной части строения, в то время как некоторые другие деформационные швы, например осадочные, устраиваются на всю высоту здания до подошвы фундамента. Это связано с тем, что фундамент здания в значительно меньшей степени подвержен перепадам температуры и не нуждается в специальной защите.

Оформление температурных швов профилем

Разумеется, температурный шов не должен быть зияющей дырой в стене.

Наоборот, он должен выполняться таким образом, чтобы сохранить ограждающие функции внешних элементов здания и обеспечить необходимый уровень их прочности. Для этой цели применяется оформление деформационных швов при помощи специальных профильных систем. Ярким примером является профиль ГидроКонтур, который может успешно применяться для оформления температурных швов.

Металлический профиль армирует деформационный шов, что позволяет сохранять прочность и жесткость конструкции здания. Также в структуру профиля включаются специальные полимерные или резиновые изоляционные элементы, обеспечивающие герметизацию шва. При необходимости могут предусматриваться дополнительные меры герметизации с использование бетонитовых шнуров, специальных мастик и герметиков.

 

Грамотное проектирование температурных швов и их профессиональное исполнение с использованием качественного профиля позволяет обеспечивать максимальную функциональность, надежность и долговечность этих защитных элементов конструкции здания.

 

 

 

 

← Устройство температурных швов   Деформационный шов в полах →

усадочные, материалы, фото, видео, описание

Температурный шов может обустраиваться в кирпичной кладке, бетонных конструкциях, а также железобетонных конструкциях. Кроме вышеперечисленных случаев, температурный шов также рекомендуется применять в любых случаях, когда строительный материал имеет свойство расширяться под воздействием температур.

Располагаются деформационные швы повсеместно, в зависимости от решения проектного института: они могут располагаться в бетонном полу с колоннами, маршами лестницы, бордюрными камнями, пандусами, на стыках различных плит, между зданиями, а также в других случаях.

При устройстве температурного шва возможно применение различных материалов: начиная от простых изоляционных,  в случае когда деформационный температурный шов имеет небольшие размеры и необходима гидроизоляция деформационного усадочного шва, заканчивая сложными решениями по установке внутренней гидроизоляционной гидрошпонки, утеплению деформационного температурного шва экструдированным пенополистиролом, Вилотермом, Гернитовым шнуром или аналогичным материалом, в зависимости от проектного решения.

Температурные швы, согласно основным типовым узлам могут подразделяться на усадочный шов или шов сжатия, изоляционный шов, шов с примыканием к металлической закладной детали, температурный шов (расширения и сжатия), изоляционный шов с полимерным плинтусом, а также шов, примыкающий к другим типам покрытия с усилением сцепление с помощью полимерного (химического) анкера.

Температурный Усадочный шов

Температурный усадочной шов или что в сжатия герметизируется полиуретановым герметиком а также кромка деформационного шва усиливается полимерном ремонтным составом. Шов заполняется теплоизоляционным эластичным материалом из вспененного полиэтилена Вилотермом.

 

 

Изоляционный температурный шов

Изоляционный шов также может изолироваться полиуретановым герметиком, а заполняется жгутом Вилотерм, кромка усиливается. Существенными отличиями между усадочным и изоляционным швом в температурных швах является тот факт, что изоляционный шов находится на стыке горизонтальной и вертикальной плиты.

 

 

Классический температурный шов

Классический температурный шов или “шов расширения-сжатия” изолируется специальной гидроизоляционной шпонкой, которая  может устанавливаться в основании, либо посередине шва. Гидроизоляционные шпонки также могут контактировать с полимерными гидроизоляционными мембранами, в случае если первый и второй материал сделан из одного и того же полимерного материала с добавлением похожих пластификаторов. Заполняется классический температурный шов экструдированным пенополистиролом, но в ряди случаев возможно также заполнения жгута Типа Вилатерм, Гернитовым шнуром или другим теплоизоляционным гигроскопичны гидрофобным материалом.

Устройство деформационных швов Пеноплэкс в зданиях

Многоэтажные и многосекционные здания, обладающие значительным весом и протяженностью, в течение срока эксплуатации могут подвергаться различным деформациям, которые возникают под воздействием ряда факторов: колебаний температуры воздуха, неравномерной осадки грунта или сейсмической активности (что особенно актуально для Кавказа, Крыма, южной части Сибири и Дальнего Востока России).

В результате деформаций снижается несущая способность здания и могут появиться трещины в стенах и других конструкциях. Для уменьшения нагрузок на элементы конструкций в местах возможных деформаций в современном монолитном домостроении активно применяется система деформационных швов.

Деформационные швы представляют собой своего рода разрез в конструкции здания, разделяющий сооружение на отдельные блоки и тем самым придающий ему некоторую степень упругости. В зависимости от специфики архитектурно-технического решения здания, природно-климатических условий и инженерно-геологических возможностей строительства объектов при работе с наружными стенами и остальными конструкциями здания выделяют деформационные швы следующих видов:

  • температурные;
  • усадочные;
  • осадочные;
  • антисейсмические.

Температурные швы делят здание на отсеки от уровня земли до кровли включительно, не затрагивая фундамента, который, находясь ниже уровня земли, испытывает температурные колебания в меньшей степени и, следовательно, не подвергается существенным деформациям. Расстояние между температурными швами определяется в зависимости от материала стен и расчетной зимней температуры региона строительства.

Усадочные швы делают в стенах, возводимых из монолитного бетона различного типа. Монолитные стены при затвердевании бетона уменьшаются в объеме. Усадочные швы препятствуют возникновению трещин, снижающих несущую способность стен. В процессе достижения необходимой прочности монолитных стен ширина усадочных швов увеличивается, а после завершения усадки стен швы тщательно заделывают.

Неравномерная деформация грунта может привести к появлению трещин в стенах и других конструкциях здания. Другой причиной неравномерной осадки грунтов основания сооружения могут быть различия в его составе и структуре в пределах площади застройки здания. Во избежание появления опасных деформаций в зданиях формируют осадочные швы. Эти швы, в отличие от температурных, разрезают здания по всей их высоте, включая фундаменты.

Антисейсмические швы применяются в зданиях, строящихся в районах, которые подвержены землетрясениям. Они разрезают здание на отсеки, конструктивно представляющие собой самостоятельные устойчивые «объемы». По линиям антисейсмических швов располагают двойные стены или двойные ряды несущих стоек, входящих в систему несущего остова соответствующего отсека.

Применение ПЕНОПЛЭКС® в системах деформационных швов

С целью герметизации деформационные швы заполняются упругим изоляционным материалом. Идеальным заполнителем для систем деформационных швов является теплоизоляция ПЕНОПЛЭКС®, поскольку она обладает следующими техническими характеристиками:

  • Высокая прочность на сжатие (не менее 0,20 Мпа). Прочность на сжатие у ПЕНОПЛЭКС® – не менее 20 тонн на кв. м, материал не крошится и не осыпается как в процессе монтажа, так и в течение всего срока службы.
  • Низкое водопоглощение. За счет замкнутой ячеистой структуры теплоизоляция ПЕНОПЛЭКС® обладает практически нулевым водопоглощением.
  • Биостойкость. Теплоизоляция ПЕНОПЛЭКС® обладает абсолютной биостойкостью и не подвержена биоразложению. По результатам тестирования образцов стройматериалов на биостойкость в присутствии влаги доказано, что ПЕНОПЛЭКС®, за счет минимального водопоглощения, не является матрицей для размножения разного вида микроорганизмов.
  • Неизменно низкий коэффициент теплопроводности (λ (лямбда) = 0,034 Вт/м-К), что обеспечивает стабильные теплотехнические свойства, независимо от условий эксплуатации.
  • Долговечность материала – более 50 лет. Еще в 2001 году компания «ПЕНОПЛЭКС» провела испытание теплоизоляционных плит в Научно-исследовательском институте строительной физики г. Москвы на предмет определения долговечности материала при реальных условиях эксплуатации. Результаты испытаний показали, что материал сохраняет свои свойства в течение как минимум 50 лет (НИИСФ, г. Москва, протокол испытаний № 132-1 от 29 октября 2001 года).

Принципиальные схемы устройства деформационных швов

Основные преимущества ПЕНОПЛЭКС® в системах деформационных швов:

  • применение ПЕНОПЛЭКС® в деформационных и температурных швах позволяет конструкции выдерживать высокие нагрузки и значительные температурные колебания;
  • ПЕНОПЛЭКС® способен компенсировать напряжения сопрягаемых элементов усадочных швов с большой амплитудой колебания;
  • благодаря тому, что теплоизоляция ПЕНОПЛЭКС® обладает нулевым водопоглощением, влага не скапливается в толще утеплителя, не расширяется в объеме под воздействием сезонных и суточных температурных колебаний и не разрушает структуру материала на протяжении всего срока службы;
  • широкая продуктовая линейка теплоизоляции ПЕНОПЛЭКС® дает возможность подобрать материал, отвечающий проектным, климатическим и сейсмическим условиям.

Система деформационных швов с ПЕНОПЛЭКС® в качестве наполнителя активно применяется в современном монолитном домостроении. Например, с использованием данной технологии были возведены элитные жилые комплексы в Санкт-Петербурге: «Три ветра» и «Смольный проспект». Новые кварталы кардинально различаются своим внешним видом и месторасположением: «Три ветра» со зданиями в стиле “модерн” располагается на небольшом мысе в акватории Финского залива, а величественный классический «Смольный проспект» – в историческом центре Северной столицы. Объединяют их высокие стандарты строительства и активное применение современных материалов и технологий.

C применением системы деформационных швов также возводились знаковые объекты в Москве, среди которых проект комплексной реконструкции и приспособления под современное использование Центрального стадиона «Динамо» и прилегающей к нему территории – «ВТБ Арена парк», а также гостиничный комплекс на Софийской набережной, прямо напротив Кремля – «Царев сад».

ЦНИИСК им. В.А.Кучеренко совместно с Техническим отделом ООО «ПЕНОПЛЭКС СПб» были разработаны «Рекомендации по применению плит ПЕНОПЛЭКС® в качестве эффективного заполнителя систем деформационных швов конструкций фундаментов и стен зданий и сооружений». Рекомендации разработаны в соответствии с требованиями актуальных СП: СП 20.13330.2011 «Нагрузки и воздействия», СП 15.13330.2012 «Каменные и армокаменные конструкции», СП 22.13330.2011 «Основания зданий и сооружений». Разработанный документ является готовым справочником в области проектирования деформационных швов различного типа и может представлять большой интерес для представителей строительных и проектных организаций.

Основные элементы конструкции деформационного шва


Виды деформационных швов: назначение и применение – Водолит

При строительстве и проектировке сооружений различного назначения используется деформационный шов, который обеспечивает укрепление всего строенияиего защиту от сейсмических, осадочных и механических воздействий, от разрушения, усадки и возможных сдвигов и искривлений на почве.

Деформационный шов – разрез на строении, который заполняется  изоляционным материалом, разделяя конструкцию на отдельные блоки. Это снижает нагрузку на части сооружения, что повышает устойчивость здания и уровень его сопротивления нагрузкам. Для предотвращения появления различного рода деформаций, строение нуждается в устройстве деформационных швов.

Исходя из назначения, деформационные швы разделяются на: температурные; усадочные; осадочные; сейсмические. В некоторых строениях, из-за особенностей их расположения, применяются комбинации методов, служащие для защиты сразу от нескольких причин деформации. Это может использоваться когда местность возведения строительства имеет почву, склонную к проседанию. Также рекомендуется применять несколько видов швов при возведении протяженных высоких домов, с множеством различных конструкций и элементов.

Виды деформационных швов

В любом строении, независимо от типа материала стен и фундамента, сроках постройки и назначения, происходят постоянные процессы деформации конструктивных элементов. Движение грунтов, утяжеление конструкции, резкие перепады температуры, объединение нескольких конструкций из разных материалов – все это может вызвать деформацию жилого или промышленного сооружения.

Применение деформационных швов помогает снизить напряжение в конструкции объекта, позволяет разделить сооружение на несколько отдельных блоков для их свободного движения в определенном направлении.

Классификация швов осуществляется в соответствии с факторами, которые способны вызывать деформацию строящегося объекта. Они и определяют разновидности деформационных швов:

Температурные швы служат защитой от перемены и колебаний температуры. Даже в городах, расположенных в зонах с умеренным климатом, при переходе от высокой летней температуры к низкой зимней, на домах часто возникают трещины различных размеров и глубины. Впоследствии они приводят к деформации не только коробки сооружения, но и основания. Во избежание этих проблем, здание делится швами на расстоянии, которое определяется используемым материалом, из которого возведено сооружение.

Температурные швы разделяют строение на блоки по всей высоте здания, не задействуя при этом фундамент ниже уровня грунта, поскольку подземные части строения не испытывают температурных колебаний такой степени, как наземные части здания. Размер отсеков зависит от материалов стен и от расчётной температуры местности в холодное время года.

Усадочные швы применяются реже других, в основном при создании монолитно-бетонного каркаса. Они формируются по всей высоте строения, захватывая подземные части фундамента. Так как бетон при затвердевании часто покрывается трещинами, которые впоследствии разрастаются и создают полости, конструкция здания может не выдержать и пострадать. Шов применяется только до момента полного затвердевания фундамента.

Таким образом, бетонный фундамент полностью усаживается, не покрываясь при этом трещинами. Чтобы шов получился полностью герметичным и не пропускал влагу, применяют особые герметики и гидрошпонки. Усадочные швы применяются при различной этажности в разных частях здания и защищают от образования трещин в различных элементах строения.

Температурно-усадочные швы применяются при необходимости совмещения различных видов деформационных швов.

Осадочные деформационные швы – конструкции, применяемые при строительстве и проектировании сооружений разной этажности. Они связаны с неравномерностью грунтов под сооружением и разными нагрузками на разные участки застройки, когда часть постройки с большим количеством этажей оказывает на почву гораздо большее давление, чем часть постройки с меньшей этажностью.

Из-за неравномерного давления почва может проседать, вызывая сильное давление на фундамент и стены. Различные поверхности сооружения покрываются сетью трещин и впоследствии подвергаются разрушению. Для предотвращения деформации элементов конструкции, применяется осадочный деформационный шов, разделяющий не только стены, но и фундамент, тем самым защищая дом от разрушения.

Такой осадочный деформационный шов имеет вертикальную форму и располагается от крыши до основания сооружения, обеспечивая фиксацию всех частей сооружения и защищая дом от разрушений и деформаций разной степени тяжести. По завершении работ, необходимо герметизировать само углубление и его края для полной защиты строения от влаги и пыли. Для этого применяются обычные герметики.

 

Работа с материалами осуществляется по общим правилам и рекомендациям. Важным условием обустройства шва является его полная заполненность материалом так, чтобы внутри не осталось пустот. На поверхности стен они изготавливаются из шпунта, с толщиной примерно половину кирпича, в нижней части шов делается без шунта. Для того чтобы внутрь здания не попадала влага, на внешней части подвала оборудуется глиняный замок. Таким образом, шов не только защищает от разрушения строения, но и оказывается дополнительным герметиком, защищающим от грунтовых вод.

Такой вид швов обязательно обустраивается в местах соприкосновения различных участков здания, в случаях размещения части строения на почве различной сыпучести, при пристраивании к существующему строению других, даже если они изготовлены из идентичных материалов. Осадочный шов используется также при существенной разнице в высоте отдельных частей строения, превышающей10 метров и в любых других случаях, когда есть основания ожидать неравномерной просадки фундамента.

Сейсмические (антисейсмические) швы – конструкции, которые создаются для укрепления строений в районах с повышенной сейсмической природой: наличие землетрясений, цунами, оползней, извержений вулканов. Сейсмические швы проектируются по определенной схеме, с созданием внутри здания отдельных. не сообщающихся сосудов, которые по периметру будут разделены деформационными швами.

Часто внутри здания деформационные швы располагаются в форме куба с равными гранями. Грани куба уплотняются при помощи двойной кирпичной кладки. Конструкция рассчитана на то, что в момент сейсмической активности, швы удержат конструкцию, не дав обрушиться стенам.

Конструкционные швы рассчитаны только на горизонтальные перемещения конструкции и действуют аналогично швам усадочным. Как правило, оборудуются параллельно с усадочными швами и по такому же типу.

Изоляционные швы оборудуются для защиты стяжки пола от передачи деформационного напряжения вдоль стен, колонн, фундамента под тяжелым оборудованием.

Применение деформационных швов

При колебаниях температур, изготовленные из железобетона конструкции подвергаются деформации. Они могут менять свою форму, размеры и плотность. При усадке бетона конструкция со временем укорачивается и проседает. Поскольку проседание происходит неравномерно, при снижении высоты одной части конструкции, другие начинают смещаться, тем самым разрушая друг друга или образовывая трещины и углубления.

Каждая железобетонная конструкция является целостной неделимой системой, подверженной изменениям при осадке грунта, резких колебаниях температуры, осадочных деформациях между частями конструкции. Постоянные смены давления приводят к образованию на поверхности конструкции различных деффектов – надколов, трещин и вмятин. Чтобы избежать образования дефектов здания, применяется несколько видов разрезов, повышающих прочность сооружения и защищающих его от различных разрушающих факторов.

С целью уменьшения давления между элементами в многоэтажных или протяженных зданиях, необходимо применять осадочные и температурно-усадочные виды швов. Для определения необходимого расстояния между швами на поверхности сооружения, во внимание принимаются уровень гибкости материала колонн и соединений. Единственным случаем, когда нет необходимости устанавливать температурные швы, является наличие катучих опор.

Расстояние между швами часто зависит от разницы между наибольшей и наименьшей температурой окружающей среды. Чем ниже температура, тем дальше друг от друга должны располагаться углубления. Температурно-усадочные швы пронизывают строение от кровли до основания фундамента, в то время, как осадочные изолируют разные части здания. Усадочный шов иногда образовывается путем установки нескольких пар колонн.

Температурно-усадочный шов обычно образуется путем устройства парных колонн на общем фундаменте. Осадочные швы тоже проектируются путем установки нескольких пар опор, которые находятся напротив друг друга. В этом случае, каждая из опорных колонн должна быть оборудована собственным фундаментом и крепежом. Конструкция каждого шва призвана быть четко структурированной, надежно фиксировать элементы строения, быть надежно герметизированной от сточных вод.

Шов должен быть устойчив к перепадам температур, наличию осадков, противостоять деформации от износа, ударов, механических воздействий. Швы обязательно делаются в случае нервностей грунта, неодинаковой высоты стен. Деформационные швы утепляются при помощи минеральной ваты или пенополиэтилена, что обеспечивает защиту помещения от низкой температуры и дополнительную звукоизоляцию.

Внутри помещения каждый швы герметизируются эластичными материалами, а с внешней стороны – герметиками, способными защитить от атмосферных осадков. Такие швы позволяют уменьшить нагрузку на элементы строения в зонах возможного возникновения различных деформаций, которые могут возникнуть в результате различных причин:

Резкие перепады температуры внешней среды;
Сейсмическая активность;
Неравномерное осаждение грунта;
Воздействия, представляющие опасность для стабильности несущих конструкций строений.

Существуют различные способы герметизации деформационных швов: герметики, замазки, гидрошпонки, и прочие виды.
Например, гидрошпонки используются в качестве гидроизоляции деформационных швов в монолитных строениях, фундаментов различных конструкций и т.д.

Гидрошпонка является поливинилхлоридной лентой, которая монтируется в опалубку при монтаже конструкции частями. Гидрошпонка имеет полостную структуру, что позволяет облегчить установку и определяет надёжность стыков в деформационных швах.

Что такое деформационный шов? 

Деформационный шов представляет собой своего рода разрыв в конструкциях здания или сооружения, который делит его на блоки. Предназначен деформационный шов для снижения нагрузок на конструктивные элементы в местах возможных деформаций, вызванных изменением температуры окружающей среды, сейсмическими колебаниями, неравномерной осадкой грунта. 

В связи с этим можно выделить несколько видов деформационных швов: температурные, осадочные и антисейсмические.  

Температурные деформационные швы 

Температурные деформационные швы делят здание на отсеки от уровня грунта до кровли. По фундаменту такие швы проходят в редких случаях, так как он, находясь под землей, он практически не претерпевает температурных деформаций. 

Осадочные деформационные швы 

Довольно часто нам встречаются здания с разной этажностью. В этом случае на грунты основания будет действовать разная нагрузка. Неравномерная осадка грунтов может привести к появлению осадочных трещин в конструкциях здания. Другой причиной неравномерной осадки могут являться различия в свойствах грунтов под подошвой фундамента в разных его частях. Во избежание появления осадочных трещин в конструкциях зданий устраивают осадочные швы. Такие швы, в отличие от температурных, «разрезают» здание по всей высоте, включая фундамент. 

Антисейсмические деформационные швы 

Антисейсмические швы устраивают при строительстве зданий в районах с сейсмической активностью. Они делят здание на блоки, каждый из которых представляет собой независимую конструкцию, более устойчивую во время землетрясений. 

Нужно ли герметизировать деформационный шов и как? 

В данном случае речь пойдет о гидроизоляции деформационных швов подземных частей зданий или сооружений. Значение гидростатического давления вод, содержащихся в грунте, может достигать довольно высоких значений, поэтому выполнять его гидроизоляцию необходимо в обязательном порядке.  

Гидроизоляционные материалы, применяемые при гидроизоляции деформационных швов, должны обладать двумя основными свойствами: прочностью и эластичностью.  

В настоящее время применяется несколько вариантов гидроизоляции деформационных швов:  

— гидрошпонки; 

— герметики; 

— гидроизоляционные ленты. 

  1. 1. Гидрошпонки 

Эти средства герметизации представляют собой резиновые или ПВХ профили, применяемые в качестве закладной детали на стадии бетонирования. Монтируются гидрошпонки обязательно встык, соединение производится методом спайки или склейки. Крепление к арматуре выполняется при помощи проволоки или металлических скоб. 

  1. Герметики

Это разнообразные пастообразные материалы, которые при полимеризации превращаются в эластичный материал. Они производятся на различной основе (битумные, бутил-каучуковые, силиконовые, полиуретановые). Выбор того или иного типа герметика обусловлен условиями эксплуатации, конструкцией шва, наличием и воздействием УФ-излучения и т.п. 

Оптимальным и надежным решением для гидроизоляции деформационного шва является применение системы материалов, состоящей из гидроизоляционной ленты и специального клея. О них и пойдет речь далее. 

  1. Гидроизоляционные ленты

Технология устройства гидроизоляции при помощи гидроизоляционных лент довольно проста. При монтаже гидроизоляционной ленты поверхность бетона, на которую будет приклеиваться лента должна быть структурно прочной, сухой, очищенной от масел и прочих загрязнений. Клей наносится при помощи зубчатого шпателя до образования ровного непрерывного слоя, толщина которого должна составлять 2-3 мм. По слою клея укладывается гидроизоляционная лента, которая разглаживается при помощи валика для удаления излишков воздуха. Часть клея при этом выдавливается наружу, после чего им необходимо зашпатлевать края ленты. В зависимости от типа системы стыковка ленты может производиться при помощи спайки, например, при помощи строительного фена, или при помощи склеивания применяемого клея. 

В настоящее время отлично зарекомендовали себя две системы гидроизоляционных лент для гидроизоляции деформационных швов:  

  • «Пенебанд»; 
  •  «Пенебанд С».  

Обе системы успешно применяются на различных объектах строительства, как гражданских, так и гидротехнических, доказав свою надежность и эффективность.   

Данные системы герметизации деформационных швов способны выдерживать высокое давление воды (как положительное, так и отрицательное) не только благодаря прочности и эластичности лент «Пенебанд» («Пенебанд С»), но и благодаря аналогичным характеристикам клеев. Срок службы данных систем составляет более 50 лет. 

Температурные швы | Архитектура и Проектирование

Объемные изменения бетона, вызываемые колебаниями температуры и его влагосодержания, должны рассматриваться как вредный фактор, влияющий на эксплуатационные свойства конструкций. Открытые бетонные вертикальные элементы, такие, как колонны или стены жесткости, изменяют свои размеры, если они подвергаются температурным колебаниям. В конструкциях высотных зданий такие изменения могут достигать 2,5 см и более. В перекрытиях и перегородках, примыкающих к этим элементам, могут образовываться трещины, если они не запроектированы соответствующим образом на восприятие этих перемещений.

 

В открытых горизонтальных бетонных подоконных частях наружных стен, балконах, стенах и крышах должны быть предусмотрены швы для восприятия продольных температурных изменений в конструкциях.

 

Расстояние между температурными деформационными швами в крышах в значительной степени зависит от теплоизоляции конструкции; оно колеблется от 45 до 75 м, причем меньшее значение характерно для случая, когда отсутствует теплоизоляция с внешней стороны бетонной конструкции. Особое внимание должно быть уделено конструированию тех мест, где изменяется плоскость ограждающих конструкций— эркеры, выступы, ниши, надстройки и т.п.

 

Для эффективной работы деформационные швы должны рассекать вертикально все здание. Однако устройство таких швов не требуется, если конструктивные элементы, несущие бетонные конструкции, подвергаемые температурным колебаниям, достаточно гибки, чтобы следовать за температурными деформациями поддерживаемой конструкции (например, изящные колонны, поддерживающие бетонную крышу).

 

Деформационные швы устраивают также в крышах зданий со сложным планом. Здания Y-, Т- или L-образной конфигурации с достаточно протяженными или неравными крыльями должны иметь деформационные швы в местах примыкания крыльев к ядру здания. Швы, обеспечивающие различную осадку конструкций, следует предусматривать также в местах сопряжения колонн основного здания с перекрытиями гаража.

 

 

Деформационный шов в железобетонных конструкциях

В недавно построенных домах вследствие влияния определенных факторов появляются трещины. Температурные швы в железобетонных конструкциях, усадочные, осадочные и прочие носят название деформационных, и являются профилактикой этих нежелательных последствий, возникающих в сейсмических зонах, местностях с большой амплитудой перепадов температуры, и в зданиях, построенных на разных видах грунта или на гористом рельефе.

Деформационный шов предназначается для снижения нагрузок на части конструктивных элементов в зонах вероятных деформаций.

Что это такое?

Это своеобразный разрез полов, стен и потолков построек, заполненный изоляционным материалом (герметиком, замазкой, эластичными лентами), который делит фасад постройки на отдельные секторы. Его главная функция — предотвратить деформацию, смещение или разрушение постройки, забрать часть напряжения каркаса и повысить упругость блоков.

Существует много видов швов, различающихся по цели применения, но самые популярные из них следующие:

Некоторые виды стыков используются чаще других.
  • температурно-усадочные швы;
  • осадочные;
  • антисейсмические.

Устройство деформационных швов

Температурные

Используют в помещениях с частыми изменениями уровня влаги и температуры. В качестве материала для деформационной конструкции применяют древесину, потому что она обеспечивает прочность бетонной стяжки и предотвращает трещины между блоками. Деревянные рейки размещают по отметкам, перерезая постройку по длине и ширине от крыши до верха основы.

При формировании такого стыка необходимо использовать деревянные рейки.

Антисейсмические

Ставятся в постройках, строящихся в районах, подверженных частым землетрясениям. Они делят здание по всей высоте, затрагивая наземную часть. Расстояние между антисейсмическими швами и их параметры утверждены в проекте строительства. По линиям таких швов ставят двойные стены или подобные сооружения несущих конструкций, которые входят в число горизонтальных и вертикальных поддерживающих элементов.

Усадочные

При затвердевании бетона стены уменьшается в размерах, что является одной из самых распространенных причин возникновения трещин, которые ослабляют мощь монолитных держателей. Для из устранения используют усадочные швы. При высыхании этого стройматериала они расширяются вместе с ним, а после окончательной усадки стен — наглухо заделываются герметиком.

Формирование такого типа стыка необходимо для предупреждения появления трещин на стенах.

Осадочные

Используются в сооружениях, имеющих блоки разной высоты, этажности и установленных на разных типах грунта. Эти швы укладываются при заливке фундамента и разрезают дом начиная от основы, и заканчивая последними этажами. При затвердевании бетона, его расширение — главная причина появления трещин. Для предотвращения нежелательных последствий и обеспечения возможности разрывам пролечь по специальным ущельям или под ними, необходимо сделать надрез на глубину ¼—½ высоты фундамента. Демпфера принимают на себя тепловые и усадочные горизонтальные расширения материалов при их стыках.

Расстояние и основные положения

Нормы построения деформационных конструкций, соотношения в размерах, формулы для вычисления персональных параметров, в том числе и расстояние между деформационными швами, детально описано в строительных нормах и правилах (сокращенно СНиП). Еще подробная информация содержится в своде правил (далее СП). Согласно СП 27.13330.2011 (п. 6.27), расстояние между температурно-усадочными деформационными швами в железобетоне определяются формулой. Ее можно не соблюдать, если выбранные расчеты не больше значений, обозначенных в таблице (при показателе температуры -40 °С, относительной влажности воздуха 60%, и высоте потолка 3 м).

Расстояния между швами
ТипОтапливаемые постройки или грунт, мНеотапливаемые помещения, мНа улице, м
Сборные и сборно-каркасные одноэтажные726048
Те же многоэтажные605040
Сборно-блочные/сборно-панельные554535
Сборно-монолитные/монолитные каркасные504030
Те же сплошные403025

Посмотреть «СП 27. 13330.2011» или cкачать в PDF (14.6 MB)

Размер блоков, между которыми размещаются деформационные швы, определен параметрами, описанными в следующих нормативных документах:

  • СНиП 2.03.04—84 (п. 17);
  • СП 52—110—2009.

Посмотреть «СНиП 2.03.01-84» или cкачать в PDF (1.3 MB)

Посмотреть «СП 52-110-2009» или cкачать в PDF (2.7 MB)

Например, температурно-усадочные швы укладываются шириной от 20 мм, постройка делится на равные блоки, деление начинается от фундамента. В осадочных же разрез идет по вертикали и его ширина также не должна быть меньше 20 мм. Для их поддержания и профилактики возникновения трещин в них же вставляют металлическую конструкцию, которая является герметиком и усилителем.

Крышки компенсаторов

| Гибкий, сейсмический

Мы получили покрытие

Когда дело доходит до выбора крышки компенсатора, вы не одиноки. У нас есть для вас руководства по определению размеров, гидроизоляции, противопожарных преградах, перемещению зданий и многому другому.

Размер стыков – упрощенный

Важнейшим элементом правильного определения размеров сустава является учет правильных типов и диапазонов движений.

Учить больше
Типы движения зданий

Перед тем, как выбрать укрытие, важно подумать, с каким типом (-ами) движения здания может столкнуться ваш проект.

Учить больше
Типы зданий: среды для рассмотрения

При выборе системы крышки компенсатора важно учитывать расположение и использование, прежде чем делать выбор.

Учить больше
Что такое огнестойкие компенсаторы

Огнестойкие компенсаторы необходимы для обеспечения безопасности здания. Вот как их включить.

Учить больше
Гидроизоляция компенсационного шва

Необходимо учитывать несколько аспектов, которые помогают предотвратить утечку воды через компенсатор в ваше здание.

Учить больше
Вопросы, которые следует задать перед выбором

Учитывайте эти темы о движении, безопасности, эстетике, устойчивости здания и многом другом при выборе наилучшего покрытия для вашего здания.

Учить больше

Деформационные швы – обзор

Устанавливайте компенсационные швы, если они используются, в местах, как указано на установочных чертежах, по указанию инженера по механическому оборудованию или производителя раствора.

Конструируйте компенсаторы из 1-дюйм. толстый пенополистирол или красное дерево. Обсудите варианты с инженером-механиком или производителем раствора.

Вставьте вторичное уплотнение конструкции в компенсаторы, где нижняя часть компенсатора соприкасается с фундаментом.

Для герметизации дна компенсационного шва смешайте эластомерную эпоксидную смолу с минимальным коэффициентом удлинения 200% при 0 ° F с песком № 3 для сухой абразивоструйной очистки, примерно от четырех до семи частей песка на одну часть эластомера. эпоксидной смолы для образования консистенции раствора без комков. Выложите смесь толщиной 1-2 дюйма и шириной 3 дюйма поверх бетона, на котором должен быть установлен компенсатор. Вставьте компенсатор в смесь и прижмите. После затвердевания эта смесь образует вторичное уплотнение, предотвращающее попадание загрязняющих веществ в бетон.

Примите меры для удаления (после заливки и отверждения раствора) ½ дюйма открытой поверхности компенсационного шва. Заполните эту область эластомерной эпоксидной смолой без песка.

Некоторые основания насосов не позволяют удобно размещать компенсаторы.В таких случаях вы можете расположить стык под поперечными распорками, используя 1-дюймовый пенополистирол или аналогичный сжимаемый материал. Обычно вы не можете удалить этот тип компенсационного шва после укладки эпоксидных материалов для затирки швов. Поэтому позвольте снять видимую часть компенсатора и уплотнить его эластомером. Оставшаяся часть компенсационного шва останется под поперечной распорной балкой и останется герметичной.

Если будет использоваться эластомерная эпоксидная смола, все поверхности должны быть свободны от любых загрязнений, которые могут препятствовать склеиванию материала.

Решения для расширительных швов | Piping Technology & Products, Inc.

Компенсирующие муфты

являются крупнейшей индивидуальной и наиболее разработанной категорией продукции PT&P (хотя мы относимся ко многим категориям). Это также продукт, с которого PT&P начала свой бизнес, когда наш основатель разработал толстостенный компенсатор для Dow Plaquemine в 1974 году. Сейчас PT&P продает компенсаторы через свою дочернюю компанию Bellows в США. Компания PT&P имеет уникальные возможности для удовлетворения требований к компенсаторам, поскольку мы – единственная компания в мире, обладающая глубокими знаниями в области проектирования напряжений труб и производящая компенсаторы и конструкционные опоры для труб.Кроме того, PT&P является одним из всего 14 глобальных членов Ассоциации производителей расширяемых совместных изделий, которая устанавливает фактические стандарты для разработки совместных устройств расширения. Есть много поставщиков компенсаторов, но лишь очень ограниченное число тех, кто имеет инженерные возможности, чтобы быть членом EJMA.

Мы рекомендуем нашим клиентам использовать компенсаторы только при необходимости, поскольку они являются самым слабым звеном в системе трубопроводов. Об этом свидетельствует наша слоган для нашего подразделения сильфонов в США, показанный ниже:

Наши совместные предложения по расширению включают:

Помимо самого продукта, US Bellows предлагает следующие бесплатные услуги в рамках покупки продукта:

  • Рекомендации по проектированию компенсаторов
  • Поддержка установки и технического обслуживания
  • Устранение неполадок Поддержка
  • Поддержка выбора материала
  • US Bellows имеет обширный опыт решения проблем, с которыми предприятия сталкиваются с компенсаторами.Вот некоторые из проблем, которые больше всего беспокоят клиентов (отказы компенсаторов).

Основы компенсаторов

В таблице ниже показаны основные элементы компенсатора. Важно отметить, что на рисунке изображена ограничительная штанга, но в различных конфигурациях штанга может быть соединительной штангой, ограничительной штангой, регулирующей штангой или регулировочной штангой. В случае поперечной рулевой тяги стержень используется для сдерживания давления, создаваемого давлением, но в этой конфигурации он не допускает осевого перемещения.

Типы движения, поддерживаемые компенсатором, показаны ниже. Последнее движение, крутильное, не поддерживается компенсаторами, и конструкция трубопровода не должна создавать избыточное скручивающее усилие на компенсатор.

Ниже приведены 3 ключевые проблемы, которые необходимо решить при установке компенсаторов в систему трубопроводов:

  • Усилие давления – это естественное давление на концы трубопровода со стороны среды, стремящейся расшириться под давлением.Усилие давления становится проблемой, потому что оно может преодолеть жесткость пружины компенсатора.
  • Давление сжатия – это сила, которую среда оказывает на сильфон, которое становится ключевым конструктивным ограничением в системах высокого давления и может привести к конкретным сбоям, если давление сжатия будет слишком высоким.
  • Изгиб – это вероятность изгиба сильфона, если его движение не ограничено или не направлено должным образом.

На рисунках ниже показаны реальные примеры сбоев, вызванных следующими проблемами:

Конструкция компенсатора

Компенсирующие муфты – это наиболее тщательно спроектированный компонент напряжения труб.Являясь одним из 14 членов ассоциации производителей компенсаторов, все компенсаторы PT&P спроектированы и изготовлены в соответствии со стандартами EJMA. Ключ к функционированию компенсатора начинается с изгибов, которые функционируют как небольшая петля расширения.

В таблице ниже показаны все компромиссы, которые используются при проектировании сильфона. Это даже не принимает во внимание компромиссы, сделанные при выборе типа компенсатора. Если клиенты смогут заранее проконсультироваться с PT&P, мы сможем сделать больше, чтобы найти правильные компромиссы в общем дизайне.

Определение деформационных швов в Caesar

Определение компенсаторов в Caesar сильно отличается от других компонентов, связанных с напряжением трубы, таких как пружинные опоры. Caesar не может автоматически определять EJs, как пружинные опоры. Caesar гораздо проще обращается с компенсаторами.

Как правило, инженеры по механическому напряжению труб вручную рассчитывают движения, которые должны быть поглощены EJ. Затем они спроектируют компенсатор.В таблице ниже показано тепловое расширение для различных материалов. Например, 1000 погонных футов трубопровода из нержавеющей стали 304SS, температура которого повышается на 100 ° F, будут подвергаться тепловому расширению примерно на 11,5 дюймов, которое необходимо учитывать в системе трубопроводов.

Материал Коэффициент теплового расширения Изменение при 100 ° F и 100 футах (дюймах)
Изменение при 300 ° F и 100 футах (дюймах)
316SS 8.9 1,07 3,20
304SS 9,6 1,15 3,46
A106 6,7 0,80 2,41

Когда был выбран компенсатор, компания Caesar попросит пользователей указать жесткость пружины и элементы рулевой тяги для компенсатора. Caesar НЕ ЗАЩИТИТ пользователей от таких ошибок, как чрезмерное скручивание компенсатора. Это пример модели Цезаря, в которой были проблемы при проектировании компенсатора (см. Пример из практики).

Техническое обслуживание компенсатора

Во время работы можно проводить только ограниченное количество проверок. Сюда входят:

  • Визуальный осмотр на предмет трещин, коррозии и правильного функционирования конструкции системы во время работы
  • Испытание давлением между слоями для двухслойных тестируемых компенсаторов во время эксплуатации
  • Сравнение встроенного лазерного сканирования с Caesar для обеспечения правильной линии и функционирования
  • Красящая ручка, ультразвуковые и рентгеновские испытания сварных швов во время капитальных ремонтов

Учитывая серьезность потенциального отказа EJ, US Bellows рекомендует регулярный цикл замены и может помочь с этой рекомендацией на основе своих данных об истории обслуживания EJ.Одной из наиболее важных проблем профилактического обслуживания EJ является обеспечение надлежащего обслуживания пружинных опор, которые имеют большое влияние на функционирование EJ.

Типы компенсаторов

Материалы компенсаторов включают металл, ткань, резину и ПТФЭ. US Bellows предлагает металлические, тканевые и резиновые компенсаторы. Компенсаторы из ПТФЭ чаще всего используются на химических предприятиях для работы в высококоррозионных средах.

В металлических компенсаторах используются самые разные материалы.В таблице ниже показаны стандартные материалы, которые компания US Bellows использует для металлических компенсаторов. Компания US Bellow имеет обширный опыт в выборе металлургии и помогла многим клиентам выбрать оптимальный материал для конкретной задачи проектирования.

Компенсирующий шарнир Нержавеющие материалы Компенсаторный шарнир Суперсплавные материалы
Нерж. Сталь 304 Монель 400
Нерж. Сталь 304L Инконель 600
Нерж. Сталь 316 Инконель 625
Нерж. Сталь 316L Инколой 800 / 800H
321 SS Инколой 825
Хастеллой C-276

Типы стандартных металлических компенсаторов включают одиночный компенсатор, универсальный компенсатор, шарнирный компенсатор, карданный компенсатор, линейный компенсатор с балансировкой давления, угловой компенсатор со сбалансированным давлением, компенсатор с внешним давлением, компенсатор скользящего типа и прямоугольный температурный шов.

  • Деформационный шов одинарный – это самый распространенный и простой тип компенсатора. Обратной стороной является то, что он ограничивает количество движений, которые он эффективно поддерживает.

  • Универсальный компенсатор – этот тип компенсатора используется для поддержки больших углов бокового смещения. ОБРАТИТЕ ВНИМАНИЕ, как стержни управления в универсальном EJ используются для распределения движения между двумя сильфонами.
  • Шарнирный компенсатор – этот тип компенсатора используется для ограничения движения в одной плоскости углового перемещения.Кроме того, шарнирный механизм сдерживает давление и может использоваться проектировщиком трубопроводов для несения веса.

  • Карданный компенсатор – этот тип компенсатора используется для ограничения движения в двух плоскостях углового перемещения. Кроме того, карданный механизм ограничивает давление и может использоваться проектировщиком трубопроводов для компенсации веса. Карданные EJs чаще всего встречаются в некоторых конструкциях FCC нефтеперерабатывающих заводов.

  • Линейный компенсатор с компенсацией давления – это тип компенсатора, который используется для ограничения давления, создаваемого давлением, с учетом осевого сжатия и расширения. Внутренний и внешний сильфоны работают вместе, чтобы одновременно ограничивать давление и допускать осевое перемещение. Линия EJ с балансировкой давления полезна, когда нет места для анкеровки. Компания US Bellows считает, что эти EJ используются для чувствительного оборудования, такого как турбины и компрессоры.

  • Угловой компенсатор с компенсацией давления – они имеют аналогичную функцию встроенного компенсатора давления EJ, обеспечивая осевое перемещение и одновременно ограничивая давление.
  • Компенсатор с внешним давлением – в этих компенсаторах среда протекает через встроенный вкладыш, а не через внутреннюю часть сильфона. В результате эти сильфоны обладают следующими преимуществами:
    • Поддержка приложений с более высоким давлением
    • Учитывать более высокие уровни осевого перемещения из-за отсутствия давления изгиба
    • Закаленный внешний вид обеспечивает лучшую устойчивость к неблагоприятным условиям окружающей среды
    • Среду можно сливать во время ремонта, чтобы ограничить повреждение сильфона.

  • Толстостенные компенсаторы – их можно использовать для увеличения срока службы в сложных условиях.Толстостенные EJ будут иметь более высокую жесткость пружины, что необходимо учитывать на этапе проектирования.

  • Прямоугольные компенсаторы – они используются в различных областях энергетики, нефтехимии, нефтепереработки, химической и сталелитейной промышленности в производстве воздуховодов.

  • Компенсаторы скользящего типа – используются для поддержки больших осевых перемещений в системах воздуховодов. Детали конструкции включают выбор набивки и уплотнений и, возможно, устойчивость к абразивным твердым частицам.Могут быть предусмотрены специальные функции, такие как «дворники», для предотвращения потенциального засорения пространства, предназначенного для движения скольжения.

Тканевые компенсаторы

Тканевые компенсаторы обычно используются в средах с низким давлением, таких как вытяжка и воздуховоды. Основным преимуществом тканевых компенсаторов является то, что они поддерживают большую степень подвижности в ограниченном пространстве. Они также позволяют легко заменять ткань без замены рамы Fabric EJ.

В тканевых EJ используется широкий спектр материалов для поддержки различных проектных условий, как показано в таблице ниже.

Резиновые компенсаторы

US Bellows также предлагает резиновые EJ для сред, в которых резина лучше соответствует условиям.

Пользовательские компенсаторы

Не обладая уникальным инженерным опытом в области компенсаторов, напряжений в трубах и инженерных опор для труб, компания PT & P / US Bellows разработала сотни нестандартных конструкций в соответствии с уникальными требованиями клиентов.

Металлические компенсаторы и металлические сильфоны

Hose Master – ведущий производитель металлических сильфонов и металлических компенсаторов.

Каталог компенсаторов

Мы предлагаем как предварительно спроектированные компенсаторы, так и специально разработанные компенсаторы, используя наш технический опыт и инновации. Используя формулу успеха, которая сделала нас лидером отрасли в производстве металлических шлангов и сборок, Hose Master обеспечивает такое же превосходное проектирование, точно контролируемые производственные процессы, экспертный контроль качества и исключительное обслуживание клиентов в области изготовления сильфонов и компенсаторов.

Машиностроение и производство . В основе успеха Hose Master лежит технический опыт. Запатентованное оборудование, спроектированное и изготовленное собственными силами, позволяет нам выходить за рамки обычных продуктов и предлагать продукты высочайшего качества с оптимальным соотношением цены и качества. Наши квалифицированные инженеры готовы помочь вам в проектировании металлических компенсаторов для самых требовательных приложений.

Обеспечение качества . Основным принципом Hose Master является поставка продукции высочайшего качества.Конструкции соответствуют EJMA и ASME Section VIII, а также требованиям норм по трубопроводам, котлам и давлению – B31.1 и B31.3. Эта сертификация распространяется на объем деятельности, связанный с изготовлением и сборкой напорных трубопроводов, что означает, что наши инженерные и производственные группы могут проектировать системы в соответствии с правилами Кодекса ASME по котлам и сосудам под давлением. Эта сертификация дает Hose Master штампы «U», «PP» и «R» для компенсаторов. Спецификации клиентов могут быть проверены с помощью анализа методом конечных элементов (FEA) или 3D-моделирования в САПР.Варианты испытаний компенсаторов включают пневматические, гидростатические методы, методы проникающего газа под высоким давлением или жидкости, а также гелиевую масс-спектрометрию и радиографию.

Анализ продукции и отказов . Ключом к постоянному решению любых проблем с металлическими компенсаторами из прочного металла является точное определение первопричины (причин) прошлых видов отказов продуктов, снятых с эксплуатации. Собственная лаборатория по анализу продуктов и отказов Hose Master может определить различные виды отказов, будь то в результате усталости, коррозии, деформации или множества других возможных причин.Hose Master – единственный производитель металлических шлангов и компенсаторов в Северной Америке, который предлагает своим партнерам-дистрибьюторам собственный анализ отказов и обратный инжиниринг в качестве бесплатных услуг.

Сервис . Компания Hose Master предлагает более 90 сварщиков, сертифицированных по стандарту ASME IX, и обширную программу запаса материалов. Помимо обеспечения наилучшего стандартного срока поставки, Hose Master предлагает нашу службу экстренной помощи в нерабочее время для шлангов и компенсаторов, обеспечивая клиентам быстрое реагирование на критические и срочные ситуации, которые возникают вне обычных рабочих часов.

Если у вас есть заявка на компенсационный шов и вам нужна помощь, пожалуйста, свяжитесь с нами. Наша опытная команда экспертов поможет подобрать правильное решение и ответит на любые вопросы.

Как правильно выбрать и установить компенсаторы

Компенсирующие муфты являются важным компонентом любого промышленного применения, включая трубопроводы или воздуховоды. Благодаря широкому выбору конструкций и материалов, правильный выбор и оптимальная установка компенсаторов имеют жизненно важное значение для обеспечения надежной и безопасной работы.

Коммерческие и промышленные установки, в которых используются любые виды насосов, трубопроводов или воздуховодов, также почти всегда будут включать компенсаторы или деформационные швы. Смягчающие эффекты теплового расширения, движения, вызванного вибрацией или даже внешними факторами, такими как сейсмическая активность или оседание грунта, компенсаторы являются необходимым компонентом безопасности.

Изготовленные из самых разных материалов, таких как нержавеющая сталь, резина или политетрафторэтилен (ПТФЭ), компенсаторы обеспечивают целостность конструкции.Например, если промышленные процессы требуют значительных изменений температуры, тепловое расширение металлических компонентов может вызвать напряжения, которые могут вызвать усталость. Деформационные швы могут устранить этот потенциальный источник неисправности.

Какой тип компенсатора подходит?

Резиновые компенсаторы обладают многими особенно полезными характеристиками из-за присущей им гибкости при условии, что они соответствуют требованиям по температуре / давлению. Это делает их пригодными для многих применений, включая поглощение звука, тепловой энергии и ударов.Резиновые компенсаторы, известные своей долговечностью и способностью противостоять экстремальным условиям окружающей среды, обычно используются в тяжелых условиях эксплуатации, таких как целлюлозно-бумажная промышленность, химическая обработка, водоснабжение и сточные воды, горнодобывающая промышленность и металлургия, а также в насосных установках. Резиновые компенсаторы также часто используются для уменьшения шума жидкости от вращающегося оборудования, к которому они прикреплены.

Обычно изготавливаемые из эластомеров на основе натуральных или синтетических масел, материалы, используемые в резиновых гибких соединениях, включают EPDM, неопрен, хлорбутил и гипалон, нитрил и натуральный каучук в сочетании с другими материалами, включая армирующий металл или проволоку, нейлон, полиэстер, арамидное волокно или PTFE. .

В некоторых экстремальных условиях, таких как химические системы с высоким или низким PH, компенсаторы конструируются из формованного PTFE или резины с футеровкой PTFE. Как нереактивный материал, ПТФЭ обладает некоторыми полезными свойствами для химической промышленности, где могут присутствовать высококоррозионные вещества. Формованные резиновые компенсаторы с футеровкой из ПТФЭ или ПТФЭ специально разработаны для защиты труб, контактирующих с прочными промышленными и химически активными материалами.

Системы

с металлическими шлангами в оплетке предназначены для контроля вибрации, снижения шума, снятия напряжения и компенсации потенциального смещения, выдерживая при этом более высокую рабочую температуру / давление.Эти соединители подходят для многих различных механических применений, таких как насосы, компрессоры и другое тяжелое оборудование, эти соединители изготовлены из различных металлов, включая медь и нержавеющую сталь, что позволяет использовать их даже в самых экстремальных условиях.

Выбор подходящего компенсатора

Учитывая, что компенсаторы часто используются в потенциально сложных процессах, таких как электроэнергетика, сталелитейная, целлюлозно-бумажная, горнодобывающая и химическая промышленность, правильный выбор, установка и обслуживание являются ключом к обеспечению надежности и максимальной производительности, а также максимального срока службы.Если выход из строя компенсатора может привести к простою системы, выбор материалов и оптимальная установка являются ключевыми. Например, резиновые компенсаторы, если они неправильно используются при чрезмерно высокой температуре или неправильно установлены, со временем потеряют гибкость, поскольку масла в резине теряются. Это приведет к тому, что компенсатор станет хрупким и склонным к ускоренному выходу из строя.

Обязательно проверьте рабочие характеристики компенсатора и обратитесь за помощью в конструктивных соображениях, основанных на опыте производителя в применении, чтобы уменьшить вероятность отказа.Некоторые начальные соображения при выборе компенсатора состоят в том, чтобы выбрать тот, который имеет подходящий размер для применения и доступную площадь основания, а также рассчитан на ожидаемый диапазон температур и давлений, которые оборудование будет испытывать в течение своего срока службы. Другие факторы могут включать вязкость перекачиваемой жидкости, если она содержит твердые частицы, и если есть какие-либо проблемы с потенциальной несовместимостью между технологическими жидкостями и материалами компенсатора. Общая стоимость владения также является важным элементом при выборе лучшего компенсатора для любого конкретного применения.

Правильная установка компенсатора

Компоновка компенсатора и трубопровода

Даже самый лучший и дорогой продукт станет более подверженным поломке, если он будет неправильно установлен. И наоборот, правильная установка правильного продукта может не только продлить срок службы системы, но также может увеличить общий срок службы всей системы.

Правильная центровка трубопроводов – одна из первоочередных задач. Установка со смещением автоматически ставит компенсатор в затруднительное положение и может создать реальную опасность как для продукта, так и для операторов.Деформационные швы не предназначены для компенсации неточностей при установке трубопроводов и не должны использоваться для их исправления. Точно так же следует минимизировать вибрацию, а компенсаторы следует располагать как можно ближе к фиксированным анкерам или регулирующим стержням, которые следует использовать в незакрепленных системах трубопроводов. Достаточная опора трубы также имеет решающее значение, поскольку компенсатор не должен выдерживать вес соседних трубопроводов / оборудования для правильной работы.

Еще одним ключевым моментом является выбор места для компенсаторов.В идеале компенсаторы не следует устанавливать в местах, где проверка невозможна. Кроме того, там, где компенсаторы транспортируют опасные материалы, следует рассмотреть возможность использования внешнего металлического экрана для защиты персонала в случае утечки или отказа, поскольку жидкость будет течь параллельно системе труб, а не радиально.

Также важно учитывать тип компенсатора и его материалы. Например, если изоляция трубопровода является обычной практикой, поверх металлических компенсаторов, то при использовании резиновых компенсаторов этой практики следует избегать.Теплоизоляция может способствовать накоплению тепла и высыханию резины, делая ее более хрупкой, что увеличивает режим разрушения.

На более приземленном уровне, во время установки компенсатора операторы должны проверить наличие повреждений на компенсаторе, правильно установить внешнее оборудование и убедиться, что он затянут должным образом, чтобы гарантировать герметичность работы.

Выполнение нескольких простых рекомендаций и принятие всех мер для обеспечения правильной установки компенсатора неизбежно принесет операционные дивиденды.

Обслуживание компенсаторов

Несмотря на то, что компенсатор правильно подобранного размера, указанного и установленного не требует обслуживания, тем не менее, настоятельно рекомендуется проводить регулярные проверки. Осмотры могут выявить любые проблемы, такие как утечки, коррозия, пузыри и трещины в резиновых компенсаторах. Проверка на наличие признаков износа не гарантирует отсутствия повреждений, но раннее выявление любых потенциальных проблем значительно снижает общую стоимость, подверженную риску.Как и в случае со всем оборудованием, соблюдение графика технического обслуживания, рекомендованного производителем, может дать оптимальный результат с точки зрения обеспечения максимального срока службы. При правильной установке и обслуживании компенсаторы могут разумно рассчитывать на срок службы от 7 до 10 лет, хотя особенности зависят от области применения. Однако для этого необходимо строго следовать рекомендациям производителя.

При правильном использовании компенсаторы являются эффективным решением для управления движением, вибрацией и циклическим движением, связанным с изменениями температуры.Доступные в широком диапазоне размеров, стилей, материалов и спецификаций, подходящие компенсаторы доступны для обслуживания даже самых требовательных приложений. Но чтобы получить максимальную отдачу от любого компенсатора, выберите подходящий и убедитесь, что он установлен правильно.

Proco Products – ведущие производители компенсаторов с обширным ассортиментом компенсаторов для трубопроводов и систем воздуховодов. Узнайте больше о компенсаторах на https://www.procoproducts.com.

CE Center – Деформационные швы и их роль в гидроизоляции

Архитектурные компенсаторы – это необходимые заранее определенные зазоры в больших конструкциях, которые предназначены для поглощения движения окружающей среды в зданиях.Если все сделано правильно, они, как правило, интегрируются со своей конструкцией, так что они сливаются с дизайном и почти исчезают. Следовательно, легко упустить из виду тот факт, что они могут быть потенциальным источником проникновения воды и влаги и повреждения. Эта инфильтрация может быть проблематичной для самого компенсатора, а также может вызвать проблемы для других строительных материалов или людей. В любом случае, при использовании компенсационных швов, которые должны прорезать внешние поверхности, их способность противостоять воде необходимо учитывать наряду с другими требованиями к швам.

Все изображения любезно предоставлены Inpro

Деформационные швы используются в больших зданиях для обеспечения возможности движения, но в то же время они должны обеспечивать защиту от проникновения воды.

На этом курсе будут рассмотрены способы проектирования и спецификации систем заполнения компенсаторов для обеспечения необходимых рабочих характеристик и сохранения водостойкости. В ходе этого процесса будут изучены типы проблем с влажностью и объемной водой, которые необходимо решить, другие потребности в характеристиках компенсаторов и различные типы доступных решений.

Конструкции для водоснабжения и строительства

Данные Агентства по охране окружающей среды США (EPA) показывают, что большинство зданий, вероятно, испытают ту или иную форму удара из-за нежелательного или чрезмерного накопления влаги. Эти условия могут привести к серьезным проблемам, таким как деградация, порча или даже выход из строя строительных материалов, развитие плесени и грибка, а также возможные риски для здоровья и безопасности человека. Ремонт любого из этих условий после того, как здание построено и занято, обычно включает вскрытие строительных сборок, что является разрушительным, трудоемким и дорогостоящим.Следовательно, неудивительно, что существует большой интерес к пониманию того, как можно контролировать влажность в зданиях, чтобы избежать любых или всех этих потенциальных проблем и рисков.

«Руководство по проектированию всего здания» (WBDG), программа Национального института строительных наук, дает некоторые из лучших, объективных и современных идей по этой теме. Он определяет три основные причины движения влаги: 1) попадание или утечка воды (как в системе крыши, стены или пола), 2) движение влажного воздуха (через щели или отверстия в крышах, стенах или полах) и 3 ) диффузия пара через материалы, которая может происходить медленно с течением времени, но, тем не менее, насыщать и повредить материалы.WBDG указывает, что решения охватывают весь спектр проектных и строительных работ, заявляя: «Профилактические и восстановительные меры включают в себя детальное проектирование, непроницаемое для дождевой воды; предотвращение неконтролируемого движения воздуха; снижение влажности воздуха в помещениях; уменьшение диффузии водяного пара в стены и крышу; подбор строительных материалов с соответствующими характеристиками водопроницаемости; и надлежащий контроль качества полевых работ ». Если перечислить все вместе, это может показаться сложной задачей, но, по сути, это означает, что каждый, кто участвует в строительном проекте, должен играть определенную роль в управлении влажностью в зданиях, начиная с проектной группы.

Нельзя упускать из виду и потенциальное воздействие воды и влаги в зданиях на здоровье человека. Влажные органические материалы (например, дерево, бумага, целлюлоза и т. Д.) Могут стать идеальной средой для размножения плесени и грибка. Многие люди негативно отреагируют на выброс этих спор в воздух, вызывая респираторные заболевания или усугубляя уже существующие, например астму. Когда выясняется, что эти симптомы связаны с условиями строительства, первоочередное внимание уделяется вопросам профессиональной ответственности и управления рисками.

Расширительные швы в зданиях

Разобравшись в проблеме воды, давайте сосредоточимся на обзоре того, что на самом деле представляют собой компенсаторы и как они используются в зданиях. Деформационные швы в основном определяются как заранее определенные зазоры в строительных конструкциях, спроектированные с учетом движения окружающей среды. Требования к расположению, размеру и перемещению всех таких компенсаторов зависят от конкретного проекта и надлежащим образом устанавливаются зарегистрированным инженером-строителем.

Понимая, что необходимо устранить открытый стык в здании, обычно архитектор должен выбрать средства для закрытия или герметизации стыка. Обычные способы сделать это могут включать конопатку или герметик для узких швов, сжимаемые наполнители или металлические крышки, которые открыты или скрыты. Типичные черты архитектурной системы покрытия стыков включают способность поглощать движение здания, выдерживать заданную нагрузку, обеспечивать безопасный выход, где это применимо, и быть совместимой с отделкой смежных поверхностей.

Перед тем, как более подробно рассмотреть эти системы наполнителей или архитектурных покрытий, следует принять во внимание следующие моменты, касающиеся конструкции компенсаторов в целом.

Номинальный размер шарнира

Расчетная ширина компенсационного шва при средней температуре воздуха называется номинальным размером шва. Выбор любого типа заполнителя швов или системы покрытия начинается с понимания этого номинального размера шва и диапазона перемещений между минимальным полностью сжатым размером и максимальным полностью развернутым размером.Выбранная система компенсационных швов должна обеспечивать полный диапазон перемещений.

Определение номинальной ширины стыка и предполагаемого типа движения, которому подвергается стык, является первым шагом в проектировании соответствующей системы компенсатора.

Тип движения

Секции здания могут перемещаться по нескольким общим причинам. Температурные колебания наиболее типичны и вызваны ежедневными изменениями температуры окружающей среды внутри и вокруг конструкции.Тепловое движение в основном однонаправленное по своей природе и является результатом расширения и сжатия структурных элементов под воздействием тепла, холода и влажности. Степень теплового движения обычно составляет примерно 10–25 процентов от номинального размера шва. Это означает, что минимальный размер в сжатом состоянии (при высоких температурах) должен быть на 10–25 процентов меньше номинального размера стыка, а максимальный размер в расширении (при низких температурах) должен быть на 10–25 процентов больше номинального размера стыка.

Сейсмическая активность также может быть источником движения, которое может быть горизонтальным, вертикальным, сдвигом или сочетанием всех трех. Возможно, потребуется увеличить ширину сейсмических швов с повышением уровня пола, чтобы защитить конструкцию во время землетрясений или других сейсмических событий. Эти соединения должны иметь способность смещения приблизительно 50–100 процентов от номинального размера соединения.

Наконец, движение, вызванное ветровой нагрузкой, вызванное сильным ветром, может вызвать раскачивание конструкции взад и вперед.Такое движение, вызванное ветровой нагрузкой, может быть перпендикулярно или параллельно стыку.

Ремонт бетонных деформационных швов: причины и последствия

Категория: Полы | Опубликовано: 28 июля 2017 г.

Если у вас бетонный пол в коммерческом здании, вы знаете, что компенсационные швы необходимы для обеспечения естественного расширения и сжатия, возникающего при изменении температуры. Без этих стыков большие трещины могут перемещаться по полу, вызывая дорогостоящие повреждения.Несмотря на то, что компенсационные швы бетонного пола предназначены для поглощения и рассеивания напряжения от расширения, в крайних случаях сами швы могут треснуть.

Необходимо понимать, что, когда стыки вашего бетонного пола действительно растрескиваются, они фактически работают так, как были задуманы, и сами защищают плиты. Замена бетонных плит с трещинами требует больших затрат времени и средств, тогда как замена компенсационных швов в бетоне – гораздо более простая задача. Как только вы обнаружите трещины в суставах, важно быстро их отремонтировать.Несоблюдение этого требования может привести к появлению трещин не только в стыках, но и в самом бетонном полу.

Замена и ремонт деформационных швов в бетонных плитах – это задача, которую лучше всего оставить в руках профессионалов. Попытка исправить неисправный компенсатор в бетонном полу без необходимых знаний, материалов и инструментов может привести к увеличению повреждений и ненужным расходам. Наем профессиональной компании для оценки ремонта вашего компенсатора – ваш самый безопасный и разумный образ действий.Также будет выявлена ​​причина выхода из строя компенсаторов. Таким образом, вы можете принять меры для предотвращения повреждений в будущем.

Что вызывает растрескивание в деформационных швах в бетоне?

Самым большим фактором, вызывающим растрескивание деформационных швов в бетоне, является температура. Почти всегда преждевременное растрескивание происходит из-за плохой планировки и неправильного выбора материала. Инженеры проектируют компенсаторы с учетом перемещений из-за физических сил, возникающих в результате колебаний температуры. Сюда входят реактивные силы расширения при повышении температуры и силы сжатия при понижении температуры.

Бетон – сложный строительный материал. Инженеры, специализирующиеся на строительстве бетона, проводят много времени, изучая его свойства, чтобы заливать плиты, выдерживающие перепады температур. Основным методом проектирования бетона является определение контролируемых деформационных швов через определенные промежутки времени с учетом конкретных материалов деформационных швов, которые работают вместе с залитыми бетонными плитами.

Люди, незнакомые с бетоном, могут подумать, что это твердое вещество в основном инертно, но это далеко от реальности в бетонном строительстве.Бетон – вещество предсказуемое. Его физические свойства и допуски хорошо известны опытным инженерам.

Бетон движется с точной скоростью в зависимости от температуры окружающей среды. Коэффициент теплового расширения составляет 0,0000055 на погонный дюйм бетона на 1 градус Фаренгейта изменения температуры. Инженеры компенсируют ожидаемое движение бетона, чтобы определить ширину и размещение шва, регулирующего расширение. Толщина бетонной укладки не имеет значения.Бетон равномерно реагирует на линейное движение независимо от толщины плиты.

Например, 100 линейных футов бетонной плоской конструкции при температуре 100 градусов по Фаренгейту имеют коэффициент расширения 0,66 дюйма. Если повысить температуру плиты такого же размера до 160 градусов по Фаренгейту, ее коэффициент расширения составит 1,06 дюйма. В качестве примера представьте себе бетонную дорогу. Миля бетона имеет коэффициент расширения 34,85 дюйма при 100 градусах, а коэффициент расширения той же мили при 160 градусах составляет 55.76 дюймов.

Вот почему на бетонных магистралях так много компенсационных швов. Постоянное расширение и сжатие из-за циклов нагрева и холода плохо сказывается на соединительном материале. Непрерывное движение вызывает значительный износ, что приводит к высоким затратам на техническое обслуживание и преждевременному выходу из строя соединения.

То же самое происходит с бетонным полом в коммерческом или промышленном здании, хотя и в меньшем масштабе. Существует пропорциональная зависимость от деформационных швов в бетонных полах.Инженеры оценивают колебания температурного диапазона, ожидаемые в здании, затем математически рассчитывают расстояние между интервалами компенсационных швов и ширину шва. Также они рассчитывают лучшие варианты материалов для заполнения компенсационного шва.

Вторым ведущим фактором, вызывающим растрескивание компенсирующих швов бетона, является плохой выбор материала для самих швов. Материалы для деформационных швов должны быть совместимы с типом бетона, с которым они сочетаются. Шовные материалы также должны выдерживать те условия окружающей среды, для которых они предназначены.

Доступно множество различных рецептур бетонной смеси. В зависимости от области применения некоторые бетонные смеси содержат большое количество коррозионных добавок, таких как кальций и летучая зола. Эти химические вещества могут быть очень разрушительными для материалов компенсационных швов, если они не выбраны надлежащим образом. Кроме того, некоторые бетонные деформационные швы не предназначены для использования в средах, где масло, топливо и другие летучие загрязнители вызывают разрушение материала.

Чтобы понять, почему деформационные швы в бетоне разрушаются и трескаются, полезно знать, какие материалы для швов обычно используются.Также полезно знать свойства каждого материала, чтобы не совершить ошибку, ремонтируя или заменяя компенсационные швы на неподходящее вещество.

Обычно используемые бетонные деформационные швы

Если вы посмотрите на деформационные швы вашей нынешней плиты, вы обязательно узнаете форму, цвет и текстуру. Но вы можете не знать, какой материал и подходит ли он для вашей строительной среды. Это наиболее распространенные материалы для компенсационных швов, используемых при строительстве бетонных плит, и ситуации, в которых они лучше всего подходят:

  • Расширительные швы для асфальта : Асфальт является наиболее часто используемым материалом для деформационных швов, используемых в бетонных плоских конструкциях.Асфальт – это самоуплотняющийся материал, поэтому для него редко требуется дополнительный герметик. Он хорошо противостоит разливам бензина и агрессивным чистящим средствам. Это неабсорбирующий материал, который хорошо защищает от проникновения воды. Вы часто найдете асфальтовые компенсаторы на открытом воздухе и в условиях высокой влажности.
  • Волокнистые компенсаторы : Волокнистые компенсаторы – это усовершенствованная форма стандартных заполнителей асфальтовых швов. Они состоят из ячеистых волокон, химически связанных жидким асфальтом и затем охлаждаемых до полутвердой формы.Этот материал очень гибкий и универсальный с отличными свойствами памяти, чтобы противостоять постоянным силам расширения и сжатия. Компенсаторы из волокна хорошо подходят как для внутренних, так и для наружных работ.
  • Деформационные швы Ceramar® : Ceramar® – заполнитель компенсационных швов, изготовленный из гибкой пены. Это фирменный наполнитель, состоящий из плотно закрытых ячеистых структур, смешанных с изомерными полимерами. Ceramar® узнаваем по яркому светло-серому цвету.Его легко установить, он очень гибок и имеет чрезвычайно высокую скорость памяти. Он также хорошо реагирует с большинством коммерческих герметиков и герметиков. Ceramar® – популярный выбор по всем направлениям.
  • Компенсирующие муфты из губчатой ​​резины : Материал из губчатой ​​резины отлично подходит для применений, где температура быстро меняется. Губчатая резина – это продукт химического производства, обладающий невероятной эластичностью. Он также обладает высокой термостойкостью и морозостойкостью, что делает его отличным материалом для компенсационных швов в зданиях, начиная от литейных цехов и заканчивая холодильными складами.
  • Пробковые компенсаторы : Пробка – это натуральный органический продукт, собранный с пробковых деревьев. Это один из самых эластичных компенсаторов на рынке. Производители смешивают гранулированную пробку с фенольной смолой для получения невероятно гибкого и прочного соединительного материала. Одна из популярных форм – саморасширяющаяся пробка, которая хорошо работает с быстро сжимающимися плитами, например, в морозильных камерах. Пробка будет выходить за пределы своего инертного состояния, не нарушая сцепления с прилегающими бетонными материалами.
  • Пластиковые компенсационные швы : Пластик также может использоваться в качестве материала для компенсационных швов бетона. Хотя большинство пластмассовых компенсаторов плохо поддаются изгибу, пластик может быть идеальным материалом в умеренно стабильной среде. Пластиковые соединения эстетически привлекательны по сравнению с некоторыми другими вариантами, что делает их популярными в выставочных залах и сборочных заводах, где важна чистота. Популярные торговые марки пластиковых компенсаторов: Speed-E-Joint®, Deck-O-Joint®, Snap Cap® и Keyway®.

Долгосрочные преимущества бетонных деформационных швов

Сохранение ваших бетонных компенсаторов в первозданном состоянии имеет много преимуществ. В долгосрочной перспективе здания и другие конструкции из бетонных плит с правильно спроектированными и обслуживаемыми компенсаторами в сочетании с совместимыми материалами для заполнения швов будут работать без проблем. Правильно загерметизированные и обслуживаемые компенсаторы должны работать по назначению. Они не должны быть обязательством или постоянными расходами.

Как владелец здания или менеджер, который зависит от бетонных плит для производства или хранения, вам есть о чем беспокоиться, чем проблемы с расширением и сжатием бетона.Если у вас правильно спроектированные и заполненные швы, вы получите несколько преимуществ для своего бизнеса. К долгосрочным преимуществам бетонных расширительных швов можно отнести:

  • Пиковая производительность : Правильно обслуживаемые, отремонтированные или замененные бетонные компенсаторы работают на пике, позволяя плитам естественным образом расширяться и сжиматься в соответствии с любыми колебаниями температуры, которые вы можете ожидать. Не будет повреждений от коробления или раскола.
  • Превосходная гигиена : Компенсирующие швы, которые остаются герметичными, обеспечивают отличные гигиенические преимущества. Они удерживают трещины в стыках закрытыми и непроницаемыми для загрязнений, попадающих в ограниченное пространство. Это особенно полезно, если вы работаете в фармацевтической промышленности или производстве продуктов питания и напитков, которые должны соответствовать высоким санитарно-гигиеническим стандартам.
  • Экономическая рентабельность : Вы можете рассчитывать на экономическую выгоду от наличия правильных компенсаторов и материалов.При правильной сборке, ремонте или замене ваши суставы должны прослужить годы без денежной разметки. Надежные вложения в техническое обслуживание и ремонт компенсаторов позволяют зарезервировать оборотный капитал для будущих инвестиций в ваш бизнес.
  • Превосходная безопасность : Несомненно, профессионально спроектированные или отремонтированные компенсаторы обеспечивают превосходную безопасность для ваших сотрудников. Хорошие компенсаторы в бетонных плитах сводят к минимуму опасность спотыкания.Они делают движение погрузчика более плавным и уменьшают эффект сотрясения, который возникает из-за плохой конструкции или технического обслуживания компенсаторов.
  • Низкие эксплуатационные расходы : Профессиональные бетонные компенсаторы обеспечивают большое преимущество в виде низких эксплуатационных расходов. Если ваши компенсаторы будут установлены, отремонтированы или заменены профессиональной компанией, специализирующейся на работе с компенсаторами, вы определенно сократите объем работ по техническому обслуживанию в долгосрочной перспективе.В свою очередь, это обеспечивает максимальную производительность вашего рабочего места с отличной гигиеной и высочайшей безопасностью, что дает явную выгоду в виде положительной экономической отдачи.

Обслуживание компенсаторов

Правильный уход за компенсаторами – ключ к обеспечению долговечности. Профилактическое обслуживание поможет отсрочить любой ремонт, который, естественно, может потребоваться со временем, и продлит срок службы компенсаторов. Регулярно проверяя состояние компенсаторов, вы сразу же поймете проблему.Проводя регулярные проверки, вы заметите проблемы и сразу сможете их исправить.

Существуют меры, которые вы можете предпринять, чтобы поддерживать компенсационные швы бетонного пола в здоровом состоянии, в том числе:

  • Очистка: Не допускайте попадания грязи и мусора в компенсаторы. Мусор может способствовать проникновению влаги в компенсационные швы, вызывая их растрескивание.
  • Сушка: не позволяйте стоячей воде оставаться на компенсационных швах слишком долго. Всегда удаляйте воду, чтобы она не проникала ниже трещин и под бетонные плиты пола.
  • Сорняки и рост растений: если вы видите, что в компенсационных швах вырастают сорняки и растения, немедленно удалите их. Их корни могут быстро повредить ваши суставы и систему полов.

Если вы обнаружите трещины в швах, процесс замены деформационных швов в бетонном полу относительно прост. Вам необходимо правильно выбрать заполнитель швов, чтобы создать новый прочный и гибкий компенсатор.

Никогда не заполняйте бетоном расширительные швы с трещинами.Это устраняет их гибкость и может привести к растрескиванию всего пола. Вместо этого нанесите герметик или шпатлевку для промышленного бетонного пола, предназначенную для защиты от растрескивания, расширения бетона и предотвращения проникновения воды под ваш пол.

Когда ремонтировать трещины в компенсаторах

Лучшее время для ремонта треснувших компенсаторов – это сразу после того, как вы узнаете о проблеме. В большинстве случаев это не внезапное событие, требующее вашего немедленного внимания. Вместо этого деформационные швы медленно и стабильно растрескиваются.Точно так же расширение и сжатие бетона само по себе является медленным и устойчивым процессом.

Тем не менее, вы должны знать о первых признаках трещин в компенсаторах, требующих ремонта, в том числе:

  • Волосные трещины, переходящие в более крупные каверны
  • Кусочки материала компенсационного шва начинают отслаиваться и смещаться
  • Обесцвечивание и задержка воды при регулярной очистке

Не ждите, пока мелкие ситуации станут большой проблемой – ремонтируйте треснувшие компенсаторы, как только они станут очевидными.Это более безопасное решение для ваших сотрудников, более чистое для вашей продукции и финансовое благополучие.

Вопрос не в том, действовать ли, а в том, что делать. Это решение: просто отремонтировать существующие бетонные компенсаторы или полностью удалить их и заменить на подходящие изделия. Если вы решите их удалить, то очень важно, чтобы новые были установлены лучшими профессионалами в области бетонных компенсаторов.

В конечном итоге, выбор за вами.Важно сделать правильный выбор и сделать его на основе наилучшей информации. Вот почему Houck – ваш лучший выбор как для замены, так и для ремонта компенсационных швов бетонного пола.

Замена и ремонт деформационных швов бетонного пола

Если вы заменяете или ремонтируете компенсационные швы бетонного пола, очень важно обратиться к специалисту в этой области. Работа с командой профессионалов гарантирует, что вы получите лучший сервис, а работа будет выполняться правильно и безопасно.Когда вы делаете это самостоятельно, вы рискуете допустить ошибки новичков, исправление которых в конечном итоге может оказаться дорогостоящим.

В Houck мы привержены принципам безопасности, качества и производительности. Имея многолетний опыт работы в отрасли, у нас есть решения, необходимые для обслуживания и ремонта бетонных полов. Мы можем выполнить все работы по ремонту промышленных и коммерческих полов. Позвоните нашей профессиональной команде сегодня, и мы позаботимся о том, чтобы ваши компенсаторы были должным образом отремонтированы и готовы к многолетнему использованию.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *