Ввод электроэнергии в частный дом: Ввод электричества в дом: от столба к дому

Содержание

описание основных способов подключения к ЛЭП

Как только будет построено новое жилое строение, владелец домовладения задаётся вопросом: «Как выполнить ввод электроэнергии в дом». Ведь сложно представить жизнь современного человека без пользования им электрическими приборами. Электроэнергия, не только позволяет обрести необходимый уровень комфорта, но без этого явления невозможны многие виды досуга и развлечения.

Оформление документации

Подключение электроснабжения должны осуществлять только профессиональные электрики имеющие допуск к выполнению подобного класса работ. Необходимый объём документации, который следует собрать для подключения электричества зависит от региона, где осуществляется подключение жилого объекта, а также от вида строения.
Обязательно при подключении электричества потребуется проектная документация домовладения, в которой должна быть приложена принципиальная схема электропроводки.
Кроме того необходимо получить Технические Условия на подключение к сетям от энергосетевой организации.


Так же необходимо подготовить и предъявить схему учета, согласованную с Энергосбытовой организацией

Виды подключения дома к ЛЭП

Существуют три основных способа ввода в дом электричества:

  1. Подключение дома к воздушной линии с помощью алюминиевого, не изолированного провода.
  2. Подключение с помощью СИП-кабеля.
  3. Подземное подключение.

Первый способ, в настоящее время используется крайне редко. Если по каким либо причинам произойдёт разрыв фазного провода, то он будет представлять серьёзную опасность для жизни и здоровья людей, проживающих в данном доме. Кроме поражения электрическим током, возможно короткое замыкание двух проводников при провисании проводов или падения на них каких-нибудь тяжёлых предметов. Иногда виновниками неполадок на открытых линиях электропередач могут являться крупные птицы, которые попадаю между двумя провисшими не изолированными проводниками.

Подключение с помощью самонесущего изолированного провода наиболее безопасный вариант воздушного подключения к домовладению электрического тока. Изоляция такого кабеля очень надёжна и хорошо защищает от возникновения короткого замыкания проводки. Если в результате непогоды произойдёт обрыв провода, то он не будет представлять опасности для людей.
Подземное подключение электричества, является самым дорогим вариантом электрификации домовладения. Использование этого метода полностью исключает вероятность обрыва кабеля. Для осуществления такого метода подключения, потребуется приобрести специальный бронированный кабель.

Ввод электричества в деревянный дом

Эксплуатировать деревянное строение, возможно только в том случае, если будет полностью исключена вероятность короткого замыкания и перегрева вводной электропроводки. Многие владельцы деревянных домов не знают как увеличить безопасность такого строения. Прежде чем осуществить ввод электроэнергии необходимо привести внутреннюю проводку в надлежащее состояние. При эксплуатации электрических приборов в деревянном строении должны соблюдаться следующие правила:

  1. Не допускается свободное перемещение вводной электропроводки. В этом случае возможно перетирание изоляции провода с образованием короткого замыкания. Высока вероятность обрыва вводного провода, если он будет случайно зацепленным каким-либо объектом при перемещении.Поэтому прежде чем осуществлять подключение к ЛЭП, необходимо обеспечить безопасную высоту вводного провода. Часть проводки на доме должна быть помещена в специальные кожухи, каналы, рукава, которые исключают свободное перемещение провода.
  2. Соблюдать правила подключения мощных приборов. Использование таких потребителей электричества, требует выделенной линии электропроводки. При подключении приборов большой мощности следует оборудовать данный контур отдельным автоматическим предохранителем (электрическим автоматом).Схема подключения мощных приборов должна быть проработана ещё на стадии проектирования дома.
  3. Стараться избежать подключение электроэнергии не изолированным проводом. Если к деревянному дому подключается не изолированный алюминиевый провод, то возможно возгорание конструкций при возникновении короткого замыкания в непосредственной близости от деревянного строения.
    Чтобы избежать негативных последствий неправильного подключения электричества к деревянному дому, необходимо после приведения внутренней проводки в надлежащее состояние, осуществить подключение с помощью самонесущего изолированного провода (СИП) или осуществить подземный ввод электричества. Такой способ подключения электричества, является самым безопасным для этой категории домовладений.

Подземный ввод электричества используется для подключение не только частных домов, но и многоквартирный объект в условиях городской застройки, также подключается таким способом.

Работы осуществляются в такой последовательности:

  1. Получить разрешение на подземное подключение дома. Прежде чем осуществлять ввод электричества в дом под землёй, необходимо произвести необходимые расчёты и получить разрешение на проведение земляных работ. Рассчитать сечение проводника и марку используемого провода должны специалисты, также необходимо согласовать прокладку траншеи от опоры ЛЭП до фундамента дома. Глубина, на которую укладывается кабель, обычно, составляет 0,7 — 0,8 метра, и если на пути прокладки кабеля имеются другие подземные коммуникации, то необходимо согласовывать проведение земляных работ с представителями коммунальных служб. Когда все разрешительные документы будут готовы и электрическая схема будет рассчитана, можно перейти к осуществлению подключения электрического тока к деревянному дому.
  2. От опоры ЛЭП до фундамента деревянного дома делается траншея глубиной около 0,8 метра. Место входа электрического кабеля в грунт усиливается с помощью металлической трубы, которая должна быть поднята по опоре ЛЭП  на высоту до 2 метров.
    Обычно, ввод электричества в деревянный дом, не требует производить отверстия в фундаменте, поэтому кабель в этом месте свободно проводится под ним и выводится непосредственно за стеной дома. Необходимо в месте ввода кабеля в здание, (учитывая, что грунтовые воды могут проходить слишком близко, или в случае, когда грунт подвержен значительной деформации), применять асбестовые или железобетонные трубы, в которых происходит размещение кабеля. Необходимо тщательно герметизировать такое размещение токопроводящего материала, от возможного попадания внутрь трубы грунтовых вод. Если этого не сделать, то при замерзании воды, может быть повреждена токоведущая жила кабеля. Если для подключения электрического тока в деревянное домовладение понадобится пробить отверстие в фундаменте, то, диаметр такого отверстия должен в несколько раз превышает ширину кабеля.В отверстие необходимо установить толстостенную металлическую трубу в которой и будет проложен электрический кабель. Когда кабель будет уложен по всем правилам траншею зарывают, предварительно разместив под землёй над кабелем ленты с надписью: «Осторожно кабель».

Как проложить кабель в земле видео смотрите ниже:

Ввод электричества с помощью СИП

Самонесущий изолированный провод, является современным и безопасным элементом, позволяющим осуществить ввод электричества в дом непосредственно со столба.

Монтаж осуществляется в таком порядке:

  1. Получить разрешение на подключения электричества.
  2. Приобрести необходимое количество провода и арматуры для его крепления.
  3. Пригласить специалистов, которые имеют необходимый доступ к осуществлению этого вида работ, и подключить электрический ток от ЛЭП к электрическому щитку.

Самостоятельно заниматься выполнением этого вида работы не рекомендуется. Даже если имеются навыки работы с электрическим оборудованием. В противном случае можно получить штраф за самоуправство, а если в результате неправильного подключения возникнут неполадки на линии электропередач, то потребуется компенсировать расходы на устранение аварийной ситуации. Ввод электричества таким способом в дом позволяет минимизировать вероятность обрыва провода во время непогоды. Применение СИП позволяет не опасаться поражения электрическим током, даже если произойдёт обрыв кабеля. Изоляционная оболочка надёжно защитит от распространения электричества по металлическим предметам, при соприкосновении с ними СИП-кабеля.

Как сделать ввод электроэнергии в дом видео смотрите ниже:

Нюансы при вводе электричества в частный дом

При подключении электричества следует учитывать следующие особенности:

  1. Если расстояние от точки подключения до опоры ЛЭП составляет более 25 метров, необходимо установить ещё один столб, на расстоянии до 10 метров от домовладения.
  2. Воздушное подключение проводов должно осуществляться на высоте не менее 6 метров.
  3. Если требуется увеличить мощность передаваемой в частный дом по воздушной линии, необходимо выполнить такое подключение проводом СИП-4.
  4. Крепление арматуры для ввода электричества в дом, должна осуществляться на стене домовладения на высоте не менее 2,75 см.
  5. Если ввод в дом электрического тока осуществляется под землёй, то при выводе провода с внешней стороны стены, его необходимо поместить в металлическую трубу. Такая труба ведётся от места выходы проводки до наружного электрического щитка.
  6. При разделе дома на два хозяина возможна одноконтурная схема подключения здания, но в этом случае, необходимо установить 2 электросчётчика.

Заключение

Как сделать ввод электричества в частный дом, решать должен владелец построенного жилья. При осуществлении такого вида работ, должны выполняться правила противопожарной безопасности. Правильно выполненное подключение, позволяет безопасно эксплуатировать даже деревянные строения. Для того чтобы электрическое оборудование работало
в течение многих лет, монтаж его должен осуществлять квалифицированный электрик. Только правильно выполненный порядок и устройство электроснабжения позволит безопасно эксплуатировать этот вид энергии.

со столба, под землей, трубостойка

Подключение частной постройки к электрической сети требует соблюдения ряда правил безопасности, а инженерные коммуникации необходимо согласовать с контролирующими органами. С особыми предосторожностями нужно осуществлять ввод электричества в деревянный дом: чтобы избежать несчастных ситуаций, проводку изолируют. Обычные материалы и методы для этого не подойдут, ведь провода не должны соприкасаться с деревянными конструкциями. Также сложности могут возникнуть на этапе, когда понадобится протянуть провод для ввода электричества в дом и подключить его к распределительному щиту.

Подготовка к работам по созданию разводки

Административно-правовое регулирование

Перед началом работ необходимо разобраться с административно-правовыми вопросами. Требуется подготовить проект обустройства проводки и согласовать его в местном Энергосбыте или управляющей компании. Проект предоставляется вместе с предпроектной разработкой.

Важно! За неправильный ввод электричества в дом предусмотрен штраф, налагаемый на собственника недвижимости. Кроме того, разводку придется переделать за свой счет.

Проектом энергоснабжения называют техническую документацию, где, кроме схемы электропроводки, содержатся информация о планах разводки кабелей, размещении осветительных приборов и электрооборудования, характеристики применяемых материалов. В технических условиях имеется требование соблюдать правила ввода электричества в деревянный дом, а также согласовать проект во всех перечисленных в документе инстанциях.

Выбор кабеля

Чтобы подготовить проект, необходимо заранее определиться с сечением вводного провода, которое напрямую зависит от нагрузки. Сначала надо высчитать суммарную мощность всех установленных в дому электроприборов с учетом специальных нагрузок, возникающих при запуске электродвигателей. Полученное числовое значение умножают на коэффициент спроса, чтобы ввод электричества в частный дом соответствовал потребностям домохозяйства.

Чтобы определить ток, нужно разделить суммарную мощность приборов на220 – напряжение сети. Зная ток, несложно выбрать провод с подходящим сечением, если воспользоваться справочными материалами о длительно допустимых токах кабеле.

Ввод электрического провода в постройку

Способы подключения недвижимости к сети

Перед тем как сделать ввод электричества в деревянный дом надо определиться со способом прокладки провода. Есть три варианта:

  • подключение с помощью провода по воздуху;

  • подключение с помощью кабеля по воздуху;

  • подключение с помощью подземного кабеля.

Первые два способа технически друг от друга практически не отличаются, разве что кабель имеет лучшую защитную оболочку. Для того чтобы реализовать ввод электричества в дом со столба, лучше приобрести провод СИП. При прокладке подземных кабелей используется продукция ВБШв, имеющая повышенную степень защиты от механических повреждений.

Подключение жилища к сети с помощью воздушных линий – наиболее простой способ, с точки зрения технической реализации. Однако нависающие кабели портят эстетичный вид прилегающего участка, а если слабо закреплены – могут не выдержать капризов погоды. Подземная проводка лучше защищена от обрыва и обладает отличной пожароустойчивостью, однако стоит дороже, поскольку заключать кабель нужно в бронированную оболочку.

Монтаж навесных проводов

Как правило, ввод электричества в дом проводом СИП предполагает использование кабеля сечением 16 квадратных миллиметров, поскольку меньше не разрешается, а проводка с большим значением сечения разработана для промышленных объектов и в быту не пригодится. Количество жил на проводе зависит от того, сколько предусмотрено фаз: две жилы для однофазной сети и четыре – для трехфазной.

Обустройство ответвления от магистральной линии выполняется с применением прокалывающих зажимов. Число зажимов определяется количеством жил провода. На наружной стене монтаж ввода электричества в дом осуществляется при помощи анкерного зажима с кронштейном. Чтобы кабель не соприкасался с древесиной, его прокладывают в гофротрубе или пластиковом коробе.

Важно! В соответствии с техническими стандартами длина пролета навесного провода не должна превышать 25 метров. Если расстояние между зданием и линий электропередач больше этого значения, то устанавливается дополнительная опора.

Прокладывание подземного кабеля

Если запланирован ввод электричества в дом под землей, позаботиться о прокладке кабеля нужно еще на этапе строительства, а именно наметить в фундаменте место его проникновения внутрь здания. При желании проводку можно вывести на стену или на столб, от которого она будет крепиться к стене с использованием анкерного зажима.

Важно! Кабель, висящий между столбом и домом, нужно усилить тросом. В отличие от СИП, он не сможет выдержать свой вес. Трос крепится на рым-болт. Кроме того, ту часть проводки, что выходит из-под земли, необходимо защитить от механических повреждений металлической трубой.

Глубина залегания кабеля под землей составляет 0,7 метра. По всей длине проводка должна иметь ощутимую слабину. В месте прохождения через стену прогиб кабеля должен быть ниже сквозного отверстия, чтобы внутрь здания не проникла влага. Вопрос о том, как сделать ввод электричества в дом по кабелю, выходящему из-под земли и прикрепленному к стене, решается просто: коммутирование проводки осуществляется на рубильник в щите или на вводной автомат.

Разводка провода внутри сооружения

В деревянных постройках всегда монтируется проводка открытого типа. Это делается в целях обеспечения пожарной безопасности. Необходимо максимально изолировать и защитить провода от грызунов, случайных механических повреждений, контакта с влагой и древесной пылью. Наилучший способ – использовать для прокладки провода металлические трубы. Желательно, чтобы схема ввода электричества в жилой дом сразу же предусматривала разводку проводов внутри труб, а не пластиковых коробов.

 

Электрический ввод в частный дом

 

Воздушный электрический ввод в частный дом

Примечание к фото:

  • Высота ввода в дом в 2,75 метра принимается для неизолированных проводов.
  • Для изолированных проводов ввода, разрешенная высота допускается в 2,5 метра.(ПУЭ п.2.4.55)
  • Воздушный ввод электропитания в дом заключается в прокладке электрической линии по воздуху (воздушная линия, ВЛ.) от опоры линии электропередач (ЛЭП) до самого дома.
  • Если расстояние от опоры ЛЭП до дома больше 20 метров, то нужно установить дополнительную опору. В случае пролегания воздушной линии над дорогой высота его пролегания должна быть не менее 6 метров. При пересечении пешеходных переходов высота от линии до земли должна быть не менее 3.5 метров.
  • Воздушный провод для электрического ввода в дом не должен «пробираться» сквозь заросли деревьев. Трасса пролегания должна быть свободна.

СИП лучший провод для электрического ввода в частный дом

Лучшим кабелем для воздушного электрического ввода в дом считается провод марки СИП.(Читать статью о проводе СИП) До 1991 года в качестве воздушного ввода в дом использовался провод без оболочки марки АС. В отличие от него провод СИП имеет надежную изоляцию, рассчитанную на перепады температуры и воздействие осадков. Кроме этого провод СИП можно прокладывать от опоры до ввода в дом без дополнительных поддерживающих тросов.

Провода СИП бывают двухжильные и четырехжильные. Наиболее востребованы провода СИП 4х16;4х25 и СИП 2х16;2х25,где первая цифра число жил, а вторая сечение жилы. Кроме своих замечательных характеристик у провода марки СИП есть еще одно положительное свойство. Его нельзя сдать в пункт приема цветных металлов. При обжиге изоляции вместе с изоляцией сгорает и сам проводник. Вот такое ноу-хау производителей от краж.

Примечание: Если вы используете для электрического ввода не провод СИП, а другой кабель для наружных работ в двойной изоляции, то нужно между опорами предварительно натянуть поддерживающий трос. К тросу кабель крепиться специальными хомутами.

Ввод электропитания в частный дом

Провод электрического ввода, дойдя до стены дома, не может сразу в него «нырнуть». Для его ввода в дом нужно сделать специальную вводную конструкцию. Вводить кабель (провод) в дом можно через стену и через крышу. Высота ввода в дом должна быть не ниже 2750 мм.

Электрический ввод в частный дом через стену

Кабель или провод подводится к конструкции ввода и закрепляется на ней при помощи изоляторов.

Сами изоляторы крепятся на крюках, ввинченных в стену для деревянного дома. Или на крюках, приваренных к кронштейну для кирпичной стены.

От изоляторов кабель вводится через отверстие в стене. В отверстие в стене обязательно должна быть вставлена металлическая гильза. Диаметр гильзы должен быть чуть больше диаметра кабеля. Если электрический ввод в частный дом осуществляется проводом СИП в металлическую гильзу нужно вставить гильзу пластмассовую, так как провод СИП имеет только один слой изоляции.

Вводную гильзу нужно монтировать таким образом, чтобы в неё не попадали осадки. Например, выдвинуть гильзу наружу и слегка загнить конец.

Электрический ввод в частный дом через крышу

Ввод электропитания в частный дом через крышу производится через трубу-стояк. Труба стояк является одновременно проходным каналом для кабеля (провода) и опорой для изоляторов. Труба должна быть заземлена.

Подземный электрический ввод в частный дом

Подземный электрический ввод является самым надежным, а, как правило, самое надежное почти синоним самого трудоемкого.

Для подземного ввода кабеля в дом нужно прорыть траншею глубиной 0,7 метра для 20 кВт, и 1 метр для 35-45 кВт. Траншея должна идти от ЛЭП до дома. Кабель может быть любой (ВВГ, АВВГ, бронерованный ВбБШв). Кабель нужно прокладывать в пластиковых или металлических трубах. Труба должна защищать кабель на столбе опоры до высоты 1,8-2,0 метра. В дом кабель может вводиться двумя способами.

При использовании бронерованого кабеля ВББШв трубы для защиты кабеля нужны только в местах спуска со столба и подъема по стене.

  1. Проложив кабель по траншеи до дома его нужно поднять по стене дома на высоту 2,750 метра. При этом труба должна защищать кабель на высоту 1,8-2,0 метра.
  2. Кабель не нужно поднимать по стене, а проложить его в трубе через фундамент. Отверстие в фундаменте нужно сделать заранее.

Важно! Нельзя заводить кабель под фундаментом, только через или поверх него.

©Elesant.ru

Другие статьи раздела: Электропроводка дома

Раздел: Подключение дома

 

 

 

как правильно сделать воздушную и подземную линии

Ввод электричества в дом осуществляется на самых ранних этапах строительства, как только возникнет необходимость в использовании электроинструментов. Перед тем как правильно подвести электричество к частному дому, необходимо ознакомиться с требованиями техники безопасности, а также рекомендациями по устройству воздушных линий и прокладке подземных кабелей.

Ниже пойдет речь идет о том, как подвести электричество к дому (несколькими вариантами) и как устроить внутреннюю электрическую сеть, причем не о том, как подключить удлинитель, поскольку с этим все просто, а о том, как и каким способом (открытым или скрытым) проложить стационарную электропроводку. Рассмотрим все по порядку.

Итак, до того, как правильно сделать ввод электричества в дом, определитесь, каким способом вы будете подключаться к уличной электрической сети напряжением 220 В — через воздушную линию или проложив подземный кабель.

Правила устройства воздушной линии при вводе электричества в здание

Путь ввода электричества в частный дом посредством воздушной линии электропередач делится на две части. Первую составляет участок проводов от опоры, на котором закреплена воздушная линия, до точки ввода в дом. Вторую — от ввода в дом до вводного устройства внутри дома. Этот участок, собственно, и называется вводом воздушной линии в дом.

Правила устройства воздушной линии при вводе электричества в здание обязательны к соблюдению:

  • при монтаже ввода электричества в дом, если расстояние от столба до дома более 10 м, надо установить промежуточную опору, с тем чтобы ослабить натяжение проводов. Деревянный столб фиксируют к пасынку, который может быть железобетонным (этот вариант предпочтителен) или деревянным из древесины, не слишком подверженной гниению, предварительно обработанной антисептиком, и обернутым слоем рулонной гидроизоляции;
  • при устройстве ввода электричества в дом нужно соблюдать минимальное расстояние от проводов ответвления (это участок от проводов от опоры до изоляторов, закрепленных снаружи на стене дома) до земли — оно зависит от того, над чем именно провода проходят, и составляет над проезжей частью 6 м; над пешеходной частью и внутри дворов — 3,5 м; от изолятора ввода — 2,75 м;
  • при подводе электричества необходимо прокладывать провода или ограждать их так, чтобы исключить прикосновение к ним. от проводов, висящих на опорах рядом с домом, до балкона и окон следует выдерживать расстояние, как минимум, 1,5 м;
  • при подводе электричества к дому между проводами надо соблюдать определенный промежуток, который составляет, как минимум, 0,1 и 0,15 м при пролете до и более 6 м соответственно;
  • во время ввода электричества в дом своими руками от стен и опор провода должны отстоять не менее чем на 5 см;
  • согласно правилам ввода электричества в дом вдоль ограды воздушную линию следует вести на расстоянии от земли до нижнего провода не менее 5 м;
  • перед тем как сделать ввод электричества в дом по воздушной линии, позаботьтесь о том, чтобы расстояние до веток деревьев юыло, как минимум, 3 м.

Провода для реализации ввода воздушной линии

Важно правильно подобрать провода для реализации ввода воздушной линии — для этого применяют изолированные провода, которые можно проложить как по металлическому тросу, так и под землей. Они могут быть медными и алюминиевыми. В первом случае сечение провода должно быть не менее 6 мм2, однако если необходимая длина кабеля меньше 10 м, то подойдут и провод сечением 4 мм2. Во втором, т. е. при использовании алюминиевого провода, его сечение должно быть равно 16 мм2. При прокладке единого кабеля сечение его жил должно быть от 4 мм2 и от 2,5 мм2 для алюминиевых и медных проводов соответственно. Чтобы точнее установить размер жил, надо учитывать, что 1 кВт нагрузки нуждается в 1,57 мм2 сечения.

Делая выбор между алюминиевым и медным проводом, следует принимать во внимание, что первые очень пластичны (это может стать причиной искрения) и прослужат 20—30 лет; вторые (и они более предпочтительны, хотя и не лишены недостатков, в частности склонны окисляться, а при дефекте контакта — нагреваться и отгорать)) способны выдерживать значительные нагрузки и имеют длительный срок службы.

Наружная проводка может быть открытой и закрытой на роликах, если провод прокладывают в условиях, когда на него не попадет вода, или в трубе — тогда он оказывается полностью недоступным для прикосновения.

Способ оформления ввода электропроводки в дом определяется материалом, из которого он построен. Если стены деревянные, то используют металлические крюки, которые легко войдут в бревна, с фарфоровыми изоляторами. Для кирпичных стен применяют кронштейны с крюками, для крепления которых используют цементный раствор, смешанный с щебнем.

Как подвести электричество к дому: правила монтажа ввода электричества в дом

Если высота до карниза крыши не превышает 5 м, а также для хозяйственных построек для ввода устанавливают мачту (трубостойку), представляющую собой конструкцию, сваренную из трубы, угольников (кронштейна) и крюков.

Для одного провода берут металлическую водогазопроводную трубу диаметром 20 мм, для двух — диаметром 32 мм. Мачта должна отстоять от земли на 2 м, от крыши на 1 м. Края трубостойки обрабатывают напильником, чтобы образовавшиеся при распиловке на металле заусенцы не повредили изоляцию проводов. Изнутри трубостойку обрабатывают битумом или другим средством, предотвращающим коррозию. Верхний ее край изгибают под углом 180°, благодаря чему в трубу также не будут попадать осадки. К верхнему краю приваривают уголок длиной 50 см с двумя штырями для крепления изоляторов.

Поскольку материал трубостойки металл, необходимо выполнить зануление. Чтобы соединить трубу с нулевой жилой, к ней близ изоляторов приваривают болт.

Перед тем как установить трубостойку, сквозь нее протягивают стальную проволоку, которая потом поможет протянуть электрический провод.

Если предполагается прикрепить трубостойку к стене, то используют хомуты и шурупы. Поскольку мачте придется постоянно противостоять натяжению проводов ответвления, то эту нагрузку необходимо компенсировать устройством оттяжки из стальной проволоки диаметром 5 мм. Для ее фиксации к стойке (ближе к верхнему изгибу) приваривают кольца или болты.

Как правильно подвести электричество к частному дому

Пользование электрическими приборами должно отвечать требованиям безопасности, которую обеспечит устройство защитного отключения (УЗО). Оно сработает при перегрузке сети. Установка УЗО является обязательной, если дом насыщен энергоемкой бытовой техникой.

Если трубу устанавливают непосредственно на крышу, то ее фиксируют проволочными растяжками из стальной проволоки того же диаметра, которые к мачте крепят болтами или кольцами. Это делается для того, чтобы трубостойка смогла сопротивляться ветру. Устанавливают четыре растяжки, чтобы обеспечить одинаковое их натяжение, иначе стойка отклонится от вертикального положения. При этом роль оттяжки не уменьшается, поскольку функции ее и растяжек не совпадают

При монтаже ввода воздушной линии важно помнить, что укладывать провода непосредственно на мягкую кровлю нельзя; что расстояние между проводами и между ними и выступающими элементами дома должно быть не менее 20 см.

Если дому уже 20 лет и более и проводка в нем была выполнена из алюминиевого провода, то желательно ее полностью заменить, проложив медный провод. При этом можно воспользоваться уже имеющимися в стенах каналами.

Ввод электричества в частный дом под землей

Ответвление от линии электропередач ведут кабелем (медный должен иметь сечение не менее 4 мм2, алюминиевый — 2,5 мм2), который пускают не только по воздуху, но и под землей. Ввод электричества в дом под землей не нарушает общую эстетику участка, не подвержен ветровым нагрузкам и обледенению и, кроме того, не нуждается в заземлении.

При реализации подземного ввода электричества в дом действуют так:

  • выкапывают траншею глубиной, как минимум, 80 см;
  • до траншеи прокладывают кабель по опоре. Для предотвращения каких-либо повреждений его заключают в металлическую трубу длиной не менее 2 м;
  • в траншее кабель защищают кожухом, например из ПВХ-трубы;
  • засыпают траншею, заложив в 15 см от поверхности земли сигнальную ленту на случай осуществления земляных работ.

Как ввести кабель для подземного ввода электричества в дом

Ввести кабель в дом можно, пропустив его либо через стенку цоколя, либо под фундаментом дома.

В стенке цоколя на глубине 50—80 см перфоратором просверливают отверстие, которое должно иметь уклон 5° в сторону уличной траншеи. Через него пропускают трубку (через одну трубку можно пропустить только один кабель), диаметр которой должен быть в 2 раза больше диаметра кабеля, причем трубка должна выступать с обоих концов — на 50—60 см наружу и 5—10 см внутрь. После прокладки кабеля трубку герметизируют цементно-песчаным раствором, чтобы не допустить проникновения в нее грунтовых вод.

Если фундамент неглубокий, то кабель можно пропустить под ним, поместив его в асбоцементную трубу. В этом случае электропроводка будет прокладываться через перекрытие пола.

Установка счетчика при подводе электричества к дому под землей

Установкой счетчика завершается и подвод электричества к дому под землей, и ввод электричества по воздушной линии. Этот прибор учета расходования энергии располагают в отапливаемом помещении 1,5 м от пола и соединяют с проводами (медными сечением, как минимум, 2,5 мм2 и алюминиевыми сечением не менее 4 мм2) в соответствии с прилагаемой к нему схемой. После подачи в органы надзора заявления о подключении к электросети проводится проверка правильности всей операций, счетчик пломбируют, проводят инструктаж по технике безопасности и выдают соответствующее разрешение. На этом этапе ввод и монтаж наружной электропроводки считается законченным, и можно приступать к прокладке внутренней электропроводки, с тем чтобы подвести электричество к бытовым приборам.

Ввод электричества в дом. Электромонтаж. Возможные варианты

Ввод электричества в дом. Возможные варианты

Ввод электричества в дом раньше выполнялся у всех одинаково. Ставилась трубостойка в верхней части фасада или на крыше, которая имела загиб в верхней его части и потому ее называли «гусаком». Через «гусак» протягивались провода внутрь и далее они шли уже на счетчик и электрический щиток. Провода от воздушной линии электропередачи, неизолированным проводом подводились к фасаду здания, где крепились на два предварительно установленных изолятора на кронштейнах. Главными недостатками такого подхода являлись

Так делали раньше
  • Участок от ответвления на воздушных ЛЭП, до электрощита в доме оставался абсолютно неконтролируемым с точки зрения защиты, причем провода проходили через строительные конструкции и по пути могли встретить такие материалы, которые могли бы стать причиной возгорания. Особенно это критично для деревянных домов.
  • Неизолированные воздушные линии при сильном ветре могли «коротить».
  • Так как счетчики находились внутри дома, то было много возможностей для хищения электроэнергии, причем за этими «услугами» за вознаграждение обращались именно к представителям энергоснабжающей организации.

Сейчас подход изменился коренным образом, причем в лучшую сторону как для потребителей, так и для тех, кто продает нам электроэнергию.

  • Во-первых, подвод электроэнергии ведется современными проводами СИП, которые имеют срок службы в 25 лет и не боятся атмосферных воздействий.
  • Во-вторых, провод СИП самонесущий и на расстоянии до 25 метров может протягиваться без всяких промежуточных опор, закрепляясь на анкерных зажимах, которые монтируются на столбе ЛЭП и на месте ввода.
  • В-третьих, для СИП разработана и успешно применяется разнообразная арматура, которая позволяет подключать дома как к воздушным неизолированным ЛЭП, так и к изолированным. Причем все места соединений заизолированы и защищены от природных воздействий.
Сейчас делают вот так
  • В-четвертых, приборы учета и вводные автоматические выключатели ставят на улице в защищенных боксах или металлических ящиках, где можно разместить и противопожарное УЗО, и автомат защиты кабеля, который будет вводить электроэнергию в дом, и подключить контур заземления. Уровень безопасности жилья при этом повышается в разы.
  • В-пятых, СИП хороший провод для передачи энергии с ЛЭП до участка, но ужасно неудобный для применения в электрических щитах внутри дома. Именно в щите учета электроэнергии (ЩУЭ) можно перейти на более «домашний» кабель ВВГнг.
Переход СИП, уместный снаружи, на более комфортный внутри ВВГ
  • И, наконец, не каждому хозяину или хозяйке понравится, что периодически будет в дом наведываться инспектор Энергонадзора.

Какие варианты могут существовать для ввода электричества в дом?

  1. Если расстояние от ближайшей опоры ЛЭП до дома 25 метров и менее, то можно провести прямую воздушную линию до фасада дома, на нем же разместить ЩУЭ, сделать заземляющий контур и провести в дом кабель в металлической заземленной трубе. Главный принцип прокладки – это наикратчайший путь и удобство. Причем ввод кабеля должен происходить на уровне не менее 2 метров от поверхности земли, через строительные конструкции кабель должен пройти в трубе.
  2. Если расстояние больше 25 метров, то необходимо ставить промежуточную опору, на которой можно разместить и ЩУЭ, и сделать возле нее контур заземления, а дальше уже выбрать как вести кабель дальше: по воздуху или в земле. Если по воздуху, то точка подключения дома должна находиться на уровне не менее 2,75 м от земли.
  3. Прокладка кабеля в земле от ЩУЭ, до точки ввода также возможна, но для этого надо выкопать траншею глубиной не менее 0,7 метра, дно ее присыпать песчаной подушкой не менее 5 см, а далее использовать специальный кабель ВБбШВнг или ВВГнг, помещенный в двойную гофрированную трубу.
  4. Если планируется подземный вход в дом, то для этого заранее должны быть предусмотрены технологические отверстия и закладные трубы, еще на этапе строительства. Ниже фундамента проводить кабель в дом нельзя.
Несмотря на свою сложную аббревиатуру ВБбШВнг вполне симпатичный кабель. Тот же ВВГ, только в броне

Среди предложенных вариантов всегда можно выбрать наилучший, который удовлетворит, прежде всего, хозяев дома, обеспечит нужный уровень безопасности и не вызовет никаких вопросов у энергоснабжающей компании.

О монтаже электропроводки без распределительных коробок и способах соединения проводов

С технической точки зрения, самая идеальная проводка это та, которая спроектирована без распределительных коробок. От электрощита на каждую розетку идет отдельная линия, защищенная автоматическим автоматом и УЗО. Кстати, на мощные стационарные электроприборы так и надо делать, но что если в какой-то комнате планируется 10 розеток, то означает ли это, что от щитка должно идти 10 линий. Такую паутину «сложно» будет смонтировать, да и на количестве кабеля хозяин может разориться.

Распределительные коробки позволяют объединять потребителей в группы и вести кабель не к каждой точке, а к группе, что гораздо выгоднее в экономическом плане. Согласно требованиям ПУЭ, все распределительные коробки должны всегда быть в зоне доступности для возможности ремонта. На рисунке видно, что зона расположения коробок находится в 15 см от потолка и имеет ширину 30 см, и там, где она пересекается с вертикальными линиями, проведенными от мест расположения розеток и выключателей, и располагают коробки.

В местах, где пересекаются горизаонтальные и вертикальные линии, ставятся распределительные коробки

 При монтаже проводки электрики часто немного заглубляют эти коробки на несколько миллиметров в стену, чтобы в дальнейшем при отделке укрыть ее под тонким слоем штукатурки или шпаклевки, ведь хозяевам не захочется видеть у себя на стенах крышки коробок. Представим себе ситуацию, что для отделки выбраны дорогие дизайнерские обои, которыми оклеили все стены, но в определенный момент обнаруживается неисправность в электропроводке, которая требует «вскрытия» распределительной коробки, а, может, даже и не одной. От такой ситуации не застрахован никто.

Одним из выходов из этой ситуации является установка распределительных коробок сверху – за гипсокартоном или натяжным потолком. Это спасет стены, но в случае неприятностей с проводкой, не спасет потолок. Существует ли какой-то разумный выход из этих ситуаций? Оказывается, да! Это монтаж проводки вообще без распределительных коробок! Каким образом это можно реализовать?

  • Для монтажа выключателей и розеток применяются специальные монтажные коробки, которые имеют диаметр 65—68 мм и глубину в 40—42 мм. Механизм выключателя или розетки занимает меньше места в глубину. Выключатель в среднем 20—25 мм, а розетка 25—30 мм. Оставшегося за механизмом пространства будет маловато для коммутации, но в ассортименте некоторых производителей есть монтажные коробки увеличенной глубины в 60, 65 и даже 68 мм. В свободном пространстве, оставшемся за механизмом можно вполне скоммутировать и осветительные, и силовые цепи.
Монтажная коробка увеличенной глубины по сравнению с обычной

Механизмы выключателей и розеток легко вынимаются из монтажных коробок, не нарушая отделку помещения, поэтому ко всем соединениям будет постоянная возможность доступа.

  • Кабели силовой розеточной сети должны спуститься от магистрали в углубленную монтажную коробку группы розеток, там разветвиться на нужное количество розеток (но не шлейфом), а затем вернуться опять на магистраль, проложенную на потолке или в верхней части стены. При этом в группе из 2—4 розеток достаточно смонтировать всего одну углубленную монтажную коробку.
  • Силовые кабели осветительной сети аналогично должны зайти в углубленную коробку выключателя и вернуться на магистраль. В самой коробке идет ответвление нуля на светильник (или их группу) и другие выключатели, если они в одном месте их несколько. Фаза также разветвляется на нужное число выключателей, проходит через них и идет к светильникам. Если в группе выключателей есть проходные, то от них еще идут отдельные кабели на другие выключатели, расположенные в других зонах.
  • Очевидно, что к выключателям подводится гораздо больше кабелей (вход и выход магистрали, провода, ведущие к светильникам и еще к проходным выключателям). Именно поэтому все коробки должны быть углубленными и под каждым выключателем идет коммутация на управляемые им светильники.
  • У неопытных домашних электриков-самоучек поначалу могут возникнуть трудности с коммутацией в монтажных коробках. Для этого надо представить, что это распределительная коробка и делать соединения точно так же отличаться будет только длина ответвлений. Очень помогает самостоятельное рисование монтажных схем.

Монтаж электропроводки без отдельных распределительных коробок имеет главное преимущество в том, что во все места соединения кабелей и проводов будет постоянный доступ. Единственный недостаток – это более высокий расход кабелей и проводов, который частично компенсируется тем, что не надо будет покупать распределительные коробки.

Долой распределительные коробки! Комутация освещения прекрасно уживается вместе с механизмом выключателя

Из всего многообразия способов соединения, которые очень грамотно описаны в статье на нашем портале, для электропроводки без распределительных коробок авторы статьи рекомендуют всего два:

  1. В силовых розеточных цепях это опрессовка и изоляция при помощи термоусадочной трубки.
  2. В осветительных цепях – это использование пружинных клемм Wago.

Приведем аргументы, объясняющие такой подход:

  • В розеточных линиях могут протекать достаточно серьезные токи, поэтому соединение должно быть очень надежным и обеспечивать хороший контакт проводников. Опрессовка именно такой способ, но при условии хорошего качества гильз ГМЛ и наличия специального инструмента.
  • Соединение проводов опрессовкой имеет очень компактные размеры, определяемые длиной ГМЛ (гильзы медной луженной), в бытовых проводках от 20 до 40 мм.
Портрет опрессованного и заизолированного соединения. Обратите внимание на красивое размытие заднего плана
  • Технология соединения опрессовкой очень проста и ее сможет за несколько минут освоить даже новичок. Вероятность неправильного соединения очень мала, то есть высокая «дуракоустойчивость». Монтаж идет очень быстро.
  • Термоусадочные трубки (ТУТ), применяемые для изоляции, имеют высокие диэлектрические свойства, технология их применения очень проста, даже проще, чем обмотать изолентой.
  • ТУТ выпускаются различных диаметров и цветовой гаммы, что позволяет еще и маркировать соединение проводов.
  • В цепях освещение токи гораздо меньше, поэтому для удобства и быстроты монтажа, надежности соединений лучше применять пружинные клеммы Wago, которые имеют малые габаритные размеры, способны соединять несколько проводников (от 2 до 8) разных площадей поперечного сечения (от 0,5 до 2,5 мм2, а в 222 серии до 4 мм2), а также соединять многожильные и моножильные провода, что часто бывает необходимо в освещении. Постоянный электрический контакт обеспечивают специальные плоские пружины. «Дуракоустойчивость» клемм Wago тоже на высоте. Дополнительной изоляции места соединение не требуют и при необходимости клеммы могут быстро демонтироваться без обрезания проводов.
Очень удобные штучки — клеммы Wago

Уже очень много высококлассных электриков выбрали монтаж без отдельных распределительных коробок (их функции выполняют углубленные монтажные коробки розеток и выключателей) и нисколько об этом не пожалели. Авторы статьи рекомендуют домашним мастерам выбрать именно такой подход.

под землей, от столба, вводное устройство и выбор провода

На чтение 9 мин Просмотров 789 Опубликовано Обновлено

Правильная организация электроснабжения жилого помещения предусматривает расчет и монтаж вводной точки. Для обеспечения безопасности линии и долговечности ее эксплуатации следует соблюдать нормы ПУЭ. Ввод электричества в дом можно начинать после оформления документации и согласования мероприятий с энергопровайдером.

Административно-правовые нюансы

Подводом электричества к частному дому должны заниматься электрики с определенной группой доступа

Чтобы ввести в помещение электричество, владелец должен получить разрешительные документы от энергосбыта. Основанием для разрешения является проект ПВЭ, где детально описывается внутренняя электросеть, предоставляются расчеты мощности потребителей. После этого устанавливаются параметры выделенной мощности и потребительский лимит. Согласно ПВЭ определяются техусловия – способ подключения, особенности коммуникаций, инженерные аспекты.

Подключить дом к электричеству могут бригады РЭС, собственник или подрядчик с лицензией.

Необходимые документы

Пример ответа на заявку на технологическое присоединение

Владелец недвижимости направляет запрос в выбранную сетевую организацию. Компания рассматривает заявку на протяжении 15 дней. После положительного ответа подготавливаются документы:

  • заявление на техприсоединение по унифицированной форме;
  • схема энергоприемников;
  • копии документов о праве на здание или земельный надел;
  • заявка, где указывается ФИО гражданина, паспортные данные, месторасположение приемников, сроки создания проекта и ввода линии в эксплуатацию, наименование провайдера, разрешение на строительные работы.

После рассмотрения документов энергопровайдер высылает договор с техническими условиями. Заявителю остается его подписать и направить представителям сетевой организации.

Если участок соответствует требованиям техусловий, работы на его территории выполняются за счет собственника. Мероприятия за пределами надела оплачивает сетевая компания. По окончании выполнения компания энергосбыта подключает помещение к сети после контрольного осмотра.

Правила подключения электричества к дому

Требования при подключении электричества к частному дому

Вводное устройство электроснабжения подчиняется требованиям ПУЭ и техусловий. В них указаны:

  • расположение точек подключения – 25 м от границы с соседями;
  • расстояние кабеля от опор ЛЭП до стены – 10 см, если деревянный дом и 5 см от кирпичных поверхностей;
  • толщина кабеля для однофазной линии – 0,6 см для медных жил, 1.6 см для алюминиевых жил;
  • необходимость заделывания вводной штробы негорючим материалом;
  • расположение входного отверстия – 2,75 м от линии грунта и 1,5 м от окна;
  • соответствие мощности оборудования выделенной мощности 15 кВт;
  • расстояние по прямой от электросети, к которой примыкает участок – 300 м для города и 500 м для села.

Обязательными элементами системы являются СИП-провода, электросчетчик, щит, промежуточная металлическая опора.

Варианты правильного подключения

Ввод электроэнергии в частный дом можно выполнить двумя способами:

  • Воздушный – недорогой, но заметный вариант. Основная часть кабеля протягивается на улице над землей. Проводник может проходить в помещение в трубе через стену на РУ или счетчики. Допускается подключение вне дома к стабилизатору напряжения или учетному прибору;
  • Под землей – скрытый способ, когда провод укладывается в асбестоцементную трубу, закопанную в грунт. Вход в здание осуществляется через технологическое отверстие в фундаменте. От ЛЭП до вводной точки кабель укладывается вдоль столба.

Для укладки под землей используйте провода повышенной прочности.

Выбор кабеля для ввода в дом

Сравнение СИП-1 и СИП-2

Оптимальным материалом для домашней электросети будет СИП-кабель, который допускается использовать для организации линий с напряжением до 35 кВт. Провод состоит из 3-х фазных жил, обвитых нулевым, имеет качественное изоляционное покрытие из полиэтилена. Нулевой проводник из алюминия находится по центру скрутки.

Если СИП-кабель нужен для проводки от столба к дому по воздуху, стоит обратить внимание на изоляционный слой:

  • термопластичный полиэтилен изоляции СИП-1, СИП-1А, СИП-4 и СИПн-4 выдерживает температуру до +70 градусов;
  • сшитый полиэтилен материалов СИП-2, СИП-2А, СИПс-4, СИП-3, ПЭВ и ПЭВГ выдерживает температурную нагрузку до 90 градусов, обеспечивает защиту от перегрузок и коротких замыканий.

Хороший кабель для прокладки в грунте имеет изоляционную поверхность из спрессованной бумаги с пропиткой, полиэтилена, ПВХ. Жилы ВБбШв или ПвБШв усилены ленточной изоляции. Для участков с рисками повреждения применяется ПаКШп с проволочной сеткой.

Специфика использования СИП

Использование провода в воздушной линии

Подвести СИП-кабель можно на опоре или фасаде, выполняя ответвления и другие соединения. При работе с проводом необходимо:

  • предварительно установить опоры ВЛИ, закрепив на них зажимы;
  • сделать раскатку, установив ролики при помощи специального ремня или крюков. Провод натягивают до крайних опор барабаном. Вручную работают трос-лидером;
  • закрепить электрический проводник на опорах. Несущую жилу фиксируют анкерным зажимом;
  • выполнить натяжку кабеля с помощью ручной лебедки с усилителем захвата;
  • подобрать для однофазной сети 2-жильный СИП-4, для трехфазной – 4-жильный СИП-4.

Делать натяжку нужно плавно, без перекосов до момента срыва головки динамометрического ключа.

Арматура для крепления СИП-провода

Арматура для СИП обеспечивает правильный и качественный процесс передачи электричества по воздуху. Конструкции должны выполняться из влагостойких материалов, подходить под напряжение однофазной или трехфазной сети. Замена изделий допускается 1 раз в 20 лет.

Перечень необходимых материалов

Анкерные кронштейны

В электротехнической практике применяются следующие виды арматуры:

  • Анкерные кронштейны – по 1 на дом и опору ЛЭП. Алюминиевые приспособления не подвергаются коррозии, колебанию температур. Фиксируются бандажными лентами из нержавеющей стали.
  • ответвительные зажимы – 4 (220 В) или 8 (380 В) штук. Создают контакт при соединении кабелей сечением 6-150 мм2 с проводниками сечением 1,5-6 мм2.
  • Анкерные зажимы – 2 шт. Элементы обеспечивают фиксацию проводов с изоляцией на ответвлениях до 1000 В. Внутренние клинья из термопластика исключают повреждения изоляционного слоя;
  • промежуточные зажимы. С их помощью можно подключить СИП-4 к промежуточной или угловой опоре. Материал имеет корпус, стойкий к ультрафиолету.
  • Крюки. Применяются, чтобы провести проводник по воздуху на деревянной, металлической опоре или поверхности стены.

Также понадобятся гильза, гофрированный рукав из металла для подвода кабелей через стену здания.

Расчет сечения кабеля для ввода в дом

На улице монтируется кабель СИП 2х16 или 4х16, внутри строения – ВВГнг-ls 2х6, 2х10, 4х6, 4х10. Подбор сечения для вводного кабеля, идущего в частный дом, осуществляется в зависимости от нагрузки потребителей, квадратуры комнат, надворных построек, наличия электроотопления и электроплиты.

ПУЭ устанавливают применение медного кабеля для организации сети. Норматив также отмечает зависимость сечения от напряжения на линии и параметров мощности. Чтобы не заниматься расчетами, стоит обратиться к таблице.

Ток автоматов, АМощность, кВтСечение кабеля, мм2
Сеть 220 ВСеть 380 В
51,12,61
61,33,21
102,25,31,5
163,58,41,5
204,410,52,5
255,513,24
32716,86
408,821,110
501126,310
6313,933,216

Подходящее сечение кабеля для ввода в дом – от 6 до 16 мм2. От счетчика до шины распредавтоматов однофазной сети актуален провод с сечением 6 мм2.

На улице применяется алюминиевый кабель с сечением 10 мм2, который не окисляется. Для прокладки в деревянный дом целесообразен медный, который не горит.

Как производится ввод электроэнергии в дом по воздуху

Подвод кабеля в дом

Вводить электролинию в жилое здание по воздуху можно двумя способами:

  • Через стены. Проводник располагается на стене, фиксируется на ней заизолированным крепежом. Для прокладки внутрь организуется отверстие, через которое проходит металлическая труба с пластиковой гофрой. Зазор заделывается цементом или асбестом.
  • Через крышку. Применяется металлическая трубостойка. Проводник размещают так, чтобы расстояние от уровня крыши составляло более 2 м. Конструкцию заземляют.

При прокладке через крышу применяется изгиб трубы вниз, или гусак, в котором керамическими изоляторами крепятся провода для электричества. С целью сокращения длины кабелей проводка выполняется с максимальным приближением к распределительному щиту.

Воздушная технология отличается простотой, поэтому популярна среди домашних мастеров. Минусом способа являются риски повреждения проводов при механических воздействиях.

Особенности прокладки кабеля под землей

Прокладка кабеля под землей

Подвод электричества к частному дому под землей осуществляется в металлической трубе. Длина изделия соответствует протяженности маршрута с учетом поворота. Подземный способ предусматривает использование медных проводников с сечением 4 мм2, если линия удалена на 10 м. При удалении больше 10 м применяется кабель на 6 мм2. Сечение алюминиевого провода на дистанцию до 10 м – 12 мм2, от 10 м – 10-18 мм2.

Работы по вводу электричества в загородный или частный дом под землей выполняются пошагово:

  1. Выкапывается канал. Глубокий делать не стоит – хватит 60-90 см. Ширина траншеи – 40 см.
  2. Организуется подушка из песка слоем от 15 до 20 см. Для ее усиления и предотвращения проваливания материала можно сделать основание из кирпича или бетонных плит.
  3. На пластичных почвах или в местности, где высокий уровень грунтовых вод, организуется дополнительная защита. Из кирпичей или бетонных блоков делается водоотводный лоток, который сверху покрывается плитами.
  4. На неустойчивых грунтах выполняется монолитный железобетонный канал для кабеля. Его накрывают плитами с армирующим усилением.
  5. Стальная труба зачищается от мусора и укладывается в готовом канале.
  6. Соединяются элементы трубы с небольшим нахлестом друг на друга.
  7. Провод протягивается через металлическую трубу. Для мест изгиба действует правило – больший радиус, сохраняющий целостность изоляции.
  8. После укладки подводка покрывается плотным сыпучим материалом – щебнем, осколками кирпича или крупным керамзитом.
  9. Сверху сыпучих материалов выполняется песчаная подушка для защиты от разрыва проводников проезжающим транспортом.
  10. Канал закапывается извлеченным грунтом.

Организация линии электричества под землей от ЛЭП к частному дому занимает больше времени и обходится дороже. Но в сравнении с воздушной техникой подводка будет долговечной и надежной.

Способы организации проводки внутри дома

Существует несколько вариантов выполнения внутренней проводки.

Соединение разных кабелей внутри

Сварка провода

СИП-проводник разрывается и подсоединяется к кабелю ВВГнг посредством скрутки и усиления спайкой. Методика не отличается надежностью, поскольку может привести к возгораниям.

Соединение различных проводников арматурой

Сцепка СИП и ВВГнг осуществляется при помощи штатных арматурных прутьев, зажимов для прокалывания или иных элементов рядом с точкой ввода. Использовать СИП в жилом помещении недопустимо – он поддерживает процессы горения.

Через дифавтомат

Схема подключения предусматривает использование двух- или четырехполюсного дифференциального автомата. Прибор располагается в отдельном опломбированном боксе. Кабель прокладывается от основной линии к ящику, соединяется в ВВГнг в гофре.

Для повышения защиты используется автомат с номиналом выше распределительного щита. Так при замыкании или перегрузке можно восстановить линию без выхода из дома. Снаружи ставится еще одно устройство, обесточивающее внутренний кабель и предотвращающее возгорание.

Вводить электрические магистрали в жилое здание можно по воздуху или под землей. Перед началом работ необходимо оформить разрешительные документы, подобрать СИП-кабель и его сечение.

нюансы оформления и подключения, цена

Каждый владелец земельного участка в определённый момент начинает задумываться о подведении к нему электричества. Эту работу можно выполнять не только во время строительства загородного дома, но и уже после введения здания в эксплуатацию.

Ещё до того как приступить к подключению сети, следует выяснить мощность, требуемую для полноценного обеспечения электричеством загородного дома, рассчитать расстояние, на котором должны пролегать по отношению к дому электрические сети, а также узнать, имеется ли в этом районе требуемая мощность сети.

Перечень необходимых документов

Если вы твёрдо решили подвести к земельному участку электричество, то первым делом вам необходимо составить заявку определённого образца и обратиться с ней в организацию, в ведение которой входит обслуживание электрических сетей по месту расположения участка.

Там вам должны выдать разрешение на подсоединение электричества. Помимо заявления, вам придётся подготовить и копии документов, имеющих подписи нотариуса:

  1. Паспорт и идентификационный код.
  2. Документы, устанавливающие право собственности на сам участок и дом.
  3. Документы на земельный участок и дом.
  4. В том случае, если за подведением обращается представитель, то потребуется доверенность.
  5. Проект электрификации дома и участка, который должен содержать сведения обо всех энергопотребляющих устройствах и их потребляемой мощности.
  6. Разрешение на строительство. Необходимо для подведения электричества на участок, где отсутствуют постройки.

После подготовки вышеназванных документов, их необходимо отправить заказным письмом. Нелишним будет приложить к ним и опись вложенных документов.

В том случае, если определённого документа не обнаружится среди отправленного вами пакета, то организация обязана уведомить вас об этом факте не позднее 6 дней с момента получения документов.

В некоторых случаях к вам могут обратиться с требованием прислать оригиналы определённых документов среди списка вышеперечисленных, чтобы подтвердить указанную информацию. Присланные вами документы будут использоваться организацией в качестве базы для составления технических условий, без которых невозможно осуществить подведение электричества к участку.

В них должны быть отражены технические характеристики ввода электроэнергии в частный дом: имеется в виду однофазный или трехфазный кабель будет использоваться для подвода электричества в дом.

Когда вами будут выполнены все условия этого предписания, вы уже будете иметь полное право приступать к подводу электричества. Важным моментом является и то, что технические условия должны быть выполнены не позднее двух лет с момента их составления.

Иногда может случиться так, что из-за особенностей технических условий электрических сетей невозможно выполнить подведение электричества к участку. Также возможна ситуация, когда мощность расчётной нагрузки превосходит номинальный показатель сети.

В таких случаях организация должна в письменном виде уведомить об этом факте заказчика услуг. При этом обжаловать решение не представляется возможным.

Расходы на подключение электричества к участку

Проверка выполнения технических условий обойдётся заказчику в сумму около 456 р. Что же касается работы по подключению электричества к дому, то их стоимость может быть различной. Точная сумма будет определяться мощностью подключаемой линии.

Если мощность подводимой сети к участку превышает значение 15 кВт, то расходы на подключение электричества составят 550 р.

При этом работы могут быть выполнены при условии, что гусак для подведения электричества к участку удалён от линии электросети, расположенной в городе, не более 300 метров, а для сельской местности — 500 метров.

Если требуется подвести новую электросеть, которая предусматривает создание соединения большей протяжённости, то здесь требуется получение разрешения от местных властей.

Видео: Как подключить электричество на свой участок

Что должно быть в проекте внешней электрификации частного дома

К разработке проекта внешней электрификации частного дома можно приступать лишь по завершении составления технических условий организацией, которая занимается обслуживанием электросетей.

При создании проекта организация опирается в качестве базы на технические условия электрификации земельного участка. Чтобы выполнить подобную работу, потребуется следующее:

  • Геодезический или ситуационный план участка, к которому необходимо подвести электричество. Этот документ должен содержать сведения относительно расположения воздушных и кабельных линий, а помимо этого коммуникаций.
  • Проект узла учёта электричества. В нём должны быть отражены сведения о номинальном значении вводного автомата и тока установленного ограничителя напряжения.
  • Проект подключения СИП кабеля, подводимого от опоры линии к узлу учёта, трансформаторной подстанции, расположенной на участке, или подземной прокладки кабеля.
  • Расчёт и разработка проекта заземления.
  • В случае подвода трехфазных сетей, процедура расчёта мощности трансформатора, а также выполнение расчётов пропускной способности сети и распределительного устройства вместе с распределительным шкафом типа ПР.
  • Обязательным требованием является получение одобрения на документацию у организации, в ведение которой входит обслуживание электрических сетей по местонахождению подключаемого дома. В некоторых случаях может потребоваться получение согласия от местных властей.

Как проводят электричество на участок

Необходимо иметь в виду, что обязанность по подключению электричества за границами земельного участка ложится на плечи организации по электросетям, а сами работы проводятся на основании проектной документации.

Подведение электричества на участке должно быть выполнено непосредственно его владельцем. Расходы на выполнение монтажных работ могут быть различными. Расчёт стоимости осуществляется в каждом случае индивидуально.

Особенность подвода электросетей к участку заключается в том, что эти работы проводятся в несколько этапов. Обязательным требованием является выполнение всех технических предписаний и согласования проекта внешнего подключения:

  • подвод электричества к участку и дому;
  • подтверждение работоспособности приборов, которые будут использоваться для контроля расхода электроэнергии;
  • подвод к дому электричества, установления на приборы учёта пломб;
  • составление акта о выполненных работах;
  • подписание договора на поставку электричества.

После получения одобрения о подводе электричества приступают непосредственно к прокладке кабеля и разводке электричества в частном доме.

Правила подключения

Если планируется подводить однофазную линию, то желательно использовать кабель с минимальным сечением 6 мм с медной жилой или 16 мм с алюминиевой жилой. Обязательным условием является наличие надёжной изоляции проводов, которая не должна предусматривать повреждений и перегибов.

В основе работы лежит подведение под опоры электросети двух кабелей, среди которых один будет выступать фазой, а другой нулём.

Важно, чтобы кабели располагались на безопасном расстоянии относительно друг друга: если они подводятся к кирпичной стене, то оно должно составлять не менее 50 мм, в случае прокладки к деревянным конструкциям здания кабели размещают на расстоянии 100 мм друг от друга.

Созданное в стене отверстие, через которое будет вводиться кабель, необходимо заделать, используя для этого негорючие материалы, например, цементный или бетонный раствор. После этого переходят к подключению кабелей к ВРУ или же прибору контроля потребления энергии. Здесь необходимо ориентироваться непосредственно на проект.

Важным моментом является то, что при удалении подводимого к электричеству участка относительно опор электролинии на расстояние более 25 метров потребуется установить дополнительные столбы.

Важно выдержать минимальную высоту от земли до ввода кабеля в стену, которая должна составлять 2,75 метра. Оптимальной от точки ввода кабеля до ближайшего окна, будет считаться высота не менее 1,5 метра.

Последствия самостоятельного подвода электричества к участку

Не стоит проводить к частному дому, даче или участку электричество, не имея на руках разрешения на проведение подобных работ.

Это же касается и увеличения мощности уже подведённой линии электросети или устройства контроля расхода электроэнергии. Подобные действия считаются незаконными и предусматривают штрафные санкции.

Если будут выявлены незаконно установленные приборы контроля и распределения линий, то они должны быть демонтированы. Также законодательство устанавливает и отключение участка работниками организации по электросетям от энергопотребления.

Если дом или участок был подключён к электричеству без наличия разрешения, то очень сложно придать этим работам законный характер.

Процедура легализации потребует гораздо больших расходов, нежели в случае подключения электричества к участку услугами лицензированной организации в соответствии с планом, учитывающим особенности технических условий.

Альтернативное электричество

Бывают ситуации, когда определённые обстоятельства не дают подключить к линии электросети участок. В этом случае решением проблемы могут стать автономные источники электроэнергии.

В качестве варианта можно предложить солнечные коллекторы, при выборе которых необходимо обращать внимание на мощность потребляемой энергии.

Если электроэнергия требуется исключительно для бытовых нужд, то можно ограничиться мощностью 6 кВт. Однако здесь необходимо принимать во внимание тот факт, что максимальный объём электричества будет обеспечен лишь в период с марта по октябрь при солнечной погоде.

С наступлением пасмурных дней количество вырабатываемой электроэнергии заметно уменьшится, при этом в ночное время суток участок может функционировать исключительно за счёт запаса энергии в аккумуляторе, если он подведён к гелиосистеме.

Решив остановить выбор на солнечных панелях, владельцу земельного участка следует приготовиться к серьёзным затратам, которые потребуются для приобретения непосредственно самих компонентов системы, а также и на выполнение работ по их установке. Вдобавок к этому гелиоустановке потребуется обеспечить регулярное техническое обслуживание.

Даже если вы обладаете необходимым опытом и знаете, как провести электричество на участок, всё же нежелательно заниматься этим без наличия разрешения. В дальнейшем это может привести к штрафным санкциям, за которыми последует полное обесточивание вашего участка.

Поэтому для большинства владельцев земельных участков лучше всего воспользоваться услугами проектных организаций, в ведение которых входит обслуживание электросетей.

Видео: Солнечные батареи для дома

Подключение домов к электросети

Рисунок 1. Типовая панель автоматического выключателя подключает электрические устройства дома к электросети. [1]

Подключение домов к электросети – завершающий этап электросети. После того, как подстанции распределительной сети снизят напряжение до безопасного уровня, этот этап может быть завершен. Провода отходят от соседних линий электропередач и подключаются к отдельным зданиям (домам, квартирам, предприятиям и т. Д.), Сначала проходя через электросчетчик, чтобы измерить, сколько электроэнергии потребляет дом.Затем электричество проходит через сервисную панель, в которой находятся устройства электробезопасности (автоматические выключатели и предохранители). Эта сервисная панель имеет все провода, идущие к различным электроприборам в доме. [2]

Каждый дом подключен к электросети через какой-то блок предохранителей или автоматический выключатель, как показано на рисунке 1.

Отказ от обслуживания

Воздушное подключение к электросети от инженерных линий до служебного входа называется служебной цепью.Имеет три провода; 1 нейтральная линия и 2 горячие линии. Горячие линии поддерживают определенный потенциал (например, 120 В) по сравнению с нейтральной линией. Существует два типа сброса служебных данных: отключение службы мачты и отключение службы скоб. Подземное служебное соединение называется боковым служебным. [2]

Рис. 2. Подъем на мачте с метеозаборником (вверху), вертикально соединенным через трубопровод с электросчетчиком (внизу). [3]

Падение на мачте

Мачта представляет собой комбинацию кабелепровода и флюгера, который находится наверху крыши (Рисунок 2).Подъемник прикрепляется к мачте за ручку мачты. «Капельные петли» служат, прежде всего, для обеспечения провисания, которое снижает любое механическое напряжение на линиях электропередач и предотвращает попадание воды по линиям в водовод. [2]

Служба поддержки Clevis

Clevis относится к разъемам, которые крепят проводники линии обслуживания к стороне здания. В этой установке трубопровод и гидрозатвор прикреплены к бокам жилого дома ниже линии крыши. [2]

Рисунок 3. Трансформатор, установленный на площадке для распределения электроэнергии, соединяет первичные линии электропередачи с домами. [4]

Сервисный боковой

Это подземный служебный вход, первичные линии электропередачи проходят через кабелепровод к входу контактного трансформатора, а вторичные линии электропередачи соединяют выход трансформатора со счетчиком электроэнергии. [2]

Рисунок 4. Схема расположения торговых точек со всего мира. [5]

Главный выключатель

Главный выключатель используется во время аварийных ситуаций для прекращения подачи электроэнергии.

  • Основное отключение может быть выполнено с помощью главного размыкающего выключателя. Это выключатель с внешним управлением (EXO), который расположен между сервисным счетчиком и электрической панелью (Рисунок 1).
  • Основное отключение также может быть выполнено одним или несколькими автоматическими выключателями, расположенными в электрическом щите, для этого автоматические выключатели должны быть включены последовательно с двумя горячими линиями проводов, потому что это должно отключать питание всех цепей. [2]

Розетки

основная статья

Электрические розетки служат для подключения различных устройств, которым требуется электричество.В мире существует множество различных типов розеток с различными характеристиками напряжения и электрического тока. [6] Некоторые из них показаны на рисунке 4.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

  1. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/5/5d/US_wiring_basement-panel.jpg
  2. 2,0 2,1 2,2 2.3 2,4 2,5 R.T. Пэйнтер, «Основные электрические компоненты и счетчики», в Введение в электричество , 1-е изд. Нью-Джерси: Прентис-Холл, 2011, гл. 8, сек. 8.1, стр. 331-340.
  3. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipemmons/e/ea/Residence_service_drop.JPG
  4. ↑ sdpitbull через Flickr [Online], доступно: https://www.flickr.com/photos/stevestr/4624935949
  5. ↑ (2014, 23 июля). Файл: Plugs.png [Онлайн].Доступно: http://wikitravel.org/shared/File:Plugs.png
  6. ↑ R.T. Пэйнтер, «Основные электрические компоненты и счетчики», в Введение в электричество , 1-е изд. Нью-Джерси: Прентис-Холл, 2011, гл. 8, сек. 8.2, стр. 341-346.

Произошла ошибка: SQLSTATE [42S22]: столбец не найден: 1054 Неизвестный столбец «rev_user» в «списке полей»

Узнайте разницу между трехфазным и однофазным питанием

По всей Северной Америке дома питаются от однофазной электросети напряжением 120 вольт.Типичная коробка автоматического выключателя в жилых помещениях показывает четыре провода, идущие в наши дома: два «горячих» провода, нейтральный провод и заземление. Два «горячих» провода несут 240 В переменного тока, который используется для тяжелых бытовых приборов, таких как электрические плиты и сушилки. Однако напряжение между горячим проводом и нейтральным проводом составляет 120 В переменного тока, от которого питается все остальное в наших домах.

Однако производственные предприятия по производству электроэнергии в Северной Америке передают трехфазную энергию сверхвысокого напряжения в диапазоне от 230 кВ до 500 кВ.При внимательном рассмотрении линий электропередач высокого напряжения можно обнаружить три отдельных проводника, каждый из которых проводит ток, а также нейтральный провод. Распределение трехфазной энергии обходится дешевле, потому что линии передачи для трехфазной энергии не нуждаются в медных проводах такого же диаметра, как в однофазной линии передачи. Кроме того, трехфазное соединение обеспечивает гибкость при подключении к сервису и может предоставить клиентам не только обычную услугу 120 В переменного тока, но также и 208 В переменного тока. Практически каждое промышленное здание, включая ваше, получает трехфазное питание, так как оно имеет много преимуществ перед однофазным.

Проектирование или переоборудование центра обработки данных для использования трехфазного питания окупается, но некоторые центры не понимают преимуществ, которые дает трехфазное питание. Давайте посмотрим на различия между однофазным и трехфазным питанием, чтобы понять, почему трехфазное питание не только обеспечивает реальную экономию затрат, но и создает более эффективный центр обработки данных.

Проблема с однофазным двигателем

Обычная однофазная сеть на 120 В переменного тока, работающая при 60 Гц, не может обеспечить непрерывное питание.На этой частоте синусоидальная волна переменного тока пересекает нулевую точку 120 раз в секунду. Лучше всего понимать, что мощность измеряется в ваттах, а ватты – это произведение приложенного напряжения на амперы тока, протекающего в цепи (W = V x A).

Когда напряжение или ток пересекает нулевую точку, подаваемая электрическая мощность падает до нуля. На практике эти мгновенные падения до нуля не оказывают заметного влияния на оборудование в цепи. Например, если оборудование представляет собой двигатель, механическая инерция его вращающегося якоря «проезжает» через нулевые точки.(Однако эти пересечения нулевой точки действительно складываются. Двигатели, работающие от однофазного источника питания, имеют более короткий срок службы, чем двигатели, рассчитанные на трехфазное питание). Точно так же, если оборудование, находящееся под нагрузкой, представляет собой твердотельную электронику, сглаживающие конденсаторы в фильтре источника питания «буферизуют» эти нулевые точки.

Трехфазное питание, с другой стороны, состоит из трех синусоид, разделенных на 120 градусов. Эта форма мощности создается генератором переменного тока с тремя независимыми обмотками, каждая из которых находится на расстоянии 120 градусов друг от друга.Каждый ток (фаза) проходит по отдельному проводнику. Из-за фазового соотношения ни напряжение, ни ток, приложенные к IT-нагрузке, никогда не падают до нуля. Это означает, что трехфазное питание при заданном напряжении может обеспечить большую мощность. Фактически, это примерно в 1,7 раза больше мощности однофазного источника питания.

В последние годы увеличилась вычислительная мощность, которую можно сконфигурировать в одной стойке. Не так давно в стойке могло быть до десяти серверов, потребляющих 5 кВт. Теперь, из-за непрекращающейся миниатюризации и непрекращающегося развития технологий, одна и та же стойка может вмещать четыре или пять десятков серверов и потреблять более 15 кВт.

Однофазное питание стойки мощностью 15 кВт при 120 В переменного тока потребляет 125 А. Медь, необходимая для безопасного проведения этого тока, AWG 4, имеет диаметр почти четверть дюйма. [1] С ним сложно работать, и это дорого. Понятно, что однофазный режим для таких нагрузок нецелесообразен. Однако в трехфазной системе каждый проводник AWG 11 диаметром всего 0,09 дюйма может выдерживать только около 42 ампер. Если вы заинтересованы в более подробном изучении арифметики, стоящей за этим, прочтите наш блог «Трехфазные разветвители питания на 208 В (стоечные блоки распределения питания), раскрытие тайны, часть II: понимание емкости».

Как трехфазное питание может помочь

Ваш выбор энергосистемы может принести вам эффективность и экономию или негибкость и чрезмерные затраты. Однофазное питание идеально подходит для бытовых пользователей, у которых наибольшая нагрузка приходится на сушилку или электрическую плиту. Однако центрам обработки данных необходимо учитывать преимущества трехфазного питания. К ним относятся:

  • Может работать как с устройствами на 120 В переменного тока, так и на 208 В переменного тока от одного источника питания, при необходимости смешивая и согласовывая блоки PDU.
  • Трехфазный позволяет вам использовать все ваши устройства на 120 В переменного тока сегодня, но обновите до 208 В переменного тока, просто заменив PDU, что вы можете сделать быстро и без значительных простоев.
  • Стоимость кабельной разводки резко падает, если трехфазное питание подается непосредственно в серверные шкафы.
  • Уменьшаются объемы работы электриков, устанавливающих кабели переменного тока, и общее время монтажа.

Если вы ищете способы обеспечить соответствие вашего центра обработки данных требованиям будущего, используя трехфазное питание, узнайте, как блоки распределения питания вписываются в набор необходимых вам решений.

Спонсором этого сообщения в блоге является Raritan.

Как работает генератор?

Переносной генератор – это удобный способ безопасно производить собственную электроэнергию, когда сеть выходит из строя по естественным или искусственным причинам.Но как работает генератор? Независимо от того, являетесь ли вы новичком в использовании генератора или имеете большой опыт, вам нужно знать несколько вещей, чтобы использовать его безопасно.

🛠 Вы любите заниматься своими проектами. И мы тоже. Давайте вместе что-нибудь построим.

«Самое важное, что вы можете сделать для безопасной эксплуатации генератора, – это спланировать, как использовать генератор до того, как он вам понадобится», – говорит Кевин Коул, младший инженер производителя генераторов Generac. Спланируйте, что вы хотите питать и как вы будете использовать генератор для питания этих нагрузок.

➡️ Как работает генератор?

Прежде чем мы углубимся в спецификации и передовой опыт для домашнего генератора, важно отметить, что портативные генераторы – это не то же самое, что домашние резервные генераторы, которые представляют собой машины, которые постоянно подключены к вашему дому. Домашние резервные генераторы автоматически включаются, когда сеть перестает подавать электроэнергию в ваш дом, тогда как портативный генератор меньше по размеру и требует более тщательного планирования.

Переносные генераторы преобразуют механическую энергию в электрическую, часто для запуска процесса используется газ (хотя вы также можете найти дизельные и пропановые установки).Тем не менее, ваш генератор состоит из пяти основных частей: двигателя внутреннего сгорания, генератора переменного тока, стартера, топливного бака и розеток.

➡️ Требования к электрооборудованию

1) Размер имеет значение: Размер генератора должен соответствовать электрическим нагрузкам, которые вы собираетесь питать, с некоторой встроенной избыточной мощностью. Мы писали на эту тему, как и на многие другие , так что недостатка в хорошей информации нет. Если вы уменьшите размер генератора, вы создадите по существу те же условия, что и в случае отключения электроэнергии из-за недостаточного напряжения.Это может повредить что-нибудь большое, например, скважинный насос, или такое маленькое, как компьютер.

2) Использование безобрывного переключателя: Самый безопасный способ использования портативного генератора в качестве резервного источника питания в доме – это использовать его вместе с ручным безобрывным переключателем – прочным электрическим механизмом. Генератор подключается к безобрывному переключателю толстым и прочным кабелем, называемым «шнуром генератора», который подключается к розетке, установленной снаружи дома (эта розетка официально известна как «коробка подачи питания»). .Кабель внутри дома проходит от розетки до безобрывного переключателя. Электроэнергия от генератора проходит через шнур генераторной установки, к розетке, через внутренний кабель, к безобрывному переключателю и его автоматическим выключателям к различным цепям, которые вам нужны для питания – безопасно.

Передаточный переключатель имеет три цели:

  • Он изолирует электрические цепи в доме, которые вы хотите запитать; все остальные цепи остаются без доступа к питанию, что помогает предотвратить перегрузку.
  • Передаточный переключатель электрически изолирует генератор и дом от сети. Это предотвращает обратную подачу электроэнергии в сеть и искрообразование, а также травмы обслуживающего персонала, пришедшего для выполнения ремонтных работ и восстановления подачи электроэнергии.
  • Переключатель предотвращает подачу электроэнергии в дом при работающем генераторе, что может вызвать электрический пожар и, вероятно, вызвать возгорание генератора.

    3) Используйте переключатель GFCI на генераторе GFCI: Национальный электротехнический кодекс (NEC) требует наличия розеток GFCI (прерыватель цепи замыкания на землю) на генераторах с двойным напряжением (тех, которые вырабатывают 120 и 240 вольт).Для генераторов, оборудованных розетками GFCI, требуется автоматический переключатель, предназначенный для них. Этот переключатель можно назвать трехполюсным переключателем или просто переключателем, совместимым с GFCI, и он также требуется NEC. Когда вы включаете этот переключатель, вы не только отделяете цепи, питаемые генератором, от двух цепей на 120 В, питаемых электросетью, но также отключаете третью ветвь цепи, питаемой электросетью, называемую нейтралью. Если вы используете стандартный 2-полюсный переключатель на генераторе, оборудованном GFCI (который не отключает нейтраль), выходы GFCI отключатся.Использование этого переключателя является нарушением электрического кода, и, отключив розетки GFCI, вы ограничили возможности генератора. Это иронично, поскольку вы заплатили дополнительные деньги за защиту GFCI. Вы можете использовать 3-полюсный переключатель или 2-полюсный переключатель на всех других типах генераторов (без GFCI).

    4) Используйте шнуры для тяжелых условий эксплуатации (правильно): Предположим, у вас еще нет денег на установку переключателя. Вы можете безопасно управлять приборами, подключенными непосредственно к генератору.Вы можете привести в действие свой холодильник, электроинструменты и компьютеры (например), подключив к генератору длинные удлинители. Эти шнуры должны быть прочными и иметь достаточно толстую проволоку, чтобы выдерживать ток, протекающий через них; упаковка шнура сообщит вам, на какую электрическую нагрузку он рассчитан. Затем шнуры должны быть рассчитаны на использование вне помещений. Наконец, вы хотите проложить шнуры таким образом, чтобы они не повреждались, не перекручивались или не скручивались, особенно при питании мощного устройства, такого как обогреватель.Свернутые в спираль удлинители могут сильно нагреваться, они могут расплавиться.

    100-футовый удлинитель 12-го калибра Woods для сверхтяжелых условий эксплуатации

    Лес walmart.com

    104,93 $

    Существует правильная последовательность включения нагрузки через удлинитель. Запустите генератор и подключите к нему шнуры. Затем войдите внутрь и подключите нагрузки к удлинителю. Сделайте наоборот, когда пришло время отключить нагрузки.Отключите нагрузки от генератора, затем выйдите на улицу, отсоедините шнуры и выключите генератор.

    5) Узнайте, когда и как использовать заземляющий стержень: Не подключайте генератор к заземляющему стержню, когда вы подключаете нагрузки непосредственно к генератору с помощью удлинительных шнуров. Чтобы повторить это: если вы подключаете сверхмощный удлинитель к генератору и подключаете его к прибору, электроинструменту или устройству, пропустите заземляющий стержень.

    И наоборот, используйте заземляющий стержень при питании цепей через безобрывный переключатель.Подключите клемму заземления на генераторе к заземляющему стержню с помощью куска медного провода того же диаметра, что и самый тяжелый провод в цепи, которую вы запитываете. Например, если вы используете генератор для питания чего-то такого большого, как кондиционер на 240 вольт или электрическая плита, вам может понадобиться заземляющий провод 6 или 8 калибра.

    Lex20Getty Изображений

    ➡️ Безопасность по отношению к окиси углерода

    Как и большинство машин с малым объемом двигателя, генераторы производят большое количество окиси углерода (CO).Вы слышали, как мы говорили это раньше, но мы скажем это снова: никогда, ни при каких обстоятельствах не включайте генератор в гараже, хозяйственном здании или сарае (даже с открытой дверью), в подвале или в любом другом помещении. способ, которым окись углерода может накапливаться до такой степени, что становится смертельной.

    STA-BIL Стабилизатор топлива для хранения

    СТА-БИЛ walmart.com

    8,88 долл. США

    Кроме того, направьте выхлопную трубу генератора подальше от дома.Если возможно сориентировать генератор относительно преобладающего ветра так, чтобы ветер шел вниз от дома, сделайте это. Зафиксируйте генератор с помощью высокопрочной цепи и навесного замка.

    Наконец, многие генераторы оснащены детекторами CO, которые отключают машину до того, как CO накапливается до точки, когда он становится смертельным. Хотя генератор, оборудованный таким образом, немного дороже, чем генератор без такой технологии, это все же хорошая идея.

    ➡️ Качество и безопасность топлива

    Не заправляйте горячий генератор, не заправляйте его при наличии обогревателя или другого горячего объекта (например, гриля для барбекю), который работает поблизости, и не храните топливо контейнеры возле генератора.Обратите особое внимание на то, что глушитель генератора может быть достаточно горячим, чтобы расплавить пластик. Представьте себе это: вы выключаете генератор и кладете к нему газовый баллон, пока ждете, пока генератор остынет – в процессе вы забываете, что глушитель раскаленный докрасна, и он небрежно расплавляет дыру в стенке глушителя. -размещен газовый баллончик.

    Поддерживайте запас топлива. Если вы покупаете топливо оптом, чтобы хватило на несколько дней или дольше, используйте стабилизатор топлива, чтобы замедлить химическое разложение топлива. После того, как аварийная ситуация прошла, тщательно удалите топливо из генератора.Дайте машине прогреться и слейте газ из карбюратора и топливных магистралей. Химически испорченное топливо может оставлять остатки, затрудняющие перезапуск генератора.

    ➡️ Безопасность при погодных условиях

    Люди творчески строят всевозможные сооружения из брусчатки, чтобы защитить свои генераторы от ветра, дождя и снега. Если предположить, что они не будут взорваны или разрушены, все в порядке, но оставьте воздушное пространство в пять футов от генератора до окружающих поверхностей; это предотвращает перегрев генератора и снижает риск возгорания.Если вы предпочитаете решение «под ключ», вы можете купить заводское покрытие для работы генератора в ненастную погоду, например, Gen Tent.

    ➡️ Эксплуатационная безопасность: проведите пробный запуск

    Единственный способ убедиться, что ваша система работает правильно, – это тщательно протестировать ее сразу после установки. Не ждите аварийной ситуации, сделайте полный тестовый запуск, пока все в норме и вы спокойны. Вы можете узнать несколько вещей. Все может работать от генерируемой энергии так же легко, как и от электросети.Или не может. Когда тестовый запуск указывает на проблемы, необходимо проверить несколько вещей.


    4 отличных портативных домашних генератора

    Самый мощный

    Переносной генератор DuroMax XP12000EH

    DuroMax amazon.com

    $ 1399,00

    Этот двухтопливный генератор с пусковой мощностью 12000 Вт может работать на пропане или электричестве и имеет электрический запуск и отключение при низком уровне масла.

    Тихий

    Champion 4000-ваттный инвертор-генератор с открытой рамой

    Чемпион amazon.com

    603,75 долл. США

    Этот Champion тише и легче, чем генераторы такой же мощности, и его можно подключать к домам на колесах или к домашней розетке, а также работать на газе до 17 часов.

    Портативный

    WEN 56200i Газовый инверторный генератор мощностью 2000 Вт

    Этот компактный генератор с емкостью на один галлон и множеством розеток безопасен для зарядки электроники.

    Удаленный запуск

    Портативный генератор Westinghouse WGen7500

    Westinghouse amazon.com

    849 долларов США

    Благодаря дистанционному брелку и простому запуску с помощью кнопки вы можете безопасно запустить этот генератор на расстоянии до 260 футов от вашего дома на газе или пропане.


    1) Отключение выходов GFCI: Это указывает на то, что в цепи, которую питает генератор, есть замыкание на землю, или что использовался несовместимый двухполюсный переключатель.Установка 3-полюсного безобрывного переключателя должна решить проблему. Если это не так, вам нужно найти место замыкания на землю, скрывающееся где-то в электрической системе.

    2) Сработавшие выключатели: Вы что-то перегрузили – попробуйте лучше управлять питанием. Например, вы могли рассчитать потребляемую мощность вашего скважинного насоса. Если выясняется, что двигателю насоса требуется больше мощности, чем вы думали, настройте потребление энергии так, чтобы ничто другое не потребляло мощность (или только незначительную мощность), и позвольте скважинному насосу иметь полный доступ к полной мощности генератора, когда он заряжает хорошо танк.Последнее, что вам нужно, – это пониженное напряжение для больших нагрузок, таких как скважинный насос, что в конечном итоге приведет к его повреждению. Электродвигатели могут в течение первых нескольких секунд запуска увеличивать ток в три раза превышающий их номинальный.

    3) Устройства, которые отказываются работать или работают плохо при питании от генератора: Для этого есть множество причин, от небрежной установки переключателя до неисправности самого генератора . Недорогим генераторам (от компаний, о которых вы никогда не слышали) может не хватать качества их электрической мощности.Например, генератор выдает 120 вольт, но не постоянно. Эти плохие новости становятся еще хуже, когда размер генератора меньше. Теперь его низкое качество электроэнергии при нормальных условиях эксплуатации становится еще хуже, поскольку к нему предъявляются повышенные требования.

    И недорогая бытовая электроника (тот огромный телевизор с плоским экраном, который был подозрительно недорогим в крупных магазинах розничной торговли), и крупная бытовая техника часто имеют плохую фильтрующую способность в цепях постоянного тока. Оба они могут быть уязвимы из-за низкого качества электроэнергии, производимой генераторами, производимыми компаниями-однодневками.Это приведет к повреждению вашей техники или электроники.

    Мы советуем придерживаться известных брендов генераторов, особенно производителей, входящих в Ассоциацию производителей портативных генераторов. Это не гарантия от проблем с качеством электроэнергии, но, безусловно, улучшает шансы.


    🎥 Смотри:

    Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

    Сколько электроэнергии мне нужно для дома? – Энергид

    • При нормальном потреблении энергии , мощности, подаваемой вашим счетчиком ( 9,2 кВА в среднем ), должно хватить. Теоретически это позволяет одновременно питать устройства максимальной мощностью 9,2 кВт или 9200 Вт. Поскольку вы никогда не используете все свои электроприборы одновременно, для вашей базовой установки на практике должно быть более чем достаточно .
    • Если у вас есть специальные установки, потребляющие много энергии, такие как сауна, гончарная печь или электромобиль, то этой мощности может быть недостаточно.

    Как рассчитать максимальную мощность, которую может обеспечить моя электрическая установка?

    Чтобы рассчитать максимальную мощность, которую может выдать ваш счетчик (выраженная в вольтах-амперах), умножьте напряжение (U) на интенсивность (I) тока, который подается в ваш дом.

    • Большинство домов снабжается однофазным напряжением 230 вольт (В) , с силой тока 40 ампер (А). Таким образом, максимальная мощность составляет: 230 В x 40 А = 9 200 вольт-ампер (9 200 ВА) или 9,2 кВА
      .
    • Формула, используемая для определения емкости для трехфазного соединения на 230 В или 400 В, идентична, то есть: √3 x U x I. Так, например, если у вас установлен дозатор на 25 А, максимальная мощность рассчитывается следующим образом *:
      3 x 230: √3 x 230 В x 25 А = 9947.5 ВА
      3 x 400 + N (нейтральный провод): √3 x 400 В x 25 A = 17 300 ВА

    (*) Для быстрых вычислений или для удобства √3 часто заменяется приблизительным значением 1,73. Мы использовали тот же номер и здесь. Интересный факт: разница между обоими исходами – фактор … 1,73! И это объясняется тем, что напряжение 400 В также бывает на 1,73 больше, чем 230 В.

    Как мне узнать, достаточно ли электроснабжения моего счетчика?

    Если вам требуется больше электроэнергии, чем может обеспечить ваш счетчик, выключатель питания срабатывает для защиты вашей установки.

    Если ваш выключатель питания регулярно отключает , это означает, что ваша установка не имеет достаточной мощности для ваших требований.

    Какая мощность измерителя (в кВА) для какой силы (в амперах)?

    Чем больше напряжение и интенсивность, тем больше энергии потребуется вашему счетчику. В таблице ниже показана мощность, необходимая для обеспечения необходимой интенсивности.

    Ампер

    Питание в
    230 В, одинарный hase
    (в кВА)

    Мощность в
    230 В трехфазный
    (в кВА)

    Мощность в
    400 В, трехфазный

    (в кВА)

    16 3,7 6,4 11,1
    20 4,6 8 13,9
    25 5,8 10 17,3
    32 7,4 12,7 22,2
    40 9,2 15,9 27,7
    50 11,5 19,9 34,6
    63 14,5 25,1 43,6

    Как я могу увеличить электрическую мощность моей установки?

    Хотите увеличить электрическую мощность вашей установки? Пожалуйста, сначала обратитесь за советом к электрику .Он может предоставить вам дополнительную информацию о наиболее подходящем решении для ваших нужд. Есть 2 возможности :

    • увеличение мощности счетчика (если ваша электрическая установка может с этим справиться) и сохранение однофазного тока.
    • переключение на трехфазное питание и возможное увеличение мощности.

    Для таких модификаций вы должны всегда связываться с Sibelga, оператором системы распределения природного газа и электроэнергии в Брюссельском столичном регионе.Сибелга отвечает за подключение к электросети независимо от поставщиков энергии.

    Хотя вам будет выставлен счет за установку, это не повлияет на ваш ежемесячный счет, который не будет увеличиваться.

    Ввод электричества в деревянный дом своими руками. Прокладка кабеля в здании. Установка вводного устройства.

    Чаще всего в населенных пунктах с преобладанием частных домов используются воздушные линии электропередачи.Однако можно использовать и кабельные подземные линии.

    Часть такой линии от ближайшей опоры до входа в дом обычно называют ответвлением. Его можно прокладывать по воздуху или под землей. Законодательно определено, что филиал принадлежит собственнику ЛЭП. В его обязанности входит обслуживание, эксплуатация и реконструкция филиалов. Самостоятельная работа без согласия собственника ЛЭП запрещена.

    До недавнего времени электрическое оборудование в доме ограничивалось розетками и несколькими типами разъемов, которые зажигали лампы.В настоящее время это семейство определенно более развито. Однако устройство приобрело не только новые возможности, поскольку его производители становятся более активными.

    Издано местной энергетической компанией. В современных домах менее десяти лет назад несчастные случаи происходили из-за поражения электрическим током, перенапряжения или пожара. Исследователи изменили первоначальный план и решили воспроизвести характерный климат в новом интерьере, используя такие материалы, как бетон, необработанный кирпич и сталь, а также отличительные особенности: видимые трубы и электропроводку с «фабрикой».

    Чтобы создать новую ветку и подключить ее к входу в здание, у вас должен быть проект, который необходимо согласовать с представителями линейного владельца перед началом работ. В документе должен быть отражен перечень всех технических решений и материалов.

    Если самостоятельно выполнить разветвление затруднительно, то следует заключить договор с энергоснабжающей организацией на подключение здания к ЛЭП и оплату оказания услуги.

    Для каждого дома, для каждого пользователя Нет доступа к электрической системе с соответствующими параметрами, это проблема, которая все еще встречается во многих польских домах. В настоящее время гипсовую штукатурку кладут чаще, чем цементно-известковую. Они быстрее, элегантнее, гибче, удобнее и удобнее в носке, обладают хорошей адгезией. Их твердые, светлые поверхности – идеальная основа для красок. Мокрые штукатурки можно использовать только внутри помещений.

    Установка аксессуаров в несколько рамок дает возможность создавать дизайнерские украшения и подчеркивает новаторский характер вашего пространства.Сдержанное размещение электрических кабелей под штукатуркой дополняет монтаж, а изысканный дизайн прекрасно сочетается с декором любого интерьера.

    По старым правилам ответвления для частных домов с однофазной схемой выполнялись двумя проводниками:

      L – фаза;

      PEN – ноль комбинированный.

    В трехфазных цепях используется 4 проводника: трехфазный (L1, L2, L3) и один совмещенный ноль.

    Существующие правила эксплуатации требуют разделить комбинированный нейтральный провод PEN на входе в дом по адресу:

    Алмазная резка керамики для плитки и камня

    Следовательно, желательно подготовить как минимум несколько выводов во время монтажа электросистемы дома и дома. отсоедините провода, необходимые для питания внешних устройств.Это должно быть сделано так быстро, что вам не придется. Образование пыли при бурении и водяном охлаждении. Это одно из решений, продлевающих жизнь устройства.

    Система гипсокартона для подвесных потолков

    Подвесные потолки также играют декоративную роль за счет использования надрезов, переходов и даже стамески.

    Об установке систем сигнализации в доме
    Требуется обременительная прокладка кабелей в конечных помещениях или более дорогая беспроводная технология. Даже если строительный бюджет не предусматривает установку разветвленной системы охранной сигнализации, ее рекомендуется устанавливать с некоторым запасом, обеспечивающим функциональность.

    Для этого используются искусственные заземлители, которые дополнительно повышают безопасность эксплуатации ЛЭП и не противоречат требованиям действующих правил.

    Подключение жилого ввода к воздушной ЛЭП

    Место раскола можно выбрать на ближайшей опоре ЛЭП или в электрощите дома. Эта технология описана в статье.

    Вы устанавливаете систему у себя дома. С чего начать Приобретать сигнализацию лучше всего в компании, рекомендованной друзьями или знакомыми.Хорошо, если это касается как складывания, так и последующего обслуживания сигнализаций, и работает ли она на рынке.

    Теплые полы на электричество. Электрический подогрев пола не обязательно должен быть дорогим. Итак, вместе с семьей Зеленских приступаем к отделке дома. Благодаря тому же количеству энергии они обеспечивают более сильное ощущение тепла по сравнению с конвекционным нагревом. К тому же рост пыли намного меньше, чем при конвекции. Одноквартирные дома обычно оборудуют электрическими радиаторами, которыми оборудованы ими.

    При выполнении колки внутри здания необходимо учитывать вероятность обрыва или сгорания нулевого проводника в ЛЭП. На приведенном ниже рисунке ясно показано, что в случае чрезвычайной ситуации через установленное повторное заземление дома на него будет подаваться электричество от всех близлежащих филиалов.

    Экономить на данном этапе строительства нецелесообразно. Они могут доставить массу неприятностей. Благодаря ей такая штукатурка смотрится намного лучше, чем просто окрашенная обычной краской.Электромонтаж также должен быть безопасным. Электрообогреватель и его установка обходятся намного дешевле, чем установка газового обогревателя или системы: бойлера и соответствующего резервуара для горячей воды. Тем не менее следует убедиться, что эксплуатационные расходы устройства также являются рациональными. Может, тебе просто нужно это исправить.

    Вместе с семьей Зеленских подходим к концу дома. Все о шторках, складках и жалюзи, собранных изнутри. Варшавский дом – электрическая дрель. Сидеть не привыкаешь – купи себе.Мелкий ремонт – выпадение ручки двери. Самый эффективный способ получить чистую воду.


    Схема работы ответвления ВЛ 0,4 кВ для частного дома с повторным заземлением при обрыве нуля на линии (нажмите на картинку для увеличения)

    В этой ситуации нагрузка на отводной провод PEN-проводника значительно возрастет, он сильно нагреется и может перегореть. Этого можно избежать, используя провода большой мощности, которые выдерживают ту же токовую нагрузку, что и линии электропередач.

    Электрический. Похоже, запускается домашняя электрическая установка. Однако его истинное происхождение лежит в головах владельцев, которые должны заранее определить свои «текущие» потребности и среду, а затем выбрать хорошего электрика. Кабины с джакузи Когда дешево.

    Электрические водонагреватели

    Баки-водонагреватели нагревают всю воду, содержащуюся в них, и быстро гасят теплоизоляцию. При понижении температуры воды в них термостат включает ТЭН. Такие могут работать диммером, потом загораться, а свет гаснуть медленно; Сигнализация с датчиками газа В дополнение к аксессуарам, используемым для классической электрической установки, существуют также специальные датчики и программируемые переключатели и кнопки, используемые для проводки.Интеллектуальная установка.

    Для этого для ответвления PEN-проводника выбирается провод с площадью поперечного сечения S, равной тому же значению для провода S-линии.

    При разделке PEN-проводника непосредственно на опоре ВЛ для хозяина дома эта задача упрощается, и нет необходимости делать большой запас проволоки по толщине. Их можно уменьшить до разумных пределов, обеспечивая нормальное протекание тока нагрузки. Но к распределительному щиту дома придется тянуть три жилы, а не две для однофазной цепи, а пять, а не четыре для.

    Прежде чем приступить к установке электрической системы. Большинство из них могут быть дополнительно оснащены электронагревателем, что позволяет обогревать помещение в отопительный сезон. Для людей, у которых нет центрального отопления, и которые хотели бы. В комплект поставки каменки входит шнур питания длиной 1,5 метра, винты и колпаки.

    Установка дома Специальный номер

    Он состоит из пяти компонентов: панели, инвертора, монтажной конструкции, безопасности и проводки. Производство энергии профессионально установленной установкой является безопасным, экологически чистым и эффективным – это позволяет.Подъездная дорога, крыша и желоб без льда.

    Состав жил кабеля для подключения к ответвлению с повторным заземлением на опоре по схеме TN-C-S

    Переход от системы TN-C к TN-C-S определяется расположением схемы разделения проводников PEN.

    Фотоэлектрические панели и тепловой насос: хорошо выбранная компания

    Электрооборудование в наших домах. Есть два типа инверторов: сетевой – используются при планировании неиспользованной части электроэнергии для перепродажи в энергосистему.Монтаж с таким инвертором вызывают сетевые специалисты. В такой системе устанавливается электростанция.

    Декоративные радиаторы как произведения искусства

    Электропитание необходимо для питания духовки, освещения и, возможно, внешнего контроллера. Можно ограничиться одной лампой, установленной над задней частью верхнего сиденья. До недавнего времени обогреватель считался необходимостью. Затененные, закрытые, скрытые под углами. Теперь все чаще при выборе мы учитываем не только вопросы удобства использования, но и смотрим на радиаторы еще и с их ракурса.

    Для подключения зданий по схеме TN-C повторное заземление и расщепление PEN-проводника не производится, а количество жил в кабеле уменьшается на одну.

    Подключение жилого ввода к подземной кабельной ЛЭП

    Все принципы реализации электрической схемы, рассмотренные для воздушной линии электропередачи, полностью соответствуют требованиям для присоединения к кабельным линиям. Отличия заключаются в способах расположения и механическом соединении компонентов навесной секции.Коммутация жил ответвления кабеля на линию метро осуществляется в специальном металлическом шкафу.

    Безопасность установки: датчики и другие функции безопасности

    Прежде чем мы решим установить электрическую систему или выбрать лампу, давайте посмотрим, где мы будем чаще всего останавливаться после наступления темноты. Занятые места по соображениям безопасности всегда следует выделять. Короткое замыкание в электросети, утечка газа, труба для утечки воды – все эти опасности мешают жителям домов.Мы обеспечиваем безопасность в первую очередь: – выбирая правильную команду – опытную, обеспечивая гарантию вашего обслуживания.

    Для его установки необходимо выполнить фундамент, обеспечивающий устойчивость конструкции при деформации грунта при промерзании зимой и в условиях осенне-весенних оттепелей.

    Материал и конструкция шкафа должны соответствовать требованиям повышенной прочности, чтобы противостоять попыткам вандалов проникнуть в электрическое оборудование.Для этого такие шкафы рекомендуется поднимать на высоту более двух метров. Такие же шкафы часто располагаются на опорах ВЛ.

    Обязательно посмотрите на шнур питания помпы. Это должен быть кабель, предназначенный для закапывания в землю, с двойной электрической изоляцией, которую нельзя сломать или разрезать. В противном случае во время работы в сети может возникнуть проблема отключения.

    Наземный тепловой насос: как купить, как установить, как использовать?

    На ручке нужно вызвать сервис.Если электрический кабель, проходящий через центр пылесоса, поврежден, лучше использовать радиосистему вместо стены и пола. Что делать, если в пылесос попадет ценный предмет? Однако помните, что чем больше разница температур между нижним и верхним.

    Все работы на воздушной линии электропередачи и метрополитене кабельной линии, включая установку ответвлений, выполняются исключительно по утвержденному проекту местной обслуживающей организацией. Самостоятельное подключение строго запрещено и опасно для жизни!

    Конструктивные особенности воздуховода

    Как заменить и переместить электрические розетки

    Пожалуйста, замените предохранитель электрическими предохранителями. Подготовьте установочный паз, ослабив винт на передней части крышки, снимите его и снимите раму. Они предназначены для защиты отдельных электрических цепей от воздействия коротких замыканий и перегрузок. Умещается на каждой цепочке.Они реагируют на любую неисправность в установке, быстро отключая питание.

    Kitchen Islands – Как спланировать, что им нужно?

    В этом случае вы можете привести независимый адрес. В этом случае нужно спланировать полный монтаж сантехники и канализации, электромонтаж. Действуйте, вы должны установить их электрически; Он должен быть защищен дифференциальным автоматическим выключателем. Каждую неделю свежие новости по строительству, ремонту и украшению ваших писем. ложь ложь.

    Провода электрической цепи крепятся к опорам через фарфоровые, стеклянные или полимерные изоляторы. В случае использования самонесущих кабелей CIP используются специальные крепления, которые продаются вместе с кабелями. При размещении ветки важно выдерживать все расстояния, обеспечивающие безопасное использование электроэнергии.

    Радиаторы для ванных комнат лучше всего подходят для вашей ванной комнаты

    В прошлом году наиболее популярными стали традиционные водонагреватели, подключенные к системе центрального отопления.Большинство из них можно дополнительно укомплектовать электронагревателем, что позволяет утеплять ванную комнату и в отопительный сезон.

    Функциональное разделение малогабаритной квартиры

    У кухни отняли входную дверь и одну стену, которую расширили. Таким образом, у нас появилось дополнительное пространство для оборудования и рабочего стола, и салон визуально не упускал это пространство из виду », – поясняет дизайнер. Вся квартира числилась электричеством и сантехникой.


    Особенности конструкции воздуховода (для увеличения нажмите на картинку)

    Если расстояние от ближайшей опоры до входа в дом превышает 25 метров, то необходимо установить дополнительную опору как промежуточную.При расположении проводов над проезжей частью дороги минимальный прогиб нижнего провода не должен быть менее 6 метров.

    Сколько можно сэкономить, пригласив архитектора?

    Нашлось место для необходимых аксессуаров и оборудования. Убедитесь, что в вашем саду правильное освещение. Или купите готовые квартиры. Когда квартира готова, сантехника и оштукатурены стены, отделка квартиры в нынешней планировке или дорогостоящие изменения.

    Интуитивно понятный переключатель с подсветкой, расположенный непосредственно на обогревателе, контролирует его работу.Вы можете подключить обогреватель к электрической розетке или напрямую к электроустановке. Обогреватель поставляется с 1,5-метровым шнуром питания, винтами и компонентами.

    Если необходимо проложить кабели над дорожками, они должны быть установлены на высоте более 3,5 метров. Расположение изоляторов на стене дома выбирается таким образом, чтобы прикрепленные к ним провода располагались над землей не ниже 2,75 метра. Недопустимо выращивать деревья и даже кустарники под электрическими проводами.

    Сколько стоит теплый пол?

    Автоматизация позволяет настроить домашнюю среду в соответствии с меняющимися условиями. Если ночью он улавливает мигание, система настроит котел и вентиляцию так, чтобы условия были запрограммированы: когда мы спим – комфортная, немного более низкая температура, а когда нет.

    Чем больше расстояние между антенными кабелями и электрическими соединениями, тем ниже риск возникновения электромагнитных помех вокруг электрической системы.Каждую неделю свежие новости о строительстве, ремонте и отделке интерьера. Инвестиции Наиболее рекомендуемый вариант – воздушный тепловой насос, так как он не требует установки ниже. Просто перенесите подставку под наружный блок, затем установите внутренний блок, подключите оба устройства к двум трубам и, наконец, выполните проводку.

    Над стационарными изоляторами могут быть элементы кровли, балкон и другие архитектурные сооружения. Расстояние от них до токоведущих частей должно быть больше 0.2 мес. Для подключения изолированных алюминиевых проводов к линии используются скрученные или специальные зажимы.

    Правила установки ответвлений с отдельными проводами


    Этот метод широко использовался до продажи самонесущих изолированных кабелей CIP. Для ее использования проход через стену выполнен изолированным проводом, который дополнительно отделен от стены фарфоровой гильзой, воронкой и полутвердой изоляционной трубкой из резины или полиэтилена.

    Каждый провод цепи закреплен на своем изоляторе, установленном рядом с вводом. Его можно сделать общим для всех проводов, но они должны быть проложены отдельными изолированными трубами. Изоляторы на стене дома должны быть удалены друг от друга не менее чем на 20 см.

    Правила прокладки кабеля

    Для малоэтажных зданий используется опора для труб, а ввод кабеля осуществляется через крышу.


    При использовании этого метода необходимо обеспечить удаление кабеля от крыши на 2 метра и более.Стойку для труб требуется подключить к заземляющему контуру дома.

    В некоторых случаях удобно использовать поддельный пост.


    В этом случае рекомендуется также проложить кабель по опоре в стальной трубе.

    При любом способе подключения ответвительные провода или кабель должны быть целыми, без разрывов и соединений. Они должны быть подключены одним концом к линейным изоляторам, а другим концом непосредственно к клеммам вводного автомата для переключения на электросчетчик.

    Установка устройства ввода

    Длинные магистральные линии соединяют множество потребителей с трансформаторной подстанцией. При транспортировке электрической энергии происходит постоянное переключение нагрузок, сопровождающееся переходными процессами, колебаниями мощности, колебаниями токов, напряжений, частот.

    Во время грозы существует вероятность попадания энергии молнии в воздушные линии электропередач. Все эти неисправности призваны устранить защиту линии, но до момента их срабатывания может быть затронута проводка дома.

    Следовательно, между линией электропередачи и распределительным щитом дома необходимо установить еще один шкаф, который выполняет функцию защиты электрооборудования здания от ненормального проникновения в электропроводку, периодически возникающего на линии электропередачи. Это называется вводным приспособлением. Он содержит:

      мощный выключатель или заменить его обычным выключателем серии РБ-31 с комплектом предохранителей, оснащенных мощными плавкими вставками на токи около 100 А;

      разрядников или молниеотводов, защищающих от проникновения с высоким потенциалом молнии;

      pEN разделяющая цепь проводника, подключенного к повторному заземлению.

    На рисунке ниже показана конструкция трехфазного входного устройства. Для однофазной схемы ее упрощают за счет использования элементов только одной фазы.


    Устройство ввода можно разместить непосредственно на опоре ЛЭП или на стене дома снаружи. Его конструкция для подключения к подземным кабельным линиям устроена так же, как и к воздушным линиям.

    Наличие повторного заземления в доме требует установки молниезащиты и системы SPD.

    В заключение еще раз отметим, что все работы на линиях электропередач и их опорах разрешается выполнять только обученному и уполномоченному персоналу организации, которой поручено это электрооборудование.

    После постройки бокса дома к нему подключены коммуникации, и в первую очередь электричество. Эта процедура хоть и не сложная, но требует строгого соблюдения основных правил и учета ряда нюансов.Ниже мы рассмотрим, как сделать ввод электричества в деревянный дом своими силами по всем правилам.

    Подключение электричества к распределительному щиту

    Прежде всего, следует сказать, что самая сложная часть сети – это разрыв от ЛЭП до распределительного щита дома. Причем подключение домашней электропроводки к ЛЭП должно производиться исключительно специалистами, имеющими разрешение на проведение таких работ. Однако все остальные действия можно провести самостоятельно, что значительно снизит стоимость подключения.

    Провести кабель в дом и ввести в него можно двумя способами:

    • Воздух – этот способ монтажа самый простой и дешевый. Однако он не лишен недостатков, а именно, кабель может быть поврежден ветками, снегом с крыши, сильным порывом ветра и т. Д.
    • Под землей – такая установка намного надежнее, безопаснее и эстетичнее. Однако сложность работы в этом случае значительно увеличивается. Если доверить прокладку кабеля специалистам, то стоимость их услуг будет довольно существенной.

    Ниже мы более подробно ознакомимся с функциями ввода каждого из этих методов.

    Air

    Воздушный метод заключается в подвешивании кабеля от опоры до точки входа. При этом подключение к линии, а также ввод электрического кабеля в деревянный дом осуществляется с помощью фарфоровой арматуры.

    Примечание!
    При прокладке кабеля по воздуху расстояние от точки входа в дом до земли должно быть не менее 2.75 метров.

    Для электроснабжения деревянного дома обычно используют СИП-кабель (самонесущий с изоляцией). Главное его достоинство – долговечность.

    Кроме того, изоляция кабеля сделана из качественного полиэтилена, который не портится под воздействием солнца. Благодаря этому проволока может прослужить долгие годы. Однако следует учитывать, что ввод SIP-кабеля в деревянный дом запрещен ПЭУ.

    Поэтому перед вводом необходимо перейти на кабели ВВГнг, КВВГнг через фарфоровую арматуру.В противном случае ввод самонесущего изолированного провода в деревянный дом будет считаться нарушением пожарной безопасности.

    Следует отметить, что при подаче электроэнергии воздушным транспортом монтаж кабеля производится специалистами службы электроснабжения, поэтому подготовить КРУ и точку ввода можно только самостоятельно.

    Для организации прохода проводов в стене проделываются отверстия и в них вставляются металлические гильзы из толстостенных труб. Расположение отверстия выбирается таким образом, чтобы в зоне ввода кабеля не образовывалась влага и наледь зимой.

    Примечание!
    Можно сделать технологическое отверстие в стене или чердачном полу, но не в крыше, оконном проеме или водосточных устройствах.

    На фото – точка ввода электроэнергии

    Согласно СП 31-110-2003 толщина стенки трубы, используемой в качестве рукава, должна быть следующей:

    С внешней стороны трубы должны выходить 20-30 см от стены. В самом доме в качестве дополнительной защиты кабель ВВГнг помещен в гофрированную пластиковую трубу, имеющую сертификат пожарной безопасности НПБ 246-97.

    После ввода кабеля осталось только подключить его к штатному щитку учета с автоматической защитой.

    Метро

    Для прокладки в траншее использовать кабель марки ВВБШв. Прокладывается в трубах на глубине не менее полуметра и не более двух метров от поверхности земли. Причем в одной трубе допускается затягивать не более одного силового кабеля.

    Примечание!
    По правилам ПУЭ вводной кабель должен иметь сечение не менее 16 мм 2.

    Трубы проложены до помещения, в котором находится вводно-распределительное устройство. В траншеях их следует укладывать с небольшим уклоном в сторону улицы. Для предотвращения проникновения влаги и газа в помещение концы труб и место их прохождения через стену необходимо тщательно загерметизировать.

    Примечание!
    Кабельный ввод в деревянный дом под землей разрешается через отверстие в фундаменте или над ним.
    Кабельный ввод под фундамент категорически запрещен!

    Защита входного кабеля

    Участок сети от входа до распределительного щита наиболее опасен, так как не защищен от скачков напряжения, коротких замыканий и т. Д.

    Следовательно, электрический ввод в деревянный дом должен иметь один из следующих видов защиты:

    • Ввод электрического провода в деревянный дом по толстостенной металлической трубе – этот вариант можно использовать, если расстояние от проход через стену к щиту не более 3 м и путь к нему пролегает с минимальным количеством изгибов. Дело в том, что протащить через несколько витков провод большого сечения очень сложно.
    • Установка дополнительной защиты на вводе – в этом случае на наружной стене здания устанавливается двухполюсный выключатель типа А3, который подключается к разрыву кабеля.Его номинал подобран так, чтобы он был на единицу больше, чем машина в доме. Это необходимо для того, чтобы в первую очередь сработала защита в помещении, а не приходилось подниматься по лестнице под крышей дома. (См. Также статью.)
      Преимущество этого метода в том, что он позволяет установить распределительный щит в любом удобном месте и подвести к нему кабель по наиболее логичному пути. Однако ввод кабеля в деревянный дом через стену все же должен осуществляться по указанным выше правилам.
    • Установить защиту непосредственно на столб, от которого осуществляется воздушный отвод. Этот метод, как правило, применяется в реконструируемых и вновь подключенных дачных участках. Его преимущество в том, что защита обеспечивается для всего сайта, на который собирается ветка.
      Однако в случае работы автомата необходимо будет вызвать специалиста для его включения, и этот вызов в большинстве случаев является платным.

    Таким образом, наиболее оптимальным вариантом защиты является установка дополнительной машины вне здания.

    Вот, собственно, и все основные правила подачи электричества в деревянный дом.

    Особенности электромонтажа

    После устройства распределительного щита в деревянном доме можно выполнять электромонтаж с подключением выключателей, розеток и осветительных приборов. Для этого в первую очередь необходимо составить схему подключения.

    На этом этапе необходимо тщательно продумать расположение всех электроприборов в доме, что позволит спланировать оптимальное расположение розеток.Такой подход позволит избежать дальнейших переделок и использования удлинителей.

    Что касается прокладки самих проводов, то в деревянных домах их обычно монтируют следующими способами:

    • Открытый – самый простой, но в то же время неэстетичный вариант проводки, при котором провода просто крепятся к стены и потолок с помощью специального крепежа. К тому же этот способ далеко не самый безопасный, ведь согласно ПУЭ провода не должны касаться поверхности стен.
    • В кабельных каналах – этот вариант выполнения разводки своими руками несколько сложнее, однако имеет ряд преимуществ. Он приобретает более аккуратный вид, к тому же все провода защищены гибкими крышками, что делает проводку более безопасной.

    Примечание! №
    Инструкция по электромонтажу в деревянном доме категорически запрещает выполнение «скручивания».
    Все провода должны быть подключены с помощью специальных зажимных клемм.

    После завершения электромонтажа его следует подключить к распределительному щиту.Перед этим желательно пригласить профессионального электрика, чтобы он проверил, насколько правильно выполнены все работы. (См. Также статью.)

    Выход

    При подключении деревянного дома к электричеству, ряд работ можно выполнить самостоятельно. Однако необходимо помнить, что дерево – легковоспламеняющийся материал, поэтому необходимо строго придерживаться вышеперечисленных правил и требований ПУЭ. Наиболее ответственные этапы ввода электроэнергии следует доверить квалифицированным специалистам.

    Вы можете увидеть дополнительную информацию по этой теме из видео в этой статье.

    Электрификация: история освещения наших домов

    Alexa, выключи свет

    Освещение наших домов, сообществ и городов сегодня стало более высокотехнологичным, чем когда-либо прежде. Уличные фонари включаются и управляются дистанционно, в то время как дома освещаются щелчком переключателя, голосовой командой AI или даже дистанционным управлением с работы.

    Традиционные лампы накаливания постепенно выводятся из употребления во всем мире и заменяются более энергоэффективными галогеновыми, светодиодными и OLED-альтернативами – все они производят больше света при меньшем потреблении энергии.Умные и эффективные солнечные лампы, такие как Маленькое Солнце художника Олафура Элиассона и инженера Фредерика Оттенсена, все чаще приносят яркий свет в сельские районы и те, у кого нет доступа к надежному источнику питания.

    Коллекция Музея науки Солнечная лампа «Маленькое солнышко» от Олафура Элиассона и Фредерика Оттенсена

    В домашних условиях схемы освещения становятся все более изощренными. В своей книге « 43 Принципы дома » 2009 года дизайнер Кевин МакКлауд описывает использование нескольких типов освещения – рабочего, окружающего, направленного и декоративного – при разработке «хорошей схемы освещения».Трудно устоять перед соблазном добавить еще больше света в наши дома.

    Но что мы потеряли в нашем освещенном мире? Прогуляйтесь по окраинам пригорода ночью, и вы никогда не погрузитесь в полную темноту – сияние города или «небесное сияние» постоянно присутствует на горизонте. По оценкам, 80% мирового населения живет с этим свечением неба. Его протяженность можно увидеть из космоса по спутниковым снимкам, показывающим ярко освещенную Землю.

    Влияние света и светового загрязнения на природу, включая людей, требует дополнительных исследований.Например, хотя переход от традиционных уличных фонарей на натриевых парах с их желтым свечением к более энергоэффективным белым светодиодам звучит неплохо, данные показывают, что дополнительный ультрафиолетовый свет, излучаемый многими из них, беспокоит дикую природу.

    Конечно, слишком много освещения – это роскошь, которой нет у большей части населения мира. Пришло время более вдумчиво и продуманно использовать световые технологии, относясь к искусственному свету как к драгоценному ресурсу.

    Электричество и хранение энергии – Всемирная ядерная ассоциация

    (обновлено в августе 2021 г.)

    • Накопление электроэнергии в больших масштабах стало основным объектом внимания, поскольку прерывистые возобновляемые источники энергии стали более распространенными.
    • Насосный накопитель хорошо налажен. Разрабатываются и другие мегаваттные технологии. Они могут обеспечить диспетчерскую мощность в соответствии с требованиями спроса.
    • Хранилище, дополняющее периодически возобновляемые источники энергии, если они призваны заменить емкость базовой нагрузки, должно удовлетворять спрос в течение многих дней, а не просто часов.
    • На бытовом уровне, за счетчиком, продвигается хранение аккумуляторов. Это снижает потребность в сети.

    Быстрый рост во многих частях мира генерирующих мощностей за счет периодически возобновляемых источников энергии, особенно ветра и солнца, привел к сильному стимулу к развитию накопления энергии для производства электроэнергии в больших масштабах. Из-за (желаемой или навязанной) растущей ежегодной доли электроэнергии, поступающей от возобновляемых технологий, подверженных естественным колебаниям потоков энергии (например, солнечные фотоэлектрические и ветровые), характеризующиеся относительно низкими коэффициентами нагрузки, объединенные установленные мощности этих технологий в будущем ожидается, что они будут намного больше, чем обычная / обычная пиковая потребляемая электрическая мощность.*

    * «Прискорбной привычки в некоторых кругах слепо использовать слово« мощность »как синоним« электричества »следует избегать в контексте хранения. «Энергия» заряжается или разряжается в запоминающем устройстве, но сохраняется «энергия» ». – Прогнозируемые затраты на производство электроэнергии на 2020 год, Международное энергетическое агентство и Агентство по ядерной энергии.

    Степень, в которой может быть развито накопление электроэнергии, будет определять степень, в которой эти прерывистые возобновляемые источники могут вытеснить диспетчерские источники, время от времени забирая излишки электроэнергии и устраняя перебои в периодической работе.Есть вопросы масштаба – мощности и энергоемкости – которые указаны ниже в отдельных случаях. Кроме того, накопленная электроэнергия обычно должна быть доступна в течение нескольких дней и недель, а не минут и часов. Для сравнения различных технологий накопления электроэнергии в различных приложениях и услугах необходимо четко определить как стоимость, так и затраты.

    Электричество не может храниться ни в каком масштабе, но оно может быть преобразовано в другие формы энергии, которые могут храниться, а затем повторно преобразовываться в электричество по запросу.Системы хранения электроэнергии включают аккумулятор, маховик, сжатый воздух и гидроаккумулятор. Любые системы ограничены в общем количестве энергии, которое они могут хранить. Их энергоемкость выражается в мегаватт-часах (МВтч), а мощность, или максимальная выходная мощность в данный момент времени, выражается в мегаваттах электроэнергии (МВт или МВтэ). Системы накопления электроэнергии могут быть спроектированы для предоставления вспомогательных услуг системе передачи, включая регулирование частоты, и сегодня это основная роль сетевых аккумуляторов.

    Конечно, очень эффективное хранение энергии достигается в ископаемом топливе и ядерном топливе до того, как из них будет произведена электроэнергия. Хотя здесь основное внимание уделяется хранению за генерацией, особенно из периодически возобновляемых источников, при любом надлежащем рассмотрении этого вопроса необходимо также охватывать ядерное топливо для производства электроэнергии как более экономичный вариант с относительно небольшими потребностями в материалах.

    Насосное хранилище включает перекачку воды вверх в водохранилище, из которого она может быть выпущена по запросу для выработки гидроэлектроэнергии.Эффективность двойного процесса составляет около 70%. В середине 2016 года гидроаккумулирующие накопители составляли 95% от крупных накопителей электроэнергии в мире, а в 2014 году было добавлено 72% от общей емкости накопителей. Аккумуляторные накопители, однако, широко используются, и их мощность составила около 15,5 ГВт, подключенных к электросетям в конец 2020 года, по данным МЭА. В 2014 году накопители энергии в масштабах зданий стали определяющей тенденцией в области энергетических технологий. Этот рынок вырос на 50% по сравнению с аналогичным периодом прошлого года, причем литий-ионные батареи широко используются, но батареи с проточными окислительно-восстановительными элементами являются многообещающими.Такое хранилище может использоваться для снижения спроса на сеть, в качестве резервного или для арбитража цен.

    Проекты и оборудование для гидроаккумулирования имеют длительный срок службы – номинально 50 лет, но потенциально более длительный по сравнению с батареями – от 8 до 15 лет. Гидроаккумулятор лучше всего подходит для обеспечения пиковой нагрузки системы, состоящей в основном из ископаемого топлива и / или ядерной генерации. Он не очень подходит для замены периодической, внеплановой и непредсказуемой генерации.

    В отчете Всемирного энергетического совета, опубликованном в январе 2016 года, прогнозировалось значительное снижение стоимости большинства технологий хранения энергии с 2015 по 2030 год.Наибольшее снижение стоимости продемонстрировали аккумуляторные технологии, за ними следуют тепловые, скрытые тепловые и суперконденсаторы. Аккумуляторные технологии показали снижение со 100-700 евро / МВтч в 2015 году до 50-190 евро / МВтч в 2030 году – снижение более чем на 70% верхнего предела затрат в следующие 15 лет. По данным WEC, натрий-сера, свинцово-кислотная и литий-ионная технологии являются лидерами. В отчете моделируется хранение, относящееся как к ветровым, так и к солнечным электростанциям, и оценивается результирующая приведенная стоимость хранения (LCOS) для конкретных станций.В нем отмечается, что коэффициент нагрузки и среднее время разряда при номинальной мощности являются важными определяющими факторами LCOS, а частота цикла становится второстепенным параметром. Для хранения, связанного с солнечной батареей, использовалось ежедневное хранение с шестичасовым временем разряда при номинальной мощности. Для хранения, связанного с ветром, использовался вариант двухдневного хранения с 24-часовым разрядом при номинальной мощности. В первом случае наиболее конкурентоспособная технология хранения имела LCOS в размере 50-200 евро / МВтч. В последнем случае приведенные затраты были выше и зависели от количества циклов разряда в год, и «несколько технологий оказались привлекательными.«

    После двухлетнего исследования, проведенного Комиссией по коммунальным предприятиям Калифорнии, в 2010 году штат принял закон, требующий хранения 1325 МВт электроэнергии (исключая крупномасштабные гидроаккумуляторы) к 2024 году. В 2013 году крайний срок был перенесен на 2020 год, а затем было 35 Всего МВт. Законодательство определяет мощность, а не емкость накопителя (МВтч), предполагая, что основной целью является регулирование частоты. Заявленная цель закона состоит в повышении надежности сети за счет обеспечения управляемой мощности от увеличивающейся доли солнечных и ветровых входов, замены вращающегося резерва, обеспечения контроля частоты и снижения требований к пиковой мощности (уменьшение пиковой мощности).Системы хранения могут быть связаны либо с системами передачи или распределения, либо находиться за счетчиком. Основное внимание уделяется аккумуляторным системам хранения энергии (BESS). Энергетический арбитраж может увеличить доход, покупая в непиковый период и продавая при пиковом спросе. В 2014 году компания Southern California Edison объявила о планах по хранению электроэнергии мощностью 260 МВт, чтобы компенсировать закрытие АЭС Сан-Онофре мощностью 2150 МВт (эл.). Хотя 1,3 ГВт в контексте потребности штата в 50 ГВт не обеспечат большой диспетчерской мощности, это стало основным стимулом для коммунальных предприятий.

    Орегон последовал за Калифорнией и в 2015 году установил требование для более крупных коммунальных предприятий (PGE и PacifiCorp) о закупке не менее 5 МВтч хранилища к 2020 году, а PGE предложила 39 ГВт в нескольких местах стоимостью от 50 до 100 миллионов долларов. В июне 2017 года Массачусетс поставил цель хранилища 200 МВтч к 2020 году. В ноябре 2017 года Нью-Йорк принял решение установить цель хранилища на 2030 год.

    В США имеется около 30 ГВт гидроаккумулирующей мощности, а к марту 2019 года было развернуто 900 МВт емкости аккумуляторной батареи коммунального масштаба.Ожидалось, что к 2020 году эта цифра вырастет до 1000 МВт, а к 2023 году – до 2500 МВт, при этом ожидается, что затраты упадут до 200 долларов за кВт · ч хранимой энергии, что составляет половину стоимости 2016 года. Около 2,5% поставляемой электроэнергии в США проходит через хранилища (по сравнению с примерно 10% в Европе и 15% в Японии).

    В начале 2016 года Национальная электросеть Великобритании активно откликнулась на тендер на усиленную частотную характеристику (EFR) мощностью 200 МВт. Он предлагал четырехлетние контракты на мощность, способную обеспечить 100% выходную активную мощность за секунду или меньше регистрации отклонения частоты.Было предложено около 888 МВт емкости аккумуляторных батарей, 150 МВт межсетевого взаимодействия, 100 МВт реакции со стороны спроса и 50 МВт мощности маховика. Все, кроме трех, были связаны с аккумулятором. В августе были объявлены выигравшие тендеры – восемь выбранных тендеров мощностью от 10 до 49 МВт (всего 201 МВт) общей стоимостью 66 миллионов фунтов стерлингов. Выигрышные предложения варьировались от 7 до 12 фунтов стерлингов за МВт EFR / ч, в среднем 9,44 £ / МВт EFR / ч. Также ожидается, что батареи станут основным выбором для стабильной частотной характеристики, немного медленнее, чем EFR.

    В Великобритании хранилище рассматривается как генерация для целей лицензирования, но при подключении к распределительной сети оно должно соответствовать двум различным методикам подключения и тарификации: одна половина подключается по запросу, а другая – по генерации. Предлагается единая методология подключения к хранилищу, и Департамент бизнеса, энергетики и промышленной стратегии и регулирующий орган в области энергетики Ofgem стремятся определить «хранилище электроэнергии» в юридических и нормативных терминах, чтобы ускорить развертывание.Сеть хранения электроэнергии, отраслевой орган, поддерживает этот шаг.

    Правительство Великобритании заявило, что при реагировании на спрос поставщики должны иметь более легкий доступ к ряду рынков, чтобы они могли честно конкурировать с крупными производителями, включая балансирующий рынок, вспомогательные услуги и рынок мощности. Существует озабоченность по поводу того, должны ли поставщики хранилищ и реагирования на спрос иметь доступ к таким же длительным рыночным контрактам на мощность, что и новые дизельные генераторы. В этой области реакция должна длиться более часа, а батареи менее экономичны.

    В ноябре 2016 года Европейская комиссия признала накопление энергии ключевым инструментом гибкости, который потребуется в будущем. Было предложено новое определение хранения электроэнергии, включающее «откладывание количества электроэнергии, которая была произведена до момента использования, либо в качестве конечной энергии, либо преобразована в другой энергоноситель», например, газ. Это привело к тому, что концепции преобразования энергии в газ (P2G) были включены в нормативное определение хранения энергии, так что избыточная энергия от прерывистых возобновляемых источников энергии может быть преобразована путем электролиза в водород, который может быть добавлен в обычную газораспределительную сеть (до 20%, хотя и значительно). менее разрешено в большинстве стран) или продается напрямую.Таким образом, электролизеры могут предоставлять дополнительные сетевые услуги, за которые им платят. Изменение определения P2G с простой нагрузки на хранилище имеет последствия как для электрических сетей, так и для сокращения выбросов CO 2 , возникающих из газа. Электролизеры P2G можно рассматривать как часть сети, а не просто конечных пользователей.

    Компания ITM Power, которая разрабатывает электролизеры для систем P2G, предлагает построить в Великобритании ряд заправочных станций водородом для автомобилей на топливных элементах, которые будут выполнять некоторую функцию балансировки сети.В марте 2017 года их работало четыре, при этом производство водорода было рассчитано на поглощение избыточной энергии из сети. Правительство Великобритании хочет к 2020 году 65 водородных заправочных станций. Каждая из них имеет мощность от 200 до 250 кВт, поэтому необходимо несколько из них, чтобы иметь возможность участвовать в торгах на улучшенную частотную характеристику (минимум 3 МВт).

    Электролизеры с полимерными электролитными мембранами (PEM)

    теперь доступны по цене около 1 миллиона евро за МВт, с меньшей площадью основания и более быстрым откликом, чем альтернативы, что позволяет балансировать сеть и аккумулировать энергию.В 2015 году в Германии было сокращено производство электроэнергии из возобновляемых источников на 4,7 ТВт-ч.

    Масштабное хранение водорода и его передача на большие расстояния предусматриваются путем преобразования в аммиак, который на практике является более энергоемким.

    См. Веб-сайт Ассоциации хранения энергии или Европейскую ассоциацию хранения энергии (EASE) для получения дополнительной информации.

    Гидроаккумулятор

    В некоторых местах гидроаккумулятор используется для выравнивания суточной генерирующей нагрузки путем перекачки воды на высокую водохранилище в непиковые часы и в выходные дни, используя избыточную мощность базовой нагрузки от недорогих угольных или ядерных источников.В часы пик эта вода может быть выпущена через турбины в нижний резервуар для выработки гидроэлектроэнергии, преобразовывая потенциальную энергию в электричество. Реверсивные агрегаты насос-турбина / мотор-генератор могут работать как насосы, так и турбины *. Системы гидроаккумуляции могут быть эффективными в удовлетворении изменений пикового спроса из-за быстрого увеличения или уменьшения объемов производства и прибыльными из-за разницы между пиковыми и внепиковыми оптовыми ценами. Основная проблема, помимо воды и высоты, – это эффективность в оба конца, которая составляет около 70%, поэтому на каждый входной МВтч только 0.Восстановлено 7 МВтч. Кроме того, относительно немногие места имеют место для установки гидроаккумулирующих плотин вблизи мест, где требуется электроэнергия.

    * Турбины Фрэнсиса широко используются для гидроаккумуляции, но имеют предел гидравлического напора около 600 м.

    Большая часть гидроаккумулирующих мощностей связана с установленными гидроэлектростанциями на реках, где вода перекачивается обратно на высокие водохранилища. Такие гидроэлектростанции с плотиной могут быть дополнены речной гидроаккумулирующей системой. Для этого требуются пары небольших резервуаров на холмистой местности, соединенных трубой с насосом и турбиной.

    Эта схема проекта Гордон-Бьютт типична для водохранилища с гидроаккумулятором (Гордон Бьютт)

    Международная ассоциация гидроэнергетики имеет инструмент отслеживания, который отображает местоположения и мощность существующих и планируемых проектов гидроаккумуляции.

    Насосные хранилища используются с 1920-х годов, и сегодня около 160 ГВт установлены по всему миру, в том числе 31 ГВт в США, 53 ГВт в Европе и Скандинавии, 27 ГВт в Японии и 23 ГВт в Китае.Это составляет около 500 ГВт-ч, которые могут храниться – это около 95% крупномасштабных хранилищ электроэнергии в мире в середине 2016 года и 72% от этой мощности, которая была добавлена ​​в 2014 году. IRENA сообщает, что 96 ТВт-ч было использовано из гидроаккумулирующих хранилищ в 2015. World Energy Outlook 2016 Международного энергетического агентства прогнозирует, что к 2040 году будет добавлено 27 ГВт гидроаккумулирующих мощностей, в основном в Китае, США и Европе.

    Для речных гидроаккумуляторов парные водохранилища обычно должны иметь перепад высот не менее 300 метров.Заброшенные подземные шахты имеют некоторый потенциал в качестве участков. В испанском регионе Леон Navaleo планирует построить гидроаккумуляторную систему на бывшей угольной шахте с напором 710 м и мощностью 548 МВт, возвращая в сеть 1 ТВт-час в год.

    В отличие от ветровой и солнечной энергии, поступающей в энергосистему, гидроэнергетика является синхронной и, следовательно, обеспечивает вспомогательные услуги в сети передачи, такие как регулирование частоты и обеспечение реактивной мощности. В проекте гидроаккумулирующего хранилища обычно требуется от 6 до 20 часов хранения в гидравлическом резервуаре для эксплуатации, по сравнению с гораздо меньшим сроком для аккумуляторов.В гидроаккумулирующих системах обычно хранится более 100 МВтч энергии.

    Накопительный гидроаккумулятор лучше всего подходит для обеспечения пиковой нагрузкой системы, состоящей в основном из ископаемого топлива и / или ядерной генерации по низкой цене. Он гораздо менее подходит для замены периодической, внеплановой генерации, такой как ветер, когда доступность избыточной энергии нерегулярна и непредсказуема.

    Крупнейшее гидроаккумулирующее предприятие находится в Вирджинии, США, мощностью 3 ГВт и 30 ГВт-ч накопленной энергии.Однако полезные объекты могут быть совсем небольшими. Они также не должны быть дополнительными к основным гидроэлектрическим схемам, но могут использовать любую разницу в высоте между верхним и нижним резервуарами более 100 метров, если не слишком далеко друг от друга. На Окинаве морская вода перекачивается в резервуар на вершине утеса. В Австралии заброшенный подземный рудник рассматривался как нижний резервуар. Израиль планирует построить систему с двумя резервуарами Kokhav Hayarden мощностью 344 МВт.

    В Монтане, США, проект гидроаккумулирующей гидроаккумулирующей станции Gordon Butte мощностью 4 x 100 МВт в центральной части штата будет использовать избыточную мощность ветряных турбин штата мощностью 665 МВт, хотя это менее предсказуемо, чем непиковая мощность. предназначен для питания базовой нагрузки.Absaroka Energy построит надземный водохранилище на высоте 312 метров над нижним водохранилищем с 2018 года. Ожидается, что компания будет поставлять 1300 ГВтч в год в дополнение к ветровым и вспомогательным услугам.

    Ожидается, что в 2018 году в Германии будет введен в эксплуатацию ветроэнергетический проект Gaildorf недалеко от Мюнстера. Он включает 13,6 МВтэ ветряных турбин и 16 МВтэ гидроаккумулирующих мощностей.

    Аккумуляторные системы хранения энергии

    Батареи накапливают и выделяют энергию электрохимически.Требования к аккумулятору: высокая плотность энергии, высокая мощность, длительный срок службы (циклы заряда-разряда), высокая эффективность в оба конца, безопасность и конкурентоспособная стоимость. Другими переменными являются продолжительность разряда и скорость заряда. Среди этих критериев делаются различные компромиссы, подчеркивая ограничения аккумуляторных систем хранения энергии (BESS) по сравнению с управляемыми источниками генерации. Также возникает вопрос об отдаче вложенной энергии (EROI), который остро относится к тому, как долго батарея находится в эксплуатации и как ее эффективность в оба конца сохраняется в течение этого периода.

    Батареям требуется система преобразования энергии (PCS), включая инвертор, для подключения к нормальной системе переменного тока. Это добавляет около 15% к базовой стоимости батареи.

    Различные мегаваттные проекты доказали, что батареи хорошо подходят для сглаживания колебаний мощности ветряных и солнечных систем в течение нескольких минут и даже часов для кратковременной интеграции этих возобновляемых источников энергии в сеть. Они также показали, что батареи могут реагировать быстрее и точнее, чем обычные ресурсы, такие как прядильные резервы и пиковые установки.В результате большие аккумуляторные батареи становятся предпочтительной технологией стабилизации для кратковременной интеграции возобновляемых источников энергии. Это функция мощности, а не в первую очередь накопления энергии. Спрос на него намного ниже, чем на накопление энергии – Калифорнийский ISO оценил его пиковую потребность в регулировании частоты на 2018 год в 2000 МВт из всех источников.

    Некоторые аккумуляторные установки заменяют вращающийся резерв на кратковременное резервное копирование, поэтому работают как виртуальные синхронные машины (VSM) с использованием инверторов, формирующих сетку.

    Интеллектуальные сети Большое внимание уделяется хранению аккумуляторов в связи с интеллектуальными сетями. Интеллектуальная сеть – это электросеть, которая оптимизирует энергоснабжение за счет использования информации как о спросе, так и о предложении. Он делает это с помощью сетевых функций управления устройствами с коммуникационными возможностями, такими как интеллектуальные счетчики.

    Литий-ионные батареи в 2015 году литий-ионные батареи составляли 51% от недавно объявленной емкости системы накопления энергии (ESS) и 86% от развернутой мощности ESS.В 2015 году в мире было объявлено о введении около 1 653 МВт новых мощностей ESS, из которых чуть более одной трети поступит из Северной Америки. Литий-ионные батареи – самая популярная технология для распределенных систем хранения энергии (Navigant Research). Литий-ионные батареи имеют КПД постоянного тока в оба конца 95%, снижаясь до 85%, когда ток преобразуется в переменный ток для сети. У них есть цикл 2000-4000 и срок службы 10-20 лет, в зависимости от использования.

    На бытовом уровне за счетчиком * продвигается аккумуляторная батарея.Между солнечными фотоэлектрическими батареями и батареями существует очевидная совместимость, поскольку они являются постоянным током. В Германии, где коэффициент мощности солнечных батарей составляет в среднем 10,7%, 41% новых солнечных фотоэлектрических установок в 2015 году были оснащены резервными аккумуляторными батареями, по сравнению с 14% в 2014 году. Это увеличение как в бытовых, так и в подключенных к сети фотоэлектрических элементах. систем, поощряется Банком развития KfW, который организует государственные займы под низкие проценты и помощь в окупаемости, покрывающую до 25% необходимых инвестиционных затрат. KfW требует, чтобы для потребления и хранения на месте использовалось достаточное количество фотоэлектрической электроэнергии, чтобы не более половины выработки доходило до сети передачи.Таким образом, утверждается, что сеть может выдерживать от 1,7 до 2,5 раз больше обычной солнечной мощности без перегрузки. В 2016 году в Германии было зарегистрировано 200 МВт-ч установленной емкости хранения.

    * Фотоэлектрические панели для домашних хозяйств и малых предприятий не являются частью распределительной системы, но, по сути, являются внутренними по отношению к помещениям, при этом большая часть генерируемой энергии используется там, а часть, возможно, экспортируется в систему через счетчик, который первоначально измерял мощность, потребляемую из сети для зарядки для.

    Более одной трети «аккумуляторных батарей» мощностью 1,5 ГВт в 2015 году составляли литий-ионные батареи, а 22% – натриево-серные батареи. Международное агентство по возобновляемым источникам энергии (IRENA) оценивает, что миру требуется 150 ГВт аккумуляторных батарей, чтобы достичь желаемой цели IRENA по выработке 45% электроэнергии из возобновляемых источников к 2030 году. В Великобритании требуется около 2 ГВт для быстрого регулирования частоты в 45 Система GWe, и National Grid тратит на это от 160 до 170 миллионов фунтов стерлингов в год. В Германии установленная аккумуляторная батарея общего пользования увеличилась с примерно 120 МВт в 2016 году до примерно 225 МВт в 2017 году.

    Большой BESS – это литий-ионная система Toshiba мощностью 40 МВт / 20 МВтч на подстанции Ниси-Сендай компании Tohoku Electric Power Company в Японии, введенная в эксплуатацию в начале 2015 года, и San Diego Gas & Electric имеет литий-ионную систему мощностью 30 МВт / 120 МВтч. BESS в Эскондидо, Калифорния. Кроме того, STEAG Energy Services начала программу литий-ионных аккумуляторов мощностью 90 МВт в Германии (см. Ниже), а Эдисон создает объект мощностью 100 МВт в Лонг-Бич, Калифорния.

    В Южной Австралии литий-ионная система Tesla 100 МВт / 129 МВт-ч была установлена ​​рядом с ветряной электростанцией Neoen в Хорнсдейле (309 МВт (эл.)) Недалеко от Джеймстауна – Hornsdale Power Reserve (HPR).Около 70 МВт мощности передано по контракту с правительством штата для обеспечения стабильности сети и безопасности системы, включая вспомогательные услуги управления частотой (FCAS) через платформу Tesla Autobidder в сроки от шести секунд до пяти минут. Остальные 30 МВт мощности предназначены для хранения на три часа и используются Neoen для переключения нагрузки для соседней ветряной электростанции. Он доказал свою способность очень быстро реагировать на FCAS, обеспечивая до 8 МВт в течение примерно 4 секунд, прежде чем более медленный FCAS отключится, когда частота упадет ниже 49.8 Гц. В 2020 году проект был расширен на 50 МВт / 64,5 МВтч за 79 миллионов австралийских долларов, так что теперь он обеспечивает примерно половину виртуальной инерции, необходимой в штате для FCAS.

    Существует несколько типов литий-ионных аккумуляторов, некоторые с высокой плотностью энергии и быстрой зарядкой для автомобилей (электромобилей), другие, такие как литий-фосфат железа (LiFePO 4 , сокращенно LFP), более тяжелые, менее энергоемкие. плотный и с более длительным жизненным циклом. Концепции длительного хранения включают в себя перепрофилирование использованных аккумуляторов электромобилей – вторичных аккумуляторов.

    Натрий-серные (NaS) батареи используются уже 25 лет и хорошо зарекомендовали себя, хотя и дороги. Они также должны работать при температуре около 300 ° C, что означает некоторое потребление электроэнергии в простое. Система Vaca-Dixon NaS BESS 2 МВт / 14 МВтч от PG&E стоила около 11 миллионов долларов (5500 долларов за кВт, по сравнению с примерно 200 долларами за кВт, которые, по оценкам PG&E, были окупаемыми затратами в 2015 году). Срок службы около 4500 циклов. Эффективность приема-передачи в 18-месячном испытании составила 75%. Блок мощностью 4,4 МВт / 20 МВтч строится компанией EWE в Вареле в Нижней Саксонии на севере Германии для ввода в эксплуатацию в конце 2018 года.(Это часть установки с литий-ионной батареей 7,5 МВт / 2,5 МВтч, стоимость всей установки составляет 24 миллиона евро.)

    Батареи проточных элементов окислительно-восстановительного потенциала (RFB), разработанные в 1970-х годах, содержат два жидких электролита, разделенных мембраной, чтобы получить положительные и отрицательные полуэлементы, каждая с электродом, обычно углеродным. В водных системах перепад напряжения составляет от 0,5 до 1,6 вольт. Они заряжаются и разряжаются за счет обратимой реакции восстановления-окисления через мембрану. В процессе зарядки ионы окисляются на положительном электроде (высвобождение электронов) и восстанавливаются на отрицательном электроде (захват электронов).Это означает, что электроны перемещаются от активного материала (электролита) положительного электрода к активному материалу отрицательного электрода. При разряде процесс меняется на противоположный и высвобождается энергия. Активные материалы представляют собой окислительно-восстановительные пары, , то есть химических соединения, которые могут поглощать и высвобождать электроны.

    Ванадиевые проточные окислительно-восстановительные батареи (VRFB или V-flow) используют ванадий с несколькими степенями окисления для накопления и высвобождения зарядов. Они подходят для больших стационарных применений с длительным сроком службы (прибл.15 000 циклов, или «бесконечный»), полная разрядка и низкая стоимость киловатт-часа по сравнению с литий-ионными при ежедневном или более частом циклировании. Батареи V-flow становятся более рентабельными, чем больше продолжительность хранения – часто около 4 часов – и тем выше потребность в мощности и энергии. Говорят, что экономический масштаб кроссовера составляет около 400 кВт · ч, выше которого они более экономичны, чем литий-ионные. Кроме того, они работают при температуре окружающей среды, поэтому менее подвержены возгоранию, чем литий-ионные. По стоимости и масштабу у RFB есть основные сетевые и отраслевые приложения – до проектов ГВтч, а не МВтч.

    С помощью RFB можно отдельно масштабировать энергию и мощность. Мощность определяет размер ячейки или количество ячеек, а энергия определяется количеством носителя для хранения энергии. Модули мощностью до 250 кВт с возможностью сборки до 100 МВт. Это позволяет лучше адаптировать проточные окислительно-восстановительные батареи к конкретным требованиям, чем другие технологии. Теоретически не существует ограничений на количество энергии, и часто конкретные инвестиционные затраты снижаются с увеличением отношения энергия / мощность, поскольку носитель для хранения энергии обычно имеет сравнительно низкие затраты.

    Модельная «пиковая» электростанция в Китае имеет солнечные фотоэлектрические установки мощностью 100 МВт и РЭС мощностью 100 МВт / 500 МВт-ч.

    Общий вывод испытания PG&E заключался в том, что, если батареи должны использоваться для арбитража энергии, они должны быть размещены вместе с ветряными или солнечными фермами – часто вдали от основного центра нагрузки. Однако, если они будут использоваться для регулирования частоты, их лучше размещать поблизости от городских или промышленных центров нагрузки. Поскольку поток доходов от управления частотой намного лучше, чем арбитраж, коммунальные предприятия обычно предпочитают центр города, а не удаленные места для активов, которыми они владеют.

    Стоимость литий-ионных аккумуляторов

    упала на две трети в период с 2000 по 2015 год, примерно до 700 долларов за кВт · ч, что обусловлено рынком транспортных средств, и к 2025 году прогнозируется дальнейшее снижение стоимости вдвое. такая же ставка, а в 2015 г. добавила около 15% к стоимости аккумуляторов для приложений, не относящихся к транспортным средствам.

    Материалы литий-ионных аккумуляторов

    Поскольку использование литий-ионных аккумуляторов увеличилось, а прогнозы на будущее еще больше увеличились, внимание переключилось на источники материалов.

    Литий – довольно распространенный элемент, и в 2017 году около 39% мировых поставок использовалось в батареях. Большая часть поставок поступает из Австралии и Южной Америки. См. Также сопутствующий информационный документ о литии.

    Электродные материалы литий-ионных аккумуляторов также пользуются спросом, особенно кобальт, никель и графит.

    Графит в основном производится в Китае – 1,8 миллиона тонн в 2015 году из примерно 2,1 миллиона тонн.

    Кобальт в основном добывается в Конго (ДРК) – 83 529 тонн в 2015 году, затем следуют Новая Каледония (11 200 тонн), Китай (9600 тонн), Канада (7500 тонн), Австралия (6000 тонн) и Филиппины ( 4000 т). Ресурсы в основном находятся в ДРК и Австралии.

    Никель производится во многих странах с широко разбросанными ресурсами.

    Переработка этих материалов из старых батарей стоит дорого.

    Литий-ионные батареи можно разделить на категории по химическому составу их катодов.На рисунке 6 показано использование минералов для батарей из оксида лития-марганца (LMO), фосфата лития-железа (LFP), литий-никель-кобальт-алюминиевого оксида (NCA) и литий-никель-марганцево-кобальтоксидных (NMC) батарей. Различное сочетание минералов приводит к существенно разным характеристикам батареи:

    • NCA аккумулятор – диапазон удельной энергии (200-250 Втч / кг), высокая удельная мощность, срок службы от 1000 до 1500 полных циклов. Используется в некоторых электромобилях премиум-класса (, например, Tesla), но дороже, чем другие химические продукты.
    • Аккумулятор NMC
    • – диапазон удельной энергии (140-200 Втч / кг), срок службы 1000-2000 полных циклов. Чаще всего используются аккумуляторные батареи в электрических и гибридных электромобилях. Более низкая плотность энергии, чем у NCA, но более длительный срок службы.
    • Аккумулятор
    • LFP – диапазон удельной энергии (90-140 Втч / кг), срок службы 2000 полных циклов. Низкая удельная энергия – ограничение для использования в электромобилях большой дальности. Может быть предпочтительным для стационарных приложений хранения энергии или транспортных средств, где размер и вес батареи менее важны.
    • Батарея
    • LMO – диапазон удельной энергии (100-140 Втч / кг), срок службы 1000-1500 циклов. Химия без кобальта рассматривается как преимущество. Используется в электрических велосипедах и некоторых коммерческих автомобилях.

    Суперконденсаторы

    Конденсатор накапливает энергию за счет статического заряда, в отличие от электрохимической реакции. Суперконденсаторы очень большие и используются для накопления энергии, подвергаясь частым циклам зарядки и разрядки при высоком токе и короткой продолжительности. Они эволюционировали и перешли в аккумуляторную технологию с использованием специальных электродов и электролита.Они работают от 2,5-2,7 вольт и заряжаются менее чем за десять секунд. Разряд составляет менее 60 секунд, и напряжение постепенно падает. Удельная энергия суперконденсаторов достигает 30 Втч / кг, что намного меньше, чем у литий-ионной батареи.

    Стабилизаторы синхронные вращающиеся

    Чтобы компенсировать отсутствие синхронной инерции в генераторной установке, когда существует высокая зависимость от источников ветра и солнца, к системе могут быть добавлены синхронные конденсаторы, также известные как вращающиеся стабилизаторы.Они используются для управления частотой и напряжением там, где необходимо повысить стабильность сети из-за высокой доли переменного возобновляемого источника. Они обеспечивают надежную синхронную инерцию и могут помочь стабилизировать отклонения частоты за счет выработки и поглощения реактивной мощности. Они не являются накопителями энергии в обычном смысле и описаны на информационной странице «Возобновляемые источники энергии и электричество».

    Аккумуляторные системы по всему миру

    Европа

    Общая установленная мощность не связанных с гидроаккумуляцией в Европе достигла 2.По данным Европейской ассоциации накопителей энергии, 7 ГВтч в конце 2018 года и прогнозируется на уровне 5,5 ГВтч к концу 2020 года. Сюда входят бытовые системы, на долю которых приходится более одной трети добавлений 2019-20 годов. EDF планирует к 2035 году иметь 10 ГВт аккумуляторных батарей по всей Европе. В марте 2020 года Total запустила проект литий-ионных аккумуляторов 25 МВт / 25 МВт-ч в Мардике недалеко от Дюнкерка, который станет «крупнейшим во Франции».

    Первый из шести запланированных литий-ионных энергоблоков STEAG мощностью 15 МВт в программе стоимостью 100 миллионов евро и мощностью 90 МВт был запущен в июне 2016 года на угольном предприятии в Люнене в Германии.Чтобы иметь право на коммерческую эксплуатацию, батареи должны отвечать на автоматические вызовы в течение 30 секунд и быть способными питаться в течение как минимум 30 минут.

    В Германии RWE инвестировала 6 миллионов евро в литий-ионную аккумуляторную систему мощностью 7,8 МВт / 7 МВтч на своей электростанции Herdecke недалеко от Дортмунда, где коммунальное предприятие эксплуатирует гидроаккумулирующую станцию. Работает с 2018 года.

    В Германии в 2015 году в Фельдхайме, Бранденбург, была введена в эксплуатацию система хранения литий-ионных аккумуляторов мощностью 10 МВт / 10,8 МВтч.Он имеет 3360 литий-ионных модулей от LG Chem в Южной Корее. Батарейный блок стоимостью 13 миллионов евро хранит электроэнергию, вырабатываемую местной ветряной электростанцией мощностью 72 МВт, и был построен для стабилизации энергосистемы TSO 50Hertz Transmission. Он также участвует в еженедельных торгах на получение первичного контрольного резерва.

    RWE планирует установить литий-ионную батарею 45 МВт на своем Лингене и 72 МВт на электростанциях Верне к концу 2022 года, в основном для FCAS. Компания Siemens планирует установить аккумуляторную батарею на 200 МВт / 200 МВт-ч в Вунзиделе в Баварии для хранения энергии и управления пиковыми нагрузками.

    Голландское коммунальное предприятие Eneco и Mitsubishi, как EnspireME, установили литий-ионную батарею 48 МВт / 50 МВт-ч в Ярделунде на севере Германии. Батарея предназначена для обеспечения первичного резерва в сети и повышения стабильности сети в регионе с множеством ветряных турбин и проблемами с перегрузкой сети.

    Сообщается, что

    немецких оператора аккумуляторных систем, участвующих в торгах на рынке первичного контрольного резерва на еженедельной основе, получили среднюю цену 17,8 евро / МВтч за 18 месяцев до ноября 2016 года.

    В Испании Acciona ввела в эксплуатацию ветряную электростанцию ​​с BESS в мае 2017 года. Завод Acciona оснащен двумя системами литий-ионных аккумуляторов Samsung, одна из которых обеспечивает 1 МВт / 390 кВтч, а другая – 0,7 МВт / 700 кВтч, подключенная к 3 МВт. ветряк и по сети. Оба, похоже, имеют частотную характеристику как часть своей роли.

    В мае 2016 года Fortum в Финляндии заключил контракт с французской компанией Saft, производящей аккумуляторные батареи, на поставку системы накопления энергии на литий-ионных аккумуляторах мощностью 2 миллиона евро для своей электростанции Suomenoja в рамках крупнейшего пилотного проекта BESS в странах Северной Европы.Он будет иметь номинальную мощность 2 МВт и сможет хранить 1 МВт-ч электроэнергии, которая будет предложена TSO для регулирования частоты и сглаживания мощности. Это похоже на систему, действующую во французском регионе Об, соединяющую две ветряные электростанции общей мощностью 18 МВт. С 2012 года Saft развернула аккумуляторные батареи мощностью более 80 МВт.

    В Великобритании в августе 2019 года было зарегистрировано, что в эксплуатации находится аккумуляторная батарея мощностью 475 МВт. В этом случае 11 проектов варьировались от 10 до 87 МВт, большинство из которых имеют контракты с улучшенной частотной характеристикой.

    Компания возобновляемой энергетики RES обеспечивает 55 МВт динамической частотной характеристики от литий-ионного аккумулятора до National Grid.ВИЭ уже эксплуатирует более 100 МВт / 60 МВтч аккумуляторных батарей, в основном в Северной Америке.

    В марте 2020 года финская компания Wartsila выиграла контракт на поставку двух литий-ионных батарей мощностью 50 МВт для компании EDF Pivot Power, поскольку она начинает программу хранения 2 ГВт для сети сетевых батарей для вспомогательных сетевых услуг и зарядки электромобилей. Третья батарея мощностью 50 МВт в Саутгемптоне была произведена компанией Downing LLP. EDF Energy Renewables имеет проект по хранению аккумуляторов мощностью 49 МВт для National Grid на площадке EDF Energy в Уэст-Бертоне в Северном Йоркшире.

    Заместитель государственного секретаря Великобритании по вопросам энергетики Эмбер Радд посетила предприятие в Лейтон-Баззард в 2014 году (UK Power Networks)

    В Северной Ирландии американская компания AES завершила строительство накопительного массива мощностью 10 МВт / 5 МВт-ч на своей электростанции Килрут в Каррикфергусе. Система состоит из более чем 53 000 литий-ионных батарей, размещенных в 136 отдельных узлах с системой управления, которая реагирует на изменения в сети менее чем за секунду. Это самая большая передовая система хранения энергии в Соединенном Королевстве и Ирландии и единственная такая система в масштабе передачи согласно AES.Компания хочет построить массив хранения мощностью до 100 МВт, обеспечивая экономию системы в размере 8,5 миллионов фунтов стерлингов в год, «заменяя неуместную тепловую резервную установку и способствуя более полной интеграции существующих возобновляемых источников энергии».

    В Великобритании, на Оркнейских островах, работает система хранения литий-ионных аккумуляторов мощностью 2 МВт / 500 кВтч. На этой электростанции в Киркволле используются батареи Mitsubishi в двух 12,2-метровых транспортных контейнерах, и она накапливает энергию от ветряных турбин.

    В Сомерсете компания Cranborne Energy Storage имеет литий-ионную систему хранения Tesla Powerpack мощностью 250 кВт / 500 кВтч, связанную с солнечной фотоэлектрической установкой мощностью 500 кВт.Tesla утверждает, что блоки питания могут быть сконфигурированы для подачи мощности и мощности в сеть в качестве отдельного актива, предлагая услуги регулирования частоты, напряжения и вращающегося резерва. Стандартный промышленный блок питания Tesla составляет 50 кВт / 210 кВтч с КПД в оба конца 88%.

    В Великобритании компания Statoil заказала проект литий-ионной аккумуляторной системы мощностью 1 МВтч, Batwind, в качестве берегового хранилища для морского проекта Hywind мощностью 30 МВт в Питерхеде, Шотландия. С 2018 года он предназначен для хранения избыточной продукции, снижения затрат на балансировку и предоставления возможности проекту регулировать собственное энергоснабжение и фиксировать пиковые цены посредством арбитража.

    Северная Америка

    В ноябре 2016 года компания Pacific Gas & Electricity Co (PG&E) сообщила о 18-месячном демонстрационном проекте по изучению производительности аккумуляторных систем хранения, участвующих в рынках электроэнергии Калифорнии. В рамках проекта, начатого в 2014 году, использовались натрий-серные аккумуляторные батареи компании PG&E мощностью 2/14 МВт / ч Vaca-Dixon и 4 МВт Yerba Buena для предоставления энергии и вспомогательных услуг на рынках независимого системного оператора Калифорнии (CAISO), контролируемых CAISO на этом оптовом рынке. .Пилотный проект Yerba Buena BESS стоимостью 18 миллионов долларов был запущен PG&E в 2013 году при поддержке Калифорнийской энергетической комиссии в размере 3,3 миллиона долларов. Vaca-Dixon BESS связана с солнечной электростанцией PG&E в округе Солано.

    Отчет PG&E показал, что батареи все еще далеки от рентабельности, даже если предположить, что срок службы батареи составляет 20 лет. Используемая для энергетического арбитража (взимание платы при низкой цене и разгрузка при высокой цене), установка на 6 МВтэ едва покрывала операционные расходы. Достигнутый запас в стоимости арбитража мощности был израсходован на 25% потерь мощности между циклами из-за неэффективности зарядки и разрядки, а также на энергию, необходимую для поддержания рабочей температуры батарей (300 ° C).Было подтверждено оптимальное использование BESS в качестве частотного регулирования, при этом батареи поддерживались наполовину заряженными и готовыми к зарядке или разрядке, что необходимо для компенсации несоответствий между генерацией и нагрузкой. Время ответа очень быстрое и, следовательно, очень ценно для CAISO (или любого TSO). При использовании полностью для регулирования частоты хранилище мощностью 2 МВт принесло почти 35 000 долларов в месяц – лучше, чем при альтернативном использовании, но все же невысоко окупаемость инвестиций в размере 11 миллионов долларов. Оперативный контроль оказался чрезвычайно сложным.PG&E сообщила Ассамблее Калифорнии: «С законопроектом 2514 о собрании Калифорнии и его требованиями о закупке коммунальными предприятиями 1,3 гигаватт накопителей энергии, налогоплательщики Калифорнии могут рассчитывать заплатить миллиарды долларов за развертывание и эксплуатацию этих ресурсов».

    В 2017 году PG&E будет использовать батарею Yerba Buena для другой демонстрации технологии, включающей координацию сторонних распределенных энергоресурсов (DER), таких как солнечная энергия для жилых и коммерческих помещений, с использованием интеллектуальных инверторов и аккумуляторов, контролируемых с помощью распределенного управления энергоресурсами. система (ДЕРМС).

    В августе 2015 года GE заключила контракт на строительство литий-ионной аккумуляторной системы 30 МВт / 20 МВт-ч для Coachella Energy Storage Partners (CESP) в Калифорнии, в 160 км к востоку от Сан-Диего. Объект мощностью 33 МВт был завершен ZGlobal в ноябре 2016 года и будет способствовать гибкости сети и повышению надежности в сети Imperial Irrigation District, обеспечивая линейное изменение мощности солнечной энергии, регулирование частоты, балансировку мощности и возможность запуска с нуля для соседней газовой турбины.

    San Diego Gas & Electric имеет литий-ионную BESS мощностью 30 МВт / 120 МВт-ч в Эскондидо, построенную AES Energy Storage и состоящую из 24 контейнеров, вмещающих 400 000 батарей Samsung в почти 20 000 модулей.Он будет обеспечивать вечерний пиковый спрос и частично заменяет хранилище газа в каньоне Алисо в 200 км к северу, которое пришлось закрыть в начале 2016 года из-за крупной утечки. (Он использовался для выработки газа при пиковой нагрузке.)

    Аккумуляторный комплекс SDG&E мощностью 30 МВт в Эскондидо, Калифорния. (Фото: San Diego Gas & Electric)

    Southern California Edison строит аккумуляторную установку мощностью 100 МВт / 400 МВтч, которая будет введена в эксплуатацию в 2021 году и будет включать 80 000 литий-ионных батарей в контейнерах.Еще один крупный предлагаемый проект SCE – это хранилище мощностью 20 МВт / 80 МВтч для компании AltaGas Pomona Energy на ее заводе, работающем на природном газе в Сан-Габриэле.

    Крупный проект – проект по хранению литий-ионных аккумуляторов 8 МВт / 32 МВтч в Южной Калифорнии, Эдисон, стоимостью 50 миллионов долларов США, в сочетании с ветряной электростанцией мощностью 4500 МВт с использованием 10872 модулей по 56 ячеек каждый от LG Chem, которые могут обеспечивать мощность 8 МВт в течение четырех часов. . В 2016 году Tesla заключила контракт на поставку литий-ионной аккумуляторной системы мощностью 20 МВт / 80 МВт-ч для подстанции Мира Лома в Южной Калифорнии в Эдисоне, чтобы удовлетворить суточный пиковый спрос.

    Очень большая аккумуляторная система была одобрена для газовой электростанции Vistra Moss Landing в округе Монтерей, Калифорния. В конечном итоге это может составить 1500 МВт / 6000 МВтч, начиная с 182,5 МВт / 730 МВтч в 2021 году. Он будет использовать мегапакеты мощностью 256 Тесла’3 МВтч. В остальном планы предварительные. Vistra планирует 300 МВт / 1200 МВтч в другом месте.

    Сообщается, что

    Tesla планирует вывести 50 ГВтч в сети к началу 2020-х годов.

    Ветряная электростанция Laurel Mountain мощностью 98 МВт в Западной Вирджинии использует многофункциональную подключенную к сети BESS на 32 МВт / 8 МВт-ч.Завод отвечает за регулирование частоты и стабильность сети на рынке PJM, а также за арбитраж. Литий-ионные аккумуляторы были произведены компанией A123 Systems, и после ввода в эксплуатацию в 2011 году они стали крупнейшими литий-ионными BESS в мире.

    В декабре 2015 года EDF Renewable Energy ввела в эксплуатацию свой первый проект BESS в Северной Америке с гибкой мощностью 40 МВт (паспортная табличка 20 МВт) в сетевой сети PJM в Иллинойсе для участия в регулировании и рынках мощности. Литий-ионные батареи и силовая электроника были поставлены BYD America и состоят из 11 контейнерных блоков общей мощностью 20 МВт.Компания разрабатывает проекты хранения более 100 МВт в Северной Америке.

    E.ON North America устанавливает две системы кратковременных литий-ионных батарей мощностью 9,9 МВт для своих ветряных электростанций Pyron и Inadale в качестве хранилищ Texas Waves в Западном Техасе. Назначение в основном для вспомогательных услуг. Проект следует за Iron Horse мощностью 10 МВт около Тусона, штат Аризона, рядом с солнечной батареей мощностью 2 МВт.

    SolarCity использует 272 блока питания Tesla (литий-ионная система хранения) для своего проекта солнечной фотоэлектрической системы на острове Кауаи мощностью 13 МВт / 52 МВт-ч на Гавайях, чтобы удовлетворить вечерний пик спроса.Электроэнергия поставляется коммунальному кооперативу острова Кауаи (KIUC) по цене 13,9 цента / кВтч в течение 20 лет. KIUC также вводит в эксплуатацию проект с солнечной электростанцией мощностью 28 МВт и системой аккумуляторных батарей 20 МВт / 100 МВтч.

    Toshiba поставила большой BESS для Гамильтона, штат Огайо, состоящий из литий-ионных батарей 6 МВт / 2 МВтч. Заявленный срок службы более 10 000 циклов заряда-разряда.

    Powin Energy и Hecate Energy строят два проекта общей мощностью 12,8 МВт / 52,8 МВтч в Онтарио для Независимого оператора электроэнергетической системы.Батарейный блок Powin’s Stack 140 мощностью 2 МВт / ч будет включать системы в Китченере (20 массивов) и Стратфорде (6 массивов).

    Крупный энергоаккумулятор мощностью 4 МВт представляет собой натриево-серную (NaS) батарею , которая обеспечивает повышенную надежность и качество электроэнергии для города Президио в Техасе. В начале 2010 года на него было подано питание, чтобы обеспечить быстрое резервирование ветровой мощности в местной энергосистеме ERCOT. Натрий-серные батареи широко используются в других странах для аналогичных функций.

    в Анкоридже, Аляска, 2 МВт / 0.Аккумуляторная система мощностью 5 МВтч дополнена маховиком для использования энергии ветра.

    Avista Corp. в штате Вашингтон, северо-запад США, покупает ванадиевую проточную батарею с окислительно-восстановительным потенциалом мощностью 3,6 МВт (VRFB) для балансировки нагрузки за счет возобновляемых источников энергии.

    ISO

    Онтарио заключил контракт с компанией ViZn Energy Systems на цинково-железную проточную батарею с окислительно-восстановительным потенциалом мощностью 2 МВт.

    Восточная Азия

    Китайская национальная комиссия по развитию и реформе (NDRC) призвала к установке нескольких 100-мегаваттных ванадиевых окислительно-восстановительных батарей (VRFB) мощностью 100 МВт к концу 2020 года (а также сверхкритической системы накопления энергии сжатым воздухом мощностью 10 МВт / 100 МВт-ч). Блок накопителя энергии с маховиком класса MW / 1000 MJ, системы накопления энергии литий-ионной батареи 100 MW и новый тип накопителя расплавленной соли большой емкости).

    Rongke Power устанавливает VRFB мощностью 200 МВт / 800 МВт-ч в Даляне, Китай, утверждая, что он является крупнейшим в мире. Он предназначен для удовлетворения пикового спроса, уменьшения количества отключений от близлежащих ветряных электростанций, повышения стабильности энергосистемы и обеспечения пусковой мощности с середины 2019 года. Rongke планирует производить 2 ГВт / год на заводе в 2020-х годах. Пу Ненг в Пекине планирует крупномасштабное производство VRFB, и в ноябре 2017 года получил контракт на строительство блока мощностью 400 МВтч. Sumitomo поставила VRFB мощностью 15/60 МВт / ч для Hepco в Японии, введенная в эксплуатацию в 2015 году.

    Китайская компания VRB Energy разрабатывает несколько проектов по производству проточных батарей: провинция Цинхай, 2 МВт / 10 МВтч для ветровой интеграции; Провинция Хубэй, интеграция фотоэлектрических систем мощностью 10 МВт / 50 МВтч увеличилась до 100 МВт / 500 МВтч; Провинция Ляньлун, интеграция возобновляемых источников энергии 200 МВт / 800 МВтч; Интеграция оффшорной ветроэнергетики Jiangsu 200 MW / 1000 MWh.

    Hokkaido Electric Power заключила с Sumitomo Electric Industries контракт на поставку системы хранения энергии от проточной аккумуляторной батареи для ветряной электростанции на севере Японии. Это будет ванадиевая проточная окислительно-восстановительная батарея (VRFB) мощностью 17 МВт / 51 МВтч, способная хранить три часа, которая должна быть введена в эксплуатацию в 2022 году на заводе Abira, с расчетным сроком службы 20 лет.Хоккайдо уже эксплуатирует ВРЭС мощностью 15 МВт / 60 МВт-ч, также построенную Sumitomo Electric в 2015 году.

    Австралия

    В Южной Австралии Hornsdale Power Reserve представляет собой литий-ионную систему Tesla мощностью 150/194 МВтч рядом с ветряной электростанцией Neoen в Хорнсдейле (309 МВт (эл.)) Недалеко от Джеймстауна. Около 70 МВт мощности передано по контракту с правительством штата для обеспечения стабильности сети и безопасности системы, включая вспомогательные услуги по контролю частоты (FCAS). Более подробная информация приведена в разделе « Аккумуляторные системы хранения энергии » выше.

    В Виктории Неоен планирует установить аккумулятор Tesla мощностью 300/450 МВт / ч недалеко от Джилонга. У него есть контракт на сетевые услуги на 250 МВт с Австралийским оператором энергетического рынка (AEMO), чтобы помочь в стабильности сети и «разблокировать больше возобновляемой энергии» с FCAS. Ожидается, что он будет онлайн к 2022 году.

    Neoen построила батарею 20 МВт / 34 МВтч в дополнение к ветряной электростанции 196 МВт в Ставелле, Виктория, для Bulgana Green Power Hub.

    В Виктории аккумуляторная батарея мощностью 30 МВт / 30 МВтч, поставляемая Fluence, находится недалеко от Балларата, а в Ганнаварре, недалеко от Керанга, с 2018 года батарея Tesla Powerpack мощностью 25 МВт / 50 МВтч интегрирована с солнечной фермой на 50 МВт.

    В Южной Австралии компания Lyon Group предлагает солнечную фотоэлектрическую установку мощностью 330 МВт (эл. Рядом с рудником Олимпик Дам на севере штата, Lyon Group предлагает проект солнечной фотоэлектрической системы мощностью 120 МВт плюс 100 МВт / 200 МВтч аккумуляторной батареи Kingfisher, которая, вероятно, будет стоить 250 миллионов и 150 миллионов долларов соответственно.

    Большая батарея Playford мощностью 100 МВт / 100 МВт / ч планируется построить в Южной Австралии в связи с проектом Cultana мощностью 280 МВт на солнечной энергии для обслуживания сталелитейного завода Arrium в Уайалле.

    Первая в Австралии проточная аккумуляторная батарея будет построена в Нейродла, в 430 км к северу от Аделаиды. Он будет поставляться компанией Invinity и иметь мощность 2 МВт / 8 МВт · ч для обеспечения вечернего пикового питания и дополнительных услуг, заряжаемых солнечной батареей мощностью 6 МВт. Индивидуальные модули VRFB 40 кВт.

    В Квинсленде на юге Вандоан для Vena Energy устанавливается батарея мощностью 100 МВт / 150 МВтч.

    В Квинсленде, недалеко от Лейкленда, к югу от Куктауна, солнечная фотоэлектрическая установка мощностью 10,4 МВт должна быть дополнена 1.Литий-ионная батарея 4 МВт / 5,3 МВтч на границе сети с автономным режимом во время вечернего пика. Он будет использовать завод Conergy Hybrid Energy Storage Solution и должен быть запущен в 2017 году. Проект стоимостью 42,5 миллиона австралийских долларов снизит потребность в модернизации сети. BHP Billiton участвует в этом проекте как возможном прототипе удаленных рудников. Другие подобные системы есть на рудниках Degrussa и Weipa.

    На северо-западе Австралии литий-ионная батарея Kokam мощностью 35 МВт / 11,4 МВтч работает с сентября 2017 года в частной сети, обслуживающей шахты, рядом с газовой электростанцией мощностью 178 МВт с медленным срабатыванием.Это помогло с регулировкой частоты и стабилизацией небольшой сети. С предлагаемым добавлением 60 МВт солнечной мощности предусмотрена вторая батарея.

    У Тома Прайса в Пилбаре батарея мощностью 45 МВт / 12 МВтч функционирует как виртуальная синхронная машина, заменяя резерв вращения в газовых турбинах. Батарея мощностью 35 МВт / 12 МВтч уже работает неподалеку, на горе Ньюман.

    Другие страны

    В Руанде установлен контракт на 2,68 МВт-ч аккумуляторных батарей с немецкой Tesvolt для обеспечения резервного питания для сельскохозяйственного орошения вне сети с использованием литий-ионных элементов Samsung в 4.Модули на 8 кВтч. Tesvolt заявляет 6000 полных циклов зарядки со 100% глубиной разряда в течение 30 лет службы.

    Аккумуляторы других технологий (кроме литий-ионных)

    NB Ванадиевые проточные и натриево-серные батареи описаны в разделе «Аккумуляторные батареи» выше.

    RedFlow имеет ряд модулей проточных батарей на основе бромистого цинка (ZBM), которые могут быть установлены в связи с прерывистым питанием и способны к ежедневной глубокой разрядке и зарядке.Они более долговечны, чем литий-ионные, и ожидаемая пропускная способность по энергии для меньших блоков ZBM составляет до 44 МВтч. Крупногабаритные аккумуляторные блоки (LSB) состоят из 60 аккумуляторов ZBM-3, которые обеспечивают максимальную мощность 300 кВт, непрерывную мощность 240 кВт, при напряжении 400-800 вольт и мощность 660 кВтч.

    Eos Energy Storage в США использует водно-цинковую батарею Znyth с цинковым гибридным катодом и оптимизированную для поддержки энергосистемы, обеспечивая непрерывную разрядку от 4 до 6 часов. Он включает в себя блоки мощностью 4 кВтч, составляющие подсистемы 250 кВт / 1 МВтч, и полную систему мощностью 1 МВт / 4 МВтч.В сентябре 2019 года Eos и Holtec International объявили о создании Hi-Power, совместного предприятия для массового производства цинковых батарей на водной основе для хранения энергии в промышленных масштабах, включая хранение избыточной энергии от небольших модульных реакторов Holtec SMR-160 для подачи энергии на сеть во время пикового спроса.

    Duke Energy тестирует гибридную систему ультраконденсатор-аккумуляторная батарея (HESS) в Северной Каролине, недалеко от солнечной установки мощностью 1,2 МВт. В батарее 100 кВт / 300 кВтч используется водно-гибридная ионно-химическая технология с электролитом из соленой воды и синтетическим хлопковым сепаратором.Ультраконденсаторы с быстрым откликом сглаживают колебания нагрузки.

    Более дешевые свинцово-кислотные батареи также широко используются в небольших коммунальных службах, причем батареи мощностью до 1 МВт используются для стабилизации выработки электроэнергии ветряными электростанциями. Они намного дешевле литий-ионных, некоторые из них способны выдерживать до 4000 циклов глубокой разрядки и могут быть полностью переработаны по окончании срока службы. Ecoult UltraBattery сочетает в себе свинцово-кислотную батарею с клапанной регулировкой (VRLA) и ультраконденсатор в одном элементе, обеспечивая высокоскоростную работу с частичным зарядом, долговечность и эффективность.Система UltraBattery 250 кВт / 1000 кВтч с 1280 батареями Ecoult была введена в эксплуатацию в сентябре 2011 года на проекте хранения энергии PNM Prosperity в Альбукерке, штат Нью-Мексико, компанией S&C Electric в связи с солнечной фотоэлектрической системой мощностью 500 кВт, в первую очередь для регулирования напряжения. Самая большая в Австралии система хранения свинцово-кислотных аккумуляторов мощностью 3 МВт / 1,5 МВтч на острове Кинг.

    Стэнфордский университет разрабатывает алюминиево-ионную батарею , которая отличается низкой стоимостью, низкой воспламеняемостью и высокой емкостью заряда более 7500 циклов.Он имеет алюминиевый анод и графитовый катод с солевым электролитом, но выдает только низкое напряжение.

    Весы бытовые BESS

    В мае 2015 года Tesla объявила о выпуске бытовой аккумуляторной батареи емкостью 7 или 10 кВтч для хранения электроэнергии из возобновляемых источников энергии с использованием литий-ионных аккумуляторов, аналогичных тем, что используются в автомобилях Tesla. Он выдает 2 кВт и работает от 350-450 вольт. Система Powerwall будет продаваться установщикам по цене 3000 долларов за блок на 7 кВтч или 3500 долларов за 10 кВтч, хотя последний вариант был незамедлительно прекращен, а первый снижен до 6.4 кВтч накопителя и 3,3 кВт мощности. Несмотря на то, что это явно внутренний масштаб, если оно будет широко использоваться, это повлечет за собой последствия для энергосистемы. Tesla требует 15 центнеров / кВтч для использования хранилища плюс стоимость этой возобновляемой энергии на начальном этапе, с 10-летней гарантией на 3650 циклов, покрывающей снижение выработки до 3,8 кВтч в пятый год, всего 18000 кВтч.

    В Великобритании Powervault поставляет различные батареи для домашнего использования, в основном с солнечными фотоэлектрическими батареями, но также с целью экономии с помощью интеллектуальных счетчиков. Его свинцово-кислотная батарея на 4 кВтч является самым популярным продуктом за 2900 фунтов стерлингов, хотя фактические батареи необходимо заменять каждые пять лет.Установка литий-ионного блока мощностью 4 кВтч стоит 3900 фунтов стерлингов, а стоимость других продуктов варьируется от 2 до 6 кВтч, а стоимость установки составляет до 5000 фунтов стерлингов.

    В апреле 2017 года LG Chem предлагала в Северной Америке ряд аккумуляторов, как низковольтных, так и высоковольтных. Он имеет 48-вольтовые батареи на 3,3, 6,5 и 9,8 кВтч и 400-вольтовые батареи на 7,0 и 9,8 кВтч.

    Бытовой литий-ионный BESS может подлежать ограничениям по возгоранию, которые запрещают прикрепление устройств к стенам жилища.

    Накопитель энергии сжатый воздух

    Хранение энергии со сжатым воздухом (CAES) в геологических пещерах или старых шахтах испытывается как относительно крупномасштабная технология хранения с использованием газовых или электрических компрессоров, при этом адиабатическое тепло сбрасывается (это диабатическая система).При выпуске (с предварительным нагревом для компенсации адиабатического охлаждения) он приводит в действие газовую турбину с дополнительным сжиганием топлива, выхлопные газы используются для предварительного нагрева. Если адиабатическое тепло от сжатия сохраняется и используется позже для предварительного нагрева, система является адиабатической CAES (A-CAES).

    Установки

    CAES могут иметь мощность до 300 МВт с общим КПД около 70%. Мощность CAES может сравняться с производством ветряной электростанции или 5-10 МВт солнечной фотоэлектрической мощности и сделать ее частично управляемой. Две диабатические системы CAES находятся в эксплуатации, в Алабаме (110 МВт, 2860 МВтч) и Германии (290 МВт, 580 МВтч), а другие были испытаны или разработаны в других местах США.

    Батареи имеют лучшую эффективность, чем CAES (выходная мощность как доля потребляемой электроэнергии), но они стоят больше на единицу емкости, а системы CAES могут быть намного больше.

    Duke Energy и три другие компании разрабатывают проект мощностью 1200 МВт и стоимостью 1,5 миллиарда долларов в штате Юта, вспомогательный для ветряной электростанции 2100 МВт и других возобновляемых источников. Это проект межгорного хранения энергии с использованием соляных пещер. Он нацелен на 48-часовую продолжительность разряда для преодоления перерывов в перемежаемости, следовательно, очевидно, более 50 ГВтч.Сайт может также хранить излишки солнечной энергии, передаваемой из Южной Калифорнии. Его планируется построить в четыре очереди по 300 МВт.

    Gaelectric Energy Storage планирует проект CAES мощностью 550 ГВт / год в Ларне, Северная Ирландия.

    В США проект Gill Ranch CAES адаптируется к установке в качестве хранилища энергии сжатого газа (CGES), где под давлением хранится природный газ, а не воздух. Газ хранится при давлении около 2500 фунтов на квадратный дюйм и температуре 38 ° C. Расширение трубопровода до давления 900 фунтов на квадратный дюйм требует предварительного нагрева, чтобы избежать образования жидкой воды и гидратов.

    Toronto Hydro с Hydrostor имеет пилотный проект с использованием сжатого воздуха в баллонах на глубине 55 м под водой в озере Онтарио для выработки 0,66 МВт за один час.

    Криогенное хранилище

    Технология работает путем охлаждения воздуха до -196 ° C, после чего он превращается в жидкость для хранения в изолированных резервуарах низкого давления. Воздействие температуры окружающей среды вызывает быструю регазификацию и 700-кратное расширение объема, используемого для привода турбины и выработки электроэнергии без сгорания.Компания Highview Power в Великобритании планирует построить промышленную установку с «жидким воздухом» мощностью 50 МВт / 250 МВт-ч на заброшенной электростанции на базе пилотной установки в Слау и демонстрационной установки около Манчестера. Энергия может храниться в течение нескольких недель (вместо часов, как для батарей) по прогнозируемой нормированной стоимости 110 фунтов стерлингов / МВтч (142 доллара США / МВтч) для 10-часовой системы, 200 МВт / 2 ГВтч.

    Тепловой накопитель

    Как описано в подразделе солнечной тепловой энергии документа WNA по возобновляемой энергии, некоторые заводы CSP используют расплав соли для хранения энергии в течение ночи.Испанская Gemasolar мощностью 20 МВт (эл.) Заявляет, что является первой в мире электростанцией CSP, работающей с близкой к базовой нагрузке, с коэффициентом мощности 63%. Испанская электростанция Andasol мощностью 200 МВт (эл.) Также использует аккумуляторы тепла из расплавленных солей, как и калифорнийская электростанция Solana мощностью 280 МВт (эл.).

    Компания Moltex, разработчик реактора на расплавленной соли (MSR), выдвинула концепцию аккумулирования тепла расплавленной соли (GridReserve) в дополнение к периодически возобновляемым источникам энергии. Moltex предлагает реактор стабильной соли мощностью 1000 МВт (эл.), Работающий непрерывно, отводя тепло с температурой около 600 ° C в периоды низкого спроса на хранение нитратной соли (как это используется в солнечных установках CSP).В периоды высокого спроса выходная мощность может быть увеличена вдвое до 2000 МВт, используя накопленное тепло на срок до восьми часов. Утверждается, что накопитель тепла добавляет к нормированной стоимости электроэнергии всего 3 фунта стерлингов / МВтч.

    Другая форма аккумулирования тепла разрабатывается в Южной Австралии, где компания 1414 (14D) использует расплавленный кремний . Процесс может хранить 500 кВтч в 70-сантиметровом кубе расплавленного кремния, что примерно в 36 раз больше, чем у Tesla Powerwall в том же пространстве. Он разряжается через теплообменное устройство, такое как двигатель Стирлинга или турбина, и рециркулирует тепло.Блок мощностью 10 МВт-ч будет стоить около 700 000 австралийских долларов. (1414 ° C – температура плавления кремния.) Демонстрационный TESS должен быть на проекте солнечной энергии Aurora недалеко от Порт-Огаста, Южная Австралия.

    Также в Австралии смешанный материал, называемый сплавом с зазором смешиваемости (MGA) , накапливает энергию в виде тепла. MGA состоит из небольших блоков смешанных металлов, которые получают энергию, генерируемую возобновляемыми источниками, такими как солнечная и ветровая энергия, которая является избыточной для потребностей сети, и хранят ее в течение недели. Заявлена ​​стоимость 35 долларов за кВтч, что намного меньше, чем у литий-ионных батарей, но у них более медленное время отклика, чем у батарей – 15 минут.Тепло выделяется для генерации пара, возможно, на перепрофилированных угольных электростанциях. Компания MGA Thermal была выделена из Университета Ньюкасла и с помощью федерального гранта строит пилотный завод. Компания разрабатывает несколько систем для температур от 200 ° C до 1400 ° C.

    Еще одна форма хранения энергии – лед. Ice Energy имеет контракты с компанией Edison в Южной Калифорнии на обеспечение 25,6 МВт накопления тепловой энергии с использованием системы Ice Bear, подключенной к большим блокам кондиционирования воздуха.Это делает лед ночью, когда потребление энергии низкое, а затем использует его для охлаждения в течение дня вместо компрессоров кондиционирования воздуха, тем самым снижая пиковое потребление.

    Хранение водорода

    В Германии компания Siemens ввела в эксплуатацию установку для хранения водорода мощностью 6 МВт с использованием технологии протонообменной мембраны (PEM) для преобразования избыточной энергии ветра в водород для использования в топливных элементах или добавления природного газа. Завод в Майнце – крупнейшая установка PEM в мире.В Онтарио компания Hydrogenics в партнерстве с немецкой энергетической компанией E.ON создала установку PEM мощностью 2 МВт, которая была введена в эксплуатацию в августе 2014 года и превращала воду в водород посредством электролиза.

    Эффективность электролиза топливных элементов до электричества составляет около 50%.

    San Diego Gas & Electric работает с израильской компанией GenCell над установкой 30 резервных топливных элементов GenCell G5rx на своих подстанциях. Это щелочные топливные элементы на водородной основе мощностью 5 кВт. Они производятся в Израиле и используются там компанией Israel Electric Corporation.

    Кинетическая память

    Маховики накапливают кинетическую энергию и могут выполнять десятки тысяч циклов перезарядки.

    ISO

    Онтарио заключил контракт с NRStor Inc. на систему хранения маховика мощностью 2 МВт. Hawaiian Electric Co устанавливает систему маховика мощностью 80 кВт / 320 кВтч от Amber Kinetics для своей энергосистемы Оаху, потенциально это может быть один модуль из нескольких. Обычно маховики, хранящие кинетическую энергию, готовую к превращению обратно в электричество, используются для управления частотой, а не для хранения энергии, они выдают энергию в течение относительно короткого периода времени и могут обеспечивать до 150 кВтч каждое.Amber Kinetics заявляет о возможности разряда в течение четырех часов.

    Stornetic в Германии производит блоки DuraStor мощностью от десятков киловатт до мегаватта. Применения варьируются от рекуперативного торможения поездов до вспомогательных услуг ветряных электростанций.

    В основном маховики используются в установках с вращающимся источником бесперебойного питания дизельного двигателя (DRUPS) с 7-11-секундной синхронной функцией сквозного пробега во время запуска интегрированного дизель-генератора после сбоя в электросети.Это дает время – например. 30 секунд – для запуска нормального резервного дизельного двигателя. В противном случае маховик накапливает энергию.

    База данных Global Energy Storage Министерства энергетики США содержит дополнительную информацию.


    Примечания и ссылки

    Джеффри Мишель, Германия устанавливает новый рекорд по хранению солнечной энергии, Energy Post , 18 июля 2016 г.
    Тодд Кифер, CAISO Battery Storage Trial, Transmission & Distribution World , 21 ноября 2016 г.
    Самая большая в мире аккумуляторная батарея: проточная ванадиевая батарея 200 МВт / 800 МВтч – продолжаются работы на объекте, Electrek , 21 декабря 2017 г.
    Джон Петерсен, CAISO Data выявляет критические недостатки в развивающейся мифологии возобновляемых источников энергии и хранения, Seeking Alpha , 6 мая 2019 г. Григорий Соловейчик, ARPA-E (Министерство энергетики США), Аммиак как виртуальный переносчик водорода (ноябрь 2016 г.)
    Международное энергетическое агентство (МЭА) и Агентство по ядерной энергии (АЯЭ), Прогнозируемые затраты на производство электроэнергии 2020 г.

    .

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *