Подключение батарей в частном доме: Схемы подключения радиаторов отопления в частном доме. Как правильно подключить радиатор отопления.

Подключение радиаторов отопления в частном доме

Схемы подключения радиаторов отопления в частном доме прямо влияют на эффективность работы отопительных приборов. Максимальное извлечение теплового потенциала батарей отражается на потреблении топлива – чем качественней раскрыт КПД радиатора, тем меньше расход энергоносителя для работы котла.

В отличие от многоквартирных домов, где реализовать любую схему присоединения радиатора не всегда возможно, в частных домах выбор схемы принадлежит владельцу жилья. Лучшим вариантом является использование самых оптимальных способов обвязки радиаторов. Существует 4 основных способа подключения радиаторов отопления в частном доме:

  1. Диагональный;
  2. Боковой;
  3. Нижний;
  4. Верхний.

Диагональный способ обвязки батарей отопления является самым эффективным – он реализует до 100% КПД устройства, при условии наличия в составе изделия не более 10 – 12 секций. При большем количестве секций увеличивается гидравлическое сопротивление и уровень качества теплопередачи снижается.

При диагональном подключении подача теплоносителя производится в верхнюю проходную заглушку устройства, отвод остывшей воды – из нижнего переходника, расположенного снизу, на противоположной стороне батареи (по диагонали). При таком способе подключения циркуляция теплоносителя через внутреннее пространство является оптимальной с гидравлической точки зрения, задействуется максимальная площадь теплоотдачи.

Вторым по качеству реализации КПД батарей является боковой способ привязки радиатора к разводке трубопроводов. Он реализует в среднем 95 – 97% возможностей отопительного устройства, опять же при условии числа секций не более 10 – 12. Подключение подающего трубопровода здесь производят в верхний переходник батареи, отводящего трубопровода – с этой же стороны радиатора, к нижнему переходнику.

Боковое подключение наиболее удобно при вертикальной прокладке стояков системы отопления. Кроме того, подключение сбоку выгодно для однотрубных систем с байпасом – тратится минимальное количество трубы и углов на перемычку.

Следует отметить, что указанные способы – диагональный и боковой – имеют «обратные» модификации. То есть подача теплоносителя производится в нижние переходники радиаторов, отвод – из верхних переходников. Такие схемы значительно снижают эффективность работы устройств – до 70 – 80% от номинала. Это вызвано увеличением сопротивления движению теплоносителя из-за внутренней конфигурации каналов секций. С технической точки зрения «обратные» схемы являются ошибочными, используются из дизайнерских или иных соображений.

Нижнее присоединение трубопроводов к радиаторам производится 2 методами:

  1. В нижние противоположные переходники устройства;
  2. К специальным резьбам, которыми оснащаются отдельные модели биметаллических и стальных батарей.

Эффективность нижнего подключения варьируется от 85 до 90%. Этот метод обвязки наиболее выгоден в плане дизайнерского оформления помещения – существует возможность максимально скрыть коммуникации. Но есть и весомый недостаток – при нижнем присоединении подводок в радиаторах часто скапливается воздух. Поэтому радиаторы при этой схеме (впрочем, как и в любых других) в обязательном порядке должны оснащаться воздухоотводчиками ручного или автоматического типа.

Верхний способ распространен меньше всего по сравнению с другими. Это вызвано тем, что трубопроводы систем отопления прокладываются чаще всего ближе к полу или в вертикальном направлении (стояки). Подключение подводок в этой схеме производится в верхние противоположные проходные заглушки устройства. Реализуемая эффективность радиатора составляет величину около 80 – 85%.

При верхней обвязке батареи практически не завоздушиваются, но есть и недостаток – в нижней части устройства, плохо промываемой теплоносителем, возможно образование засоров.

Рекомендуем прочитать:

(Просмотров 238 , 1 сегодня)

Автор adminОпубликовано Рубрики Радиаторы водяного отопления

Подключение батарей отопления в частном доме (76 фото) » НА ДАЧЕ ФОТО

Монтаж радиаторов отопления двухтрубная система отопления


Обвязка радиаторов двухтрубная система


Монтаж радиаторов отопления


Радиаторы алюминий двухтрубная система


Монтаж радиаторов двухтрубная система отопления


Подсоединение радиаторов отопления


Схема подключения радиатора отопления двухтрубная система


Обвязка радиаторов двухтрубная система


Секционный радиатор скрытая разводка


Радиаторы отопления полипропиленовые


Металлопластиковые батареи отопления


Размещение батарей отопления в частном доме


Диагональное соединение радиаторов отопления


Монтаж радиаторов отопления двухтрубная система отопления


Обвязка радиатора


Соединение 2х биметаллических батарей


Рирпление в частном доме


Радиатор отопления АВ частном доме


Скрытая прокладка труб отопления


Монтаж полипропиленовых труб для отопления


Монтаж отопительных приборов


Диагональная обвязка радиатора отопления


Двухтрубная система отопления Рехау


Трубы для батарей отопления


Керми диагональное


Соединение радиаторов отопления в квартире


Диагональное соединение радиаторов


Монтаж алюминиевых радиаторов


Подключение батареи отопления в однотрубной системе отопления


Радиаторы в частном доме


Шум в батареях отопления


Отопление из полипропиленовых труб


Прокладка труб отопления


Правильный монтаж батарей отопления в частном доме


Радиаторы отопления Рехау


Разводка батарей отопления


Монтаж батарей отопления


Прокладки для трубы батарея


Монтаж и демонтаж отопления


Разводка радиаторов отопления


Система отопления батареи


Установка радиаторов отопления


Правильная схема однотрубной системы отопления


Ленинградка система отопления однотрубная


Батареи металлопластик


Монтаж радиаторов отопления в частном доме


Стальные радиаторы отопления в деревянном доме


Прокладка труб для радиаторов отопления


Отоплениe в Европе


Радиатор отопления из полипропиленовых труб


Монтаж радиатора 10 секций


Подключить радиатор отопления


Обвязка радиатора отопления полипропиленом


Монтаж радиаторов отопления двухтрубная система отопления


Установка радиаторов отопления с частичной заменой труб


Включение отопления фото


Отопление в частном доме из металлических труб


Двухтрубная система отопления Рехау


Батареи отопления какие лучше для частного дома


Монтаж радиаторов отопления в доме


Батарея с пластиковыми трубами


Установленный радиатор отопления















Последовательное и параллельное соединение батарей и зарядных устройств

Важно обсудить эту тему, потому что, когда более одной батареи соединены вместе, полученный аккумуляторный блок будет иметь либо другое напряжение, либо другую емкость в ампер-часах (или и то, и другое) по сравнению с один аккумулятор.

Давайте начнем с рисунка 1 с простой блочной модели, показывающей положительные и отрицательные клеммы для представления физической батареи. Мы будем использовать это для связи с физическими соединениями между батареями, которые вы использовали бы для создания аккумуляторной батареи.

Рис. 1: Физическая модель и условное обозначение одиночной батареи

Рис. 2: Батареи , соединенные последовательно

На рис. 2 показаны две 12-вольтовые батареи, соединенные последовательно. Важные моменты, которые следует учитывать при последовательном соединении: 1) Напряжение аккумуляторной батареи суммируется, чтобы определить напряжение аккумуляторной батареи. В этом примере результирующее напряжение батареи составляет 24 вольта. 2) Емкость аккумуляторной батареи такая же, как и у отдельной батареи. При этом предполагается, что емкости отдельных аккумуляторов одинаковы. На самом деле, это обязательно. Не смешивайте и не подбирайте батареи разных размеров в одном батарейном блоке.

Рисунок 3: Батареи , подключенные параллельно

На рисунке 3 показаны две 12-вольтовые батареи, подключенные параллельно. Важные моменты, которые следует учитывать при параллельном подключении: 1) Напряжение аккумуляторной батареи такое же, как и напряжение отдельной батареи. Это предполагает, что напряжение отдельных аккумуляторов одинаково. На самом деле, это абсолютная необходимость. Не смешивайте и не подбирайте аккумуляторы с разным напряжением в одном и том же аккумуляторном блоке. В этом примере напряжение аккумуляторной батареи составляет 12 вольт, что точно такое же, как и у каждой отдельной 12-вольтовой батареи. 2) Емкость аккумуляторной батареи равна сумме емкостей отдельных батарей. Опять же, убедитесь, что все батареи имеют одинаковый размер, то есть имеют одинаковую емкость в ампер-часах.

Существует множество способов одновременного соединения группы батарей как последовательно, так и параллельно. Это обычная практика для многих устройств с батарейным питанием, особенно в электромобилях и больших системах ИБП, где аккумуляторные блоки требуют больших напряжений и емкости в ампер-часах. Нередки аккумуляторные батареи с несколькими сотнями вольт и несколькими сотнями ампер-часов.

Просто чтобы получить представление о том, как можно выполнить эти соединения, мы рассмотрим два примера с 4 батареями в каждой, использующими батареи 12 В, 20 Ач. В каждом из примеров 4 батареи обозначены как A, B, C и D. Пример 1, показанный на рисунке 4, имеет 2 пары последовательно соединенных батарей, соединенных в одно параллельное соединение. В этом типе расположения мы называем каждую пару последовательно соединенных батарей «цепочкой». Батареи А и С соединены последовательно. Батареи B и D включены последовательно. Цепочка A и C параллельна цепочке B и D. Обратите внимание, что общее напряжение аккумуляторной батареи составляет 24 вольта, а общая емкость аккумуляторной батареи составляет 40 ампер-часов.

Рис. 4: Батареи , соединенные последовательно/параллельно: пример 1

Пример 2, показанный на рис. 5, имеет 2 пары параллельно соединенных батарей, соединенных в одно последовательное соединение. Батареи А и В включены параллельно. Батареи C и D включены параллельно. Параллельное соединение A и B последовательно с параллельным соединением C и D. Опять же, общее напряжение аккумуляторной батареи составляет 24 вольта, а общая емкость аккумуляторной батареи составляет 40 ампер-часов.

Рисунок 5: Аккумуляторы , соединенные последовательно/параллельно: пример 2

Примечание. На следующих схемах показаны некоторые способы подключения зарядных устройств Deltran к различным аккумуляторам, соединенным последовательно и параллельно.

Положительный к положительному, отрицательный к отрицательному, напряжения одинаковые

Рис. 6: Одна батарея, одно зарядное устройство

На рис. 6 показано самое простое соединение между зарядным устройством и одной батареей. Положительный выход зарядного устройства (красный) подключается к положительному выводу аккумулятора. Отрицательный выход зарядного устройства (черный) подключается к отрицательному выводу аккумуляторной батареи. Всегда помните: 1) плюс соединяется с плюсом, а минус соединяется с минусом 2) зарядное устройство и аккумулятор должны иметь одинаковое напряжение.

Рис. 7: Две последовательно соединенные батареи, два зарядных устройства

На рис. 7 показаны две последовательно соединенные 12-вольтовые батареи. Результирующее напряжение аккумуляторной батареи составляет 24 вольта. Как видите, каждая батарея подключена к одному 12-вольтовому зарядному устройству. Это, вероятно, лучший способ обеспечить полную зарядку каждой батареи до полной емкости после каждой разрядки аккумуляторной батареи. Это устраняет большинство проблем, связанных с последовательно включенными батареями.

Рис. 8: Два последовательно соединенных аккумулятора, одно зарядное устройство

Рис. 9: Два параллельно подключенных аккумулятора, одно зарядное устройство

Аккумуляторы, соединенные последовательно, могут также заряжаться от одного зарядного устройства, имеющего такое же номинальное выходное напряжение зарядки как номинальное напряжение аккумуляторной батареи. На рисунке 8 одно зарядное устройство на 24 В подключено к аккумуляторной батарее на 24 В.

На рисунке 9 мы видим пару 12-вольтовых аккумуляторов, соединенных параллельно. Этот 12-вольтовый аккумулятор подключается к одному 12-вольтовому зарядному устройству. Обратите внимание на синий провод, обозначенный W1. Назначение этого провода — равномерно сбалансировать падение напряжения на обеих батареях и на каждом проводе во время зарядки. Это не критично для зарядных устройств с меньшим током, но когда вы начинаете попадать в диапазон 10 ампер и выше, разница в напряжении может быть значительной. Синий провод W1 должен быть подсоединен к противоположному концу аккумуляторной батареи по сравнению с черным проводом в верхней части аккумуляторной батареи.

Рисунок 11: Четыре батареи в последовательном/параллельном соединении (пример 1), одно зарядное устройство

Схема, показанная на рисунке 11, представляет собой приемлемый способ зарядки комбинированного последовательного/параллельного блока батарей. Этот метод определенно лучше схемы, показанной на рис. 10, потому что дисбаланс напряжений отдельных батарей не так важен. Есть некоторые сложные детали алгоритмов зарядки, которые специально оптимизированы для учета и устранения дисбаланса напряжения отдельных батарей в больших последовательностях. Даже без этих специальных функций зарядки одно 24-вольтовое зарядное устройство в этом устройстве работает лучше, чем два 12-вольтовых зарядных устройства. Опять же, синий провод, обозначенный W1, выполняет ту же функцию дисбаланса падения напряжения заряда, что и на рисунке 9..

На рис. 12 снова показаны два 12-вольтовых зарядных устройства, подключенных к последовательно/параллельно аккумуляторной батарее. Но этот аккумулятор настроен так же, как пример 2 в предыдущем разделе. У вас есть два комплекта из двух батарей, соединенных параллельно. Затем эти два параллельно соединенных набора батарей соединяются последовательно одним проводным соединением. В этом случае вполне допустимо использовать одно зарядное устройство для каждого из параллельно соединенных комплектов аккумуляторов, не беспокоясь о дисбалансе напряжений, обсуждаемом в отношении примера 1. Напомним, что пример 1, показанный на рис. 4, имел два комплекта из двух аккумуляторов. , сначала соединены последовательно, затем каждая серия соединена параллельно 2 проводными соединениями.

Для тех любителей математики, которые увлекаются топологией, n-мерными пространствами и т. д., можно учесть тот факт, что в примере 2 есть еще один кусок провода, соединяющий батареи (всего 5 отрезков провода), по сравнению с 4 отрезками. провода в примере 1. Это одно дополнительное соединение позволяет эффективно использовать два 12-вольтовых зарядных устройства вместо одного 24-вольтового зарядного устройства. В некоторых более крупных системах такие соображения могут повлиять как на экономичность, так и на надежность системы.

Рисунок 12: Четыре батареи в последовательном/параллельном соединении (пример 2), два зарядных устройства

На рисунке 13 показано такое же расположение блока батарей на 24 В, 4 батареи, последовательное/параллельное, как в примере 2, но с одним зарядное устройство на 24 вольта. Из-за различий между физическими электрическими соединениями в аккумуляторных батареях при сравнении примеров 1 и 2 в одном случае допустимо использовать либо две 12-вольтовые батареи, либо одну 24-вольтовую батарею. В другом случае это неприемлемо.

Если у вас возникнут какие-либо сомнения относительно электрических соединений между батареями и зарядным оборудованием, обратитесь к производителю батареи и/или зарядному устройству и убедитесь, что вы правильно выполняете соединения. Эта информация потенциально может сэкономить много денег и разочарований.

Рисунок 13: Четыре батареи последовательно/параллельно (пример 2), одно зарядное устройство

Еще одно замечание по поводу дисбаланса напряжения при подаче зарядного тока. На рис. 13 показаны два выделенных провода: синий, обозначенный W1, и зеленый, обозначенный W2. Интересно, что если соединение с положительной клеммы батареи D переместить на положительную клемму батареи C, не изменяя соединение с отрицательной клеммой батареи A, то будет существовать дисбаланс напряжения. Проведите мысленный эксперимент. Возьмите карандаш и проследите путь зарядного тока от выхода, положительной клеммы зарядного устройства на 24 вольта, через провода и аккумуляторы, через W1 и обратно к выходу, отрицательной клемме зарядного устройства на 24 вольта.

Теперь вернитесь к рисунку 12 и посмотрите на зеленый провод, обозначенный W3. При подключении 2 независимых зарядных устройств синие провода W1 и W2 корректируют дисбаланс напряжения, который может существовать в отдельных, параллельно соединенных аккумуляторных батареях. Зеленый провод W3 абсолютно ничего не делает в плане зарядки аккумуляторов. На самом деле, его можно просто снять, потому что через него ОТСУТСТВУЕТ ТОК, пока две группы аккумуляторов заряжаются.

(Загрузите этот документ в формате Adobe PDF.)

Обновленный выбор батарей для сегодняшних потребностей в электроэнергии

Опишите автономную солнечную установку, и кто-то 20 лет назад мог бы представить удаленную хижину в лесу со свинцово-кислотными батареями и дизельными генераторами, используемыми в качестве резервного источника питания. Но в 2020-х автономные дома могут быть ближе, чем вы думаете, — например, прямо по соседству. Многие районы либо из-за своего географического положения, либо из-за ограничений существующей сети меняют сценарий и используют сеть исключительно в качестве аварийного резерва.

«Последняя новость — отказ от сети», — сказал Дэвид Норман, директор по солнечным продуктам и развитию бизнеса компании Discover Battery, поставщика свинцово-кислотных и литиевых аккумуляторов.

Например, на Гавайях, где цены на коммунальные услуги в среднем превышают 30 центов/кВтч, а новые солнечные батареи не могут быть добавлены в сеть, люди берут свою энергию в свои руки. Гавайские домохозяйства, которые часто называют полным самопотреблением или нулевым экспортом электроэнергии, по сути работают как автономные дома с сетью в качестве резервной копии.

В Калифорнии, где в последние несколько лет в связи с «отключением электроэнергии в целях общественной безопасности» подача электроэнергии ограничивалась, домовладельцы заранее планируют длительные отключения электроэнергии. В лучшем случае дома теперь должны быть спроектированы таким образом, чтобы они функционировали вне сети как минимум в течение месяца, а остальные 11 месяцев они могут пользоваться сетью.

Бункеры Судного дня не присутствуют ни в одной из этих ситуаций — автономные установки уже существуют во многих городских кварталах. Сегодняшние потребности в электроэнергии требуют аккумуляторных технологий, чтобы не отставать.

Свинец и литий в автономном режиме

Электрическая батарея по определению представляет собой устройство, хранящее энергию, которая может быть преобразована в электрическую. В этом смысле все типы аккумуляторов подходят для автономного хранения, но некоторые из них лучше других справляются с сегодняшними потребностями в электроэнергии и расписанием циклов.

«В автономном режиме речь идет не столько о батарее, сколько о сценарии использования», — сказал Норман. «Если вы используете только резервное питание, подойдет свинцово-кислотный. Он не работает регулярно, а в основном просто находится в резерве на случай отключения или сбоя питания. Но для приложений зарядки по требованию любая литиевая батарея лучше».

Свинцово-кислотные аккумуляторы Trojan AGM

Свинцово-кислотные аккумуляторы хорошо подходят для периодического краткосрочного резервного питания. Но если кто-то хочет переключить источники питания, чтобы воспользоваться тарифами на время использования коммунальных услуг или избежать подключения к сети в течение длительного периода времени, необходимы более частые и более глубокие циклы, чем то, что может обеспечить свинцово-кислотный.

«Литий меняется вне сети», — сказал Норман. «Вы все еще можете жить вне сети на свинцово-кислотном аккумуляторе, но литий более эффективен».

Все это сводится к количеству циклов батареи и степени ее разрядки — сколько раз батарея может быть разряжена и сколько энергии можно фактически использовать. KiloVault также предлагает как свинцово-кислотные, так и литиевые батареи, и вице-президент по продажам и маркетингу Джей Галассо часто объясняет характеристики зарядки двух химических типов.

«Автономные солнечные батареи требуют батарей, которые можно разряжать и заряжать каждый день», — сказал Галассо. «Один цикл может включать зарядку батарей в течение дня, а затем разрядку накопленной энергии для использования вечером. Чем больше разряжена батарея, тем «глубже» цикл».

Свинцово-кислотные аккумуляторы разлагаются все больше с каждым циклом. В то время как литиевая батарея может поставляться с гарантией 10 000 циклов, свинцово-кислотная батарея может достигать 2500 циклов при разрядке до 50%. Литиевые батареи можно разряжать практически до нуля, или, по сути, весь заряд литиевой батареи можно использовать за один цикл, в то время как батарея на основе свинца может использовать только половину своего заряда, прежде чем разлагаться еще быстрее.

Современная автономная установка с литиевыми батареями от Discover

«Свинцово-кислотные батареи дешевле при том же напряжении и емкости, но не рассчитаны на много циклов», — сказал Галассо. «Конструкции [на основе лития] могут использовать меньше батарей для данного приложения из-за более высоких скоростей заряда/разряда, что приводит к снижению первоначальных затрат».

SimpliPhi Power была основана в начале 2000-х годов и всегда была поставщиком литиевых аккумуляторов. Компания знает ценность литиевых батарей в автономных приложениях, поскольку ее первоначальным рынком были сценарии удаленного питания.

«Свинцово-кислотные аккумуляторы — это устаревший продукт, используемый в автономном режиме. Именно здесь зародилась солнечная промышленность. В те первые дни у вас не было фотоэлектрической системы без свинцовых батарей», — сказал Секвойя Кросс, директор по глобальным продажам и развитию бизнеса SimpliPhi. «Почему мы видим, что все больше людей переходят на литий: у вас больше полезной емкости в меньшем пространстве, вы можете довести их до 100% глубины разряда».

Физическое пространство — еще одна причина, по которой свинцово-кислотные аккумуляторы теряют популярность в современных городских установках, не подключенных к сети.

«Большинство людей, которые строят автономные объекты, не имеют отдельной механической комнаты за пределами своего дома, куда можно поставить батареи и инвертор. У большинства людей нет такого пространства», — сказал Норман. «Чтобы иметь достаточно энергии для работы вашего дома как автономного дома, только за счет объемного пространства, вам нужно перейти на литий, потому что вы никогда не сможете разместить столько свинца в своем доме».

Когда сегодня кто-то хочет отключить свое активное домашнее хозяйство от сети, это обычно означает, что он хочет, чтобы холодильник работал вместе с компьютерами, интернетом, телевизорами, светом и всем остальным одновременно. Простое резервное копирование одной аварийной нагрузки уже не поможет, особенно в таких местах, как Калифорния, где жизнь должна продолжаться, когда электроэнергия отключается. Для этого требуется аккумулятор большей емкости, более высокая скорость зарядки и более глубокий разряд — то, чего свинцово-кислотные аккумуляторы просто не могут обеспечить.

«Свинец умирает в автономном режиме. Вы можете продлить срок службы свинцово-кислотных аккумуляторов, но они требуют тщательного обслуживания», — сказал Норман. «Нет смысла продавать премиальный свинец, когда я могу продать литий всего на 10% дороже. Свинец по-прежнему работает на автомобильных рынках, но для солнечной и стационарной энергии свинец мертв».

Литиевая битва вне сети: NMC против LFP

Два основных типа литиевых батарей, используемых в жилых помещениях, — это литий-никель-марганец-кобальт-оксид (NMC) и литий-железо-фосфат (LFP). Аккумуляторы Tesla Powerwall, Generac PWRcell и LG RESU используют химию NMC, в то время как многие другие поставщики используют LFP (включая Discover, Eguana, Electriq Power, Enphase, KiloVault, SimpliPhi, sonnen). Хотя оба типа батарей отлично работают в ситуациях арбитража спроса, у LFP есть преимущество, когда дело доходит до автономных сетей. Возможно, поэтому все больше компаний предлагают химию без кобальта.

«Для приложений, подключенных к сети, где вам не обязательно заботиться о быстрой перезарядке, потому что у вас есть сеть, батареи NMC отлично подходят», — сказал Норман из Discover Battery.

«Ограничение их для автономного сценария заключается в том, что они не могут справиться с сильноточной зарядкой или разрядкой требовательных автономных нагрузок».

Аккумуляторы SimpliPhi LFP использовались в солнечной установке в автономном особняке бывшего губернатора Калифорнии Джерри Брауна в 2018 г. для двух литиевых химий. Батареи NMC имеют скорость заряда 0,5C, а батареи LFP — 1C. Если для зарядки батареи LFP требуется один час, то для батареи NMC требуется в два раза больше времени, поскольку она потребляет ток медленнее. Батареи LFP можно заряжать вдвое быстрее, чем NMC.

«Из-за [более высокой скорости зарядки] батареи LFP могут обеспечить более высокую выходную мощность для сети или дома. Эта функция позволяет батарее резервировать большие нагрузки с меньшей батареей, чем это было бы необходимо для NMC», — сказал Сондерс.

«Время — деньги. Если я заряжаюсь от солнечной батареи, и у меня есть только шестичасовой солнечный день, я хочу получить от этих батарей как можно больше», — сказал Норман.

Вам может понравится

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *