Теплоотдача 1 секции биметаллического радиатора: Мощность биметаллических радиаторов с секциями на 350 и 500 мм

Содержание

Теплоотдача 1 секции биметаллического радиатора. Расчет тепловой мощности

Главная » Новости » Теплоотдача 1 секции биметаллического радиатора. Расчет тепловой мощности

18.03.2020 в 01:57

Новости

Содержание

  1. Теплоотдача 1 секции биметаллического радиатора. Расчет тепловой мощности
  2. Теплоотдача 1 секции биметаллического радиатора 500 мм. Таблица расчетов теплоотдачи радиаторов отопления
    • Сколько нужно тепла для отопления?
    • Теплоотдача – ключевой показатель эффективности
    • Сравнение показателей: анализ и таблица
    • Факторы, которые влияют на показатели
    • Размещение радиаторов
    • Как улучшить теплоотдачу
  3. Теплоотдача 1 секции биметаллического радиатора рифар. Base

Теплоотдача 1 секции биметаллического радиатора. Расчет тепловой мощности

Для организации обогрева помещений необходимо знать требуемую мощность на каждое из них, после чего произвести расчет теплоотдачи радиатора. Расход тепла на обогрев комнаты определяется достаточно простым способом. В зависимости от расположения принимается величина теплоты на обогрев 1 м3 комнаты, она составляет 35 Вт/ м3 для южной стороны здания и 40 Вт/ м3 – для северной. Реальный объем помещения умножается на эту величину и получаем требуемую мощность.

Внимание! Приведенный метод подсчета необходимой мощности является укрупненным, его результаты учитываются только в качестве ориентира.

Для того чтобы рассчитать алюминиевые или биметаллические батареи, надо отталкиваться от характеристик, указанных в документации производителя. В соответствии с нормативами там дается мощность 1 секции радиатора при DT = 70. Это означает, что 1 секция даст указанный тепловой поток при температуре теплоносителя на подаче 105 ºС, а в обратке – 70 ºС. При этом расчетная температура внутренней среды принимается 18 ºС.

Исходя из нашей таблицы, теплоотдача одной секции биметаллического радиатора с межосевым размером 500 мм составляет 204 Вт, но только при температуре в подающем трубопроводе 105 ºС. В современных системах, особенно индивидуальных, настолько высокой температуры не бывает, соответственно, и отдаваемая мощность уменьшится. Чтобы узнать реальный тепловой поток, нужно вначале просчитать параметр DT для существующих условий по формуле:

DT = (tпод + tобр) / 2 – tкомн, где:

  • tпод – температура воды в подающем трубопроводе;
  • tобр – то же, в обратке;
  • tкомн – температура внутри комнаты.

После этого паспортная теплоотдача радиатора отопления умножается на поправочный коэффициент, принимаемый в зависимости от значения DT по таблице:

Например, при графике теплоносителя 80 / 60 ºС и комнатной температуре 21 ºС параметр DT будет равен (80 + 60) / 2 – 21 = 49, а поправочный коэффициент – 0.63. Тогда тепловой поток 1 секции того же биметаллического радиатора составит 204 х 0.63 = 128.5 Вт. Исходя из этого результата и подбирается количество секций.

Теплоотдача 1 секции биметаллического радиатора 500 мм. Таблица расчетов теплоотдачи радиаторов отопления

Основными критериями выбора приборов для обогрева жилья является его теплоотдача.

Это коэффициент, определяющий количество выделенного тепла устройством.

Иными словами, чем выше теплоотдача, тем быстрее и качественнее будет осуществляться прогрев дома.

Сколько нужно тепла для отопления?

Для точного расчета необходимого количества тепла для помещения следует учитывать множество факторов : климатические особенности местности, кубатуру здания, возможные теплопотери жилья (количество окон и дверей, строительный материал, наличие утеплителя и др.). Данная система вычислений достаточно трудоемкая и применяется в редких случаях .

В основном, расчет тепла определяется на основании установленных ориентировочных коэффициентов: для помещения с потолками не выше 3 метров, на 10 м2требуется 1 Квт тепловой энергии . Для северных регионов показатель увеличивается до 1,3 Квт.

К примеру, помещение, площадью 80 м2, для оптимального обогрева требует 8 КВт мощности. Для северных районов количество тепловой энергии возрастет до 10,4 КВт

Теплоотдача – ключевой показатель эффективности

Коэффициент теплоотдачи радиаторов – это показатель его мощности. Он определяет количество выделенного тепла за определенный промежуток времени. На мощность конвектора влияют: физические свойства прибора, его тип подключения, температура и скорость теплоносителя .

Мощность конвектора, указанная в его техпаспорте, обусловлена физическими свойствами материала, из которого изготовлен прибор, и зависит от его межосевого расстояния. Чтобы рассчитать необходимое количество секций радиатора для помещения, понадобится площадь жилья и коэффициент теплового потока прибора.

Вычисления производятся по формуле:

Количество секций = S/ 10 * коэффициент энергии (K) / величина теплового потока (Q)

Пример : Необходимо рассчитать количество секций алюминиевой батареи (Q = 0,18) для помещения, площадью 50 м2.

Расчет: 50 / 10 * 1 / 0,18 = 27,7. То есть, для обогрева помещения понадобится 28 секций. Для монолитных приборов, за место Q, ставим коэффициент теплоотдачи радиатора и в результате получаем необходимое количество батарей.

Если конвекторы будут установлены рядом с источниками, влияющими на теплопотери (окна, двери), то коэффициент энергии берется из расчета — 1.3.

Для отопления используются радиаторы: стальные, алюминиевые, медные, чугунные, биметаллические (сталь + алюминий) , и все они имеют разную величину теплового потока, обусловленную свойствами металла.

Узнайте?

Схемы подключения радиаторов для частного дома, как выбрать лучший вариант,.

Как выбрать хороший масляный радиатор для дома:, рекомендации, польза и вред.

Сравнение показателей: анализ и таблица

 

Помимо материала, из которого изготовлен прибор, на коэффициент мощности влияет межосевое расстояние – высота между осями верхнего и нижнего выходов. Также существенное влияние на КПД оказывает величина теплопроводности .

Тип радиатора Межосевое расстояние (мм) Теплоотдача (КВт) Температура теплоносителя (0С)
5000,183
5000,2
5000,16
Медные5000,38150

Факторы, которые влияют на показатели

Наибольшей теплоотдачей обладают медные и алюминиевые конвекторы. Самый низкий коэффициент мощности наблюдается у чугунных батарей, но он компенсируется их способностью сохранять тепло длительное время.

На эффективность КПД влияет правильный монтаж теплоприборов :

  • Оптимальное расстояние между полом и батареей – 70-120 мм, между подоконником – не менее 80 мм.
  • Обязательно предусматривается установка воздуховыпускника (крана Маевского).
  • Горизонтальное положение теплоприбора.

Радиаторы с лучшей теплоотдачей:

Материал Модель, производитель Номинальный тепловой поток (КВт) Стоимость за секцию (руб)
Rifar Alum 5000,183700,00
Elsotherm AL N 500х850,181500,00
Royal Thermo PianoForte 5000,1851500,00
Sira RS Bimetal 5000,2011000,00

Какие радиаторы выбрать для частного дома, поможет сделать выбор.

в нашей статье.

Технические характеристики алюминиевых радиаторов отопления на

Размещение радиаторов

Выделяют следующие типы подключения:

  1. Диагональное . Подающая труба монтируется к конвектору слева сверху, а выводящая снизу справа.
  2. Боковое (одностороннее) . Подающая и обратная труба крепятся к теплоприбору с одной стороны.
  3. Нижнее. Обе трубы подводятся к батарее снизу, с противоположных сторон.
  4. Верхнее. Трубы монтируются к верхним выходам теплоприбора, с обеих сторон.

Самым эффективным способом является диагональное подключение, которое позволяет равномерно нагреться прибору. При небольшом количестве секций, можно повысить мощность посредством бокового подключения.

Если секций одного радиатора более 15, то данная схема будет неэффективной , так как дальняя боковая сторона не будет прогреваться в данной мере.

Как улучшить теплоотдачу

Указанный коэффициент мощности конвектора в его техпаспорте, имеет место быть, практически при идеальных условиях . На деле, величина теплового потока несколько снижена,и это обусловлено большими теплопотерями.

Теплоотдача 1 секции биметаллического радиатора рифар. Base

Биметаллические секционные радиаторы RIFAR Base широко используют при строительстве новых и модернизации существующих систем отопления по всей России. Эти радиаторы учитывают требования и особенности эксплуатации отопительных приборов в российских системах отопления. В числе прочих конструктивных преимуществ, свойственных этим биметаллическим радиаторам, следует отметить уникальный способ герметизации межсекционного соединения, существенно повышающий надежность отопительного прибора.

Надежность межсекционного соединения достигается за счет фрезерования торца коллектора под прокладку типа O-ring из материала EPDM. Такая технология сборки радиатора из секций обеспечивает герметичность межсекционного стыка за счет образования замкового соединения. Это соединение существенно надежнее обычного соединения коллекторов с использованием плоской прокладки, которое применяют в обычных биметаллических секционных радиаторах.

Каждая секция радиатора RIFAR Base состоит из стальной трубы, залитой под высоким давлением высококачественным алюминиевым сплавом, обладающим высокими прочностными и антикоррозионными свойствами. Полученное в результате изделие с развитым оребрением обеспечивает эффективную теплоотдачу при максимальном запасе прочности.

При производстве радиаторов компания РИФАР использует стальные трубы собственного изготовления из качественной конструкционной стали, обеспечивающие высокие эксплуатационные характеристики и коррозионную стойкость выпускаемых приборов.

Радиаторы RIFAR Base представлены тремя моделями с межосевыми расстояниями 500, 350 и 200 мм.

Модель RIFAR Base 500 – одна из самых надежных и мощных среди биметаллических радиаторов, что делает ее приоритетной при выборе радиаторов для отопления больших и/или слабоутеплённых помещений. Широкий модельный ряд позволяет выдержать единый стиль в помещениях с различными ограничениями по высоте в местах установки отопительных приборов. Преимуществом модели RIFAR Base 200 является закрытая задняя поверхность секции, что позволяет использовать прибор в сочетании с панорамным остеклением окон.

Радиаторы RIFAR Base предназначены для использования в водяных системах отопления открытого или закрытого типа, подключенным к внешним теплосетям по зависимой или независимой схемам.

Серийно производятся радиаторы с числом секций от 4 до 14.

Радиаторы модификациипредназначены для нижнего подключения к системе отопления и применяются при устройстве современных систем отопления с лучевой разводкой или модернизации традиционных систем отопления со скрытием инженерных коммуникаций.

Для установки радиаторов вдоль закругленных стен производятся уникальные радиаторы с радиусом кривизны.

Подтверждая высокие конструктивные характеристики своих радиаторов и благодаря системе контроля качества, действующей на предприятии, компания РИФАР устанавливает гарантийный срок на радиаторы модели Base 10 лет при соблюдении условий монтажа и эксплуатации; срок службы радиаторов составляет 25 лет с момента установки.

Радиаторы RIFAR Base прошли обязательную сертификацию на соответствие требованиям ГОСТ 31311-2005. Вся продукция застрахована СПАО «ИНГОССТРАХ».

    Категории: Биметаллический радиатор, Тепло для отопления, Ключевой показатель

    Понравилось? Поделитесь с друзьями!

    ⇦ Масляная краска быстросохнущая. Акриловая краска для внутренних работ без запаха

    ⇨ Как промазать швы между плиткой. Удаление силиконовой затирки

    Как правильно определить теплоотдачу радиаторов отопления © Геостарт

    Рубрика: Ремонт и инженерка

    Современные торговые точки заполнены многообразием приспособлений и оборудования для обустройства отопительных систем в квартирах и частном секторе. Чтобы сделать правильный выбор, нужно учесть несколько важных технических характеристик, среди которых выделяется теплоотдача радиаторов отопления. Рассмотрим дальнее это понятие, чем отличается номинальное от фактического значения. Ознакомимся с методикой вычисления реальной тепловой мощности того или иного агрегата с учетом его особенностей.

    Понятие теплоотдачи оборудования

    Среди главных критериев выбора радиаторов отопления наиболее популярным считается мощность образца. Под этим понимается количество электроэнергии, которую потребляет конкретное оборудование в течение одного часа. Измеряется показатель, как правило, в кВт. Также распространено мнение, что тот же объем является в полной мере преобразованным тепловым потоком. Однако, последнее ошибочно. Это обосновано тем, что обогреватели отличаются по исполнению, условия эксплуатации бывают разными.

    Выбирая отопительные агрегаты нужно кроме прочего обращать внимание на такое понятие, как теплоотдача радиаторов (или тепловая мощность). Под этим подразумевается передаваемая тепловая энергия образца (Вт/час), которая зависит от разницы температур проходящего внутри теплоносителя (среднее значение) и окружающей среды. По установленным стандартам в сопроводительной документации обязательно указывается номинальное значение при Δt=70 градусах по Цельсию. Здесь Δt – это температурный напор, который вычисляется по формуле Δt = (t 1 + t 2 ) / 2 – t 3 . Под температурными показателями подразумеваются:

    • 1 – подача теплоносителя;
    • 2 – обратка;
    • 3 – состояние воздуха в помещении.

    Стоит отметить, что в паспорте понятие тепловой мощности радиатора отопления может быть заменено на мощность теплового потока, что измеряется в ккал/час (килокалорий в час). Для справки: в одном Вт содержится 859,845 кал/час, или 1 ккал соответствует 1,163 Вт/ч.

    Еще один момент важно уточнить. В документации производитель может указать теплоотдачу как одной секции, например, биметаллического радиатора, так и всего агрегата сразу. Последнее часто встречается, если оборудование собрано из 4-10 секций. Для самостоятельного вычисления тепловой мощности обогревателя достаточно найти конкретный показатель и посчитать количество составляющих элементов. К примеру, написано, что одна секция способна выделить 624 Вт энергии при температуре теплоносителя в +70 градусов по Цельсию. Значит 6-секционный агрегат будет отдавать 624*6=3,744 кВт тепла.

    Расчет фактической теплоотдачи

    Зная номинальную тепловую мощность радиатора можно определить фактическую энергоэффективность оборудования. Рассмотрим вычислительный процесс на примере биметаллического образца с номинальным показателем в 200 Вт при Δt=70 градусах по Цельсию. Так, если средняя температура в помещении будет равна +22 градусам по Цельсию, то пользуясь формулой, мы получим t 1 + t 2 = 184 градуса.

    Нормативной разницей между подачей и обраткой принято считать 20 условных единиц. То есть заявленной тепловой мощности должны соответствовать такие показатели: +102 и 82 градуса соответственно.

    Из полученных результатов видно, что выбирать радиатор отопления по номинальной тепловой мощности – это необъективное решение.

    В контурах теплоноситель по факту не нагревается до состояния кипения. Отопительные котлы могут повышать температуру воды до предела в +80 градусов по Цельсию. Тогда при максимальном нагреве фактическая теплоотдача одной секции биметаллического радиатора будет равна всего 100 Вт. Здесь учитывается, то в контур при подаче теплоноситель немного остывает и Δt составляет 40 условных единиц.

    Чтобы было проще произвести вычисления, можно использовать таблицу с понижающими коэффициентами:

    При таком подходе достаточно номинальное значение теплоотдачи радиатора отопления умножить на понижающий коэффициент из таблицы. Возвращаясь к рассматриваемому примеру, получим 200*0,48 = 96 Вт. Такое количество тепла будет выделяться одной секцией на 1 кв. метр помещения. Если нужно определить число секций на комнату площадью 10 квадратов, то ориентируясь, например, на норматив в 1 кВт/кв.м выйдет 10 или 11 штук. При наличии двух окон рекомендуется устанавливать два таких прибора без уменьшения числа секций.

    Характеристики различного оборудования

    Отопительное оборудование выбирается с учетом комплекса различных критериев. Среди них немаловажным является КПД. Например, многие считают, что алюминиевые батареи при идентичной мощности с чугунными обладают более высокой эффективностью. Это обосновывается лучшей теплопроводностью цветного металла. Однако материал в производстве используется с примесями, которые заметно снижают показатели. Рассмотрим детальнее характеристики отдельных образцов.

    Биметаллические

    На практике теплоотдача биметаллических радиаторов отопления является самой высокой.

    Показатели, характерные для одной секции, находятся в пределах от 140 до 180 Вт. По исполнению такое оборудование представлено стальными контурами с алюминиевым оребрением. Расчетное давление здесь ограничено 35 Атмосферами, эксплуатационный срок исчисляется минимум 20 годами.

    Алюминиевые

    Теплоотдача алюминиевых радиаторов может находиться в диапазоне 130-220,9 Вт, что актуально для одной секции. Рабочий материал здесь представлен силумином (сплав алюминия с кремнием), который обеспечивает батареям хорошую энергоэффективность. Но из-за относительно невысокой механической прочности металла батареи могут исправно служить при давлении в пределах 10 Атмосфер. Также имеются ограничения относительно кислотности теплоносителя и содержания щелочи – уровень pH не должен превышать 7,5 единиц.

    Стальные

    Мощность стальных радиаторов отопления принято считать оптимальной в отношении цена-эффективность. Это обосновано быстрым нагревом металла, хорошей прогреваемостью воздуха (конвекционные характеристики). По исполнению образцы чаще представлены панелями, поэтому теплоотдача указывается для всего агрегата в целом. Например, для модели Kermi FTV 330930 заявленный показатель равен 13173 Вт.

    Чугунные

    Теплоотдача чугунного радиатора на фоне других образцов является самой низкой. Показатели находятся в пределах 80-160 Вт исходя из одной секции. Тяжелый металл длительное время нагревается и остывает, что исключает автоматизированное управление отопительными приборами. Но такие батареи заметно лучше справляются с перепадами давления в системе, посторонними примесями в теплоносителе.

    Коротко о главном

    Теплоотдача радиатора отопления – фактическая передача тепла от протекающего внутри контуров теплоносителя, которая измеряется в Вт.

    В сопроводительной документации на оборудование указывается номинальная тепловая мощность, которая развивается при разнице средних температур между воздухом и теплоносителем в 70 градусов.

    Номинальная теплоотдача батарей и фактическая могут различаться в зависимости от рабочего режима тепловой системы и климатической ситуации внутри обслуживаемого помещения.

    Также эффективность радиатора зависит от технических характеристик материала, из которого он изготовлен.

    Самым оптимальным вариантом по цене-эффективности считается стальной образец, наибольшей теплоотдачей обладает биметаллический вариант, а чугунный имеет самые низкие показатели.

    автор

    Фомина Виктория

    Что такое тепловые реле перегрузки и какие компоненты они защищают?

    Вы здесь: Домашняя страница / Часто задаваемые вопросы + основная информация / Что такое тепловые реле перегрузки и какие компоненты движения они защищают?

    By Danielle Collins Оставить комментарий

    Тепло является основным фактором производительности и срока службы двигателя, и одним из основных источников нагрева двигателя является ток, протекающий через обмотки двигателя. Поскольку нагрев является неизбежным условием работы двигателя, важно защитить двигатель от перегрева или тепловой перегрузки.

    В предыдущем посте мы описали несколько типов датчиков, которые могут напрямую измерять температуру обмоток двигателя. Но в некоторых случаях, особенно для асинхронных двигателей переменного тока, нагрев двигателя можно измерить косвенно с помощью тепловых реле перегрузки, которые определяют температуру двигателя, контролируя величину тока, подаваемого на двигатель.


    Тепловые реле перегрузки подключаются последовательно с двигателем, поэтому ток, подаваемый на двигатель, также протекает через реле перегрузки. Когда ток достигает или превышает заданный предел в течение определенного периода времени, реле активирует механизм, который размыкает один или несколько контактов, прерывая подачу тока к двигателю. Реле тепловой перегрузки оцениваются по классу срабатывания, который определяет время, в течение которого может возникнуть перегрузка, прежде чем реле сработает или сработает. Обычные классы отключения: 5, 10, 20 и 30 секунд.

    Учет времени, а также тока важен для асинхронных двигателей переменного тока, поскольку они потребляют значительно больше своего полного номинального тока (часто 600 процентов или более) во время запуска. Таким образом, если бы реле сработало сразу же при превышении тока перегрузки, запуск двигателя был бы затруднен.


    Тепловые реле перегрузки бывают трех типов — биметаллические, эвтектические и электронные.

    Биметаллические тепловые реле перегрузки (иногда называемые нагревательными элементами) изготавливаются из двух металлов с разными коэффициентами теплового расширения, которые скрепляются или соединяются вместе. Обмотка, намотанная на биметаллическую полосу или размещенная рядом с ней, несет ток.

    В биметаллическом тепловом реле перегрузки нагрев из-за протекания тока вызывает изгиб биметаллической пластины в одну сторону, активируя механизм отключения.
    Изображение предоставлено Siemens

    Поскольку ток, проходящий через реле (и, следовательно, через двигатель), нагревает биметаллическую полосу, два металла расширяются с разной скоростью, заставляя полосу изгибаться в сторону с более низким коэффициентом тепловое расширение. Когда полоса изгибается, она приводит в действие нормально замкнутый (НЗ) контактор, заставляя его размыкаться и останавливая подачу тока к двигателю. Как только биметаллическое реле остынет и металлические полоски вернутся в свое нормальное состояние, цепь автоматически сбрасывается, и двигатель может быть перезапущен.

    Эвтектические тепловые реле перегрузки используют эвтектический сплав (сочетание металлов, который плавится и затвердевает при определенной температуре), заключенный в трубку и соединенный с обмоткой нагревателя. Ток питания двигателя протекает через обмотку нагревателя и нагревает сплав. Когда сплав достигает достаточной температуры, он быстро превращается в жидкость.

    В эвтектическом тепловом реле перегрузки нагрев из-за протекания тока вызывает быстрое расплавление эвтектического сплава, приводя в действие механическое устройство, отключающее реле.
    Изображение предоставлено Rockwell Automation

    В твердом состоянии сплав удерживает на месте механическое устройство, такое как пружина или храповик. Но когда сплав плавится, механическое устройство размыкается, размыкая контакты перегрузки. Подобно биметаллической конструкции, эвтектическое тепловое реле перегрузки не может быть сброшено до тех пор, пока сплав достаточно не остынет и не вернется в исходное твердое состояние. Электронные тепловые реле перегрузки

    более точны и надежны, чем конструкции нагревателей, и они могут предоставлять данные для диагностики и профилактического обслуживания.
    Изображение предоставлено: ABB

    Электронные тепловые реле перегрузки измеряют ток электронным способом, а не полагаются на механизм нагревателя, поэтому они нечувствительны к изменениям температуры окружающей среды. Они также менее склонны к «неприятным» или ложным срабатываниям. Электронные реле перегрузки могут предоставлять такие данные, как процент использования тепловой мощности (%TCU), процент тока при полной нагрузке (%FLA), время до срабатывания, среднеквадратичное значение тока и ток замыкания на землю — информация, которая может помочь операторам в проведении диагностики. и прогнозировать, когда реле рискует отключиться.

    Электронные конструкции могут также защищать двигатели от обрыва фазы (также называемого обрывом фазы), который возникает, когда сила тока в одной фазе равна нулю, часто из-за короткого замыкания или перегоревшего предохранителя. Это заставляет двигатель потреблять чрезмерный ток на оставшихся двух фазах и приводит к значительному нагреву двигателя.


    Тепловые реле перегрузки обычно являются частью пускателя электродвигателя, который включает в себя реле перегрузки и контакты. Важно отметить, что тепловые реле перегрузки предназначены только для защиты двигателя от перегрева и не сработают в случае короткого замыкания, поэтому для защиты цепи необходимы дополнительные предохранители или автоматические выключатели.


     

    Рубрики: Двигатели переменного тока, Часто задаваемые вопросы + основы, Рекомендуемые, Датчики + зрение

    Китай Индивидуальные радиаторы отопления Системные алюминиевые радиаторы Поставщики, производители, фабрика – оптовая цена

    В соответствии с концепцией доставки мировых продуктов и технологий в Китай и представления китайских продуктов миру, мы всегда уделяем внимание международному направлению развития экономичного одноконтурного газового котла, алюминиевого радиатора с высокой теплоотдачей, биметаллического секционного радиатора водяного отопления дома. Наша компания поставляет различные виды продукции с высоким качеством и выгодной ценой. Мы рады получить ваш запрос и ответим как можно скорее. Важнейшей особенностью нашей компании является то, что мы всегда думаем о наших клиентах и ​​получаем наибольшую отдачу от экономических эксплуатационных расходов при наименьших инвестициях. Мы действительно реализуем принцип «гарантия качества в качестве руководства, удовлетворенность клиентов в качестве основы и вежливое обслуживание в качестве поддержки».

    Алюминиевые радиаторы изготовлены по итальянской технологии из высокопрочного алюминиевого сплава, методом литья под давлением. Покрыта антикоррозийным покрытием и окрашена белой порошковой эмалью с последующим печным обжигом. Изготовление, испытания. отделки этой модели объединены в единый высокотехнологичный процесс. Каждая секция радиатора испытывается на прочность при давлении 24 атмосферы.

    Имеют более высокий коэффициент теплопередачи, чем биметаллические радиаторы – при тех же габаритах площадь теплообмена больше на 10%.

    Model Number

    SH-CO-500A3

    Central distance

    500mm

    Dimension

    580/78/78mm

    Вес нетто с ниппелем

    0,88 кг

    Вес нетто без ниппеля

    6 107 907 3

    00068

    Содержание воды

    0,25L/ПК

    Рабочее давление

    1,6MPA

    Box Size Size For 10 0003

    Box Size для 10 0003

    .

    Примерное количество, содержащееся в 40 HC/сек.

    17300 Секции

    Эта форма водопровода имеет хорошую прочность на давление.

    Эта модель подходит для России, Украины, Казахстана, Узбекистана и т.

    Вам может понравится

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *