Регулятор температуры на радиаторе отопления принцип работы: Терморегулятор для радиатора отопления — принцип работы, монтаж и настройка — Портал о строительстве, ремонте и дизайне

типы приборов, как своими руками смонтировать термостат

Электронные или механические регуляторы температуры воды в системе отопления позволяют существенно повысить комфорт проживания в частном доме, сокращая расходы домовладельца на обогрев помещения. Используемая автоматика отличается универсальностью, подходит для теплового оборудования различного типа, позволяет в автономном режиме корректировать работу котлов, поддерживая температуру в помещении.

Содержание

  1. Основное назначение и принцип работы
  2. Виды терморегуляторов
  3. Жидкостные и газонаполненные термостаты
  4. Монтаж автоматических регуляторов
  5. Способы настройки механических клапанов
  6. Рекомендации по установке

Основное назначение и принцип работы

Температурный регулятор отопления представляет собой простейшее устройство, которое в зависимости от интенсивности нагрева воды в контуре или воздуха в помещении могут перекрывать ток жидкости в радиаторе отопления. Наличие таких механических и электрических клапанов позволяет автоматизировать работу отопительного оборудования.

С помощью регуляторов отопления поддерживают оптимальную температуру в различных комнатах. Например, в спальне можно установить термостат на уровне 16−18 градусов, на кухне — 20−22, в детской — 24−25, а в ванной комнате — 26−28 градусов. Автоматические регуляторы позволяют упростить отопление помещения, при этом имеется возможность тонкой настройки работы модуля управления, который будет отвечать за создание оптимального микроклимата в помещении.

Наличие терморегулятора позволяет решить следующие проблемы:

  1. 1. В помещении создается оптимальный температурный режим.
  2. 2. Уменьшается расход тепловой электроэнергии.
  3. 3. Имеется возможность аварийного отключения батареи без обесточивания всего стояка.
  4. 4. С одинаковым успехом такие регуляторы могут использоваться в квартирах в многоэтажках, так и в частных домах, где работают автономные отопительные установки.

Принцип работы регуляторов чрезвычайно прост. В механических устройствах внутри корпуса располагается термоактивная жидкость или газ. В зависимости от положения рычага термостата активное вещество в регуляторе будет перекрывать поток теплоносителя, изменяя тем самым интенсивность нагрева радиатора.

В автоматических устройствах встроены различные механические датчики, которые следят за температурой и при необходимости изменяют положение задвижки в трубе, уменьшая или увеличивая количество попадающего в радиатор теплоносителя. Электрорегулятор температуры отопления способен управлять не только батареями, но и контролирует смесители, насосы, котлы.

Виды терморегуляторов

В автономных системах используются различные типы терморегуляторов, которые отличаются своей конструкцией и принципом работы. Распространение получили три вида устройств:

  • механические;
  • электронные;
  • полуавтоматические.

Простейшие механические терморегуляторы отличаются надежной конструкцией, позволяя выполнять ручную настройку количества подаваемого внутрь батареи теплоносителя. К преимуществам этого типа приборов можно отнести их простоту, доступную стоимость, четкость и легкость настройки. Они полностью энергонезависимы, поэтому для работы таких устройств не требуется дополнительное подключение к электричеству или использование различных небольших батареек. К недостаткам механических терморегуляторов принято относить отсутствие разметки, поэтому настройку агрегата выполняют исключительно опытным путем.

Электронные термостаты отличаются сложной конструкцией, включают программируемый микропроцессор, который анализирует данные от многочисленных датчиков, посылая сигналы исполнительным устройствам на открытие или закрытие радиаторов, что позволяет оперативно изменять температуру в помещении.

Электронные терморегуляторы в системах отопления принято разделять на два типа:

  1. 1. Закрытые модели не способны автоматически определять температуру, поэтому требуется их ручная настройка. После завершения регулировки устройство будет в автономном режиме поддерживать микроклимат в помещении.
  2. 2. Открытые автоматические регуляторы температуры в системах отопления отличаются расширенной логикой. Имеется возможность тонкой настройки термостата, в том числе установка таймера, порога срабатывания устройства на минимальную и максимальную температуру.

Полуавтоматические модели сочетают преимущества электронных и механических терморегуляторов. Они имеют доступную стоимость, поэтому идеально подходят для применения в бытовых целях. Наличие у полуэлектрического регулятора небольшого цифрового дисплея позволяет существенно упростить их настройку и последующее использование.

В качестве термостатического элемента у регулятора может использоваться вещество в жидком или газообразном состоянии. Соответственно, все устройства принято делить на жидкостные и газонаполненные. Каждый из таких типов регуляторов имеет свои преимущества и недостатки.

Газонаполненные регуляторы отличаются длительным сроком службы, при этом они обеспечивают максимально возможную точность работы. Благодаря использованию газообразного термостатического элемента достигается четкая и плавная регулировка температуры нагрева радиаторов. У электромеханических приборов в комплекте поставки имеются датчики, определяющие температуру воздуха в помещении, что обеспечивает максимальную точность управления системой отопления.

Из преимуществ жидкостных моделей отмечают их высокую точность при передаче давления на внутренние подвижные механизмы. Такие регуляторы обеспечивают максимально точную работу радиаторов отопления в соответствии с заданной предварительно программой. В зависимости от своей модификации жидкостные регуляторы могут иметь дистанционные и встроенные датчики. Приборы, оснащенные внутренним блоком для измерения температуры, устанавливают строго горизонтально.

Регуляторы с дистанционными датчиками могут использоваться в следующих случаях:

  • радиаторы установлены в нише;
  • термостат расположен в вертикальном положении;
  • батарея закрыта плотными воздухонепроницаемыми шторами.

Во всех случаях встроенный в прибор внутренний датчик работает некорректно, поэтому для правильного определения температуры воздуха в помещении используются выносные термометры. В последующем передача данных осуществляется по небольшому кабелю или беспроводной связи.

Монтаж автоматических регуляторов

Установка термостата не представляет особой сложности, поэтому всю работу можно выполнить самостоятельно, не обращаясь к профессиональным сантехникам. В то же время необходимо в обязательном порядке изучить инструкцию к конкретной модели регулятора, где будут подробно расписаны действия при установке устройства.

При монтаже автоматического регулятора отопления необходимо слить из батареи всю воду, для чего потребуется запирающий шаровой кран.

После слива воды с батареи откручивают клапан, предварительно перекрыв все краны.

На радиаторе меняют адаптер. Для его снятия потребуется два разводных ключа, которыми фиксируют и откручивают гайки на подающей трубе и батарее. После замены адаптера аналогичную процедуру следует выполнить с воротником на радиаторе.

Непосредственно к установленному новому воротнику крепят терморегулятор. На корпусе термостата имеются соответствующие стрелки, позволяющие правильно смонтировать прибор, клапан которого фиксируется разводным ключом, после чего затягивают герметично гайку с дополнительной гидроизоляцией паклей и аналогичными материалами.

Всё что останется сделать, это открыть вентиль, полностью заполнить батарею водой, убедиться в отсутствии протечек, после чего можно приступать к настройке регулятора.

Способы настройки механических клапанов

Если с настройкой полностью автоматических устройств не возникает каких-либо сложностей, то правильно отрегулировать работу механических клапанов бывает затруднительно. Необходимо измерять не только температуру теплоносителя, но и воздуха в помещении. В комнате закрывают все двери и окна, что позволяет свести теплопотери к минимуму.

Измеряют температуру воздуха в помещении, записывают полученные данные, после чего до упора отворачивают клапан термостата. Теплоноситель заполнит батарею полностью, а показатель теплоотдачи у прибора будет максимальным. Через час выполняют повторное измерение температуры и сравнивают ее с предварительными данными.

Головку регулятора до упора поворачивают в обратную сторону. Как только температура воздуха в комнате достигнет оптимальных значений, клапан вновь открывают до тех пор, пока из батареи не будет слышен шум текущей воды, а сам радиатор не начнет быстро нагреваться. В этот момент вращение регулятора прекращают, фиксируя зажимом его положение.

Рекомендации по установке

Алгоритм действий при установке терморегуляторов может существенно различаться, поэтому перед началом монтажа прибора следует ознакомиться с инструкцией.

В конструкции регуляторов отопления имеются хрупкие детали, которые можно повредить при неосторожном обращении, поэтому во время монтажа следует соблюдать внимательность, действуя предельно аккуратно, не пережимая газовыми ключами и другими фиксаторами пластиковые элементы термостата.

Устанавливать клапан необходимо таким образом, чтобы после фиксации термостат имел горизонтальное положение. В противном случае в регулятор будет поступать теплый воздух от батареи, что может отрицательно сказаться на точности его работы.

При установке термостата на однотрубные радиаторы возможен дополнительный монтаж байпаса в патрубок, что позволяет существенно упростить последующую эксплуатацию системы отопления.

На корпусе регулятора будут указаны стрелки, показывающие направление воды на входе в радиатор отопления. При установке теплоклапанов следует учитывать направление движения теплоносителя.

При использовании электрических термостатов выносные датчики должны располагаться на удалении от клапанов 2−8 см. Это позволит обеспечить необходимую точность измерений, оптимизируя работу всей системы отопления в доме.

Использование регуляторов температуры в системах отопления позволяет повысить эффективность обогрева помещения, создает оптимальные условия в каждой из комнат, сокращает расходы домовладельца на оплату коммунальных услуг. В настоящее время в продаже можно найти механические, полуавтоматические и автоматические термостаты, отличающиеся своим принципом работы.

Наибольшее распространение получили полуавтоматы, которые сочетают функциональность и удобство использования. Все монтажные работы можно провести самостоятельно, что позволит сэкономить на услугах профессиональных сантехников.

Терморегуляторы для радиаторов отопления. Установка. Работа. Виды

В частных домовладениях и квартирах нередко наблюдаются прецеденты: дифференциация температур при прогреве радиаторов в отопительной системе. В разных помещениях прогрев происходит неодинаково. Для домовладельцев, кто эксплуатируется автономное отопление, такие вопросы также возникают довольно часто. Возникает вопрос, есть ли терморегуляторы для радиаторов отопления или можно хоть как-то отрегулировать температуру в них? Об этом наш материал.

Содержание

  • 1 Ручной клапан регулировки
  • 2 Установка
  • 3 Термоголовка для радиаторов
  • 4 Лучевая система + сервопривод + комнатный термостат

Ручной клапан регулировки

Подобные блоки стоят недорого, но они эффективны, использовать их выгодно, когда требуется подкорректировать температуру в комнате. Но первоначальное их предназначение заключается в перекрытии теплоносителя, поступающего в радиатор, в случае необходимости.

Виды корректировочных кранов:

Шаровые. Предназначены для защиты от аварий. Блок поворачивается на угол 90 градусов, пропускает воду без всяких сложностей, может также надежно блокировать поток. В полуоткрытом состоянии нельзя оставлять такой кран, резиновая прокладка будет быстро изнашиваться.

Шаровый кран

Стандартные. Классические вентили, надежные и недорогие. Точность регулировки не филигранная, то достаточно предсказуемая. Доступ теплоносителя перекрывают. Но точность температуры при этом может варьироваться. Подобные устройства могут работать в механическом или автоматическом режиме.

Терморегулятор прямого воздействия. По-другому термостат/термоголовка. Простой по устройству блок, который монтируется вблизи батареи. Представляет собой цилиндр, изолированный со всех сторон, в него вставляется сильфон, который наполнен специальной жидкостью (иногда газом). Эта субстанция чутко реагирует на смену температуры. Принцип работы таков: с повышением температуры наполнитель увеличивается в объёме, растет давление на элемент в клапане регулятора, поток теплоносителя уменьшается.

Термоголовка для радиатора отопления

Есть еще регуляторы с цифровыми датчиками, они работают по сходному принципу в режиме «Автомат».

Установка

Терморегулятор для радиатора отопления устанавливается на радиатор обычно на входе, для этого в первую очередь следует познакомиться со схемой устройства контура. Иногда также приборы ставятся на выходе, что позволяет снизить напор теплоносителя.

Технологически процесс установки термостата для радиатора не представляет особой сложности, это может сделать даже новичок, напоминает установку соединительных элементов. Ручные регуляторы стоят недорого и эффективно повышают слежение за энергоресурсами, что позволяет равномерно распределить тепло по всем батареям

В процессе монтажа требуется принимать во внимание количество изгибов в контуре, они позволяют сократить тепловые потери, при этом, не уменьшая давление теплоносителя, поступающего в батареи. Дополнительные ручные вентили дают возможность отключить полностью подачу, если помещение не эксплуатируется

Термоголовка для радиаторов

Термоголовка – это верхний элемент устройства, она бывает разных конфигураций. Наиболее приемлемые термоголовки подходят со всеми термическими блоками. Если в радиаторе присутствует встроенный термостатический вентиль, то на него можно поставить головку практически любую. Механические элементы по надежности и коэффициенту прочности занимают передовые позиции, дополнительно они оснащаются термостатом. Преимущества:

  1. Эти блоки просты.
  2. Стоят недорого.
  3. Устанавливать их несложно.
  4. Имеют длительный гарантированный срок службы.

Есть также модели повышенной протекции, их еще называют: антивандальные. Продаются также системы с выносными датчиками. Работают они по сходным принципам, но имеют различные показатели. Ручные головки похожи на кран и функционируют по сходному принципу. При повороте крана в ту или другую сторону проходит через блок больше или меньше теплоносителя. Механические элементы надежны, но они работают не совсем точно (в отличие от электронных). Ставятся такие блоки на входе и выходе, регулировать можно два – одновременно.

Более комплексный прибор, поддерживающий точно температуру в режиме «автомат» — это сильфон. Имеет конфигурацию в виде эластичного цилиндра, который заполнен субстанцией (газ или жидкость). Отличительные признаки вещества – повышенный показатель расширения. То ест незначительного увеличения температуры вполне достаточно, чтобы объём резко вырос.

Сильфон опирается на «пробку», она расположен в верхнем положении, пока субстанция в сильфоне не нагревается. С ростом температуры цилиндр растет в объёме, воздействует на «пробку», который начинает закупоривать входное сечение.

Радиатор все меньше пропускает теплоносителя и охлаждается. Субстанция в сильфоне сжимается, цилиндр также уменьшается в размерах, шток поднимается, после этого увеличивается поток, проходящий через радиатор. Все это провоцирует дополнительное нагревание. Благодаря такой работе, температура в комнате остается константной, при этом каким является сильфон может быть любым (жидкостной или газовой версии). Чаще всего термоголовки снабжаются жидкостными сильфонами, они проще в плане конструкции и более функциональны.

Механическая термостатическая головка монтируется так, чтобы она была направлена в комнаты. В подобной ситуации температура измеряется с меньшей погрешность. Внешние датчики соединяются с термоголовкой с помощью специальной трубки, расположить ее можно в любой точке помещения.

Электронные головки показывают точные показатели, они снабжаются дополнительно двумя батарейками. Подобные приборы несколько громоздки и не всегда удобны для монтажа. В подобных ситуациях шток перемещается благодаря цифровому процессору, преимущества подобных головок в наличии дополнительного функционала. Например, можно программировать температуру в течение суток.
Механические головки более просты и надежны, стоят они недорого, поэтому большинство пользователей предпочитает приобретать именно такие приборы.

Термоголовка с электронным датчиком



Лучевая система + сервопривод + комнатный термостат

Сервопривод с выдвижным штоком дает возможность перемещать клапана нажимного действия, что позволяет автоматизировать различные блоки отопления (в том числе и контуры теплых полов). Включение и выключение реализуется с помощью комнатного термостата в режиме «автомат», без участия человека.

Пример применения сервоприводов можете посмотреть здесь:

Работает устройство с сервоприводами достаточно несложно. Контур по отдельности (петля трубопровода) имеет индивидуальный клапан. С его использованием задаются настройки: как должен расходоваться носитель тепла. В расчет принимаются показатели:

  1. Размеры.
  2. Гидравлическое сопротивление.

Одним клапаном есть шанс установления нужной температатуры в разных помещениях. Еще один вид клапанов весьма распространённых, так называемые, «нажимные». Они активируют и «гасят» контуры, с изменением температурного режима. Руководствуются они сервоприводами. Распространённая и простая модификация сервопривода функционирует по принципу: включил/выключил. Дополнительно субстанция нагревается с помощью электрической спирали накаливания. Происходит расширение жидкости и ее давление на шток. При отключении питания субстанция уменьшается в объёме, все происходит в обратном порядке.

Шток обычно задерживается на несколько минут (не более трех), после того как электрическая цепь активируется. Таким образом, происходит два типа контакта с клапаном. Если все активировано и работает, то на сервоприводе главный клапан находится в режиме: «Открыто». Если ток начинает поступать, то клапан закрывается, жидкость больше не поступает.
Чтобы определиться с системой сервопривода (по аналогии с теплым полом), рекомендуется понять в первую очередь: в какой позиции будет находиться клапан.

В России зимы бывают суровые, теплый пол выполняет отопительные функции, но они являются по большей части вспомогательные.

Автоматические переключения будут происходить только в тех помещениях, где теплый пол является главным контуром нагрева, так как в таких блоках устанавливаются по большей части автоматические заглушки. Есть сервоприводы с постепенным управлением, но они стоят дорого, пользуются незначительным спросом.

Стандартная конструкция состоит в том, что есть точная подстройка ручным клапаном. Отключается контур при получении импульса отключения контура, получая импульса термостата. Есть также еще один вариант более эффективный и простой – это балансировка на расход в режиме «Открыто». После этого монтируется сервопривод, что позволяет им регулировать контур на 100%.

В быту обычно одним термостатом происходит руководство несколькими контурами, в этом случае сервоприводы распараллеливаются к одной электрической цепи.

При монтаже лучевой системы отопления, есть возможность так же установить сервоприводы на радиаторы и подключить к ним комнатные термостаты. Когда нужная температура в помещении будет достигнута, термостат даст сигнал сервоприводу на перекрытие подачи теплоносителя в радиаторы, которые установлены в помещении. Но такая реализация используется крайне редко.

Подписывайтесь так же на наш Youtube, группу Вконтакте, Яндекс Дзен. Там много полезного и интересного контента!

Что такое регулятор температуры и как он работает?

1 Что такое контроллер включения/выключения?

1. 1 Как работает контроллер включения/выключения?

2 Что такое пропорциональный регулятор?

2.1 Как работает пропорциональный регулятор?

3 Что такое ПИД-регулятор температуры?

3.1 Что означает ПИД?

4 Какой терморегулятор лучше?

 

*Примечание. Это вторая статья в нашей серии о тепловом контуре. См. внизу этой статьи все посты из этой серии.

Регуляторы температуры предназначены для поддержания заданной температуры объекта или процесса. В каждом приложении, где требуется контроль температуры, контроллер используется для установки температуры посредством уставки. Какой-то датчик используется для сравнения температуры в этом месте с требуемой уставкой.

Некоторым приложениям требуется тепло для поддержания определенной температуры, другим требуется охлаждение, а другим требуется и то, и другое. Поддержание температуры имеет решающее значение во многих приложениях.

Существует три основных типа регуляторов температуры: двухпозиционные, пропорциональные и ПИД-регуляторы.

Что такое контроллер включения/выключения?

Контроллеры включения/выключения чаще всего представлены термостатами. Типы датчиков температуры могут различаться, но чаще всего используется ртутная колба и капиллярная система. Другие датчики, такие как термисторы, термопары или RTD, также могут использоваться в качестве датчиков для контроллеров включения/выключения.

Как работает контроллер включения/выключения?

Название On/Off происходит от способа подачи сигнала на охлаждение или обогрев: система включена или выключена. Это довольно просто. Эти системы работают хорошо и используются уже более 100 лет. Колебания температуры больше, и эти системы включения/выключения не рекомендуются для систем, требующих точного контроля температуры. Колебания на 2-5% и более могут быть выше и ниже заданного значения температуры.

Что такое пропорциональный регулятор?

Пропорциональные контроллеры немного отличаются. В этих устройствах чаще всего используются термопары или термометры сопротивления для измерения температуры.

Как работает пропорциональный регулятор?

Вот как работает пропорциональный регулятор: Вводится и устанавливается уставка температуры. Когда температура приближается к заданному значению, контроллер включает или выключает нагрузку нагрева или охлаждения, как только она достигает зоны нечувствительности, которая обычно составляет 5-10% до или после заданного значения. Например, если уставка для нагрева составляла 100 F, а у контроллера была 10-процентная зона нечувствительности, вокруг уставки будет диапазон 10 %. 10% от 100 — это 10 F, и большинство пропорциональных контроллеров «разбивают» зону нечувствительности вокруг уставки: на 5 градусов выше и на 5 градусов ниже. Как только измеренная температура достигает 95 F, контроллер фактически будет пропорционировать сигнал до тех пор, пока он не достигнет 100 F. Измеренная температура немного превысит заданное значение, но когда она достигнет 105 F, контроллер снова начнет пропорционировать сигнал, пока не достигнет 100, затем он снова полный.

Пропорциональные контроллеры лучше справляются с управлением температурой вокруг заданного значения, чем двухпозиционные контроллеры, и обеспечивают более стабильный диапазон температуры.

Что такое ПИД-регулятор температуры?

ПИД-регуляторы действительно «лучшие» в сравнении «хорошее, лучшее, лучшее». Они предназначены для обеспечения более точного и эффективного управления. Эти контроллеры предназначены для учета множества факторов производительности ваших систем отопления, чтобы обеспечить точное и эффективное регулирование температуры.

Что означает PID?

ПИД-регулятор обозначает три основные функции обратной связи, называемые пропорциональной, интегральной и производной. Каждый из них имеет свою собственную функцию в системе, использующей ПИД-регулирование.

-Proportional обозначает способность контроллера видеть приближение заданного значения и требует замедления работы нагревателя или устройства контроля температуры. Обычно это происходит при определенной температуре в системе контроля температуры (например, на 5 градусов ниже уставки).

-Integral – это используемый алгоритм, который смотрит, как система стабилизируется ниже этой уставки. После запуска «P» он может не обеспечить тот небольшой скачок, необходимый для повышения температуры до заданного значения.

– Производная работает с другой стороны системы. Если температура постоянно стабилизируется выше уставки, производная будет работать, чтобы уменьшить управляющий выход, чтобы уставка понизилась.

Как работает ПИД-регулятор?

Вместе ПИД-функции работают в гармонии, чтобы иметь очень тщательно контролируемую систему контроля температуры. Большинство ПИД-регуляторов температуры имеют процесс, называемый «Автонастройка», который позволяет ПИД-регулятору «изучить» свою конкретную систему. Человек, использующий процесс автонастройки, обычно включает свою систему с настройками ПИД-регулятора, установленными на заводе по умолчанию. Затем они инициируют процесс автонастройки и увидят в процессе нагрева падение на 50 F или около того от входной уставки (например, если уставка вашего регулятора температуры составляет 200 F, она понизит температуру до 150 F). система применит тепло, чтобы вернуться к исходной уставке 200 F.) Она может сделать это 2-3 раза, прежде чем узнает, какие настройки P, I и D применять.

Контроллер отметит, как быстро система теряет тепло, как быстро она нагревается, и соответствующим образом регулирует настройки P, I и D. Это очень полезно для создания точного и полезного ПИД-регулятора. Контроллер фактически «изучает» ваш процесс и применяет те настройки, которые он считает лучшими. Это переводит на более эффективную систему.

Какой терморегулятор лучше?

Каждое приложение для измерения температуры отличается. Для систем, которые отвечают за нагрев большого, открытого или крупногабаритного продукта, который просто не может изменить температуру очень быстро, контроллер включения / выключения отлично подходит.

Повседневным примером этого является большинство домашних систем отопления и кондиционирования воздуха, которые обычно управляются включением/выключением. Вы можете увидеть 72 F на вашем термостате, но это всего лишь уставка. Реальная температура всегда выше или ниже этой.

Большой резервуар — еще один отличный пример процесса, который подходит для контроллера включения/выключения. Когда к большому резервуару или его содержимому применяется нагрев или охлаждение, продукт внутри него не может изменить температуру очень быстро.

Наконец, обогрев — еще одно полезное применение контроллера включения/выключения. Независимо от того, сколько энергии приложено, поверхность того, к чему прикреплена тепловая дорожка, не будет изменять температуру очень быстро.

Пропорциональное управление отлично подходит для процессов, требующих достаточно хорошего контроля температуры с разницей в 2-3 градуса. Небольшой резервуар или обогреватель, на который легко может повлиять подача тепла или холода, были бы отличным кандидатом для пропорционального регулирования. Это было бы немного более жесткой системой управления с меньшим количеством отработанного тепла, что лучше, чем включение / выключение, но не такое жесткое, как ПИД.

Наконец, ПИД-регулирование для систем контроля температуры используется для высокоточных приложений. Газы и другие важные продукты часто не выдерживают больших перепадов температуры. Многие приложения для нагрева или охлаждения требуют, чтобы продукт достиг определенной температуры и оставался при ней в течение определенного периода времени. Примерами могут служить отверждение композитов или газовая регенерация катализаторов. Чтобы гарантировать отсутствие колебаний температуры во время процесса нагрева, ПИД-регулятор температуры с правильно расположенным датчиком и системой нагрева или охлаждения правильного размера может работать намного лучше, чем другие методы контроля температуры.

Позвоните сегодня в нашу команду Powerblanket, и мы подберем для вас подходящий контроллер.

Thermal Lo Петля

6- Датчики температуры и идеальное размещение

Решения Powerblanket для промышленного управления дают вам возможность автоматизировать, дистанционно управлять и контролировать ваши ценные материалы и оборудование.

Исследуйте контроллеры

Основы контроля температуры : Технологии : REGLOPLAS

Принцип работы

Блок контроля температуры масла состоит из нагревателя с точно заданными характеристиками расхода (нагреватель с принудительной циркуляцией), который при правильной настройке предотвращает тепловую перегрузку теплоносителя. В следующем примере нагреватель состоит из трубки со встроенным нагревательным элементом мощностью 20 или 40 кВт. Термическое масло обтекает нагревательные элементы, которые снабжены лопастями для направления потока. Эта конфигурация демонстрирует низкую степень тепловой инерции (низкая теплоемкость нагревателя), что приводит к хорошему регулирующему действию. Определены точные условия потока в нагревателе, т. е. производительность насоса (расход) и теплопроизводительность (удельная тепловая нагрузка) согласованы таким образом, чтобы температура в нагревателе никогда не превышала максимально допустимую температуру пленки, установленную производитель термомасла.

Как правило, это критическое условие может быть выполнено только при использовании проточного нагревателя с заданными режимами потока. Таким образом, конфигурация нагревателя является решающим фактором в контроле температуры.

Эксплуатационная безопасность и надежность агрегата, а также срок службы термомасла. Конфигурация нагревателя определяется следующими тремя факторами: 

  • Производительность насоса (расход)
  • Теплопроизводительность (удельная тепловая нагрузка, Вт/см2)
  • Размеры

Соотношение между этими факторами следующее:
При большом расходе удельная тепловая нагрузка в нагревателе также может быть относительно высокой, что в свою очередь позволяет сохранить размеры нагревателя, и, следовательно, сам блок управления температурой относительно небольшой.

Однако насосы большой производительности стоят дороже.
При малом расходе должна быть низкой и удельная тепловая нагрузка в нагревателе, что подразумевает либо низкую теплопроизводительность, либо соответственно большие габариты агрегата. Однако можно использовать сравнительно недорогой насос.

Regloplas рекомендует принудительный нагрев термального масла при температуре выше 150 °C из соображений безопасности, а также для приложений, требующих в первую очередь нагрева.

В дополнение к уже упомянутым компонентам, таким как контроль уровня, предохранительный термостат, предохранительные выключатели и тепловые реле для двигателя насоса, из соображений безопасности требуется, чтобы термостаты с принудительным потоком были оснащены расширительным баком, байпасом и монитор потока.

Расширительный бак отделяет циркулирующее горячее масло от атмосферы. Это эффективно устраняет недостаток, связанный с подогревом ванны – ускоренное старение масла из-за окисления – поскольку циркулирующее горячее масло отделено от атмосферы стационарным маслом в расширительном баке, что также предотвращает утечку горючих паров масла в атмосферу. При очень высоких температурах на выходе, то есть выше точки кипения масла, или для уменьшения окисления в расширительном баке можно использовать азотную подушку.

Байпас подключается параллельно потребителю и выполняет следующие функции:

  • Защита двигателя насоса от перегрузки не превышена температура пленки в нагревателе и не перегружено термомасло
  • Защита потребителя от избыточного давления (например, с баками с двойными стенками)
  • Регулировка расхода в потребителе (в первую очередь для насосов большой производительности)

Монитор потока, как и байпас, контролирует циркуляцию. Когда расход падает ниже установленного на заводе минимального давления (косвенное измерение расхода), нагреватель выключается. Таким образом, датчик расхода срабатывает при разделении потока в контуре регулирования температуры по любой причине. Датчик расхода обеспечивает более полную защиту от работы насоса всухую и от перегрева агрегата. Функции безопасности, встроенные в блок управления температурой – принудительный поток, расширительный бак, байпас, датчик расхода – обеспечивают следующие преимущества: 

  • Минимальное закоксовывание, высокая степень стойкости к окислению и, следовательно, значительно более длительный срок службы масла
  • Снижение эксплуатационных расходов и повышение эксплуатационной надежности системы контроля температуры

Охладитель может состоять из блока трубок с протекающая через них вода и обтекающее их термальное масло.
Односторонний обратный клапан на выпускном отверстии охлаждающей воды уменьшает образование накипи в охладителе, которая может возникнуть в результате обратного потока воды в охладитель.
Насос чаще всего представляет собой центробежный насос с механическим уплотнением или магнитным приводом. Для снижения тепловой нагрузки на охладитель и улучшения контроля при охлаждении термостаты Regloplas для температур выше 300 °C оснащены контуром байпаса охладителя.

Байпасный контур охладителя работает следующим образом:

  • Обогрев: Трехходовой клапан закрыт между 12 и 2, т. е. охладитель (1) шунтирован.
  • Охлаждение: Трехходовой клапан открыт между 12 и 1, т. е. тепловое масло проходит через охладитель и непосредственно над нагревателем.

Контроллер температуры агрегата управляет трехходовым клапаном через электромагнитный клапан.
Байпасный контур обеспечивает следующие важные преимущества:

  • Значительно лучшие температурные профили (отсутствие существенного понижения температуры в результате охлаждения)
  • Уменьшение теплового удара по теплообменнику во время охлаждения; надежная работа
  • Сниженная склонность к образованию накипи
  • Отсутствие выделения пара в начале и в конце периода охлаждения.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *