Устройство ветряной электростанции: Ветряные электростанции ВЭУ

Содержание

Ветряные электростанции ВЭУ

Ветряные электростанции — принцип работы

Ветряные электростанции производят электричество за счет энергии перемещающихся воздушных масс — ветра. Для ветряных электростанций с горизонтальной осью вращения минимальная скорость ветра составляет:

  • 4-5 м/сек — при мощности >= 200 кВт
  • 2-3 м/сек — если мощность <= 100 кВт.

Ветроэлектростанция  –  это  мачта, наверху которой размещается контейнер с генератором и редуктором. К оси редуктора ветряной электростанции прикреплены лопасти. Контейнер электростанции поворачивается в зависимости от направления ветра.

Ветряные электростанции с вертикальной осью вращения менее популярны. Сам генератор находится под мачтой, и главное, необходимость ориентации на ветер отсутствует. Ветряные электростанции с вертикальной осью вращения требуют для стабильной работы более высоких скоростей ветра и предварительного запуска от внешнего источника энергии.

Ветряные электростанции — основные проблемы

Основную проблему ветряных электростанций вызывает непостоянная природа ветра. При этом мощность ветряных электростанций в каждый момент времени переменна. Невозможно иметь от одной ветроэлектростанции стабильное поступление определенных объемов электроэнергии.

Ветряные электростанции имеют аккумуляторы для накопления электроэнергии,  для более равномерной и стабильной работы системы. По этой же причине возникает необходимость объединения ветряных электростанций в энергосистемы и комплексы с иными способами получения электроэнергии. Это, прежде всего газовые генераторы, микротурбины, солнечные электростанции — батареи на фотоэлементах.

Ветряные электростанции — преимущества

  • Ветряные электростанции не загрязняют окружающую среду вредными выбросами.
  • Ветровая энергия, при определенных условиях может конкурировать с невозобновляемыми энергоисточниками.
  • Источник энергии ветра — природа — неисчерпаема.

Как самому сделать ветрогенератор?

Ветряные электростанции — недостатки

  • Ветер от природы нестабилен, с усилениями и ослаблениями. Это затрудняет использование ветровой энергии. Поиск технических решений, которые позволили бы компенсировать этот недостаток — главная задача при создании ветряных электростанций.
  • Качественные ветрогенераторы очень дороги и практически неокупаемы.
  • Ветряные электростанции создают вредные для человека шумы в различных звуковых спектрах. Обычно ветряные установки строятся на таком расстоянии от жилых зданий, чтобы шум не превышал 35-45 децибел.
  • Ветряные электростанции создают помехи телевидению и различным системам связи. Применение ветряных установок — в Европе их более 26 000, позволяет считать, что это явление не имеет определяющего значения в развитии альтернативной электроэнергетики.
  • Ветряные электростанции причиняют вред птицам, если размещаются на путях миграции и гнездования.

Ветряные электростанции — производители — мировые лидеры

  • VESTAS
  • NORDEX
  • PANASONIC
  • VERGNET
  • ECOTECNIA
  • SUPERWIND

Ветряные электростанции — география применения

Ветроэлектростанции применяются в странах, имеющих подходящие скорости ветра, невысокий рельеф местности и испытывающих дефицит природных ресурсов.  Мировым лидером в использовании ветряных электростанций является Германия, в которой за небольшой промежуток времени построено ~9000 МВт мощности.

Единичная мощность ветроэлектрических станций увеличилась до 3 МВт. В Германии продолжается интенсивное строительство ветряных электростанций. Производство ветряных электростанций стало значительной частью экспорта Дании и Германии.

Производство ветряных электростанций обеспечило работой в Европе 60 000 человек. За рубежом приняты постановления на государственном уровне, содействующие внедрению возобновляемых источников энергии.

Ветряные электростанции в России

В России, за последние десятилетие, построено и пущено в эксплуатацию лишь несколько ветряных электростанций.

В Башкортостане установлены четыре ветряных электростанции мощностью по 550 кВт.

В Калининградской области, смонтировано 19 установок. Мощность парка ветряных электростанций составляет ~5 МВт.

На Командорских островах возведены две ветротурбины по 250 кВт.

В Мурманске вошла в строй ветроустановка мощностью 200 кВт.

Но совокупная мощность ветроэлектростанций России не превысила в 2004 году 12 МВт. 

Российская Федерация — это страна с большой территорией, расположенной в разных климатических зонах, что определяет высокий потенциал использования ветряных электростанций. Технический потенциал составляет более 6200 миллиардов киловатт часов, или в 6 раз превышает всё современное производство электроэнергии в нашей стране.

Как самому сделать ветрогенератор?

Принцип действия и устройство ветрогенератора (общие понятия)

Содержание

  • 1 Принцип работы
  • 2 Система торможения вращения лопастей
  • 3 Увеличение мощности установки
  • 4 Выбор ветрогенератора

В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.

Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.

Принцип работы

Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.

Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов

Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.

Принципиальная схема ветрогенератора

Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:

  • для автономной работы;
  • параллельно с резервным аккумулятором;
  • вместе с солнечными батареями;
  • параллельно с дизельным или бензиновым генератором.

Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.

Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.

Система торможения вращения лопастей

Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.

Конструкция ветрогенератора и узлов

При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.

Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер

Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:

  • установка экологически чистая;
  • отсутствует потребность её заправки топливом;
  • не накапливаются какие-либо отходы;
  • устройство работает очень тихо;
  • имеет большой срок эксплуатации.

Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.

Увеличение мощности установки

Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.

Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.

Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.

Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.

Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.

Схема увеличения мощности и емкости ветрогенератора

Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно, скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.

Выбор ветрогенератора

Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.

Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)

Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.

Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.

Подсчитывается активная и резистивная мощность всех потребителей энергии.

Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.

Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.

При наличии скважины вы будете полностью энергонезависимые от внешних сетей.

Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.

Ветрогенераторы российского производства

В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.

Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.

Как работает ветряная турбина — текстовая версия

Сила ветра

Ветряные турбины используют ветер — чистый, бесплатный и широко доступный возобновляемый источник энергии — для выработки электроэнергии. На этой странице представлена ​​текстовая версия интерактивной анимации: Как работает ветряная турбина.

Как работает ветряная турбина

Ветряная турбина преобразует энергию ветра в электричество за счет аэродинамической силы лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Ротор соединяется с генератором либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют физически уменьшить генератор. Этот перевод аэродинамической силы во вращение генератора создает электричество.

Как работает ветряная электростанция

Ветряные электростанции производят электроэнергию за счет множества ветряных турбин, расположенных в одном месте. На размещение ветряной электростанции влияют такие факторы, как ветровые условия, окружающая местность, доступ к линиям электропередач и другие факторы размещения. На ветряной электростанции коммунального масштаба каждая турбина вырабатывает электроэнергию, которая поступает на подстанцию, где затем передается в сеть, где питает наши сообщества.

Передача инфекции

Линии электропередач передают электричество высокого напряжения на большие расстояния от ветряных турбин и других генераторов энергии в районы, где эта энергия необходима.

Трансформеры

Трансформаторы получают электроэнергию переменного тока при одном напряжении и повышают или понижают напряжение для подачи электроэнергии по мере необходимости. Ветряная электростанция будет использовать повышающий трансформатор для повышения напряжения (таким образом, уменьшая требуемый ток), что снижает потери мощности, возникающие при передаче больших токов на большие расстояния по линиям электропередач.

Когда электричество достигает сообщества, трансформаторы снижают напряжение, чтобы сделать его безопасным и пригодным для использования зданиями и домами в этом сообществе.

Подстанция

Подстанция соединяет систему передачи с системой распределения, которая поставляет электроэнергию населению. Внутри подстанции трансформаторы преобразуют электроэнергию с высокого напряжения в более низкое напряжение, которое затем может быть безопасно доставлено потребителям электроэнергии.

Башня ветряной турбины

Изготовленная из трубчатой ​​стали, башня поддерживает конструкцию турбины. Башни обычно состоят из трех секций и собираются на месте. Поскольку скорость ветра увеличивается с высотой, более высокие башни позволяют турбинам захватывать больше энергии и генерировать больше электроэнергии. Ветры на высоте 30 метров (примерно 100 футов) и выше также менее турбулентны.

Направление ветра

Определяет конструкцию турбины. Ветряные турбины, подобные показанной здесь, обращены к ветру, а подветренные – в сторону. Большинство наземных ветряных турбин коммунального масштаба являются ветряными турбинами.

Флюгер

Флюгер измеряет направление ветра и взаимодействует с приводом рыскания, чтобы правильно ориентировать турбину относительно ветра.

 

 

 

Анемометр

Анемометр измеряет скорость ветра и передает данные о скорости ветра на контроллер.

Лезвия

Большинство турбин имеют три лопасти, изготовленные в основном из стекловолокна. Лопасти турбин различаются по размеру, но типичная современная наземная ветряная турбина имеет лопасти длиной более 170 футов (52 метра). Самая большая турбина — морская ветряная турбина GE Haliade-X с лопастями длиной 351 фут (107 метров) — примерно такой же длины, как футбольное поле. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается.

Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться.

Наземная турбина с редуктором

Трансмиссия турбины с редуктором состоит из ротора, главного подшипника, главного вала, редуктора и генератора. Трансмиссия преобразует низкоскоростное вращение ротора турбины (лопасти и узел ступицы) с высоким крутящим моментом в электрическую энергию.

Гондола

Гондола находится на вершине башни и содержит редуктор, низкоскоростные и высокоскоростные валы, генератор и тормоз. Некоторые гондолы больше дома и для турбины с редуктором мощностью 1,5 МВт могут весить более 4,5 тонн.

Система рыскания

Привод рыскания поворачивает гондолу на ветряных турбинах, чтобы они оставались обращенными к ветру при изменении направления ветра. Для этого двигатели рыскания приводят в действие привод рыскания.

Ветряные турбины не требуют привода рыскания, потому что ветер вручную уносит ротор от него.

Система подачи

Система шага регулирует угол наклона лопастей ветряной турбины по отношению к ветру, контролируя скорость вращения ротора. Регулируя угол наклона лопастей турбины, система шага определяет, сколько энергии могут извлекать лопасти. Система шага также может «раскачивать» лопасти, регулируя их угол, чтобы они не создавали силы, которая могла бы вызвать вращение ротора. Оперение лопастей замедляет ротор турбины, чтобы предотвратить повреждение машины, когда скорость ветра слишком высока для безопасной работы.

Центр

Часть трансмиссии турбины, лопасти турбины входят в ступицу, соединенную с главным валом турбины.

Коробка передач

Трансмиссия состоит из ротора, главного подшипника, главного вала, редуктора и генератора. Трансмиссия преобразует низкоскоростное вращение ротора турбины (лопасти и узел ступицы) с высоким крутящим моментом в электрическую энергию.

Ротор

Лопасти и ступица вместе образуют ротор турбины.

Тихоходный вал

Часть трансмиссии турбины, низкоскоростной вал соединен с ротором и вращается со скоростью 8–20 оборотов в минуту.

Подшипник главного вала

Часть трансмиссии турбины, главный подшипник поддерживает вращающийся низкоскоростной вал и уменьшает трение между движущимися частями, чтобы силы от ротора не повреждали вал.

Высокоскоростной вал

Часть трансмиссии турбины, высокоскоростной вал соединяется с коробкой передач и приводит в движение генератор.

Генератор

Генератор приводится в движение высокоскоростным валом. Медные обмотки вращаются через магнитное поле в генераторе для производства электроэнергии. Некоторые генераторы приводятся в действие редукторами (показанными здесь), а другие представляют собой прямые приводы, в которых ротор присоединяется непосредственно к генератору.

Контроллер

Контроллер позволяет запускать машину при скорости ветра около 7–11 миль в час (миль в час) и выключает машину, когда скорость ветра превышает 55–65 миль в час. Контроллер выключает турбину при более высоких скоростях ветра, чтобы избежать повреждения различных частей турбины. Думайте о контроллере как о нервной системе турбины.

Тормоз

Турбинные тормоза не похожи на автомобильные тормоза. Тормоз турбины удерживает ротор от вращения после того, как он был отключен системой шага. Как только лопасти турбины останавливаются контроллером, тормоз удерживает лопасти турбины в неподвижном состоянии, что необходимо для технического обслуживания.

Морская ветряная турбина с прямым приводом

Турбины с прямым приводом упрощают системы гондол и могут повысить эффективность и надежность за счет устранения проблем с коробкой передач. Они работают, соединяя ротор напрямую с генератором для выработки электроэнергии.

Морской флюгер и анемометр с прямым приводом

Флюгер измеряет направление ветра и взаимодействует с приводом рыскания, чтобы правильно ориентировать турбину относительно ветра.

Анемометр измеряет скорость ветра и передает данные о скорости ветра на контроллер.

Система рыскания с прямым приводом

Электродвигатели рыскания приводят в действие привод рыскания, который вращает гондолы ветряных турбин, чтобы они оставались обращенными к ветру при изменении направления ветра.

Лопасти генератора с прямым приводом

Большинство турбин имеют три лопасти, изготовленные в основном из стекловолокна. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Лопасти турбины GE Haliade X имеют длину 351 фут (107 метров) — примерно такую ​​же длину, как футбольное поле!

Система шага с прямым приводом

Система шага регулирует угол наклона лопастей ветряной турбины по отношению к ветру, контролируя скорость вращения ротора. Регулируя угол наклона лопастей турбины, система шага определяет, сколько энергии могут извлекать лопасти. Система шага также может «раскачивать» лопасти, регулируя их угол, чтобы они не создавали силы, которая могла бы вызвать вращение ротора. Оперение лопастей замедляет ротор турбины, чтобы предотвратить повреждение машины, когда скорость ветра слишком высока для безопасной работы.

Концентратор прямого привода

Лопасти турбины вставляются в ступицу, соединенную с генератором турбины.

Ротор с прямым приводом

Лопасти и ступица вместе образуют ротор турбины.

Генератор с прямым приводом

Генераторы с прямым приводом не используют редуктор для выработки электроэнергии. Они генерируют энергию, используя гигантское кольцо постоянных магнитов, которые вращаются вместе с ротором, производя электрический ток, проходя через стационарные медные катушки. Большой диаметр кольца позволяет генератору создавать большую мощность при вращении с той же скоростью, что и лопасти (8–20 оборотов в минуту), поэтому ему не нужен редуктор, чтобы разогнать его до тысяч оборотов. в минуту требуют другие генераторы.

Контроллер прямого привода

Контроллер позволяет запускать машину при скорости ветра около 7–11 миль в час (миль в час) и выключает машину, когда скорость ветра превышает 55–65 миль в час. Контроллер выключает турбину при более высоких скоростях ветра, чтобы избежать повреждения различных частей турбины. Думайте о контроллере как о нервной системе турбины.

Тормоз с прямым приводом

Турбинные тормоза — это не автомобильные тормоза. Тормоз турбины удерживает ротор от вращения после того, как он был отключен системой шага. Как только лопасти турбины останавливаются контроллером, тормоз удерживает лопасти турбины в неподвижном состоянии, что необходимо для технического обслуживания.

Подшипник ротора прямого привода

Подшипник ротора поддерживает основной вал и снижает трение между движущимися частями, чтобы силы от ротора не повреждали вал.

Узнайте больше об энергии ветра

Как работают ветряные турбины?

Изучите основы работы ветряных турбин для производства чистой энергии из обильного возобновляемого ресурса — ветра.

Узнать больше

Основы ветроэнергетики

Узнайте больше о ветроэнергетике здесь, от принципа работы ветряной турбины до новых захватывающих исследований в области ветровой энергии.

Узнать больше

History of U.S. Wind Energy

На протяжении всей истории использование энергии ветра то возрастало, то уменьшалось, от использования ветряных мельниц в прошлые века до высокотехнологичных ветряных турбин на ветряных электростанциях сегодня…

Узнать больше

Сколько мощности составляет 1 гигаватт?

Дата, которую большинство любителей кино знает наизусть, 21 октября 2015 года — это день, когда Марти МакФлай и Док Браун путешествуют в «Назад в будущее, часть 2».

Узнать больше

Основы ветроэнергетики | НРЕЛ

Ветер возникает, когда поверхность земли нагревается солнцем неравномерно. Ветряная энергия можно использовать для выработки электроэнергии.

Текстовая версия

Ветряные турбины

Ветряные турбины, как и ветряные мельницы, монтируются на башне для захвата большей части энергии. На высоте 100 футов (30 метров) или более над землей они могут воспользоваться более быстрым и менее бурный ветер. Турбины улавливают энергию ветра своими пропеллерными лезвия. Обычно на валу монтируются две или три лопасти, образующие ротор .

Лезвие действует подобно крылу самолета. Когда дует ветер, карман низкого давления воздух образуется на подветренной стороне лопасти. Затем воздушный карман низкого давления тянет лезвие к нему, заставляя ротор вращаться. Это называется лифт . Сила подъема на самом деле намного больше, чем сила ветра против передняя сторона лезвия, которая называется , драг . Сочетание подъемной силы и сопротивления заставляет ротор вращаться, как пропеллер, и вращающийся вал вращает генератор, вырабатывающий электричество.

Исследования NREL в области ветроэнергетики в основном проводятся в кампусе Флэтайронс, недалеко от Боулдера, штат Колорадо.

Ветряные турбины коммунального масштаба на ветряной электростанции Cedar Creek в Гровере, штат Колорадо. Фото Денниса Шредера / NREL Платформа, Университет штата Мэн, часть консорциума DeepCWind. Фото из Университета штата Мэн

Наземная ветровая энергия

Ветряные турбины могут использоваться как автономные устройства или они могут быть подключены к сеть общего пользования или даже в сочетании с фотоэлектрической системой (солнечным элементом). Для коммунальные (мегаваттные) источники энергии ветра, большое количество ветряных турбин обычно строятся близко друг к другу, образуя ветряную электростанцию ​​ , также называемую ветряной электростанцией . Сегодня несколько поставщиков электроэнергии используют ветряные электростанции для снабжения своих клиентов электроэнергией.

Автономные ветряные турбины обычно используются для перекачивания воды или связи. Однако домовладельцы, фермеры и владельцы ранчо в ветреных районах также могут использовать ветряные турбины. как способ сократить свои счета за электричество.

Распределенная энергия ветра

Малые ветровые системы также могут использоваться в качестве распределенных источников энергии. Распределенный Энергетические ресурсы относятся к множеству небольших модульных технологий производства энергии. которые можно комбинировать для улучшения работы системы подачи электроэнергии. Для получения дополнительной информации о распределенном ветре посетите офис технологий ветроэнергетики Министерства энергетики США.

Оффшорная ветроэнергетика

Оффшорная ветроэнергетика — относительно новая отрасль в США. Америки первая морская ветряная электростанция, расположенная в Род-Айленде, недалеко от побережья острова Блок, в декабре 2016 года.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *