Устройство защиты от перенапряжения
Содержание:
- Причины возникновения и опасность скачков напряжения
- Длительные перенапряжения и провалы из-за недостатка напряжения
- Разновидности и принцип действия защитных устройств
- Молниезащита от перенапряжений
- Ограничители перенапряжений
- Другие виды защитных устройств
- Видео
В конструкцию всех современных бытовых приборов входят чувствительные электронные компоненты. В результате, несмотря на все положительные качества и высокие технические характеристики, данное оборудование крайне отрицательно реагирует на перепады напряжения. Подобные скачки присутствуют во всех электрических сетях и полностью устранить их практически невозможно. Поэтому, чтобы сберечь дорогостоящую технику, требуется устройство защиты от перенапряжения.
Причины возникновения и опасность скачков напряжения
В момент перепада напряжения в электрических сетях его амплитуда изменяется на короткий промежуток времени. После этого она быстро восстанавливается с параметрами, приближенными к начальному уровню.
Подобный импульс электрическим током продолжается буквально в течение нескольких миллисекунд, а его возникновение обусловлено следующими причинами:
- Грозовые разряды. Вызывают скачки напряжения до нескольких киловольт, которые не сможет выдержать ни один прибор. Подобные перепады нередко становятся причиной отключения сети и пожара.
- Перенапряжение, вызываемое процессами коммутации, когда подключаются или отключаются потребители с высокой мощностью.
- Явление электростатической индукции при подключении электросварки, коллекторного электродвигателя и другого аналогичного оборудования.
Опасность последствий от перенапряжений наглядно отражается на рисунке, где грозовой и коммутационный импульсы существенно отличаются от номинального сетевого напряжения. Изоляционный слой в большинстве проводов рассчитан на значительные перепады и пробоев обычно не случается. Часто импульс действует очень недолго и напряжение, проходя через блок питания и стабилизатор, просто не успевает подняться до критического уровня.
Иногда слой изоляции сети 220 В может не выдержать возрастающего напряжения. В результате случается пробой, сопровождающийся появлением электрической дуги. Для потока электронов образуется свободный путь в виде микротрещин, а проводником служат газы, наполняющие микроскопические пустоты. Этот процесс сопровождается выделением большого количества тепла, под действием которого токопроводящий канал расширяется еще больше. Из-за постепенного нарастания тока, срабатывание защитной автоматики немного запаздывает, и этих нескольких мгновений вполне хватает, чтобы вывести из строя в частном доме всю электропроводку.
Особую опасность представляют повышенное и пониженное напряжение, находящееся в таком состоянии долгое время. В основном это происходит по причине аварийных ситуаций, которые требуется устранить, чтобы ток пришел в норму. Других способов нормализации и каких-либо специальных приборов, защищающих от этого явления, не существует.
Длительные перенапряжения и провалы из-за недостатка напряжения
Как правило, причиной длительных перенапряжений в сетях становится обрыв нулевого провода. В этом случае нагрузка на фазные жилы распределяется неравномерно, что приводит к перекосу фаз, когда разность потенциалов смещается к проводнику с максимальной нагрузкой.
Таким образом, неравномерный трехфазный ток, воздействуя на нулевой кабель, находящийся без заземления, способствует концентрации на нем избыточного напряжения. Этот процесс будет продолжаться до полного устранения неисправности или до тех пор, пока линия окончательно не выйдет из строя.
Другим опасным состоянием сети является провал или недостаток напряжения. Подобные ситуации очень часто возникают в сельской местности. Суть явления заключается в падении напряжения ниже допустимой величины. Такие проседания представляют серьезную опасность и реальную угрозу для оборудования. Многие современные приборы оборудованы несколькими блоками питания и недостаточное напряжение приводит к кратковременному выключению одного из них.
В результате, последует незамедлительная реакция электронной аппаратуры в виде ошибки, выведенной на дисплей, и полной остановки рабочего процесса. Если подобная ситуация сложилась с отопительным котлом в зимнее время года, тогда отопление дома будет прекращено. Устранить проблему возможно с помощью стабилизатора, фиксирующего такие проседания и поднимающего напряжение до номинальной величины.
Виды и принцип действия защитных устройств
Защита электрической сети от скачков напряжения может осуществляться разными способами. Наиболее распространенными и эффективными считаются следующие:
- Молниезащитные системы.
- Датчики повышенного напряжения, используемые совместно с УЗО. В случае неполадок они вызывают токовую утечку, под влиянием которой произойдет срабатывание защитного устройства.
- Реле перенапряжения.
Похожие функции выполняют блоки бесперебойного питания, с помощью которых компьютеры подключаются к домашней сети. Данные приборы не защищают от перенапряжений, они действуют как аккумуляторы, позволяя выполнить нормальное выключение компьютера и сохранить нужную информацию в случае внезапного отключения света. Стабилизировать напряжение это устройство не может.
Под действием молнии возникают электрические импульсы. Защита от их негативного воздействия осуществляется путем установки грозозащитного разрядника, используемого совместно с УЗИП – устройством защиты от импульсных перенапряжений. Он также известен, как автомат для защиты от перенапряжения. Кроме того, необходимо обеспечить дополнительную безопасность от электронного потока с параметрами, отличающимися от рабочих характеристик данной сети. Для этих целей используются специальные датчики, используемые с УЗО, и реле защиты от перенапряжения. Назначение и принцип работы данных устройств не такие, как у стабилизатора.
Основной функцией обоих компонентов является прекращение подачи электрического тока, когда перепад напряжения превысит максимальное значение, определенное паспортными техническими показателями этих устройств. После того как параметры сети нормализуются, реле включается самостоятельно и возобновляет подачу тока.
Молниезащита от перенапряжений
Защитные системы против грозовых разрядов могут быть устроены разными способами, в зависимости от технических условий.
1.
Первый вариант предполагает внешнюю молниезащиту, устанавливаемую дома (рис. 1). В этом случае допускается максимальная сила удара молнии непосредственно в элементы самой системы. Расчетная величина такого тока составит примерно 100 кА. Защититься от мощного импульса при перегрузке возможно с помощью комбинированного УЗИП, который устанавливается внутрь вводного электрического щита и действует как выключатель. Одно такое устройство защитит все оборудование, находящееся в доме.
В другом случае внешняя молниезащита отсутствует, а напряжение подается к дому по воздушной линии (рис. 2). Молния ударяет в опору ЛЭП с расчетным током, проходящим через УЗИП, величиной тоже 100 кА. Защитить электрооборудование от мощного импульса помогут специальные устройства с защитой, размещаемые во вводном щите, на стене здания или на самом столбе, в месте ответвления линии. При использовании распределительного щита, защита организуется по такой же схеме, как и в предыдущем варианте.
2.
Если же УЗИП устанавливается на столбе, то нецелесообразно применять дифференциальные устройства 3 в 1, поскольку на участке от столба до здания возможно появление наведенных, то есть, повторных перенапряжений. Поэтому будет вполне достаточно прибора класса 1+2, а при расстоянии до дома свыше 60 метров, внутри дома в главный щит дополнительно устанавливается УЗИП 2-го класса.
И, наконец, третья ситуация, когда питание дома подается через подземный кабель, в том числе и в сети 380 В, а внешняя молниезащита тоже отсутствует (рис. 3). Максимум, что может случиться – появление наведенных импульсных перенапряжений. Ток молнии не попадет в сеть даже частично. Величина расчетного импульсного тока составляет около 40 кА. Чтобы защитить электрооборудование достаточно УЗИП 2-го класса, установленного во вводный электрический щит.
3.
Ограничители перенапряжений
Рассматривая вопросы защиты от перенапряжения сети, следует отметить, что данную функцию в первую очередь должны выполнять организации, отвечающие за электроснабжение. Именно они устанавливают на ЛЭП необходимые защитные устройства. Однако, как показывает практика, это выполняется далеко не всегда, и проблемы защиты дома от перенапряжений вынуждены решать сами потребители.
Защита от перенапряжения в сети на подстанциях и воздушных ЛЭП осуществляется с помощью ОПН – нелинейных ограничителей перенапряжения. Основной этих устройств является варистор, имеющий нелинейные характеристики. Его нелинейность состоит в изменяющемся сопротивлении элемента в соответствии с величиной приложенного напряжения.
Когда электрическая сеть работает в нормальном режиме, а напряжение имеет свое номинальное значение, ограничитель напряжения в это время обладает большим сопротивлением, препятствующим прохождению тока. Если же при ударе молнии возникает импульс перенапряжения, наступает резкое снижение сопротивления варистора до минимального значения и вся энергия импульса уходит в контур заземления, соединенный с ОПН. Таким образом, обеспечивается безопасный уровень напряжения, и все оборудование оказывается надежно защищенным.
Для электрических сетей дома или квартиры существуют компактный блок модульных ограничителей перенапряжений, не занимающих много места в распределительном щитке. Они работают точно так же, как и в линиях электропередачи. Эти приборы подключены к заземляющему контуру или к рабочему заземлению, по которому уходят опасные импульсы.
Другие виды защитных устройств
Существуют и другие варианты защиты от перенапряжения в сети. Они широко применяются в быту и считаются одними из наиболее эффективных средств.
Сетевые фильтры
Отличаются простой конструкцией и доступной стоимостью. Несмотря на свою малую мощность, это устройство вполне способно защитить оборудование при скачках, достигающих 380 вольт и даже 450 вольт. Более высокие импульсы фильтр не выдерживает. Он просто сгорает, сохраняя в целости дорогостоящую электронику.
Данное устройство защиты от перенапряжения оборудуется варистором, играющим ключевую роль в обеспечении защиты. Именно он сгорает при импульсах свыше 450 В. Кроме того, фильтр надежно защищает от помех высокой частоты, возникающих при работе сварки или электродвигателей. Еще одним компонентом служит плавкий предохранитель, срабатывающий при коротких замыканиях.
Стабилизаторы
В отличие от сетевых фильтров, эти устройства позволяют выполнить нормализацию напряжения дома и привести его в соответствие с номиналом. Путем регулировок устанавливаются граничные пределы от 110 до 250 вольт, и на выходе устройства получаются требуемые 220 В. В случае скачков напряжения и выходе его за допустимые пределы, стабилизатор автоматически отключает питание. Подача напряжения возобновляется лишь после приведения сети к нормальному рабочему режиму.
Что лучше сетевой фильтр или стабилизатор напряжения. В определенных условиях, например, за городом или в сельской местности, стабилизаторы являются наиболее эффективной защитой от перенапряжения, выступают в качестве единственного варианта, способного выровнять напряжение до установленных норм.
Все стабилизирующие устройства, используемые в быту, разделяются на два основных типа. Они могут быть линейными, когда к ним подключается один или несколько бытовых приборов, или магистральными, устанавливаемыми на вводе сети в квартире или во всем здании.
electric-220.ru
Устройства защита от скачков напряжения для дома и квартиры
29.11.2019
Высокий уровень развития современных технологий позволил оснастить наше жилье высокотехнологичной бытовой техникой, которая экономит время, облегчает труд и упрощает жизнь. В подавляющем большинстве квартир и жилых домов обязательно найдутся автоматические стиральные и посудомоечные машины, микроволновки, холодильники, аудио- и видеоаппаратура, персональные компьютеры, а также другие электроприборы, реализованные на основе электронных компонентов и имеющие цифровые алгоритмы управления.
С ростом функциональности, эффективности и удобства эксплуатации растут и требования таких устройств к питающему напряжению, показатели которого, к сожалению, далеко не всегда соответствуют действующим стандартам качества электроэнергии.
По ряду причин, речь о них пойдет ниже, в электрических сетях могут возникать либо резкие колебания (скачки) напряжения, либо его длительные отклонения как в большую, так и в меньшую сторону. И то, и другое приводит не только к сбоям в работе или выходу из строя дорогостоящей бытовой техники, но и представляет реальную угрозу для безопасности жизни и здоровья людей.
Допустимые параметры электроэнергии
Стандартный уровень напряжения однофазной электросети в нашей стране составляет 230 В – именно на это номинальное значение рассчитана вся современная бытовая техника. Согласно требованиям ГОСТ 29322-2014 (IEC 60038:2009), определяющего нормы качества электроэнергии, расхождение с данной величиной не должно превышать ±10%. Таким образом, применительно к однофазной домашней сети диапазон предельно допустимого напряжения составляет 207 – 253 В.
Крайние значения из этого диапазона, не говоря уже о больших отклонениях, губительно влияют на многие современные электроприборы, в особенности на те, которые не имеют в своём составе импульсного блока питания. При этом следует понимать, что неисправность бытовой техники, вызванная некачественным электропитанием, не будет считаться гарантийным случаем – производитель, как правило, оговаривает подобные ситуации следующим образом: «Гарантия не распространяется на изделие, вышедшее из строя по причине повышенного/пониженного входного напряжения».
В чем причины перепадов напряжения в сети?
Возникновение колебаний и резких перепадов сетевого напряжения чаще всего обусловлено следующими причинами:
-
Недостаточная мощность и общий износ подстанций, которые не всегда соответствуют фактическому потреблению электроэнергии, в результате чего сеть работает с перегрузкой и постоянными сбоями.
-
Плохое состояние инфраструктуры энергетического комплекса, являющееся причиной частых аварий и ухудшения общего качества электроэнергии.
-
Несимметричное (неравномерное) распределение нагрузки, вызывающее перекос фаз и скачок напряжения в однофазной сети.
-
Атмосферные явления, например, попадание разряда грозовой молнии в линию электропередач или обрывающий провода ледяной дождь.
-
Человеческий фактор. Короткие замыкания и перенапряжения часто возникают вследствие некорректного подключения или умышленного вандализма.
-
Включение мощных нагрузок, приводящее к падению сетевого напряжения (при отключении таких нагрузок наблюдается обратная картина – резкий рост сетевого напряжения).
Возможные последствия скачков напряжения
Небольшие перепады напряжения в сети снижают, в первую очередь, эффективность осветительного и нагревательного оборудования. Кроме того, они могут повлечь за собой сбои в работе и остальных электроприборов, в особенности тех, которые имеют электронное управление (газовые котлы, стиральные машины, кухонная техника и т. п.).
Куда более плачевные последствия вызывают значительные сетевых отклонения: даже кратковременные провалы или скачки напряжения довольно часто становятся причиной сокращения срока службы бытовой техники, а в худшем случае и её моментального выхода из строя.
Наиболее опасны перенапряжения – резкие и сильные броски сетевого напряжения в большую сторону (на десятки и сотни вольт), такое явление практически всегда губительно для любого электрооборудования.
Спасут ли пробки или автоматы?
Автоматические выключатели и их более ранние аналоги, предохранительные пробки, являются устройствами защиты от коротких замыканий и длительных перегрузок. Их защитное срабатывание происходит только при недопустимо длительном по времени превышении током в цепи определённого значения, которое во время сетевого перепада может быть и не достигнуто. В итоге пробки и автоматы либо вообще не сработают, либо сработают через длительный промежуток времени, поэтому такие изделия вряд ли можно рассматривать в качестве серьёзной защиты от сетевых скачков и колебаний.
Как защитить технику от скачков напряжения?
Для того, чтобы в условиях нестабильной электросети гарантировать безопасное и надёжное функционирование своей бытовой техники необходимо принять определённые меры защиты. Они заключаются в установке и правильной эксплуатации специального устройства, нейтрализующего скачки напряжения и другие негативные сетевые явления.
Рассмотрим основные типы данных устройств.
Сетевой фильтр
Основное назначение этого прибора определяется его названием: фильтрация и сглаживание приходящих из сети помех. При наличии в составе варистора он будет защищать и от экстремальных перенапряжений. Следует понимать, что сетевой фильтр не обеспечивает коррекцию напряжения, следовательно, при сетевых отклонениях как хронических, так и резких прибор будет неэффективен.
Реле контроля напряжения (РКН)
Основная задача такого реле заключается в своевременном обесточивании подключенного оборудования при выходе питающего напряжения из определённого диапазона. Причем границы максимально допустимого и минимально допустимого значения пользователь задаёт самостоятельно.
РКН отличаются компактностью, достаточным токовым номиналом и удобным исполнением, позволяющим размещать их непосредственно в вводном щитке и использовать для защиты сразу всей домашней электросети.
Из недостатков можно назвать не самую эффективную защиту от значительных импульсных перенапряжений, а также неспособность повышать качество сетевого напряжения. Обратите внимание на то, что в случае электросети с периодическими скачками срабатывание РКН может стать постоянным явлением, а частое обесточивание электросети значительно понизит комфорт проживания в квартире или доме.
Устройства защиты от импульсных перенапряжений (УЗИП)
Эти устройства хорошо зарекомендовали себя в качестве защиты от импульсных перенапряжений, возникающих при грозовых разрядах, коротких замыканиях или переходных коммутационных процессах. Но они совершенно бесполезны при сетевых колебаниях и скачках, в результате которых напряжение не достигает экстремальных значений, а именно такие явления наиболее распространены и случаются во многих электросетях практически ежедневно.
УЗИП логичнее всего использовать в связке с другим устройством защиты, например, с упомянутым выше реле контроля напряжения – это повысит надежность системы электропитания и обеспечит ей максимальный уровень устойчивости перед импульсными перенапряжениями.
Стабилизаторы напряжения
Данные приборы регулируют входное напряжение и стараются максимально приблизить его фактические параметры к номинальным значениям. Качественный прибор способен быстро нейтрализовать сетевое колебание или подтянуть хронически пониженное/повышенное напряжение до установленной величины.
Применение современного стабилизатора (в частности – инверторного) позволит повысить качество электроэнергии в домашней сети до уровня, удовлетворяющего требованиям даже самого чувствительного к характеристикам электропитания оборудования. Однако не все стабилизаторы одинаково эффективны – на рынке представлено большое количество моделей, которые не способны обеспечить защиту должного уровня и уязвимы для скачков напряжения.
Ознакомиться с модельным рядом инверторных стабилизаторов напряжения «Штиль».
Источники бесперебойного питания (ИБП)
Аналогично стабилизаторам напряжения, современный ИБП является эффективным средством защиты от сетевых скачков, отклонений и колебаний. Главным отличием этих приборов от всех вышерассмотренных является способность обеспечить бесперебойное питание нагрузки при отсутствии напряжения в основной сети. Работа в автономном режиме поддерживается благодаря аккумуляторным батареям, от емкости которых зависит ее продолжительность.
ИБП, как и стабилизаторы, строятся на основе разных схем и имеют различные принципы работы. Если требуется устройство, гарантирующее высокое качество электропитания при работе и от сети, и от батарей, то необходимо выбирать ИБП с двойным преобразованием или, иначе говоря, онлайн ИБП.
Ознакомиться с модельным рядом онлайн ИБП «Штиль».
Какое устройство лучше использовать для защиты от скачков напряжения?
Подытожив, можно сказать, что сетевой фильтр и РКН обеспечивают лишь частичную защиту и не справляются со всем спектром сетевых проблем. Стабилизатор напряжения и ИБП универсальнее – подключенное к ним оборудование менее досягаемо для негативных сетевых воздействий (если перед стабилизатором или ИБП дополнительно установить УЗИП, то уровень защиты возрастет ещё больше).
Однако далеко не все стабилизаторы и ИБП качественны и по-настоящему надежны, поэтому следует максимально внимательно подходить к выбору устройства и при возникновении любых вопросов консультироваться с профессионалами.
Стоит отметить, что средняя стоимость качественного ИБП превышает стоимость схожего по мощности и качеству стабилизатора (при примерно одинаковом функционале по борьбе с сетевыми скачками).
www.shtyl.ru
причины, способы защиты, куда жаловаться
В резких перепадах напряжения бытовой сети может быть косвенно виновна компания, предоставляющая услуги электроснабжения, но и велика вероятность, что такие процессы вызваны форс-мажорными обстоятельствами. Вне зависимости то причин, последствия для бытовых электроприборов могут быть фатальными. Собранная информация поможет узнать, чем вызваны скачки напряжения, как обезопасить электроприборы, куда подавать жалобу и требование по возмещению ущерба.
Определение термина
Под данным понятием подразумевается резкие перепады сетевого напряжения, выходящие за пределы допустимых отклонений. Напомним, что согласно действующим нормам допустимые отклонения напряжения не должны превышать от номинала, а предельно допустимые — Собственно, параметры, характеризующие качественное напряжение указываются в договоре на предоставление услуг. При этом описание допустимых пределов не должно противоречить действующим нормам.
Под данное определение попадает кратковременное перенапряжение и понижение напряжения, а также отклонения (длительностью более минуты) и колебания (продолжительность менее минуты). Под это описание также подходят импульсные перенапряжения, называемые бросками.
Броски напряжения негативно отражаются на качестве напряженияОсновные причины возникновения скачков напряжения в сети
Есть много причин различного характера, вызывающие отклонения напряжения от нормы в сети частного дома или квартиры. Рассмотрим наиболее распространенные случаи:
- Увеличение или уменьшение тока нагрузки в системе электроснабжения. Причина кроется в одновременном подключении к сети мощных электроприборов (электрические печи, бойлеры, масляные обогреватели и т.д.). Наибольший пик нагрузки приходится на вечерние часы, особенно в холодное время года, следствием этого является понижение напряжения.
- Перегрузка трансформаторной подстанции может стать причиной нестабильной работы ее оборудования. Проблема заключается в том, что большинство узлов энергосистем проектировались и строились более 30-40 лет назад, соответственно, они были рассчитаны на более низкую нагрузку. Для исправления ситуации необходима модернизация оборудования проблемных узлов, а это требует серьезных финансовых вложений.
- Причинами кратковременных скачков напряжения также могут быть аварии на ЛЭП или кабельных магистралях. Это может быть связано как с общим состоянием линий, так и неблагоприятными погодными условиями.
- Резкий скачок напряжения происходит при обрыве нуля или плохом электрическом контакте нулевого проводника. В первом случае произойдет повышение напряжения вплоть до 380 Вольт, во втором, будут наблюдаться кратковременные скачки с 220 до 380 В.
- Проблемы с внутридомовой разводкой электросети. Причины могут быть связаны с использованием при некачественных материалов, неправильно выполненным монтажом или «старой» проводкой. В результате происходят скачки и колебания напряжения, сопровождаемые сильными импульсными помехами.
- Бросок напряжения возникает в тех случаях, когда на смежной линии системы электроснабжения подключен мощный потребитель, например промышленный объект. Известно, что в момент включения электродвигателей образуются сильные пусковые токи, это приводит к тому, что начинает «прыгать» напряжение. Причем установка специальных сетевых фильтров на таком объекте только частично исправляет ситуацию. Заметим, что совсем необязательно жить рядом с промышленным объектом, чтобы ощутить все эти прелести, подобный эффект может давать небольшая мастерская, торговый центр или любое общественное здание оборудованное мощной вентиляционной системой.
- К возникновению импульсных перенапряжений может привести попадание молнии в ВЛ. Напряжение импульса может измеряться в киловольтах. Попадание молнии в ЛЭП вызывает сильное перенапряжение сети
Это гарантировано выведет из строя включенные в розетки электрические приборы, несмотря на краткосрочность импульса (порядка нескольких миллисекунд) броска. Большинство устройств, обеспечивающих защиту, просто не успеют сработать.
- Возникают скачки и по техногенным причинам, одна из них – обрыв сетевого провода трамвайной или троллейбусной контактной сети с последующим попаданием на ВЛ. Это приведет к тому, что превышение нормального напряжения в сети составит порядка нескольких сотен вольт. На практике встречались случаи, когда в результате такой аварии выгорали (в буквальном смысле) электроприборы в ближайшем доме.
- Возникают скачки также при работе сварочного оборудования. Такая проблема более характерна для сельской местности, поскольку в хозяйстве часто возникает потребность для ремонта с применением сварки, например, подварить петли на воротах. Нередко некоторые умельцы с целью сэкономить подключают сварочное оборудование на вход, минуя счетчик и устройства защиты. В результате при образовании дуги происходят скачки и броски электрического тока в линии, от которой также запитаны дома соседей.
Мы назвали далеко не все причины, по которым образуются скачки входного напряжения, но приведенных примеров вполне достаточно, чтобы подвести итоги. Перепады и скачки могут быть вызваны:
- Резким изменением нагрузки.
- Авариями, вызванными воздействием стихии или имеющие техногенную природу.
- Износом оборудования.
- Отсутствием резерва мощности.
В первых двух случаях доказать вину компании, предоставляющей услуги, будет проблематично, в последних двух можно рассчитывать на получение компенсации.
Возможные последствия скачков напряжения
Изменения напряжения, выходящие за установленные нормами рамки, потребителям электроэнергии грозят выходом из строя электроприборов. Напомним, что при 220 вольтах нижняя максимально допустимая граница – 198,0 В, верхняя – 242 В.
Наибольшую опасность для домашних электроприборов представляют грозовые перенапряжения, поскольку величина импульса может достигать нескольких киловольт. Ниже представлен блок питания 40” телевизора после попадания разряда молнии в ВЛ, от которой был запитан частный дом. Ни реле напряжения, установленное на вводе, ни внутренняя защита и предохранители электронного устройства сработать не успели.
Блок питания телевизора после попадание молнии в ЛЭПС большой вероятностью бытовая техника «сгорит», если перенапряжение вызвано обрывом нуля. В таких случаях напряжение начинает стремиться к 380,0 В (на практике обычно 300-320 В, но и этого достаточно для выхода приборов из строя).
Броски меньшого уровня вызывают сбои в работе электронного оборудования, а также сокращают срок эксплуатации техники, оборудованной компрессорами или электродвигателями. На электронагревательные приборы незначительные перепады и скачки практически не оказывают серьезного влияния, исключение составляет оборудование с электронной системой управления.
Способы защиты от скачков напряжения
Поскольку нельзя полностью исключить вероятность импульсных скачков, перенапряжений или других видов отклонений от нормы сетевого напряжения, то необходимо найти способ обезопасить дорогостоящую технику. Нет необходимости «изобретать велосипед» поскольку имеются готовые решения. Кратко расскажем о каждом из них.
Реле контроля напряжения
Решить проблему перенапряжения или его проседания можно установив специальное реле напряжения. Данное защитное устройство (не путать с электронным УЗО) производит отключение электроэнергии, если напряжение на вводе выходит за рамки установленного диапазона.
Реле напряжения СР-721МВосстановление питания происходит после нормализации ситуации. Данные приборы обеспечивают защиту, если произошел обрыв нулевого провода или на сетевые провода ВЛ попадает контактная линия городского электротранспорта. Против импульсных скачков, возникающих при близком грозовом разряде, реле напряжения практически бесполезны.
Следует учитывать, что при защитном отключении пропадает сетевое напряжение, чтобы не ждать в темноте пока стабилизируется питание, рекомендуется обзавестись источником с бесперебойным питанием. Расскажем об особенностях такого решения.
Источники бесперебойного питания
По сути, эти устройства не являются средствами защиты, но используются совместно с таковыми для обеспечения аварийного электропитания. Обеспечивать весь дом бесперебойным питанием нецелесообразно, поскольку это будет очень дорогим решением. Но можно запитать участок электропроводки, например, линию освещения.
Бытовые бесперебойники MakelsanПри выборе ИБП необходимо учитывать суммарную мощность электроприборов, которые будут запитаны от него, и на основании этого выбирать прибор с соответствующим максимальным током. Подробно о выборе ИБП можно узнать из материалов нашего сайта.
Стабилизаторы напряжения
При плохом качестве электроэнергии (скачки, броски и т.д.), рекомендуется использовать специальные стабилизаторы напряжения. Эти устройства особенно эффективны при «проседании» электропитания на входе.
Модельный ряд стабилизаторов КаскадСтабилизаторы отлично справляются с импульсными помехами, но малоэффективны против высокого уровня перенапряжения, поэтому их рекомендуется использовать совместно с реле напряжения.
Защита от грозовых перенапряжений
Обеспечить надежную защиту в данном случае могут только ограничители перенапряжения. Для частных домов, с питанием от ВЛ, установка ОПН необходима, в противном случае при грозе следует отключать от розеток все электроприборы.
Ограничители перенапряженияОПН эффективны только в качестве защиты от высоковольтных бросков, в остальных случаях они бесполезны.
Как видите, идеальной защиты нет, поэтому необходимо остановиться на комплексном решении.
Куда жаловаться и как компенсировать ущерб?
Обращаться с жалобами, а также за компенсацией ущерба нужно в компанию, с которой заключен договор на предоставление услуг электроснабжения. Заметим, что быстрому рассмотрению способствует подача коллективных заявок, поэтому если инцидент коснулся соседей по улице или других жильцов многоквартирного дома рекомендуем самоорганизоваться и действовать совместными усилиями. Контактные данные поставщика услуг, указаны в договоре.
Если при скачках напряжения сгорела бытовая техника, для получения компенсации необходимо действовать в следующем порядке:
- Необходимо обратиться в энергокомпанию, чтобы ее представители зафиксировали факт аварии и составили соответствующий акт.
- Пришедшую в негодность технику необходимо отнести в сервисный центр, для составления экспертизы, подтверждающий факт выхода приборов и указания причины.
- Пишется письмо-претензия поставщику электроэнергии, к письму прилагается копия акта о факте аварии и заключения экспертизы сервисного центра.
- Если компания отказывается возмещать убытки, то данный спор решается в районной судебной инстанции.
www.asutpp.ru
Эффективная защита сети по напряжению
Необходимость осуществления защиты приборов по напряжению
Рассмотрим причины необходимости применения защиты по напряжению. Электрические приборы и оборудование очень зависимы от качества электрического тока, и, прежде всего, зависят от значения напряжения в сети. Существенные изменения напряжения обусловлены аварийными ситуациями, пиковыми нагрузками, природными явлениями.
В графике значения напряжения могут наблюдаться резкие пики, скачки напряжения. Пики могут достигать 300 и даже 500 Вольт. Эти всплески обычно кратковременны, длятся доли секунд, но и этого достаточно для полного выведения из строя электрооборудования. Более того, такие скачки могут стать причиной возгорания, причиной пожара. Вот почему очень важно использовать эффективную защиту сети по напряжению.
Как правильно в электрической сети выполнить защиту по напряжению рассмотрим далее.
Какая защита сети установлена в домах? Обеспечивает ли она защиту по напряжению?
В этой части рассмотрим стандартную защиту, установленную в электрических шкафах наших домов, и оценим возможности этого оборудования выполнять защиту сети по напряжению.
Вот стандартная комплектация электрического шкафа: пакетный выключатель, электрические автоматы по группам, один или два УЗО. Визуально такая комплектация внушает доверие, в одном шкафу собрано десяток устройств защиты, и кажется, что этого достаточно.
Одной из причин такой уверенности является сравнение с прошлыми электрическими шкафами, которые устанавливались в советское время. Раньше стандартно устанавливались один поворотный выключатель и один или два автомата.
Теперь давайте глубже рассмотрим функциональность этих устройств.
Электрические автоматы обеспечивают защиту сети от превышения значения силы тока в сети потребителя. Они срабатывают по тепловому принципу, когда значение температуры в проводниках растёт. Срабатывают они не быстро, ведь проводник должен реально нагреться. От чего защищает такое устройство? Оно действительно защищает от пожара в случае короткого замыкания в сети. То есть, замыкание уже произошло, розетка почернела, провода обуглились и только после этого сработают автоматы. Сеть будет обесточена и провода дальше греться не будут. Выполняет ли автомат функцию защиты по напряжению? Конечно, нет. Резкий скачок напряжения не вызывает срабатывания автоматов. Вот если пик напряжения выведет прибор из строя, сгорит несколько элементов, и это приведёт к короткому замыканию. То в этом случае через некоторое время сработает автомат. Но авария уже произошла. Фактически электрические автоматы защищают городскую электрическую сеть от аварий, происходящих в домах и квартирах. Они отключают неисправную нагрузку от городской сети.
Более сложным устройством является электронное защитное устройство. УЗО контролирует эффективность работы заземления, и нарушения, связанные с перетеканием тока по фазам. Если устройство определяет нарушение заземления или появление потенциала на нулевой фазе, то оно мгновенно отключает подачу электричества. УЗО обеспечивает безопасность использования электрических приборов, в случае попадания тока на корпус прибора или другой аварии такое устройство может спасти жизнь человека. Может ли УЗО выполнить защиту сети по напряжению. Ответ — тоже нет. Если при повышении напряжения не произошло распределение тока на «ноль» или «землю», то УЗО не сработает.
Вывод: стандартная комплектация электрического шкафа не обеспечивает защиту сети по напряжению. Для осуществления эффективной защиты сети по напряжению необходимо использовать специальные устройства защиты по напряжению, устройства защиты от скачков напряжения.
Устройства защита сети по напряжению
Для выполнения надёжной защиты сети и приборов по напряжению необходимо применять специальные устройства защиты по напряжению, приборы защиты от скачков напряжения. Такие устройства могут быть установлены локально для защиты конкретного электрического прибора или могут устанавливаться в электрическом шкафу на din рейку для защиты группы потребителей.
Устройства защиты потребителей по напряжению даёт возможность фильтровать пики напряжения, возникающие аварийным во внешних сетях, блокировать импульсные пики высокой мощности. Устройства защиты по напряжению дают возможность вырезать скачки напряжения, при этом сохраняя правильную форму графика напряжения. Быструю и надёжную работу устройств защиты по напряжению реализуют современные электронные схемы управления. Электронные процессоры дают возможность в тысячные доли секунды выполнять логические операции по защите сети по напряжению.
Грозозащита | |
Защита от пожара | |
Защита по напряжению от аварии |
Компания «Бастион» рекомендует следующие устройства защиты приборов по напряжению:
Читайте также:
skat-ups.ru
Методы защита сети от перенапряжения, видеоинструкция
Перенапряжение – это превышение предельно допустимого уровня напряжения в сети на 10 и более процентов.
В зависимости от типа сети допустимые по нормативам значения варьируются в диапазоне:
- однофазная электросеть – от 198 до 242 вольт;
- трехфазная электросеть – от 342 до 418 вольт.
Если напряжения превышает данные показатели, то речь уже идет о перенапряжении сети и нужно принимать защитные меры.
Опасность перенапряжения
Опасность перенапряжение состоит в том, что оно может вызвать в сбои в работе электрического оборудования и привести к частичной или полной его поломке. Оно может стать причиной сгорания холодильников, стиральных машин, телевизоров, компьютеров и других бытовых приборов.
Стоит отметить, что поломка бытовой техники – это не самое страшное последствие перенапряжения. Оно может стать причиной возгорания помещения и человеческих смертей, поэтому важно использовать средства защиты и обезопасить домашнюю электросеть.
Причины возникновения перенапряжения
Наиболее распространенная причина перенапряжения – это отгорание или обрыв нулевого провода, что приводит к тому, что ток циркулирует между фазами и часть потребителей получает пониженное напряжение, а часть – повышенное.
Также часто причиной перенапряжения становится ошибка при подключении кабеля в распределительном щитке – нулевой провод включается на место фазного и в квартиру вместо положенных 220 вольт поступает 380.
Значительную опасность для сети представляет разряд молнии в линии электропередач. В результате ударе возникает импульсное перенапряжение, достигающее нескольких тысяч вольт. Бывают случаи перенапряжения из-за сбоев на электрических подстанциях.
Способы защиты от перенапряжения
Для защиты от повышенного напряжения используются следующие устройства:
- стабилизаторы напряжения;
- реле напряжения;
- ДПН+УЗО;
- УЗИП.
Остановимся на каждом устройстве подробнее.
Стабилизаторы напряжения
Стабилизаторы обеспечивают надежную защиту сети от перенапряжения. Если напряжение выходит за предельно допустимый диапазон, то стабилизатор отключает подключенную группу от сети. Когда напряжения нормализируется, то регулятор включает питание снова. Современные стабилизаторы комплектуются дисплеями, отображающими текущее напряжение и показывающими график его скачков.
В продаже можно встретить различные типы этих устройств:
- феррорезонансные;
- электромеханические;
Существуют различные схемы монтажа регуляторов. Оптимальный вариант – это установка устройства на каждый электроприбор, который необходимо защитить. Эта схема хороша тем, что для каждого потребителя можно подобрать подходящий по точности и мощности стабилизатор. Конечно, этот вариант и самый дорогой, поэтому чаще всего один стабилизатор устанавливается на группу или на всю квартиру. Его мощность рассчитывается путем суммирования мощности всех приборов.
Реле напряжения
Установка реле – это тоже довольно эффективный способ обезопасить домашнюю сеть. При больших перепадах напряжения, реле автоматически отключает потребителя, а при стабилизации – включает. Современные защитные реле выпускаются с микропроцессорами, которые позволяют проводить более тонкую настройку устройства.
Реле, как и стабилизаторы, можно устанавливать на отдельные приборы, на группы и на всю домашнюю сеть. При защите отдельного прибора, он подключается к реле, а оно уже к сети питания. При защите всего дома или группы приборов, реле устанавливается на распределительном щитке.
Датчик повышенного напряжения (ДПН) + устройство защитного отключения (УЗО)
ДНП – это датчик повышенного напряжения, а УЗО – устройство защитного отключения. ДНП проводит мониторинг работы сети и если значения напряжения превышают норму, то УЗО размыкает сеть.
Устройство защиты от импульсных перенапряжений (УЗИП)
УЗИП – это устройство защиты от импульсных напряжений. УЗИП применяется для защиты сети от импульсного перенапряжения, в особенности, от попадания молнии в ЛЭП. Устройство можно устанавливать, как на часть, так и на всю сеть.
В последнем случае УЗИП устанавливается возле каждого электрического потребителя и на вводе в электрический щит.
Видео
electrikagid.ru
5. Защита электронных устройств от перенапряжения
Для защиты радиоэлектронного оборудования традиционно применяют плавкие предохранители. Обычно в них используют тонкие неизолированные проводники калиброванного сечения, рассчитанные на заданный ток перегорания. Наиболее надежно эти приспособления работают в цепях переменного тока повышенного напряжения. С понижением рабочего напряжения эффективность их применения снижается. Обусловлено это тем, что при перегорании тонкой проволоки в цепи переменного тока возникает дуга, распыляющая проводник. Предельным напряжением, при котором может возникнуть такая дуга, считается напряжение 30…35 6. При низковольтном питании происходит просто плавление проводника. Процесс этот занимает более продолжительное время, что в ряде случаев не спасает современные полупроводниковые приборы от повреждения.
Тем не менее, плавкие предохранители и поныне широко используют в низковольтных цепях постоянного тока, там, где от них не требуется повышенное быстродействие.
Там, где плавкие предохранители не могут эффективно решить задачу защиты радиоэлектронного оборудования и приборов от токовых перегрузок, их можно с успехом использовать в схемах защиты электронных устройств от перенапряжения.
Принцип действия этой защиты прост: при превышении уровня питающего напряжения срабатывает пороговое устройство, устраивающее короткое замыкание в цепи нагрузки, в результате которого проводник предохранителя плавится и разрывает цепь нагрузки.
Метод защиты аппаратуры от перенапряжения за счет принудительного пережигания предохранителя, конечно, не является идеальным, но получил достаточно широкое распространение благодаря своей простоте и надежности. При использовании этого метода и выбора оптимального варианта защиты стоит учитывать, насколько быстродействующим должен быть автомат защиты, стоит ли пережигать предохранитель при кратковременных бросках напряжения или ввести элемент задержки срабатывания. Желательно также ввести в схему индикацию факта перегорания предохранителя.
Простейшее защитное устройство [4.1], позволяющее спасти защищаемую радиоэлектронную схему, показано на рис. 4.1. При пробое стабилитрона включается тиристор и шунтирует нагрузку, после чего перегорает предохранитель. Тиристор должен быть рассчитан на значительный, хотя и кратковременный ток. В схеме совершенно не допустимо использование суррогатных предохранителей, поскольку в противном случае могут одновременно выйти из строя как защищаемая схема, так и источник питания, и само защитное устройство.
Рис. 4.1. Простейшая защита от перенапряжения
Рис. 4.2. Помехозащищенная схема защиты нагрузки от превышения напряжения
Усовершенствованная схема защиты нагрузки от превышения напряжения, дополненная резистором и конденсатором [4.2], показана на рис. 4.2. Резистор ограничивает предельный ток через стабилитрон и управляющий переход тиристора, конденсатор снижает вероятность срабатывания защиты при кратковременных бросках питающего напряжения.
Следующее устройство (рис. 4.3) защитит радиоаппаратуру от выхода из строя при случайной переполюсовке или превышении
напряжения питания, что нередко бывает при неисправности генератора в автомобиле [4.3].
При правильной полярности и номинальном напряжении питания диод VD1 и тиристор VS1 закрыты, и ток через предохранитель FU1 поступает на выход устройства.
Рис. 4.3. Схема защиты радиоаппаратуры с индикацией аварии
Если полярность обратная, то диод VD1 открывается, и сгорает предохранитель FU1. Лампа EL1 загорается, сигнализируя об аварийном подключении.
При правильной полярности, но входном напряжении, превышающем установленный уровень, задаваемый стабилитронами VD2 и VD3 (в данном случае — 16 Б), тиристор VS1 открывается и замыкает цепь накоротко, что вызывает перегорание предохранителя и зажигание аварийной лампы EL1.
Предохранитель FU1 должен быть рассчитан на максимальный ток, потребляемый радиоаппаратурой.
Элементы ГТЛ-логики обычно работоспособны в узком диапазоне питающих напряжений (4,5…5,5 Б). Если аварийное снижение питающего напряжения не столь опасно для «здоровья» микросхем, то повышение этого напряжения совершенно недопустимо, поскольку может привести к повреждению всех микросхем устройства.
На рис. 4.4 приведена простая и довольно эффективная схема защиты 7777-устройств от перенапряжения, опубликованная в болгарском журнале [4.4]. Способ защиты предельно прост: как только питающее напряжение превысит рекомендуемый уровень всего на 5% (т.е. достигнет величины 5,25 Б) сработает пороговое устройство и включится тиристор. Через него начинает протекать ток короткого замыкания, который пережигает плавкий предохранитель FU1. Разумеется, в качестве предохранителя нельзя использовать суррогатные предохранители, поскольку в таком случае может выйти из строя блок питания, защищающий схему тиристор, а затем и защищаемые микросхемы.
Недостатком устройства является отсутствие индикации перегорания предохранителя. Эту функцию в устройство несложно ввести самостоятельно. Примеры организации индикации разрыва питающей цепи приведены также в главе 36 книги [1.5].
Рис. 4.4. Схема защиты микросхем ТТЛ от перенапряжения
Рис. 4.5. Схема устройства защиты от перенапряжения, работающего на переменном и постоянном токе
Схема устройства, которое в случае аварии в электросети защитит телевизор, видеомагнитофон, холодильник и т.д. от перенапряжения, приведена на рис. 4.5 [4.5].
Напряжение срабатывания защиты определяется падением напряжения на составном стабилитроне VD5+VD6 и составляет 270 Б.
Конденсаторы С1 и С2 образуют совместно с резистором R1 RC-цепочку, которая препятствует срабатыванию устройства при импульсных выбросах в сети.
Схема работает следующим образом. При напряжении в сети до 270 В стабилитроны VD3, VD4 закрыты. Также закрыты и тиристоры VS1, VS2. При действующем напряжении более 270 В открываются стабилитроны VD3, VD4, и на управляющие электроды тиристоров VS1, VS2 поступает открывающее напряжение. В зависимости от полярности полупериода сетевого напряжения ток проходит либо через тиристор VS1, либо через VS2. Когда ток превышает 10 А, срабатывают автоматические выключатели (пробки, плавкие предохранители), отключая электроприборы от электросети. Нагрузка (на рисунке не показана) подключается параллельно тиристорам. Проверить работоспособность устройства можно с помощью ЛАТРа.
Устройство работоспособно и на постоянном токе.
Рис. 4.6. Схема релейного устройства защиты от перенапряжения с самоблокировкой
Устройство защиты от перенапряжения (рис. 4.6) выгодно отличается от предыдущих тем, что в нем не происходит необратимого повреждения элемента защиты [4.6]. Вместо этого при напряжении свыше 14,1 В пробивается цепочка стабилитронов VD1 — VD3, включается и самоблокируется тиристор VS1, срабатывает реле К1 и своими контактами отключает цепь нагрузки.
Восстановить исходное состояние устройства защиты можно только после вмешательства оператора — для этого следует нажать на кнопку SB1. Устройство также переходит в рабочий ждущий режим после кратковременного отключения источника питания. К числу недостатков данного устройства защиты относится его высокая чувствительность к кратковременным перенапряжениям.
Устройство (патент DL-WR 82992) [4.7], принципиальная схема которого приведена на рис. 4.7, может применяться для защиты нагрузки от недопустимо высокого выходного напряжения. В нормальных условиях транзистор VT1 работает в режиме, когда напряжение между его коллектором и эмиттером небольшое, и на транзисторе рассеивается небольшая мощность (ток базы определяется резистором R1). Сопротивление стабилитрона VD2 в этом случае большое и тиристор VS1 закрыт.
Рис. 4.7. Схема полупроводникового реле защиты нагрузки от перенапряжения
При возрастании напряжения на выходе устройства выше определенной величины через стабилитрон начинает протекать ток, который приводит к открыванию тиристора. Транзистор VT1 при этом закрывается, и напряжение на выходе устройства становится близко к нулю. Отключить защиту можно только отключением источника питания.
Описанное устройство должно включаться в выходную цепь стабилизаторов так, чтобы сигнал обратной связи подавался из цепи, расположенной за системой защиты. При номинальном выходном напряжении 12 В и токе 1 А в устройстве можно применить транзистор КТ802А, тиристор КУ201А — КУ201К, стабилитрон — Д814Б. Сопротивление резистора R1 должно быть 39 Ом (мощность рассеивания при отсутствии системы автоматики, отключающей стабилизатор от сети, составляет 10 Вт), R2 — 200 Ом, R3 — 1 кОм.
lib.qrz.ru
Как организовать защиту от перенапряжения сети в частном доме: схемы, приборы, оборудование
Наличие в доме дорогостоящей электробытовой и электронной технике, природные катаклизмы и низкое качество электроснабжения в городских сетях вынуждают собственников жилья принимать меры, чтобы минимизировать возможный ущерб от вышеуказанных факторов.
В данной статье речь пойдёт о практических мерах по защите от перенапряжения, которые можно реализовать при организации электроснабжения частного дома. Причём эти работы можно выполнить как при новом строительстве, так и при модернизации существующих систем электроснабжения частного дома.
Я выполнял указанные работы при переводе электропитания дома с однофазной на трёхфазную схему. Причём работы были не только выполнены, но и приняты представителями горэлектросетей без замечаний, а правильное функционирование приборов и эффективность защиты от перенапряжения проверена на практике в процессе эксплуатации. Известно, что основным условием подключения к городским электросетям является выполнение технических условий (ТУ), которые выдаются собственнику жилья. Как показал личный опыт, надеяться на то, что в данных ТУ будут отражены все мероприятия по безопасной эксплуатации электрооборудования, можно с определённым скептицизмом. На фото ниже показаны ТУ, выданные мне в горэлектросетях.
Примечание: пункты, помеченные на фото красным цветом, были мной реализованы самостоятельно ещё до получения тех. условий. Пункт, помеченный синим цветом, больше обусловлен интересами самих горсетей (защитить себя от ответственности за ущерб перед собственником дома по причине возможных проблем в зоне их ответственности).
Поэтому при разработке проекта схемы электроснабжения частного дома было решено использовать дополнительные меры по защите электрооборудования, которые не были отражены в ТУ. Ниже на фото показан фрагмент проекта электроснабжения моего жилого дома.
Как видно из фото, в учётно-распределительном шкафу (ЩР1), устанавливаемом внутри дома, предусмотрено устройство защиты от импульсных перенапряжений (УЗИП-II) согласно требованиям ТУ, выданных городскими электрическими сетями.
Так как ввод в дом осуществляется по воздушной линии, то с учётом требований ПУЭ (правил устройства электроустановок), на вводе в дом должны устанавливаться ограничители перенапряжений, что и было мной учтено в проекте (УЗИП-I на фото), которые установлены в шкафу (ЩВ1) на фасаде здания. Для защиты индивидуальных электроприёмников в доме используются ИБП (источники бесперебойного питания) и стабилизаторы напряжений.
Таким образом, защита электрооборудования дома от перенапряжений реализована в трёх зонах (уровнях):
- на вводе в дом
- внутри дома, в учётно-распределительном шкафу
- индивидуальная защита электроприборов внутри помещений дома
Защита от перенапряжения
Что важно учесть при выполнении работ
В первую очередь должен отметить специфические особенности, предъявляемые к выполнению электромонтажных работ со стороны представителей городских электросетей. Для примера с точки зрения учёта потребляемой электроэнергии достаточно поверить и опечатать счётчик электроэнергии. Но поскольку в каждом из нас они видят «потенциальных расхитителей электроэнергии», то всё, что касается монтажа оборудования, присоединений на участке от городской опоры и до счётчика включительно, должно быть «недоступным для потребителя», закрытым (в боксы, шкафы) и опломбированным. Причём даже в том случае, если эти «требования» противоречат требованиям технической документации на установленное оборудование, создают риск возникновения отказов в работе оборудования и т. д. Более подробно об этих «специфических требованиях» будет сказано ниже.
Теперь о технической стороне вопроса:
Для защиты электрооборудования, установленного в доме, я использовал следующие приборы и аппараты.
1. В качестве УЗИП (устройства защиты от импульсных перенапряжений) — I уровня мной были использованы ограничители перенапряжений нелинейные (ОПН), российского производства (Санкт-Петербург), в количестве трёх штук (по одному, на каждый фазный проводник). Заводское обозначение данных приборов — ОПНд-0,38. Установлены они в опечатанном пластиковом боксе в стальном шкафу на фасаде дома.
Что важно отметить по данному оборудованию:
- Данные приборы защищают только от импульсных (кратковременных) перенапряжений, возникающих при грозах, а также от кратковременных коммутационных перенапряжений, причём в обе стороны. При длительных перенапряжениях, вызванных авариями и неполадками в городской электросети, данные приборы защиту дома не обеспечат.
- В техническом плане ОПН представляет собой варистор (нелинейный резистор). Прибор подключается параллельно нагрузке между фазным и нулевым проводом. При появлении бросков (импульсов) напряжения, внутреннее сопротивление прибора моментально снижается, при этом ток через прибор резко и многократно возрастает, уходя в землю. Таким образом, происходит сглаживание (снижение) амплитуды импульсного напряжения. В связи с вышесказанным, при монтаже данных приборов нужно обратить особое внимание на устройство контура заземления и надёжного подключения ОПН к нему.
- В зависимости от схемы электроснабжения дома, количество используемых ОПН может варьироваться. Например, для однофазного воздушного ввода достаточно установить один такой прибор, при питании от городской сети по двухпроводной линии. Для трёхфазного воздушного ввода в большинстве случаев достаточно установить три прибора (по числу фаз). Если ввод в дом осуществляется по трёхфазной, но пяти проводной схеме, или приборы ставится на участке после разделения общего проводника на нулевой рабочий (N) проводник и защитный проводник (PE), то потребуется установка дополнительного прибора между нулевым и защитным проводником.
2. В качестве УЗИП — II уровня я использовал аппараты УЗМ-50 М (устройство защитное многофункциональное) российского производства.
Из особенностей данных аппаратов можно отметить следующее:
- В отличие от ОПН, данные аппараты обеспечивают защиту не только от импульсных перенапряжений, но и защиту от длительных (аварийных) перенапряжений и просадок (недопустимого падения напряжения).
- В конструктивном отношении представляют собой реле контроля напряжения, дополненное мощным реле и варистором, заключенным в один корпус.
- Для однофазной сети необходимо установить один аппарат, для трёхфазной сети потребуется три аппарата, не зависимо от числа проводников питающей линии.
3. Третий немаловажный момент, касающийся правильного монтажа и работы УЗИП при их последовательном включении (показаны на фото красными прямоугольниками УЗИП-1 и УЗИП-2) заключается в том, что расстояние между ними (по длине кабеля) должно быть не менее 10 метров. В моём случае оно равно 20 метрам.
Примечание: приобрести указанное оборудование (ОПН и УЗМ) в моём городе оказалось невозможным, ввиду его отсутствия в продаже, заказывал через интернет. Такой расклад навеял мысль о том, что вопросу защиты электрооборудования, по крайней мере, в нашем городе, внимания практически никто не уделяет.
Практическое выполнение работ
Практическое выполнение работ не представляет собой большой сложности и показано на фото ниже, с небольшими пояснениями.
Монтаж ОПН-0,38 на вводе в дом
На фото показан монтаж ОПН в пластиковом боксе. Из особенностей нужно учесть, что специальных боксов для ОПН не существует, ибо конструктивно они крепятся на опорной конструкции и по типу своего исполнения могут устанавливаться открыто. Установка ОПН в боксе — мера вынужденная. Бокс должен иметь возможность для пломбировки. Для установки ОПН в боксе сделана самодельная конструкция из оцинкованной стали толщиной 1 мм, которая закреплена вместо штатной дин рейки, установленной в боксе на заводе-изготовителе.
При монтаже ОПН и подключении к ним проводов использование граверных шайб — обязательно. По требованиям ТУ, вводной автомат должен устанавливаться в боксе с возможностью пломбировки. Использовался аналогичный бокс, как для ОПН, что и показано на фото ниже (верхний пластиковый бокс в металлическом шкафу).
Такое нагромождение конструкций (пластиковых боксов в металлическом шкафу) на фасаде дома, обусловлено, как я отмечал ранее, именно специфическими требованиями горэлектросетей и вызывает не только заметное удорожание работ, но и дополнительных затрат сил, времени и нервов. На мой взгляд, правильное в техническом плане выполнение работ при воздушном вводе, выполненное проводом СИП, должно бы быть следующим: от опоры горэлектросетей до фасада дома прокладываем провод СИП, крепим на фасаде дома и обрезаем с небольшим напуском. Затем на каждый провод СИП крепим прокалывающий зажим с отводом из медного провода сечением 10 мм2, который заводится в шкаф (или бокс) на клеммы вводного автомата. Срезы проводов СИП закрываем герметичными колпачками. Таким образом, мы правильно «перешли» с алюминия (провод СИП) на медь. При этом у нас не возникло бы проблем с подключением медного провода (сечением 10 мм2) к клеммам модульного вводного автомата. Но такую работу представители горсетей не примут.
Поэтому провод СИП сечением 16 мм2 необходимо завести непосредственно на клеммы вводного автомата, который должен быть установлен в пластиковый бокс. Сделать это на практике очень сложно, так как нужно сохранить степень защиты бокса (для наружной установки не ниже IP 54), при этом провод СИП должен быть зафиксирован по отношению к пластиковому боксу и т. д.
На практике пришлось просто купить ещё один стальной шкаф, в котором установил сами пластиковые боксы, затем провод СИП был заведён в шкаф и закреплён в нём. Ниже на фото показаны завершающие работы по монтажу шкафа и его крепления на фасаде дома. Работы были приняты без замечаний и претензий.
Ещё один важный момент, на который нужно обратить внимание, связан с тем, что ОПН при работе во время грозы отводит ток в землю посредством подключения самого ОПН к контуру заземления. При этом токи могут достигать значительных величин: от 200 — 300 А и до нескольких тысяч ампер. Поэтому важно обеспечить кратчайший путь от самих ОПН до контура заземления медным проводником сечением не менее 10 мм2. Ниже на фото показано, как данное подключение выполнил я. Для надёжности работы ОПН я сделал подключение приборов к контуру заземления двумя медными проводами сечением 10 мм2 каждый. На фото провод в желто-зеленой трубке ТУТ (термоусаживающаяся трубка).
Монтаж аппаратов УЗМ-50М в учётно-распределительном шкафу
Выполнение электромонтажных работ проблем не доставляет, поскольку аппараты имеют штатное крепление на DIN-рейку. Фрагмент выполнения работ по монтажу УЗМ-50М в шкафу показан на фото ниже. Аппараты также должны устанавливаться в пластиковый бокс с возможностью пломбирования. На фото верхняя крышка бокса не показана.
С точки зрения электрической схемы подключения (хотя схема имеется в паспорте на аппарат и на корпусе самого аппарата) у неподготовленного читателя могут возникнуть вопросы. Чтобы пояснить особенности подключения аппарата, ниже на рисунке приводится схема подключения, приведённая в паспорте на УЗМ-50М, с некоторыми моими пояснениями.
Во-первых, как видно из схемы, УЗМ-50М является однофазным коммутирующим аппаратом и для своего функционирования требует обязательного подключения проводников L и N к верхним клеммам. Это показано на схеме подключения в обоих случаях (а и б). Далее, между схемой а и схемой б появляется различие, о котором производитель не даёт ни какого пояснения и приходится потребителю самостоятельно додумывать, как и в каких случаях какую схему использовать.
Различие заключается в том, что по верхней схеме (а) нагрузка подключается к аппарату по двум проводам (L и N). Т. е. в случае аварийного срабатывания аппарата цепь будет разорвана как по фазному проводнику (L), так и по проводнику (N).
В нижней схеме (б) нагрузка к аппарату подключается только по одному фазному проводнику (L), а второй провод (N) подключается к нагрузке напрямую, минуя аппарат. Т. е. в случае аварийного срабатывания аппарата он разомкнёт только фазный проводник, а проводник N остаётся подключенным всегда. Исходя из вышесказанного, а также зная, в каком случае допускается разрывать проводник N, а в каком — не допускается, можно сделать следующий вывод:
В случае подключения дома (квартиры) по двухпроводной линии (система TN-C), необходимо подключать аппарат УЗМ-50М по нижней схеме (б), так как в этом случае провод N выполняет две функции (нулевого рабочего проводника и нулевого защитного проводника), и его разрывать ни в коем случае нельзя.
В случае если подключение дома (квартиры) выполнено по трёхпроводной схеме (TN-S), либо аппарат установлен в системе (TN-C-S), на участке после разделения общего (PEN) проводника (на N и PE), то провод N можно разрывать. В этом случае аппарат УЗМ-50М нужно подключать по верхней схеме (а). Почему аппарат, согласно схеме производителя, нужно подключать после счётчика (на рисунке поставил знак вопроса) — мне малопонятно. Я, например, свои аппараты в шкафу подключал до счётчика, что бы они защищали всё оборудование, установленное в доме, в том числе и оборудование, установленное в самом шкафу. Кроме того, поскольку разделение общего PEN выполнено в шкафу (ЩР1) в доме, то подключал аппараты защиты по схеме а, т. е. с отключением как фазных, так и нулевого проводников. Что и показано на фото ниже.
Ещё один важный момент: поскольку данные аппараты не предназначены для использования в многофазной сети то необходимо знать и учитывать следующее.
В случае трёхфазного подключения дома и использования данных аппаратов, если в доме имеются только однофазные электроприёмники, никаких проблем с использованием и работой данных аппаратов быть не должно. Но если в доме имеются трёхфазные потребители, например, трёхфазный электродвигатель, то в случае аварийного срабатывания аппаратов (одного или двух), трёхфазный электроприёмник (например, электродвигатель) может выйти из строя. Таким образом, в данном случае потребуются дополнительные технические мероприятия по отключению трёхфазных потребителей при аварийном срабатывании аппаратов УЗМ.
Использование индивидуальных защитных приборов
Применение ИБП стабилизаторов напряжения для защиты отдельных электроприёмников в доме (телевизор, компьютер и т. д.) настолько стало привычным и распространённым, что какого-либо особого пояснения не требует, поэтому здесь не приводится.
Выводы
1. Опыт эксплуатации показал, что при сильной грозе защита может работать неоднократно, на относительно небольшом промежутке времени. С учётом этого можно смело утверждать, что при сильных грозах и при отсутствии защиты, электрооборудование, установленное в доме, может быть выведено из строя с достаточно высокой степенью вероятности.
2. В случае невозможности выполнения аналогичных работ в своём доме, в качестве защитной меры при грозовых разрядах необходимо хотя бы отключать электроприборы от сети, что, кстати, делают далеко не все.
Данный вариант защиты электрооборудования является недорогим бюджетным решением, но вполне работоспособным, надёжным и проверенным на практике. В случае применения аналогичного оборудования импортного производства и приглашения для выполнения работ специалистов цена вопроса может увеличиться в разы, что даже для средне обеспеченной семьи может быть накладно.
www.diy.ru